

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199943120 B2
(10) Patent No. 754943

(54) Title
Benzimidazole analogs as down-regulators of IgE

(51)⁶ International Patent Classification(s)
A61K 031/415

(21) Application No: **199943120** (22) Application Date: **1999 .05 .21**

(87) WIPO No: **WO99/61020**

(30) Priority Data

(31) Number 60/086494	(32) Date 1998 .05 .22	(33) Country US
(43) Publication Date : 1999 .12 .13		
(43) Publication Journal Date : 2000 .02 .24		
(44) Accepted Journal Date : 2002 .11 .28		

(71) Applicant(s)
Avanir Pharmaceuticals

(72) Inventor(s)
Jagadish sircar; Mark L. Richards; Michael G. Campbell; Michael W. Major

(74) Agent/Attorney
DAVIES COLLISON CAVE, 1 Little Collins Street, MELBOURNE VIC 3000

(56) Related Art
EP 719765
WO 98/17267
EP 700906

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

43120/99

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 31/415		A1	(11) International Publication Number: WO 99/61020 (43) International Publication Date: 2 December 1999 (02.12.99)
(21) International Application Number: PCT/US99/11490 (22) International Filing Date: 21 May 1999 (21.05.99) (30) Priority Data: 60/086,494 22 May 1998 (22.05.98) US		(81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPo patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). 92121 (US)	
(71) Applicant: AVANIR PHARMACEUTICALS [US/US]; 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). 11388 Sorrento Valley Road, San Diego, CA (72) Inventors: SIRCAR, Jagadish; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). RICHARDS, Mark, L.; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). CAMPBELL, Michael, G.; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). MAJOR, Michael, W.; Avanir Pharmaceuticals, 9393 Towne Centre Drive #200, San Diego, CA 92121 (US). (74) Agent: ALTMAN, Daniel, E.; Knobbe, Martens, Olson & Bear, LLP, 16th floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(54) Title: BENZIMIDAZOLE ANALOGS AS DOWN-REGULATORS OF IgE (57) Abstract <p>This invention relates to a family of diacyl benzimidazole analogs, which are inhibitors of the IgE response to allergens. These compounds are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic.</p>			

BENZIMIDAZOLE ANALOGS AS DOWN-REGULATORS OF IgE

Background of the Invention

This invention relates to small molecule inhibitors of the IgE response to allergens that are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic.

An estimated 10 million persons in the United States have asthma, about 5% of the population. The estimated cost of asthma in the United States exceeds \$6 billion. About 25% of patients with asthma who seek emergency care require hospitalization, and the largest single direct medical expenditure for asthma has been inpatient hospital services (emergency care), at a cost of greater than \$1.6 billion. The cost for prescription medications, which increased 54% between 1985 and 1990, was close behind at \$ 1.1 billion (Kelly, *Pharmacotherapy* 12:13 S-2 IS (1997)).

According to the National Ambulatory Medical Care Survey, asthma accounts for 1% of all ambulatory care visits, and the disease continues to be a significant cause of missed school days in children. Despite improved understanding of the disease process and better drugs, asthma morbidity and mortality continue to rise in this country and worldwide (U.S. Department of Health and Human Services; 1991, publication no. 91-3042). Thus, asthma constitutes a significant public health problem.

The pathophysiologic processes that attend the onset of an asthmatic episode can be broken down into essentially two phases, both marked by bronchoconstriction, that causes wheezing, chest tightness, and dyspnea. The first early phase asthmatic response is triggered by allergens, irritants, or exercise. Allergens cross-link immunoglobulin E (IgE) molecules bound to receptors on mast cells, causing them to release a number of preformed inflammatory mediators, including histamine. Additional triggers include the osmotic changes in airway tissues following exercise or the inhalation of cold, dry air. The second, late phase response that follows is characterized by infiltration of activated

eosinophils and other inflammatory cells into airway tissues, epithelial desquamation, and by the presence of highly viscous mucus within the airways. The damage caused by this inflammatory response leaves the airways "primed" or sensitized, such that smaller triggers are required to elicit subsequent asthma symptoms.

A number of drugs are available for the palliative treatment for the palliative treatment of asthma; however, their efficacies vary markedly. Short-acting β_2 -adrenergic agonists, terbutaline and albuterol, long the mainstay of asthma treatment act primarily during the early phase as bronchodilators. The newer long-acting β_2 -agonists, salmeterol and formoterol, may reduce the bronchoconstrictive component of the late response. However, because the β_2 -agonists do not possess significant antiinflammatory activity, they have no effect on bronchial hyperreactivity.

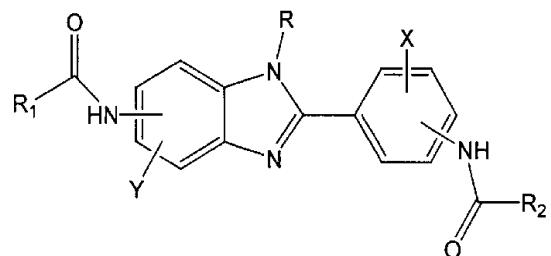
Numerous other drugs target specific aspects of the early or late asthmatic responses. For example, antihistamines, like loratadine, inhibit early histamine-mediated inflammatory responses. Some of the newer antihistamines, such as azelastine and ketotifen, may have both antiinflammatory and weak bronchodilatory effects, but they currently do not have any established efficacy in asthma treatment. Phosphodiesterase inhibitors, like theophylline/xanthines, may attenuate late inflammatory responses, but there is no evidence that these compounds decrease bronchial hyperreactivity. Anticholinergics, like ipratropium bromide, which are used in cases of acute asthma to inhibit severe bronchoconstriction have no effect on early or late phase inflammation, no effect on bronchial hyperreactivity, and therefore, essentially no role in chronic therapy.

The corticosteroid drugs, like budesonide, are the most potent antiinflammatory agents. Inflammatory mediator release inhibitors, like cromolyn and nedocromil, act by stabilizing mast cells and thereby inhibiting the late phase inflammatory response to allergen. Thus, cromolyn and nedocromil, as well as the corticosteroids, all reduce bronchial hyperreactivity by minimizing the sensitizing effect of inflammatory damage to the airways. Unfortunately, these antiinflammatory agents do not produce bronchodilation.

Several new agents are currently being developed that inhibit specific aspects of asthmatic inflammation. For instance, leukotriene receptor antagonists (ICI-204, 219, accolate), specifically inhibit leukotriene-mediated actions. The leukotrienes have been implicated in the production of both airway inflammation and bronchoconstriction.

Thus, while numerous drugs are currently available for the treatment of asthma, these compounds are primarily palliative and/or have significant side effects. Consequently, new therapeutic approaches which target the underlying cause rather than the cascade of symptoms would be highly desirable. Asthma and allergy share a common dependence on IgE-mediated events. Indeed, it is known that excess IgE production is the underlying cause of allergies in general and allergic asthma in particular (Duplantier and Cheng, *Ann. Rep. Med. Chem.* 29:73-81 (1994)). Thus, compounds that lower IgE levels may be effective in treating the underlying cause of asthma and allergy.

None of the current therapies eliminate the excess circulating IgE. The hypothesis that lowering plasma IgE may reduce the allergic response, was confirmed by recent clinical results with chimeric anti-IgE antibody, CGP-51901, and recombinant humanized monoclonal antibody, rhuMAB-E25. Indeed, three companies, Tanox Biosystems, Inc., Genentech Inc., and Novartis AG are collaborating in the development of a humanized anti-IgE antibody (BioWorld® Today, February 26, 1997, p. 2) which will treat allergy and asthma by neutralizing excess IgE. Tanox has already successfully tested the anti-IgE antibody, CGP-51901, which reduced the severity and duration of nasal symptoms of allergic rhinitis in a 155-patient Phase II trial (Scrip #2080, Nov 24, 1995, p.26). Genentech recently disclosed positive results from a 536 patient phase II/III trials of its recombinant humanized monoclonal antibody, rhuMAB-E25 (BioWorld® Today, November 10, 1998, p. 1). The antibody, rhuMAB-E25, administered by injection (highest dose 300 mg every 2 to 4 weeks as needed) provided a 50% reduction in the number of days a patient required additional "rescue" medicines (antihistamines and decongestants), compared to placebo. An NDA filing for this product is projected to be



in the year 2000. The positive results from anti-IgE antibody trials suggest that therapeutic strategies aimed at IgE down-regulation may be effective.

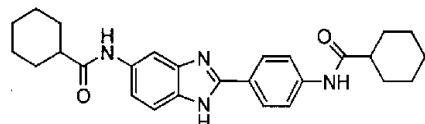
Summary of the Invention

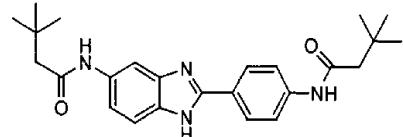
The present invention discloses a family of related compounds for use in the treatment of a condition associated with an excess IgE level. The benzimidazole inhibitors of IgE in accordance with the present invention are represented by the generic formula:

Structure 1 (A)

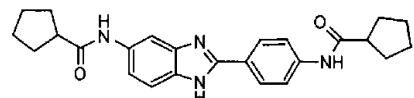
X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF_3 , OCF_3 , CONH_2 , CONHR and NHCOR_1 .

R is selected from the group consisting of H, CH₃, C₂H₅, C₃H₇, C₄H₉, CH₂Ph, and CH₂C₆H₄-F(p-); and

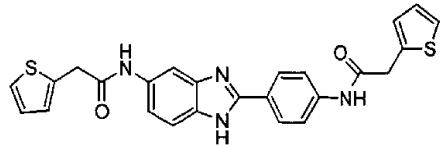

wherein R₁ and R₂ are independently selected from the group consisting of alkyl, cycloalkyl, substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl wherein R₁ and R₂ cannot be methyl groups. Substitutions are alkyl, aryl, CF₃, CH₃, OCH₃, OH, CN, COOR, COOH and the like.


In accordance with another aspect of the invention, there is disclosed a composition for use in the treatment of an allergic condition comprising the diacyl benzimidazole inhibitor of IgE disclosed above and at least one additional active ingredient, combined in a pharmaceutically acceptable diluent. The additional active ingredients may be selected from the group consisting of short-acting β_2 -adrenergic agonists, like terbutaline and albuterol, long-acting β_2 -adrenergic agonists, like salmeterol and formoterol, antihistamines, like loratadine, azelastine and ketotifen, phosphodiesterase inhibitors, anticholinergic agents, corticosteroids, inflammatory mediator release inhibitors and leukotriene receptor antagonists.

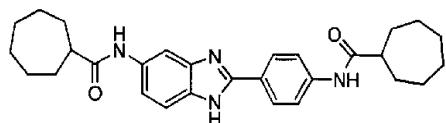
In accordance with another aspect of the invention, there is disclosed a family of diacyl benzimidazole compounds for use in the treatment of an allergic condition comprising the following species:


S-1

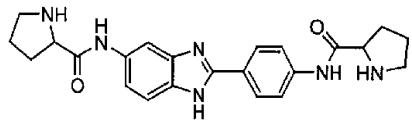
S-2

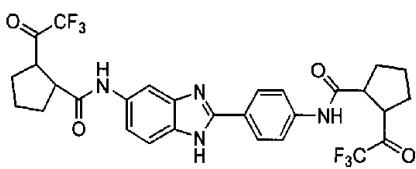


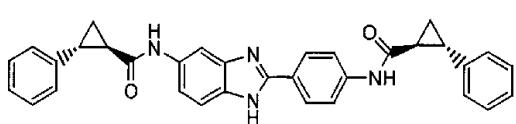
S-3

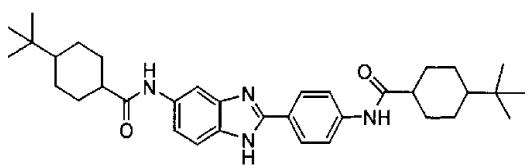


卷之三

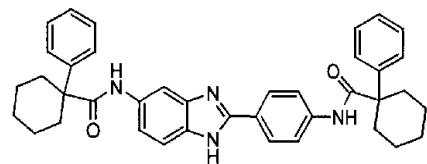

S-4


S-5

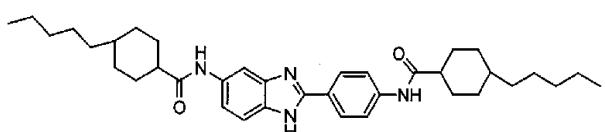

S-6


S-7

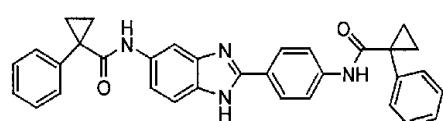
S-8

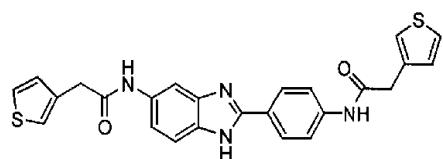


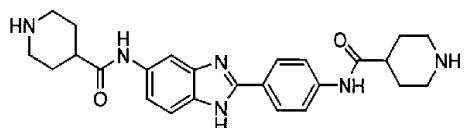
S-9

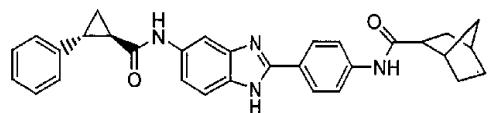


卷之三

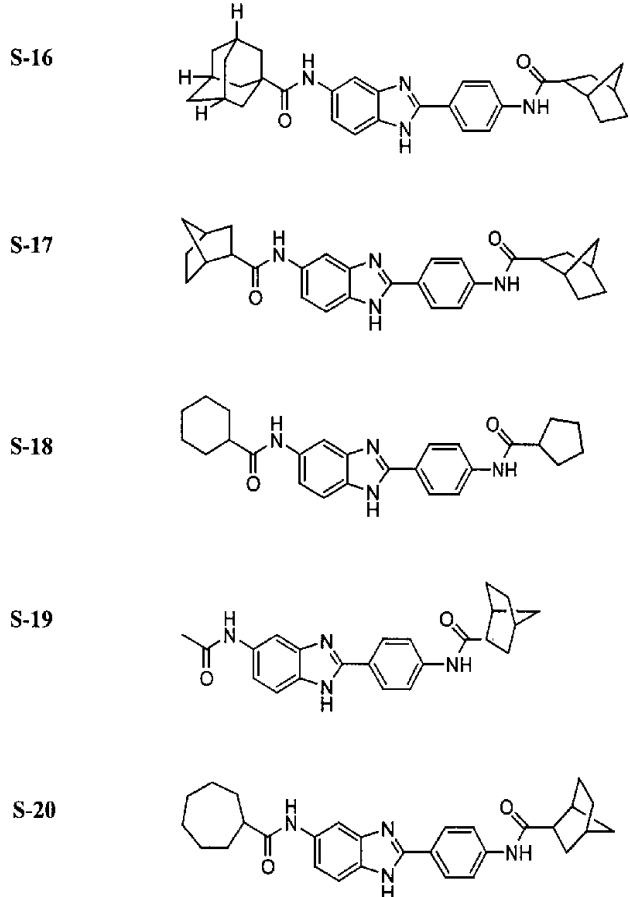

S-10


S-11

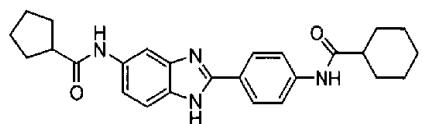

S-12

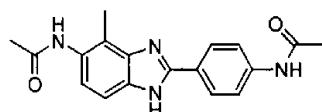

S-13

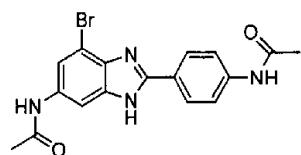
S-14

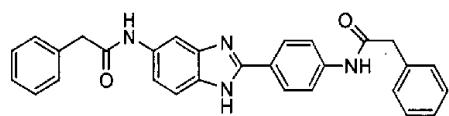


S-14A
S-15

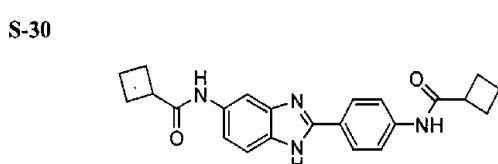
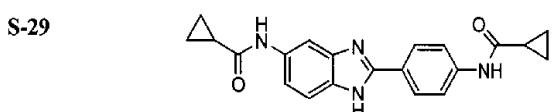
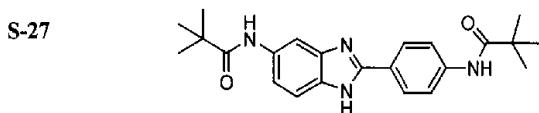
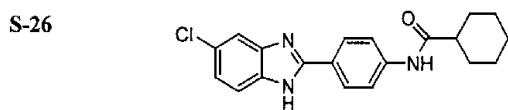
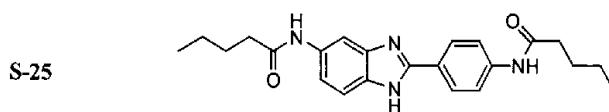


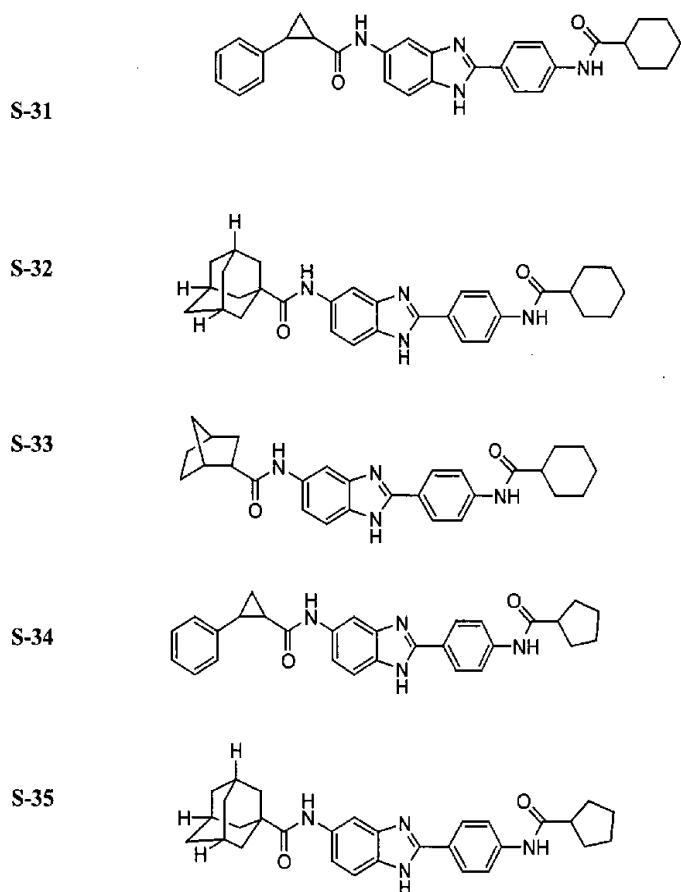

20
19
18
17
16
15
14
13
12


S-21

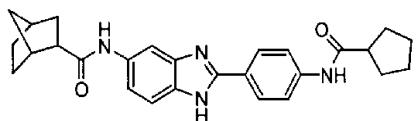

S-22
(Known Compound)

S-23

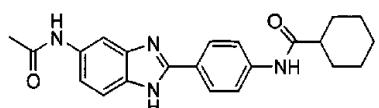





S-24


6
2
32
33
34

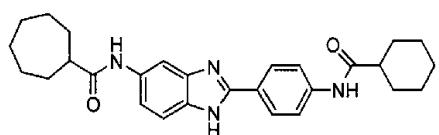
32
33
34
35
36
37
38
39

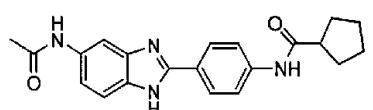


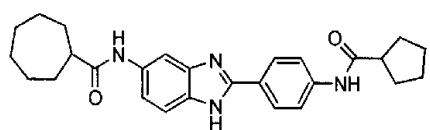
S-31
S-32
S-33
S-34
S-35

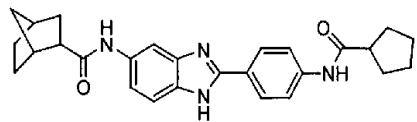


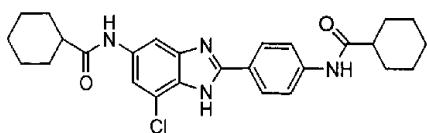
313
32
33
34


S-36

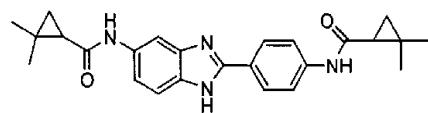

S-37


S-38

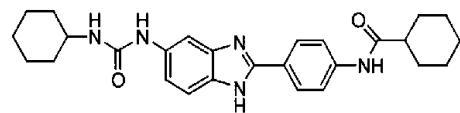

S-39


S-40

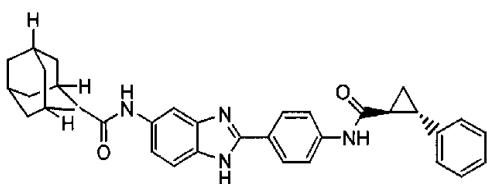
S-41

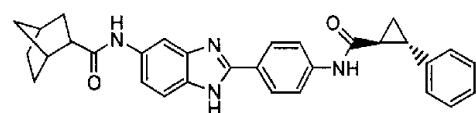


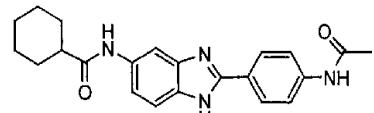
S-42

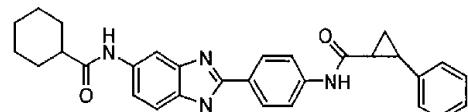


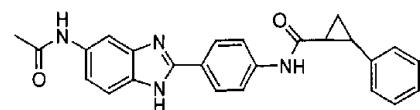
3
3
3
3
3
3
3
3
3

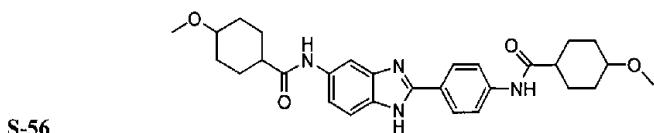
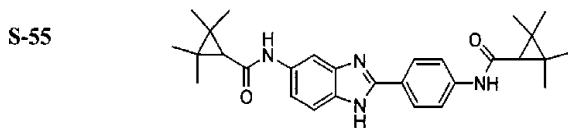
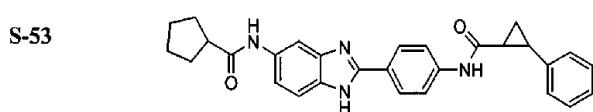
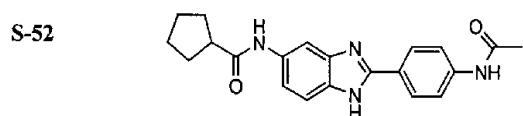
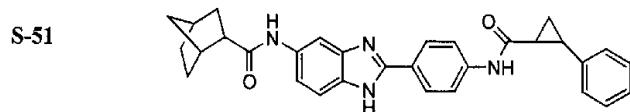
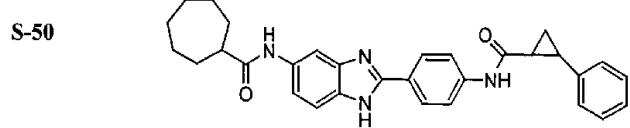

S-43

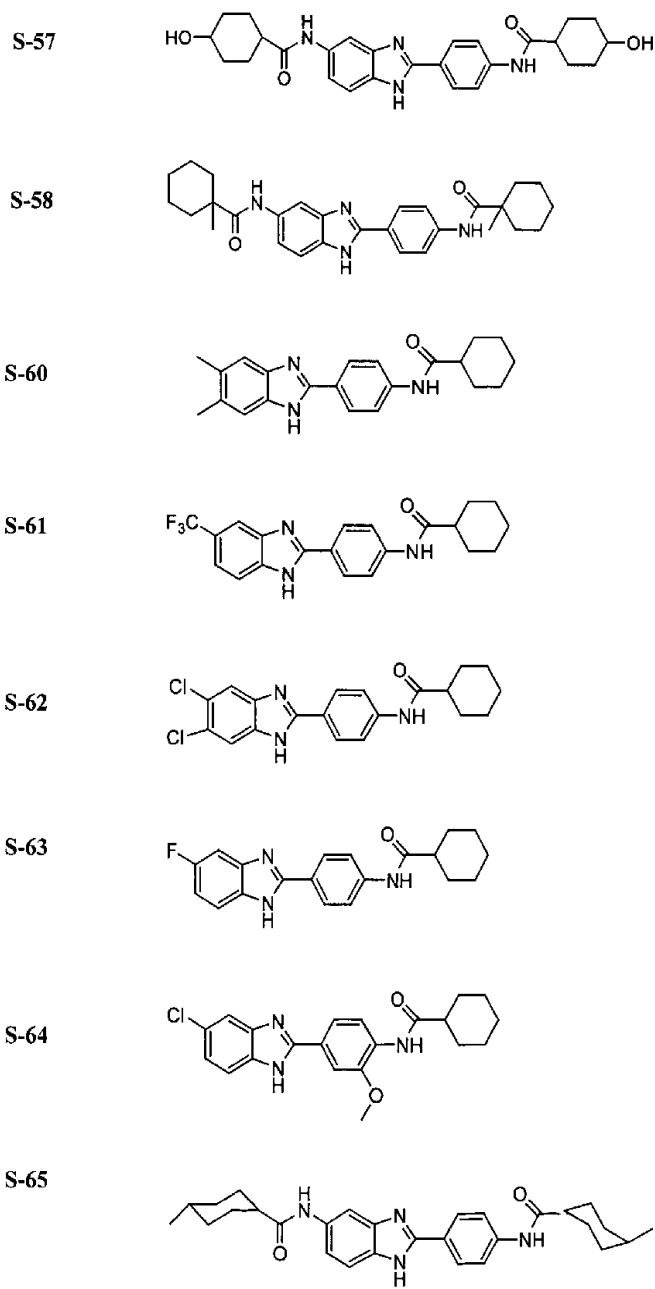

S-44


S-45

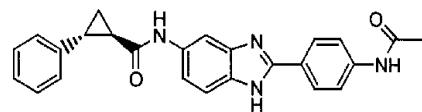

S-46


S-47

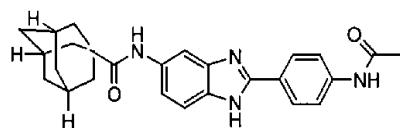






S-48


S-49

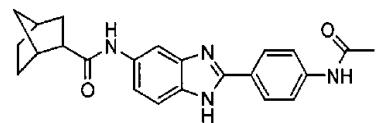
卷之三

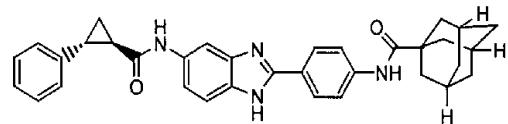


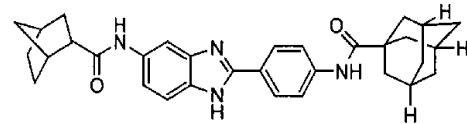
32
33
34
35
36

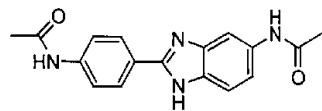


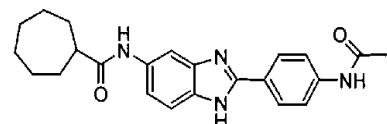
S-66
S-67
S-68
S-69
S-70
S-71
S-72


S-66

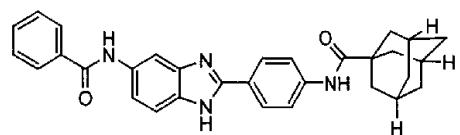

S-67


S-68

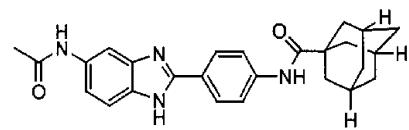

S-69


S-70

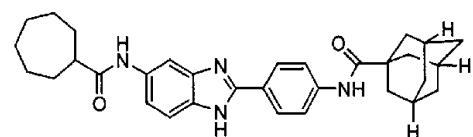
S-71

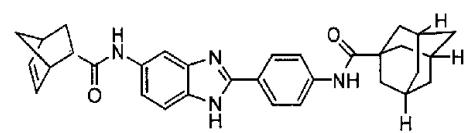


S-72

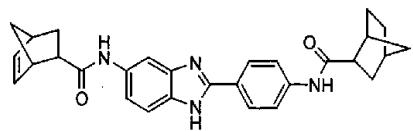


318
32
33
34

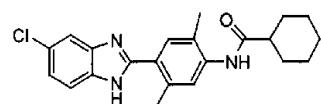

S-73


S-74

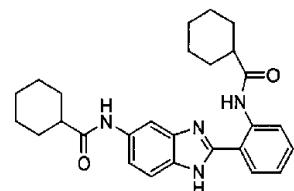
S-75

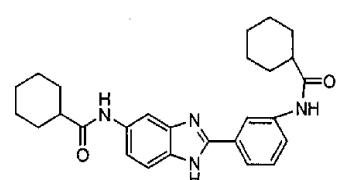


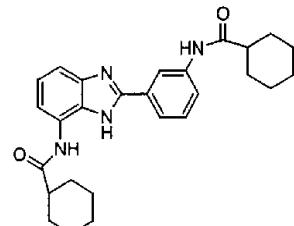
S-76

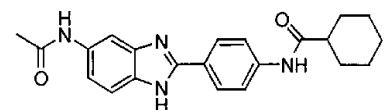


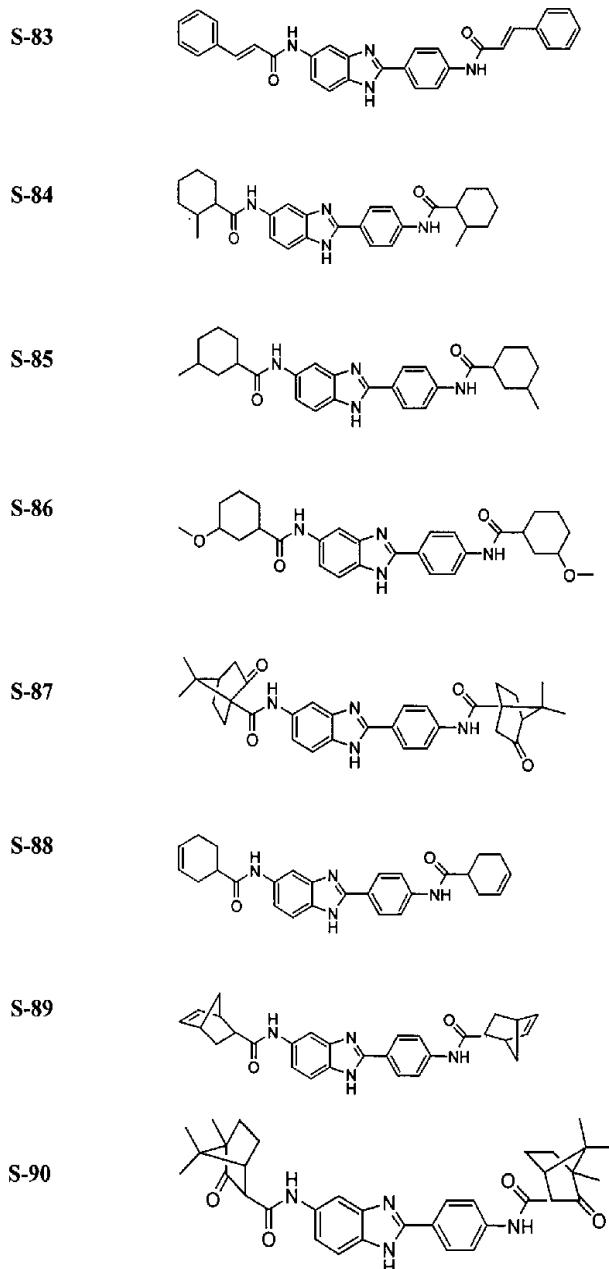
卷之三

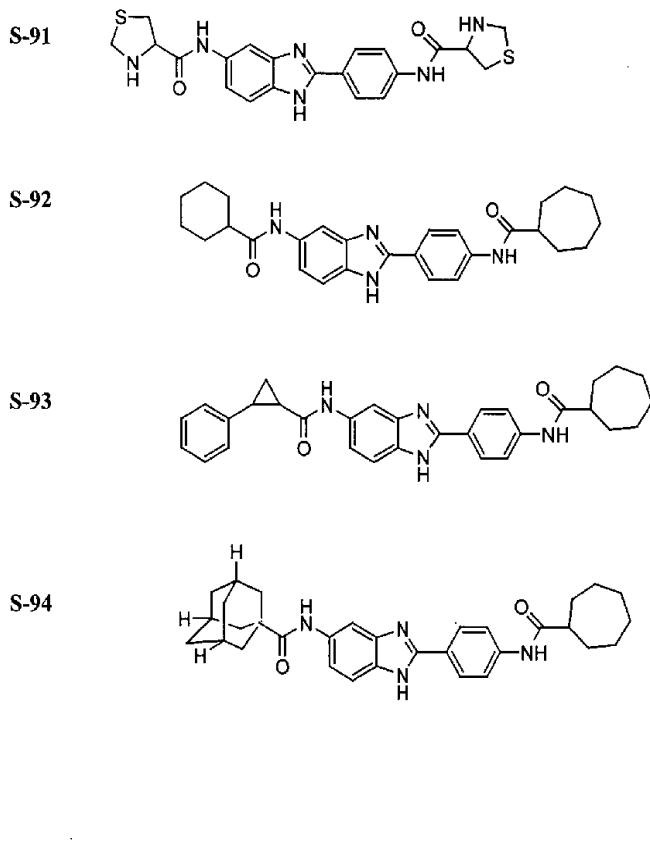

S-77

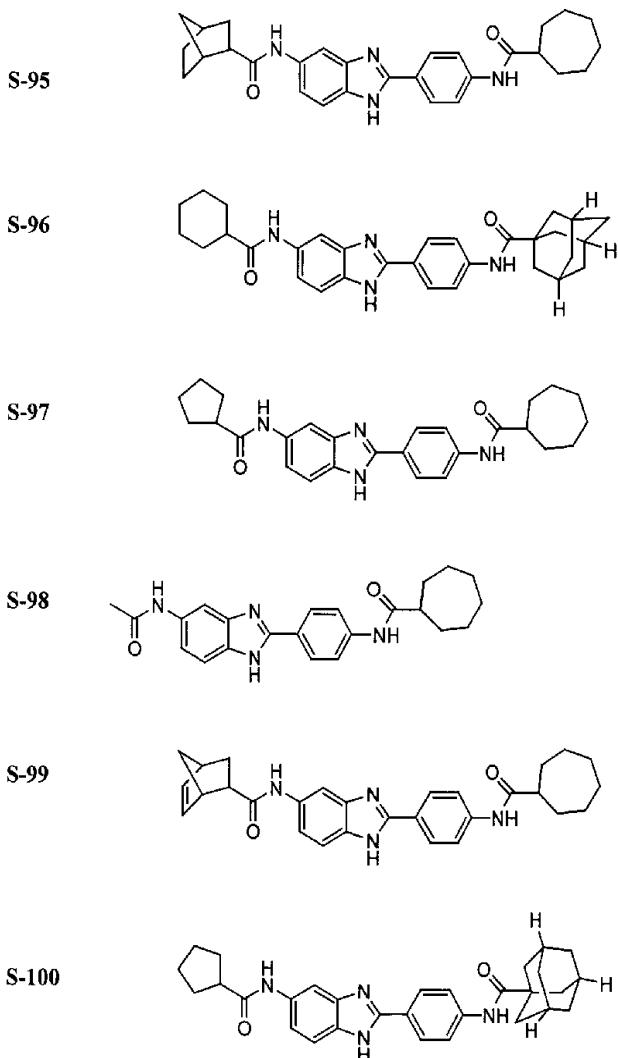

S-78

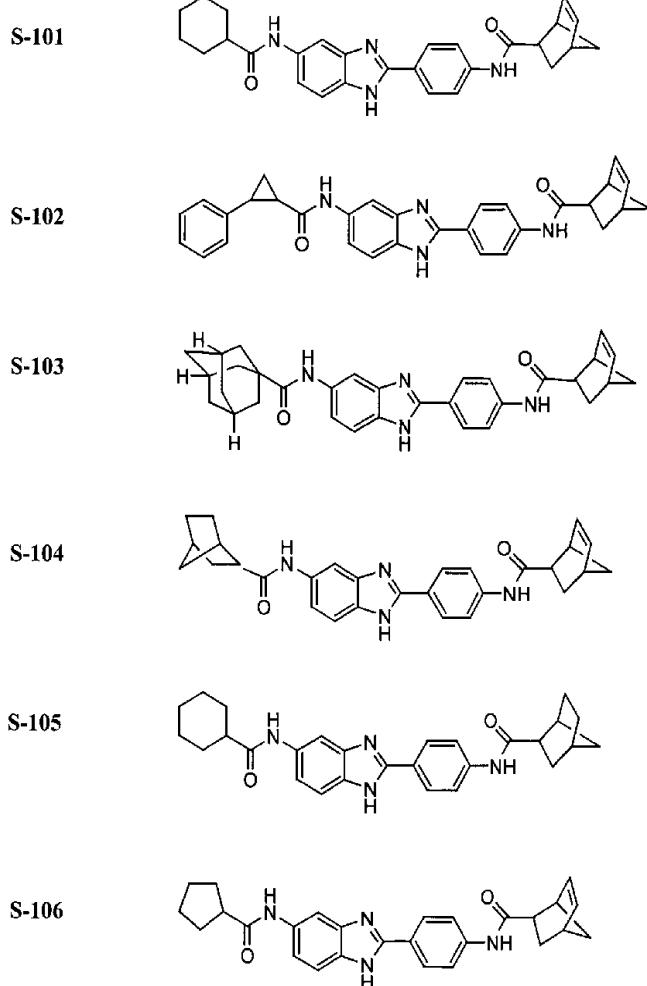

S-79

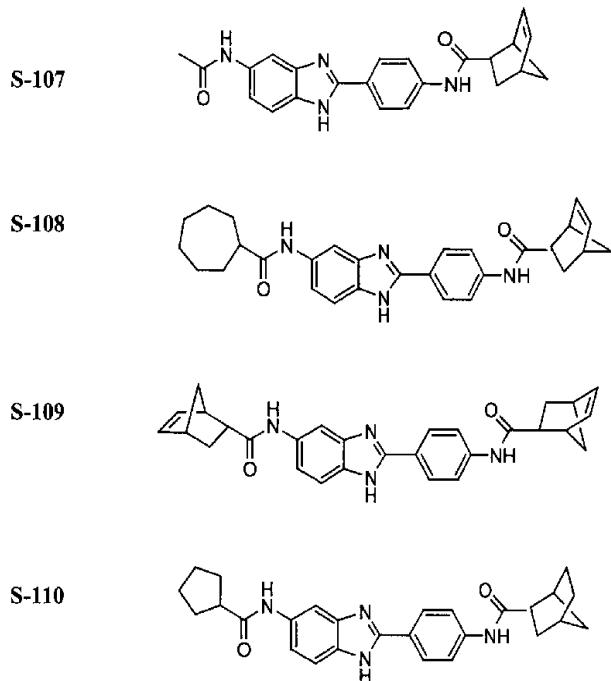

S-80


S-81

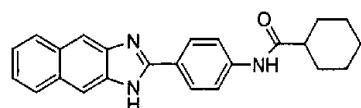

S-82


8
9
10
11
12
13
14

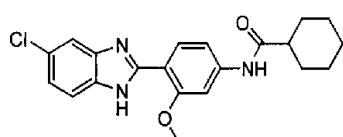

33
33
33
33
33
33
33


39
38
37
36
35
34

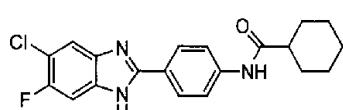
338
32
33
34

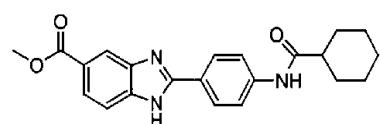


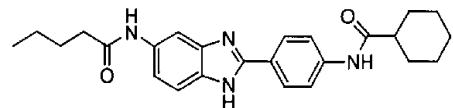
8
9
10
11
12
13
14

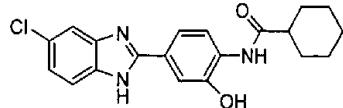


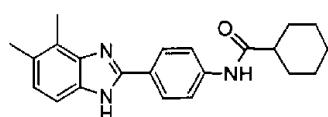
In accordance with another aspect of the present invention, there is disclosed a monoacylated variation of the disclosed genus. Several species of asymmetrical monoacyl benzimidazole compounds are disclosed. These species have the following formulas:

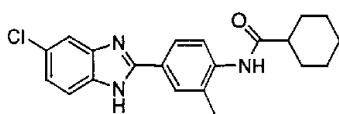

S-111

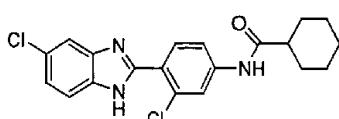

S-112

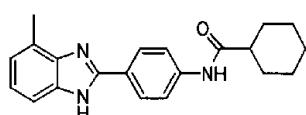

S-113

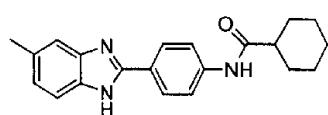

S-114

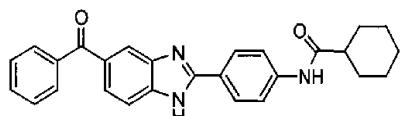

S-115

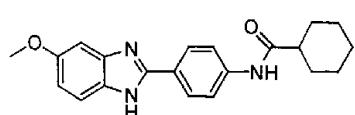

S-116


S-117

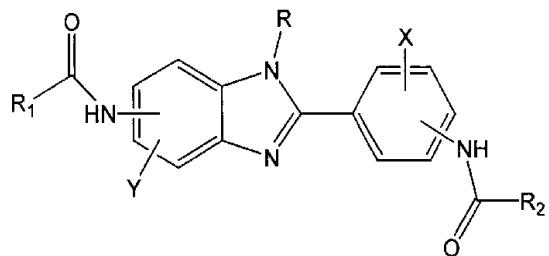

S-118


S-119


S-120

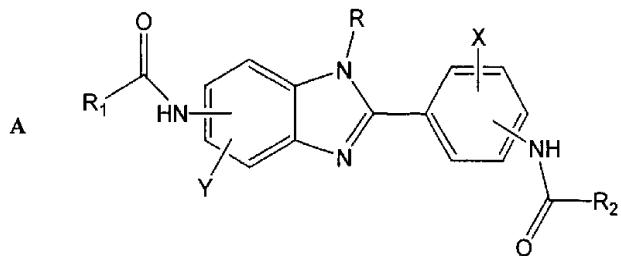

S-121

S-122



S-123

In accordance with another aspect of the present invention, there is disclosed a method for the preparation of a medicament for treatment of a condition associated with an excess IgE level. The compound has the formula:


X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF_3 , OCF_3 , CONH_2 , CONHR and NHCOR_1 .

R is selected from the group consisting of H, CH_3 , C_2H_5 , C_3H_7 , C_4H_9 , CH_2Ph , and $\text{CH}_2\text{C}_6\text{H}_4\text{-F(p-)}$.

R_1 and R_2 are independently selected from the group consisting of alkyl, cycloalkyl, substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl, where the substitutions are selected from the group consisting of alkyl, aryl, CF_3 , CH_3 , OCH_3 , OH, CN, COOR and COOH .

In accordance with another aspect of the present invention, there is disclosed a method of treating a mammal having a condition associated with an excess IgE level. The method comprises administering to the mammal an amount of a compound sufficient to reduce IgE levels in the mammal. The compound has the formula:

X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF₃, OCF₃, CONH₂, CONHR and NHCOR₁.

R is selected from the group consisting of H, CH₃, C₂H₅, C₃H₇, C₄H₉, CH₂Ph, and CH₂C₆H₄-F(p-).

R₁ and R₂ are independently selected from the group consisting of alkyl, cycloalkyl, substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl, where the substitutions are selected from the group consisting of alkyl, aryl, CF₃, CH₃, OCH₃, OH, CN, COOR and COOH.

In a variation of the above disclosed method, at least one additional active ingredient may be administered in conjunction with the administration of the compound. The additional active ingredient may be combined with said compound in a pharmaceutically acceptable diluent and co-administered to the mammal. The additional active ingredient may be a short-acting β2-adrenergic agonist selected from the group consisting of terbutaline and albuterol. In a variation, the additional active ingredient may be a long-acting β2-adrenergic agonist selected from the group consisting of salmeterol and formoterol or an antihistamine selected from the group consisting of loratadine, azelastine and ketotifen. In another variation, the additional active ingredient may be a phosphodiesterase inhibitor, an anti-cholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor or a leukotriene receptor antagonist.

The compound is preferably administered at a dose of about 0.01 mg to about 100 mg per kg body weight per day in divided doses of said compound for at least two consecutive days at regular periodic intervals.

Other variations within the scope of the present invention may be more fully understood with reference to the following detailed description.

Detailed Description of the Preferred Embodiment

The present invention is directed to small molecule inhibitors of IgE (synthesis and/or release) which are useful in the treatment of allergy and/or asthma or any diseases where IgE is pathogenic. The particular compounds disclosed herein were identified by their ability to suppress IgE levels in both *ex vivo* and *in vivo* assays. Development and optimization of clinical treatment regimens can be monitored by those of skill in the art by reference to the *ex vivo* and *in vivo* assays described below.

Ex -vivo Assay

This assay begins with *in vivo* antigen priming and measures secondary antibody responses *in vitro*. The basic protocol was documented and optimized for a range of parameters including: antigen dose for priming and time span following priming, number of cells cultured *in vitro*, antigen concentrations for eliciting secondary IgE (and other Ig's) response *in vitro*, fetal bovine serum (FBS) batch that will permit optimal IgE response *in vitro*, the importance of primed CD4+ T cells and hapten-specific B cells, and specificity of the ELISA assay for IgE (Marcelletti and Katz, *Cellular Immunology* 135:471-489 (1991); incorporated herein by reference).

The actual protocol utilized for this project was adapted for a more high throughput analyses. BALB/cByj mice were immunized i.p. with 10 µg DNP-KLH adsorbed onto 4 mg alum and sacrificed after 15 days. Spleens were excised and homogenized in a tissue grinder, washed twice, and maintained in DMEM supplemented with 10% FBS, 100 U/ml penicillin, 100 µg/ml streptomycin and 0.0005% 2-mercaptoethanol. Spleen cell cultures were established (2-3 million cells/ml, 0.2 ml/well in quadruplicate, 96-well plates) in the presence or absence of DNP-KLH (10 ng/ml). Test compounds (2 µg/ml

and 50 ng/ml) were added to the spleen cell cultures containing antigen and incubated at 37° C for 8 days in an atmosphere of 10% CO₂.

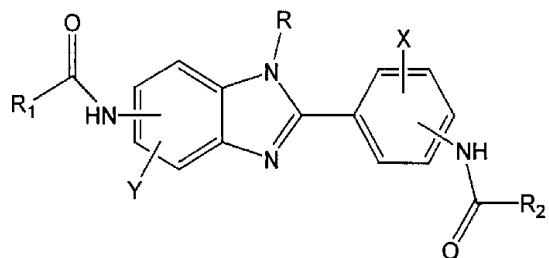
Culture supernatants were collected after 8 days and Ig's were measured by a modification of the specific isotype selective ELISA assay described by Marcelletti and Katz (*Supra*). The assay was modified to facilitate high throughput. ELISA plates were prepared by coating with DNP-KLH overnight. After blocking with bovine serum albumin (BSA), an aliquot of each culture supernatant was diluted (1:4 in phosphate buffered saline (PBS) with BSA, sodium azide and Tween 20), added to the ELISA plates, and incubated overnight in a humidified box at 4° C. IgE levels were quantitated following successive incubations with biotinylated-goat antimouse IgE (b-GAME), AP-streptavidin and substrate.

Antigen-specific IgG1 was measured similarly, except that culture supernatants were diluted 200-fold and biotinylated-goat antimouse IgG1 (b-GAMG1) was substituted for b-GAME. IgG2a was measured in ELISA plates that were coated with DNP-KLH following a 1:20 dilution of culture supernatants and incubation with biotinylated-goat antimouse IgG2a (b-GAMG2a). Quantitation of each isotype was determined by comparison to a standard curve. The level of detectability of all antibody was about 200-400 pg/ml and there was less than 0.001% cross-reactivity with any other Ig isotype in the ELISA for IgE.

In Vivo Assay

Compounds found to be active in the *ex vivo* assay (above) were further tested for their activity in suppressing IgE responses *in vivo*. Mice receiving low-dose radiation prior to immunization with a carrier exhibited an enhanced IgE response to sensitization with antigen 7 days later. Administration of the test compounds immediately prior to and after antigen sensitization, measured the ability of that drug to suppress the IgE response. The levels of IgE, IgG1 and IgG2a in serum were compared.

Female BALB/cByj mice were irradiated with 250 rads 7 hours after initiation of the daily light cycle. Two hours later, the mice were immunized i.p. with 2 µg of K.LH in 4 mg alum. Two to seven consecutive days of drug injections were initiated 6 days later on either a once or twice daily basis. Typically, i.p. injections and oral gavages



were administered as suspensions (150 μ l/injection) in saline with 10% ethanol and 0.25% methylcellulose. Each treatment group was composed of 5-6 mice. On the second day of drug administration, 2 μ g of DNP-KLH was administered i.p. in 4 mg alum, immediately following the morning injection of drug. Mice were bled 7-21 days following DNP-KLH challenge.

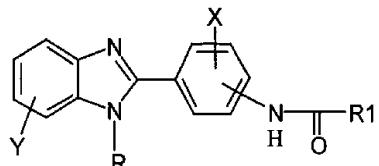
Antigen-specific IgE, IgG1 and IgG2a antibodies were measured by ELISA. Periorbital bleeds were centrifuged at 14,000 rpm for 10 min, the supernatants were diluted 5-fold in saline, and centrifuged again. Antibody concentrations of each bleed were determined by ELISA of four dilutions (in triplicate) and compared to a standard curve: anti-DNP IgE (1:100 to 1:800), anti-DNP IgG2a (1:100 to 1:800), and anti-DNP IgG1 (1:1600 to 1:12800).

Diacyl Benzimidazole Inhibitors of IgE

Several species embraced by the following generic formula were synthesized and evaluated for their effectiveness in down-regulating IgE in the *ex vivo* and *in vivo* assays.

X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF_3 , OCF_3 , CONH_2 , CONHR_1 and NHCOR_1 .

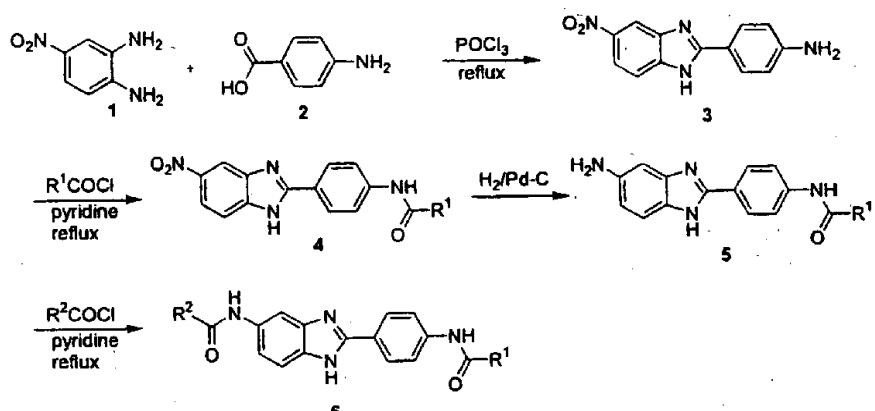
R is selected from the group consisting of H, CH_3 , C_2H_5 , C_3H_7 , C_4H_9 , CH_2Ph , and $\text{CH}_2\text{C}_6\text{H}_4\text{-F(p-)}$.


R_1 and R_2 are independently selected from the group consisting of alkyl, cycloalkyl substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted

cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, substituted adamantyl and the like. Substitutions are alkyl, aryl, CF_3 , CH_3 , OCH_3 , OH, CN, COOR, COOH and the like.

Another related genus is the monoacylated variation illustrated below:

S-124



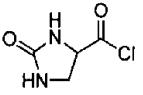
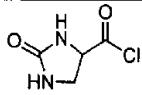
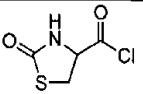
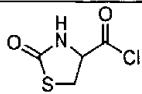
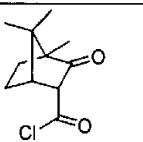
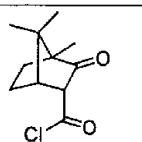
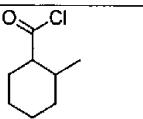
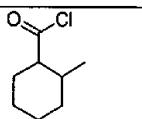
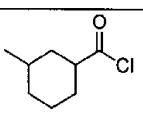
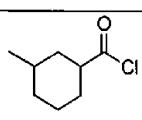
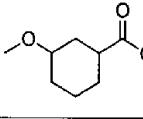
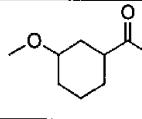
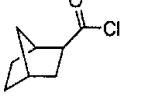
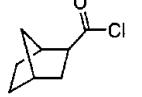
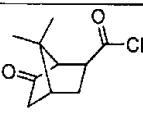
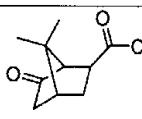
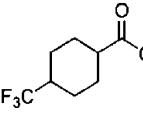
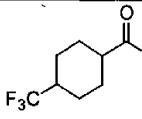
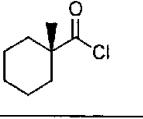
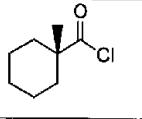
X is selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF_3 , OCF_3 , CONH_2 , CONHR and NHCOR_1 . Y is selected from the group consisting of mono, di, and tri substituted H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF_3 , OCF_3 , CONH_2 , CONHR and NHCOR_1 . R is selected from the group consisting of H, CH_3 , C_2H_5 , C_3H_7 , C_4H_9 , CH_2Ph , $\text{CH}_2\text{C}_6\text{H}_4\text{-F(p)}$. R_1 is selected from the group consisting of alkyl, cycloalkyl substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, bicycloheptyl, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, substituted adamantyl and the like. Substitutions are alkyl, aryl, CF_3 , CH_3 , OCH_3 , OH, CN, COOR, COOH and the like.

Synthesis of the Combinatorial Library

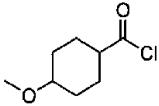
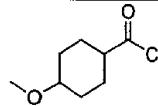
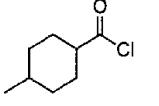
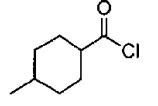
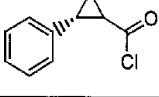
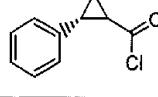
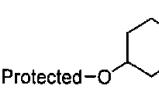
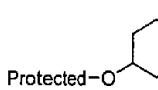
The diacyl benzimidazole compounds of the present invention were prepared using the following synthesis reactions, wherein the desired acid chlorides are selected from the R_1 and R_2 groups provided in the Table.

Synthesis of 3 4-Nitro-1,2-phenylenediamine (10g, 65.3 mmol) and 4-aminobenzoic acid (8.95 g, 65.3 mmol) were taken in a round bottomed flask and phosphorus oxychloride (95 ml) was added slowly. The reaction mixture was allowed to stir under reflux conditions. After 18 h, the reaction was allowed to cool and then poured slowly into an ice water mixture in an Erlenmeyer flask with vigorous stirring. Greenish yellow precipitate fell out which was then filtered and washed with copious amounts of water. The residue was then dried to obtain 16.9 g of crude desired product. Mass spectrum analysis (positive ion) indicated presence of 3.

Synthesis of 4 Benzimidazole 3 (800 mg, 3.14 mmol) was dissolved in dry pyridine (5 ml) in a scintillation vial and the desired acid chlorides (1.1 eq) were added slowly. The reactions were carried out in an oven at 60°C. After 16h, the reaction was cooled to RT and DI water was added. Precipitation took place, which was filtered off, washed with water and air dried. The aqueous layer was extracted with EtOAc (6 x 50 ml), dried over anhydrous Na_2SO_4 and the solvent was removed *in vacuo* to result in a colored solid. By positive ion MS the desired monoacylated product was found to be





















present in the initial precipitate as well as in the organic layer. Hence the solid residues obtained were combined and used as such for the reduction step.

Reduction of 4 Crude monoacylated nitro benzimidazole **4** (1.22 g, 3.40 mmol) was dissolved in MeOH (20 ml) and minimum amount of THF was added for complete dissolution to occur. Catalytic amount of 10% Pd on C was added and the solution was degassed and allowed to stir at 3.4 atm pressure under H₂ atmosphere for 4 h. Upon completion of reaction as observed via TLC, the reaction mixture was filtered through celite and the solvent was removed under reduced pressure to afford 979 mg of crude residue.

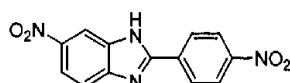








	<u>R1</u>		<u>R2</u>
A		A	
B		B	
C		C	
D		D	
E		E	
F		F	

38
37
36
35
34

H		H	
I		I	
J		J	
K		K	
L		L	
M		M	
N		N	
O		O	
P		P	
Q		Q	

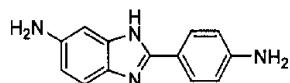
R		R	
S		S	
T		T	
U	 Protected-O	U	 Protected-O

General Organic Analyses


HPLC/MS data was obtained using a Gilson semi-prep HPLC with a Gilson 170 Diode Array UV detector and PE Sciex API 100LC MS based detector. A Waters 600E with a Waters 490E UV detector was also used for recording HPLC data. The compounds were eluted with a gradient of CH₃CN (with 0.0035% TFA) and H₂O (with 0.01% TFA). Both HPLC instruments used Advantage C18 60A 5 μ 50mm x 4.6mm columns from Thomson Instrument Company. Mass spectra were obtained by direct injection and electrospray ionization on a PE Sciex API 100LC MS based detector. Thin layer chromatography was performed using Merck 60F-254 aluminum backed pre-coated plates. Flash chromatography was carried out on Merck silica gel 60 (230-400 mesh) purchased from EM Scientific.

Syntheses of Symmetrical Diamides

The symmetrical diacyl benzimidazole compounds of the present invention were generally prepared from 2-(4-aminophenyl)-5-aminobenzimidazole, which was obtained by reduction of 2-(4-nitrophenyl)-6-nitrobenzimidazole.

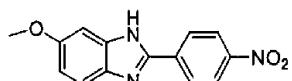

S-125

2-(4-nitrophenyl)-6-nitrobenzimidazole

The dinitro benzimidazole was prepared as follows: a mixture of 4-nitrophenylenediamine (6.4g, 41.83 mmol) and 4-nitrobenzoic acid (7.86 g, 47 mmol) was dissolved in POCl_3 (250 ml) and heated to reflux for 2 h. The reaction mixture was cooled, poured on to ice, and stirred for 30 min. The resulting solid was filtered and washed with methanol and sodium bicarbonate to remove unreacted acid and allowed to dry overnight to give the desired product as a brown solid (5.8g). The product was characterized by electrospray mass spectroscopy (mp >300° C).

S-126

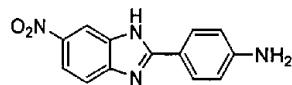
2-(4-aminophenyl)-5-aminobenzimidazole


2-(4-Aminophenyl)-5-aminobenzimidazole was prepared by suspending the above solid (75 g) in THF (75 ml), to which was added Pd-C (10% Pd by weight). The flask was purged with hydrogen and stirred under a balloon of hydrogen overnight. TLC and MS showed starting material was still present so the reaction was allowed to continue over the weekend. TLC indicated complete reaction, the reaction was filtered through celite and washed with methanol. The solvent was removed under reduced pressure to give a dark brown solid (0.37 g) that was used without further purification.

Alternatively, the 2-(4-aminophenyl)-5-aminobenzimidazole was prepared by the following reduction: 2-(4-nitrophenyl)-6-nitrobenzimidazole (8.9 g, 31 mmole) was suspended in concentrated HCl (100 ml) to which was added stannous chloride (42.3 g 180 mmole). The reaction mixture was heated to reflux for 5 hrs. The mixture was

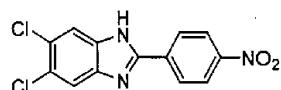
cooled to RT and the HCl salt of the desired product was precipitated by the addition of ethanol. The resulting solid was filtered, re-dissolved in water and the solution made basic by the addition of concentrated ammonium hydroxide. The resulting precipitate was filtered and dried overnight under vacuum to yield the desired product as a gray solid (6.023 g, 26.9 mmole, 87%). The product was characterized by electrospray mass spectroscopy and HPLC (mp. 222-227° C).

S-127



2-(4-nitrophenyl)-5-methoxy benzimidazole

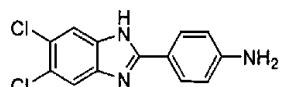
2-(4-Aminophenyl)-5-methoxy benzimidazole was synthesized from 2-(4-nitrophenyl)-5-methoxy benzimidazole, which was prepared as follows: 1,2-diamino-4-methoxybenzene (1.26 g, 10.0 mmole) was mixed with 4-nitrobenzoic acid (1.67 g, 9.8 mmole) and dissolved in POCl_3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO_3 and used with out further purification.


S-128

2-(4-aminophenyl)-5-methoxy benzimidazole

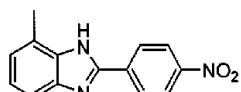
2-(4-Aminophenyl)-5-methoxy benzimidazole was prepared by dissolving 1.0 g of the above nitrobenzimidazole in 30% Na₂S·9H₂O (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

S-129



2-(4-nitrophenyl)-5,6-dichloro benzimidazole

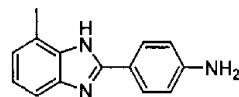
2-(4-Aminophenyl)-5,6-dichloro benzimidazole was synthesized from 2-(4-nitrophenyl)-5,6-dichloro benzimidazole, which was prepared as follows: 1,2-diamino-4,5-dichlorobenzene (1.68 g, 10.0 mmole) was mixed with 4-nitrobenzoic acid (1.58 g, 9.3 mmole), dissolved in POCl₃ (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.


S-130

2-(4-Aminophenyl)-5,6-dichloro benzimidazole

2-(4-Aminophenyl)-5,6-dichloro benzimidazole was prepared by dissolving 1.0 g of the above nitrobenzimidazole in 30% $\text{Na}_2\text{S} \cdot 9\text{H}_2\text{O}$ (20 ml) with stirring at RT for 21 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

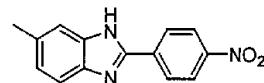
S-131



2-(4-nitrophenyl)-7-methyl benzimidazole

2-(4-aminophenyl)-7-methyl benzimidazole was synthesized from 2-(4-nitrophenyl)-7-methyl benzimidazole, which was prepared by mixing 1,2-diamino-3-methylbenzene (1.24 g, 10.0 mmole) with 4-nitrobenzoic acid (1.69 g, 9.8 mmole), dissolved in POCl_3 (10 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO_3 and used without further purification.

S-132



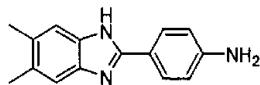
2-(4-aminophenyl)-7-methylbenzimidazole

5 2-(4-Aminophenyl)-7-methyl benzimidazole was synthesized by dissolving 1.0 g of the above nitrobenzimidazole in 30% Na₂S 9H₂O (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

10

S-133

2-(4-nitrophenyl)-6-methylbenzimidazole


15

2-(4-Aminophenyl)-6-methylbenzimidazole was synthesized from 2-(4-nitrophenyl)-6-methylbenzimidazole, which was prepared by mixing 1,2-diamino-4-methylbenzene (1.24 g, 9.80 mmole) with 4-nitrobenzoic acid (1.6 g, 9.9 mmole) and dissolved in POCl₃ (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously 20 poured onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875<br

S-136

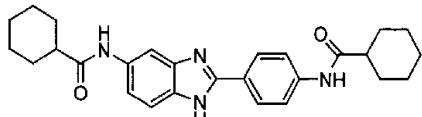
2-(4-aminophenyl)-5,6-dimethylbenzimidazole

2-(4-Aminophenyl)-5,6-dimethylbenzimidazole was synthesized by dissolving 1.0 g of the above nitrobenzimidazole in 30% $\text{Na}_2\text{S} \cdot 9\text{H}_2\text{O}$ (20 ml) with stirring at RT for 4.5 h. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

The subsequent preparation of symmetrical diamides was accomplished by one of the following methods:

Method A: 2-(4-Aminophenyl)-6-aminobenzimidazole (1.0 mmole) was suspended in THF (5 ml) to which was added DIEA (2.5 mmole) and the mixture cooled to -78°C . To the above cooled mixture was added the acid chloride (2.5 mmole) and let warm to RT overnight. Water (2.0 ml) was added to the reaction and extracted with EtOAc. The combined organic extracts were combined washed with NaHCO_3 (aq.) and concentrated under reduced pressure. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

Method B: 2-(4-Aminophenyl)-6-aminobenzimidazole (1.0 mmole) and DMAP (cat.) was dissolved in pyridine (5 ml). To the above solution was added the acid chloride (2.5 mmole) and the reaction stirred overnight at 60°C . The reaction was cooled to room temperature and water added to precipitate the product. The resulting solid was collected by filtration with the solid being washed with hexanes and water and NaHCO_3 (aq.). The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

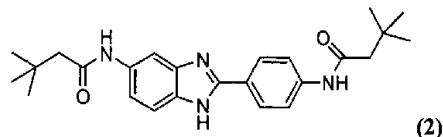

Method C: 2-(4-Aminophenyl)-6-aminobenzimidazole (1.0 mmole) was suspended in THF (10 ml) to which was added K_2CO_3 (2.5 mmole) in water (0.5 ml), and the mixture cooled to $-78^{\circ}C$. To the above cooled mixture was added the acid chloride (2.5 mmole) and let it warm to RT overnight. Water (10 ml) was added to the reaction and extracted with EtOAc. The combined organic extracts were combined, washed with $NaHCO_3$ (aq.) and concentrated under reduced pressure. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

Method D: The carboxylic acid (2.2 mmole), EDC (2.2 mmole) and DMAP (cat.) was dissolved in hot pyridine. To the above solution was added 2-(4-aminophenyl)-6-aminobenzimidazole (1.0 mmole) and heated to $60^{\circ}C$ overnight. The cooled reaction mixture was partitioned between water and EtOAc. The organic layer was washed with $NaHCO_3$, dried over Na_2SO_4 and concentrated under vacuum. The resulting residue was purified on silica gel (hexanes/EtOAc or MeOH/CH₂Cl₂) or reverse phase HPLC (CH₃CN/H₂O).

Diacyl Benzimidazole Species

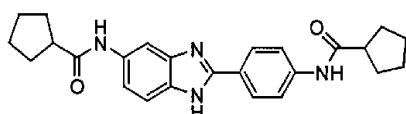
The following species encompassed within the disclosed generic formula were synthesized and tested for their ability to suppress IgE. The species are numbered below.

S-1



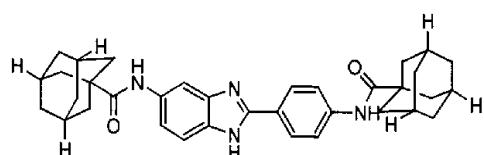
(1)

(1) 2-(N-Cyclohexylcarbonyl-4'-aminophenyl)-6-cyclohexylcarbonylamino-benzimidazole was prepared by Method A from 2-(4-aminophenyl)-6-aminobenzimidazole (0.195 g, 0.87 mmole) and cyclohexylcarbonyl chloride (0.291 ml, 0.319 g, 2.175 mmole). The resulting solid (76.7 mg) was purified by preparative HPLC.


S-2

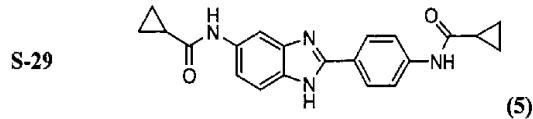
(2)

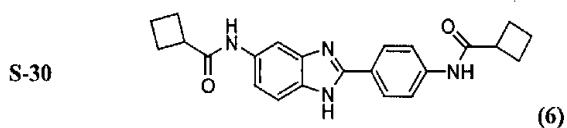
(2) Bis-*t*-butylacetyl benzimidazole was prepared by Method A from 2-(4-aminophenyl)-6-amino-benzimidazole (0.195 g, 0.87 mmole) and *t*-butylacetyl chloride (0.302 ml, 0.292 g, 2.175 mmol). The resulting solid (42.3 mg) was purified by preparative HPLC.


S-3

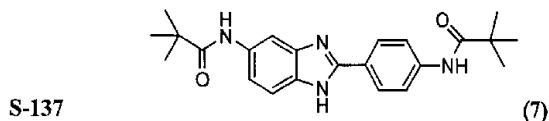
(3)

(3) Bis-cyclopentylcarbonyl benzimidazole was prepared by Method A from 2-(4-aminophenyl)-6-amino-benzimidazole (0.195 g, 0.87 mmole) and cyclopentylcarbonyl chloride (0.227 ml, 0.228 g, 2.175 mmol). The resulting solid (42.3 mg) was purified by preparative HPLC.

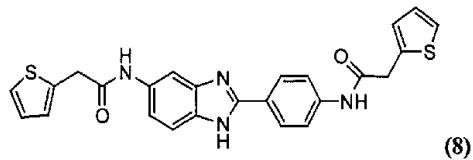

S-28


(4)

(4) Bis-adamantylcarbonyl benzimidazole was prepared by Method C from 2-(4-aminophenyl)-6-amino-benzimidazole (0.500 g, 2.23 mmole) and adamantylcarbonyl chloride (1.063 g, 5.35 mmol). The resulting solid was purified by preparative HPLC to give about 100 mg of 97% pure material.

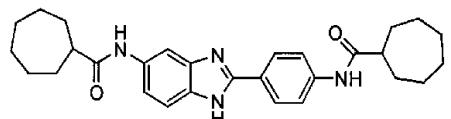


(5) Bis-cyclopropylcarbonyl benzimidazole was prepared by Method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.500 g, 2.23 mmole) and cyclopropylcarbonyl chloride (0.485 ml, 0.559 g, 5.35 mmol). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC shows product is 94% pure.

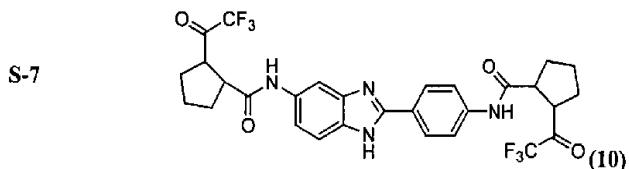


(6) Bis-cyclobutylcarbonyl benzimidazole was prepared by Method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.500 g, 2.23 mmole) and cyclobutylcarbonyl chloride (0.610 ml, 0.634 g, 5.35 mmol). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC shows product is 97.4% pure.

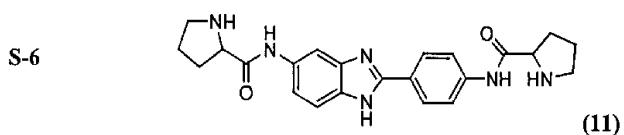
(7) Bis-trimethylacetyl benzimidazole was prepared by method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.500 g, 2.23 mmole) and trimethylacetyl chloride (0.610 ml, 0.634 g, 5.35 mmol). The resulting solid was purified by recrystallization (acetone/hexane) and shown to be 95% pure by HPLC.


S-4

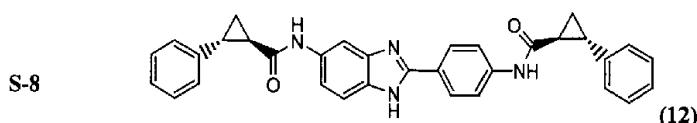
(8)


(8) Bis-2-thiopheneacetyl benzimidazole was prepared by method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.500 g, 2.23 mmole) and thiopheneacetyl chloride (0.660 ml, 0.860 g, 5.35 mmol). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC shows the product is 92% pure.

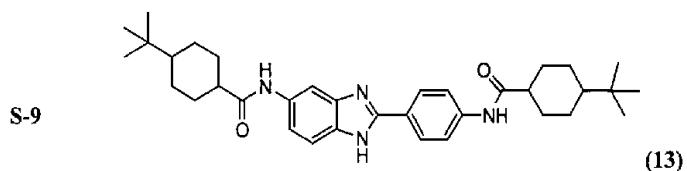
S-5

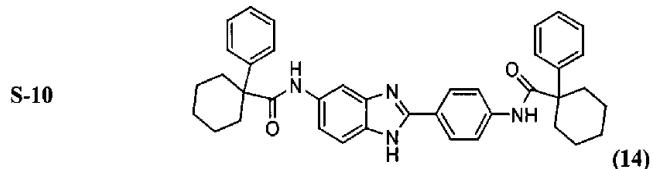


(9)

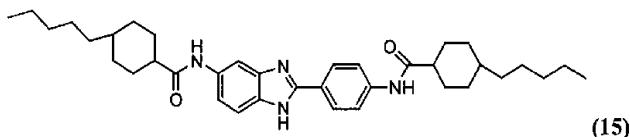

(9) Bis-cycloheptanecarbonyl benzimidazole was prepared by method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.500 g, 2.23 mmole) and cycloheptanecarbonyl chloride (0.610 ml, 0.634 g, 5.35 mmol). The resulting solid was purified by preparative HPLC to give a solid that was 98.8% pure. The cycloheptanecarbonyl chloride was synthesized as follows: cycloheptane carboxylic acid (1.37 ml, 1.42 g, 10 mmole) was added to a dried 25 ml round bottom flask and purged with N_2 . To the flask was added oxalyl chloride (7.5 ml, 2 M in CH_2Cl_2) via syringe followed by one drop DMF. The reaction was stirred at RT overnight and the reaction concentrated under vacuum. Methylene chloride (5 ml) was added and concentrated under vacuum to remove residual oxalyl chloride (repeated 5 times).

(10) Bis-(N-trifluoroacetylproline) benzimidazole was prepared by method A except that CH_2Cl_2 used as solvent from 2-(4-aminophenyl)-6-amino benzimidazole (0.448 mg, 2.0 mmole) and (s)-(-)-N-trifluoroacetylproline chloride (42.0 ml, 0.1 M in CH_2Cl_2). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC showed the product was 98.5% pure.

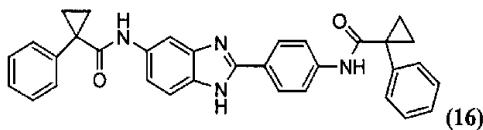

(11) Bis-proline benzimidazole was synthesized by dissolving the bis-trifluoroacetyl derivative in MeOH (5 ml) to which was added a LiOH solution (0.210 g in 5 ml water). The above mixture was heated to 42 °C for 2 hours. The reaction mixture was extracted with CH_2Cl_2 (5 x 15 ml). The combined organic extracts were concentrated under vacuum to give a solid which was 95.6% pure by HPLC.


(12) Bis-trans-2-phenyl-cyclopropanecarbonyl benzimidazole was prepared by method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.500 g, 2.23 mmole) and trans-2-phenyl-cyclopropanecarbonyl chloride (0.831 ml, 0.966 g, 5.35 mmole). The

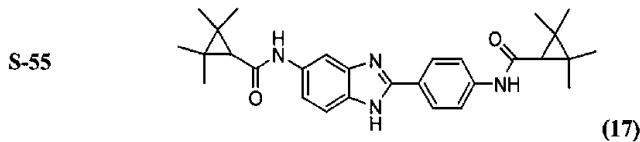
resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC showed the product was 95.5% pure.



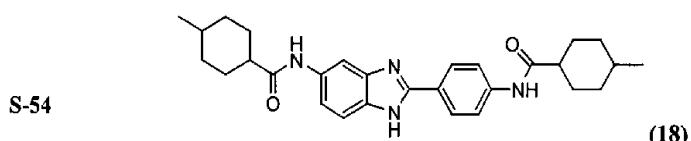
(13) Bis-4-*t*-butylcyclohexyl carbonyl benzimidazole was prepared by method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.425g, 1.89 mmole) and 4-*t*-butyl cyclohexylcarbonyl chloride (0.814 g, 4.25 mmole). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC showed the product was 90% pure.


(14) Bis-1-phenylcyclohexyl carbonyl benzimidazole was prepared by method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.467 g, 2.08 mmole) and 1-phenylcyclohexylcarbonyl chloride (1.046 g). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC showed the product was 93.3% pure.

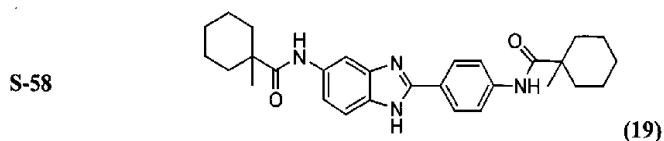
S-11


(15) Bis-trans-4-pentylcyclohexylcarbonyl benzimidazole was synthesized as follows: oxalyl chloride (1.07 ml, 2 M in CH_2Cl_2) was added to trans-4-pentylcyclohexyl carboxylic acid (0.424 g, 2.14 mmole) followed by one drop DMF. The mixture was allowed to react at RT for 1 hour. To the above solution was added 2-(4-aminophenyl)-6-amino-benzimidazole (0.200 g, 0.89 mmole) in pyridine (2 ml). The reaction was heated to 60° C overnight. The reaction was cooled and the precipitate filtered and washed with NaHCO_3 and hexanes. The resulting solid was purified by preparative HPLC to yield a solid which was >99% pure.

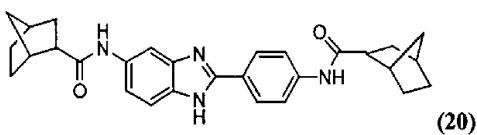
S-12



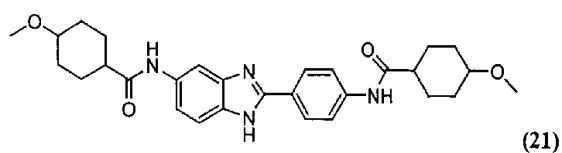
(16) Bis-1-phenylcyclopropane carbonyl benzimidazole was prepared by method C from 2-(4-aminophenyl)-6-amino benzimidazole (0.530 g, 2.36 mmole) and 1-phenyl-cyclopropanecarbonyl chloride (0.9625 g, 5.3 mmole). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC showed the product was 93.4% pure.



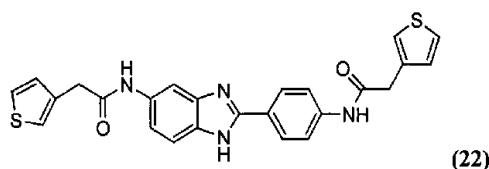
(17) Bis-(2,2,3,3-tetramethylcyclopropane) carbonyl benzimidazole was synthesized as follows: oxalyl chloride (1.07 ml, 2 M in CH_2Cl_2) was added to 2,2,3,3-tetramethylcyclopropane carboxylic acid (0.305 g, 2.14 mmole) followed by one drop DMF. The mixture was allowed to react at RT for 1 hour. To the above solution was added 2-(4-aminophenyl)-6-amino benzimidazole (0.200 g, 0.89 mmole) in pyridine (2 ml). The reaction was heated to 60° C overnight. The reaction was cooled and the precipitate filtered and washed with NaHCO_3 and hexanes. The resulting solid was purified by preparative HPLC to yield a solid that was >99% pure.


(18) Bis-4-methylcyclohexyl carbonyl benzimidazole was prepared by method D from 2-(4-aminophenyl)-6-amino benzimidazole (0.100g, 0.44 mmole) and 4-methylcyclohexylcarboxylic acid (0.138 g, 0.96 mmole). The resulting solid was purified on silica gel (5% MeOH in CH_2Cl_2). HPLC showed the product was 94.5% pure.

(19) Bis-1-methylcyclohexyl carbonyl benzimidazole was synthesized as follows: oxalyl chloride (1.07 ml, 2 M in CH_2Cl_2) was added to 1-methyl-cyclohexane

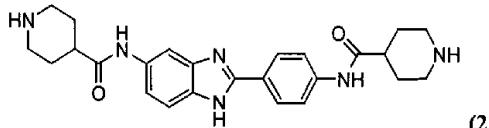

carboxylic acid (0.305 g, 2.14 mmole) followed by one drop DMF. The mixture was allowed to react at RT for 1 hour. To the above solution was added 2-(4-aminophenyl)-6-amino-benzimidazole (0.200 g, 0.89 mmole) in pyridine (2 ml). The reaction mixture was heated to 60°C overnight. The reaction was cooled and the precipitate filtered and washed with NaHCO₃ and hexanes. The resulting solid was purified by preparative HPLC to give a solid that was >99% pure.

S-17


(20) Bis-bicyclo[2.2.1]heptane-2-carbonyl benzimidazole was prepared as follows: oxalyl chloride (1.07 ml, 2 M in CH₂Cl₂) was added to bicyclo[2.2.1]heptane carboxylic acid (0.305 g, 2.14 mmole) followed by one drop DMF. The mixture was allowed to react at RT for 1.0 hour. To the above solution was added 2-(4-aminophenyl)-6-amino-benzimidazole (0.200 g, 0.89 mmole) in pyridine (2 ml). The reaction was heated to 60°C overnight. The reaction was cooled and the precipitate filtered and washed with NaHCO₃ and hexanes. The resulting solid was purified by preparative HPLC to give a solid that was 68% pure.

S-56

(21) Bis-4-methoxycyclohexyl carbonyl benzimidazole was synthesized as follows: Oxalyl chloride, (1.07. ml, 2 M in CH_2Cl_2) was added to 4-methoxycyclohexane carboxylic acid (0.338 g, 2.14 mmole) followed by one drop DMF. The mixture was allowed to react at RT for 1.0 hour. To the above solution was added 2-(4-aminophenyl)-6-amino-benzimidazole (0.200 g, 0.89 mmole) in pyridine (2 ml). The reaction was heated to 60°C overnight. The reaction was cooled and the precipitate filtered and washed with NaHCO_3 and hexanes.


S-13

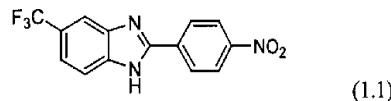
(22)

(22) Bis-3-thiopheneacetyl benzimidazole was produced as follows: Oxalyl chloride (1.07 ml, 2 M in CH_2Cl_2) was added to 3-thiopheneacetic acid (0.338 g, 2.14 mmole) followed by one drop DMF. The mixture was allowed to react at RT for 1.0 hour. To the above solution was added 2-(4-aminophenyl)-6-amino-benzimidazole (0.200 g, 0.89 mmole) in pyridine (2 ml). The reaction was heated to 60°C overnight. The reaction was cooled and the precipitate filtered and washed with NaHCO_3 and hexanes.

S-14

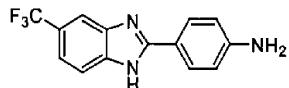
(23)

(23) Bis-4-nipecotamide benzimidazole was produced as follows: Bis-N-Boc-4-nipecotamide benzimidazole (0.400 g) was dissolved in 1:1 TFA- CH_2Cl_2 (4 ml) at 20°C overnight. The solvent was removed under vacuum and water added, frozen on dry ice and lyophilized to dryness. The Boc-protected benzimidazole was synthesized as follows: Oxalyl chloride (2.82 ml, 2 M in CH_2Cl_2) was added to N-Boc-nipecotic acid (1.293 g, 5.64 mmole) followed by one drop DMF. The mixture was allowed to react at



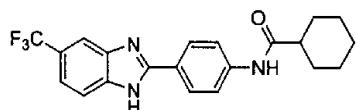
RT for 1 hour. To the above solution was added. 2-(4-aminophenyl)-6-amino-benzimidazole (0.500 g, 2.24 mmole) in pyridine (5 ml). The reaction was heated to 60°C overnight. The reaction was cooled and the precipitate filtered and washed with NaHCO₃ and hexanes. The resulting solid was found to be >99% pure by HPLC.

Monoacyl Benzimidazole Inhibitors of IgE


A family of IgE inhibitors related to the diacyl compounds described above are asymmetrical monoacylated benzimidazole compounds. Several monoacyl variations were synthesized; these are disclosed below:

(1) 2-(N-Cyclohexanecarbonyl-4-aminophenyl)-5-trifluoromethyl benzimidazole was synthesized from the following series of benzimidazole intermediates: 1) 2-(4-nitrophenyl)-5-trifluoromethyl benzimidazole (designated 1.1) and 2) 2-(4-aminophenyl)-5-trifluoromethyl benzimidazole (designated 1.2).

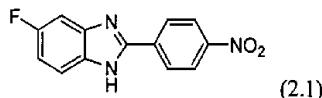
(1.1) 2-(4-Nitrophenyl)-5-trifluoromethyl benzimidazole was synthesized as follows: 1,2-diamino-4-trifluoromethylbenzene (1.76 g, 10.0 mmole) was mixed with 4-nitrobenzoic acid (1.67 g, 9.8 mmole), dissolved in POCl₃ (12 ml), and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO₃ and used without further purification.



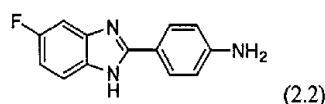
(1.2)

(1.2) 2-(4-Aminophenyl)-5-trifluoromethyl benzimidazole was produced from 2-(4-nitrophenyl)-5-trifluoromethyl benzimidazole (1.1; see above). The crude 2-(4-nitrophenyl)-5-trifluoromethyl benzimidazole filtrate was dissolved in conc. HCl (15 ml) to which was added $\text{SnCl}_2 \cdot \text{H}_2\text{O}$ (13.5 g, 59 mmol) and heated to reflux for 16 h. The reaction was cooled and the HCl salt precipitated by the addition of EtOH (75 ml). The solid was filtered, washed with ethanol, and dissolved in water. The salt was neutralized by the addition of conc. ammonium hydroxide and the free base isolated by filtration. The product was characterized by mass spectroscopy.

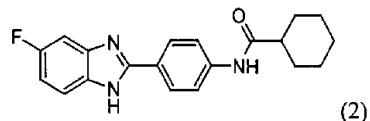
S-138



(1)


(1) 2-(N-Cyclohexanecarbonyl-4-aminophenyl)-5-trifluoromethyl benzimidazole was prepared from the amine, 2-(4-aminophenyl)-5-trifluoromethyl benzimidazole (1.2 see above). The amine (0.239 g, 0.86-mmol) was dissolved in THF:H₂O (5 ml, 1:1) followed by K₂CO₃ (0.1213 g, 0.88 mmol) and cyclohexyl carbonyl chloride (130 μL , 0.95 mmol). The reaction mixture was shaken for 23 h at room temperature. Sodium chloride was added to the reaction and the mixture extracted with EtOAc. The combined organic extracts were washed with water, dried over Na₂SO₄ and concentrated under vacuum. The resulting solid was purified by preparative TLC (10% MeOH in CH₂Cl₂).

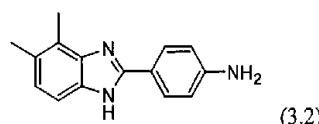
The next species (2), 2-(N-cyclohexanecarbonyl-4-aminophenyl)-5-fluoro benzimidazole was synthesized from the following series of benzimidazole intermediates: 1) 2-(4-nitrophenyl)-5-fluoro benzimidazole (designated 2.1) and 2) 2-(4-aminophenyl)-5-fluoro benzimidazole (designated 2.2).



(2.1) 2-(4-Nitrophenyl)-5-fluoro benzimidazole was synthesized as follows: 1,2-diamino-4-fluorobenzene (1.26 g, 10.0 mmole) was mixed with 4-nitrobenzoic acid (1.67 g, 9.8 mmole) and dissolved in POCl_3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO_3 and used without further purification.

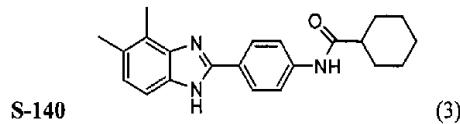
(2.2) 2-(4-Aminophenyl)-5-fluoro benzimidazole was prepared by dissolving 1.0 g of the above nitrobenzimidazole (2.1) in 30% $\text{Na}_2\text{S}\cdot 9\text{H}_2\text{O}$ (20 ml) with stirring at RT for 24h. The reaction mixture was diluted with water and extracted with EtOAc . The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.


S-139


(2) 2-(N-Cyclohexanecarbonyl-4-aminophenyl)-5-fluoro benzimidazole was prepared by dissolving 0.100 g (0.44 mmol) of the above amine (2.2) in pyridine (1.0 ml) followed by cyclohexanecarbonyl chloride (63.2 μl) and heated to 60°C overnight. The reaction was diluted with water (8 ml) and extracted with EtOAc . The combined organic

fractions were dried (Na_2SO_4) and concentrated under vacuum. The resulting solid was purified by flash chromatography (5% $\text{MeOH}-\text{CH}_2\text{Cl}_2$).

The next species (3), 2-(N-3',4'-dichlorobenzoyl-4-aminophenyl)-3,4-dimethyl benzimidazole was synthesized from the following series of benzimidazole intermediates: 1) 2-(4-nitrophenyl)-4,5-dimethyl benzimidazole (designated 3.1) and 2) 2-(4-aminophenyl)-4,5-dimethyl benzimidazole (designated 3.2).



(3.1) 2-(4-Nitrophenyl)-4,5-dimethyl benzimidazole was prepared by mixing 1,2-diamino-3,4-dimethylbenzene (1.36 g, 9.8 mmole) with 4-nitrobenzoic acid (1.67 g, 9.8 mmole) and dissolved in POCl_3 (10 ml) and heated to reflux for 2.5 hours. The reaction mixture was cooled and cautiously poured onto ice. The resulting solid was filtered, washed with NaHCO_3 and used without further purification.

(3.2) 2-(4-Aminophenyl)-4,5-dimethyl benzimidazole was synthesized by dissolving 1.0 g of the above nitrobenzimidazole (3.1) in 30% $\text{Na}_2\text{S} \cdot 9\text{H}_2\text{O}$ (20 ml) and stirring at RT for 2.5h. The reaction mixture was diluted with water and extracted with EtOAc . The combined organic extracts were dried over sodium sulfate and concentrated under vacuum. The product was characterized by mass spectroscopy.

S-140

(3)

(3) 2-(N-Cyclohexanecarbonyl-4-aminophenyl)-3,4-dimethyl benzimidazole was prepared by dissolving 0.0954 g (0.402 mmol) of the above amine (3.2) in 1.0 ml of pyridine followed by cyclohexanecarbonyl chloride (57.6 μ l) and heated to 60°C overnight. The reaction was diluted with water (8 ml) and extracted with EtOAc. The combined organic fractions were dried (Na_2SO_4) and concentrated under vacuum. The resulting solid was purified by flash chromatography (5% MeOH/CH₂Cl₂).

Suppression of IgE Response

The inhibitory activity of the small molecules of the present invention were assayed using both the *ex vivo* and *in vivo* assays as described above. All of the compounds presented above were active in suppressing the IgE response. In the *ex vivo* assay, compounds produced 50% inhibition at concentrations ranging from 1 pM to 10 μ M. In the *in vivo* assay, the compounds were effective at concentrations ranging from less than about 0.01 mg/kg/day to about 25 mg/kg/day, when administered in divided doses (e.g., two to four times daily) for at least two to seven consecutive days. The diacyl benzimidazole compounds were generally more potent than the monoacyl compounds. Thus, the small molecule inhibitors of the present invention are disclosed as being useful in lowering the antigen-induced increase in IgE concentration, and consequently, in the treatment of IgE-dependent processes such as allergies in general and allergic asthma in particular.

Treatment Regimens

The amount of the IgE inhibitor compound which may be effective in treating a particular allergy or condition will depend on the nature of the disorder, and can be determined by standard clinical techniques. The precise dose to be employed in a given situation will also depend on the choice of compound and the seriousness of the condition, and should be decided according to the judgement of the practitioner and each

patient's circumstances. Appropriate dosages can be determined and adjusted by the practitioner based on dose response relationships between the patient's IgE levels as well as standard indices of pulmonary and hemodynamic changes. Moreover, those skilled in the art will appreciate that dose ranges can be determined without undue experimentation by following the protocol(s) disclosed herein for *ex vivo and in vivo* screening (See for example Hasegawa et al., *J. Med. Chem.* 40: 395-407 (1997) and Ohmori et al., *Int. J. Immunopharmacol.* 15:573-579 (1993); employing similar *ex vivo and in vivo* assays for determining dose-response relationships for IgE suppression by naphthalene derivatives; incorporated herein by reference).

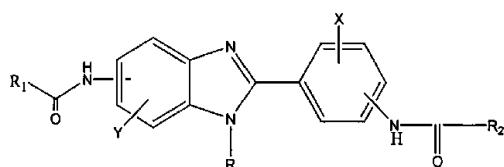
Initially, suitable dosages of the compounds will generally range from about 0.001 mg to about 300 mg per kg body weight per day in divided doses, more preferably, between about 0.01 mg and 100 mg per kg body weight per day in divided doses. The compounds are preferably administered systemically as pharmaceutical formulations appropriate to such routes as oral, aerosol, intravenous, subcutaneously, or by any other route which may be effective in providing systemic dosing of the active compound. The compositions of pharmaceutical formulations are well known in the art. The treatment regimen preferably involves periodic administration. Moreover, long-term therapy may be indicated where allergic reactions appear to be triggered by continuous exposure to the allergen(s). Daily or twice daily administration has been effective in suppressing the IgE response to a single antigen challenge in animals when carried out continuously from a period of two to seven consecutive days. Thus, in a preferred embodiment the compound is administered for at least two consecutive days at regular periodic intervals. However, the treatment regimen, including frequency of dosing and duration of treatment may be determined by the skilled practitioner, and modified as needed to provide optimal IgE down-regulation, depending on nature of the allergen, the dose, frequency, and duration of the allergen exposure, and the standard clinical indices.

In one embodiment of the present invention, an IgE-suppressing compound may be administered in conjunction with one or more of the other small molecule inhibitors disclosed, in order to produce optimal down-regulation of the patient's IgE response. Further, it is envisioned that one or more of the compounds of the present invention may be administered in combination with other drugs already known or later discovered for

treatment of the underlying cause as well as the acute symptoms of allergy or asthma. Such combination therapies envisioned within the scope of the present invention include mixing of one or more of the small molecule IgE-inhibitors together with one or more additional ingredients, known to be effective in reducing at least one symptom of the 5 disease condition. In a variation, the small molecule IgE-inhibitors herein disclosed may be administered separately from the additional drugs, but during the same course of the disease condition, wherein both the IgE-inhibitor(s) and the palliative compounds are administered in accordance with their independent effective treatment regimens.

10 While a number of preferred embodiments of the invention and variations thereof have been described in detail, other modifications and methods of use will be readily apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications and substitutions may be made of equivalents without departing from the spirit of the invention or the scope of the claims.

15 The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that that prior art forms part of the common general knowledge in Australia.


20 Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

25

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A pharmaceutical composition for treating or preventing an allergic reaction associated with increased IgE levels in a mammal comprising one or more of the following compounds:

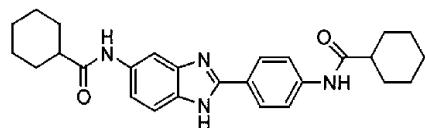
5

(A)

wherein X and Y are independently selected from the group consisting of H, alkyl, alkoxy, aryl, substituted aryl, hydroxy, halogen, amino, alkylamino, nitro, cyano, CF_3 , OCF_3 , CONH_2 , CONHR and NHCOR_1 ;

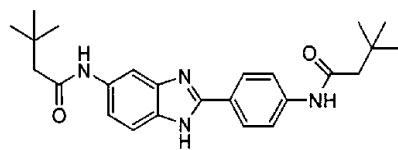
wherein R is selected from the group consisting of H, CH_3 , C_2H_5 , C_3H_7 , C_4H_9 , 10 CH_2Ph , and $\text{CH}_2\text{C}_6\text{H}_4\text{-F(p-)}$; and

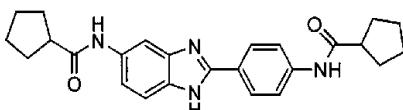
wherein R1 and R2 are independently selected from the group consisting of alkyl, cycloalkyl, substituted cycloalkyl, multi-ring cycloalkyl, fused-ring aliphatic, cyclopropyl, substituted cyclopropyl, cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclohexyl, substituted cyclohexyl, cycloheptyl, substituted cycloheptyl, 15 bicycloheptyl, bicyclooctyl, bicyclononyl, substituted bicycloalkenyl, adamantyl, and substituted adamantyl, wherein R1 and R2 cannot both be methyl groups.


2. The pharmaceutical composition of Claim 1, wherein the substituents on said substituted cycloalkyl, substituted cyclopropyl, substituted cyclobutyl, substituted cyclopentyl, substituted cyclohexyl, substituted cycloheptyl, substituted bicycloalkenyl, 20 and substituted adamantyl are selected from the group consisting of alkyl, aryl, CF_3 , CH_3 , OCH_3 , OH, CN, COOR_5 and COOH.

3. The pharmaceutical composition of Claim 1, wherein the compound is selected from the group consisting of :

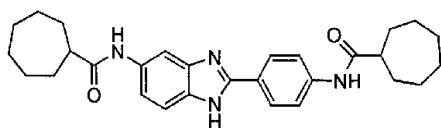
- 61 -


S-1

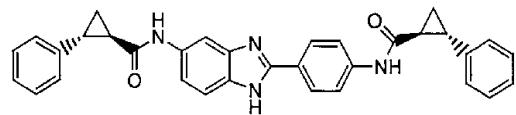

82
32
22
12

5

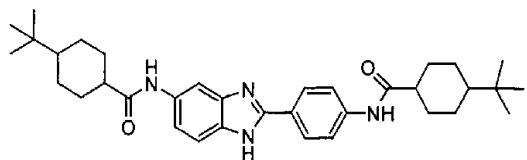
S-2



S-3

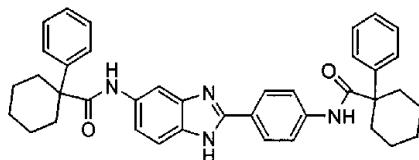

10

S-5


15

S-8

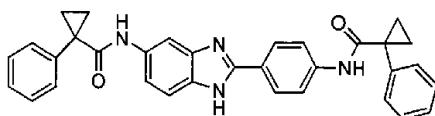
S-9



6
5
4
3
2
1

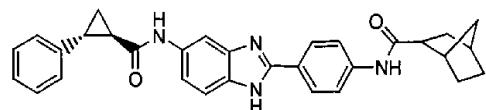

5

S-10

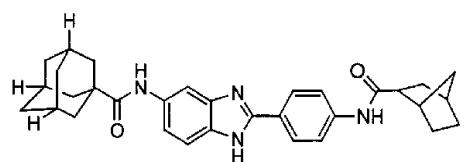


10

S-11

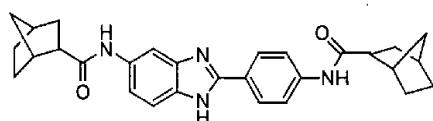


S-12

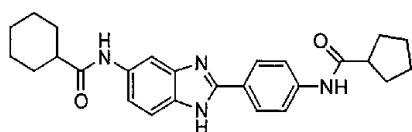


15

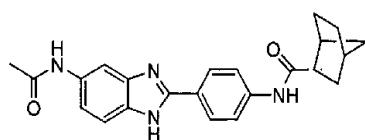
S-15



S-16


5

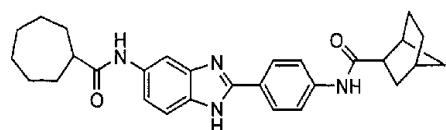
S-17


10

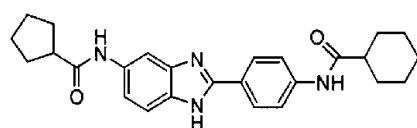
S-18

15

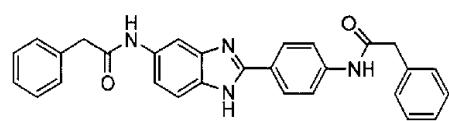
S-19



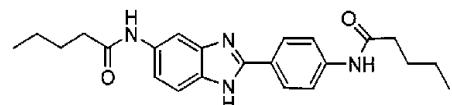
20


- 64 -

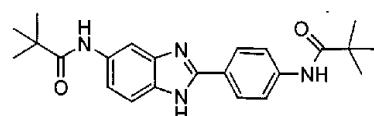
S-20


5

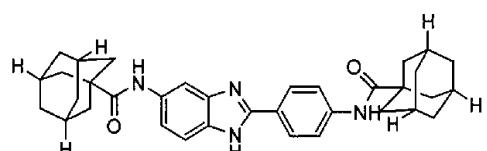
S-21


10

S-24

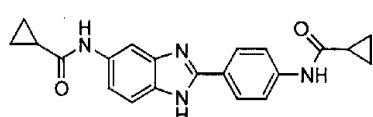

15

S-25


20

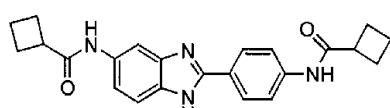
S-27

- 65 -

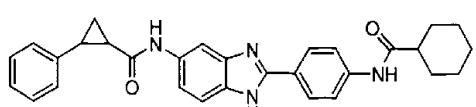

S-28

6
2

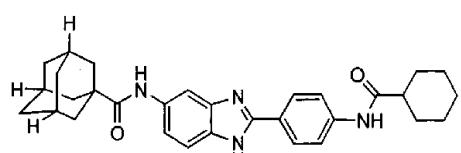
5


S-29

3
3
3
3

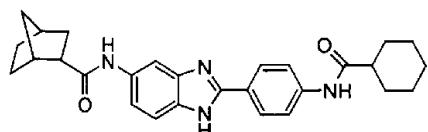

10

S-30



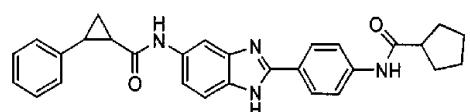
15

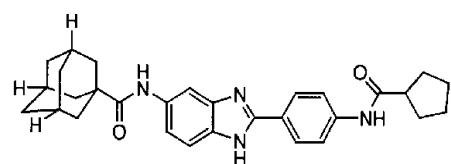
S-31



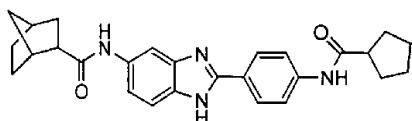
S-32

- 66 -

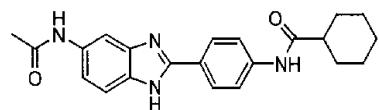

S-33


3
2
10
20
15

5

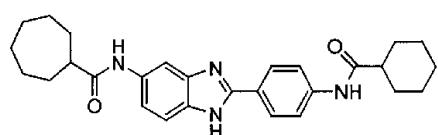

S-34

S-35



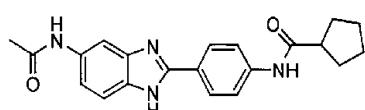
S-36

S-37

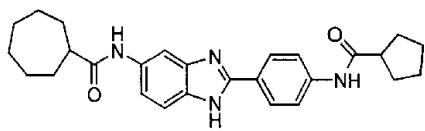


S-38

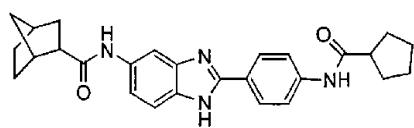
31
32
33


5

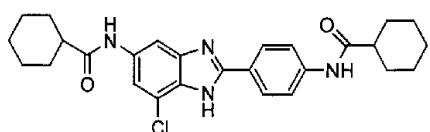
34
35
36


10

S-39

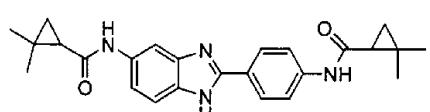

37

S-40


15

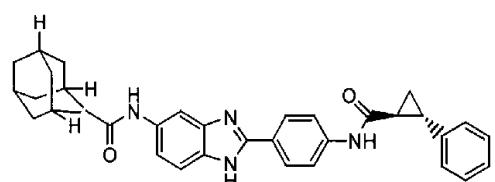
S-41

- 68 -

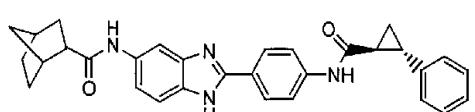

S-42

8
9
10

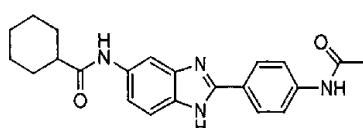
5


S-43

11
12
13

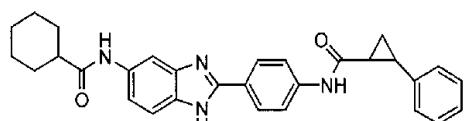

10

S-45

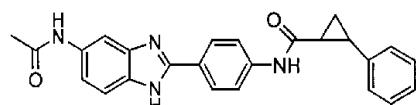


15

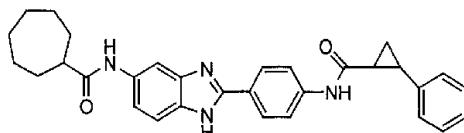
S-46



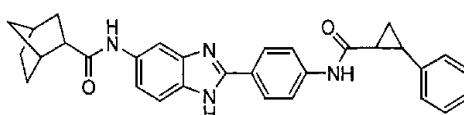
S-47


- 69 -

S-48


5

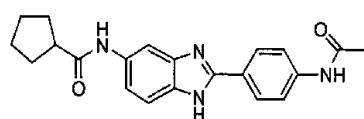
S-49


10

S-50

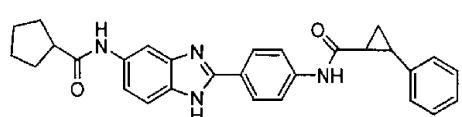
15

S-51

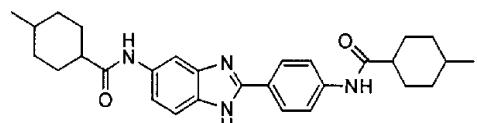


20

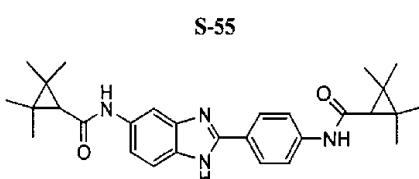
S-52



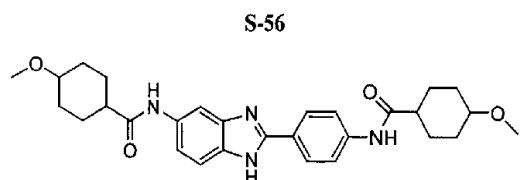
- 70 -



S-53

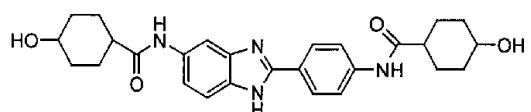

8
9
12
13
14
15

S-54

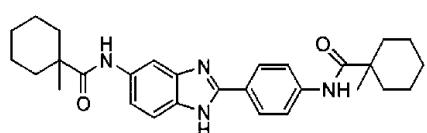


10

15

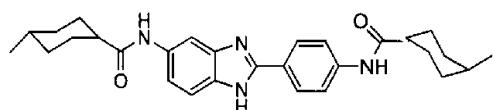

S-55

S-56

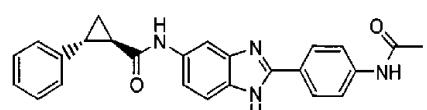

S-57

5

9
3
2
...


S-58

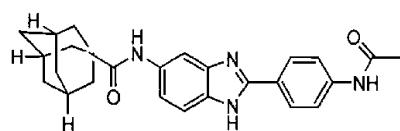
10


2
3
A

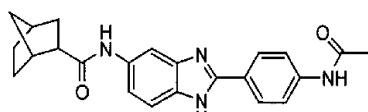
S-65

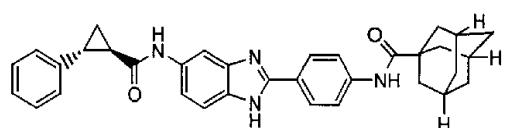
15

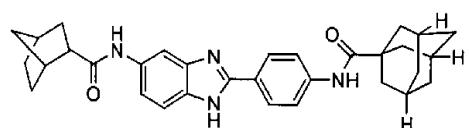
S-66



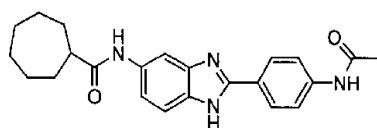
20


S-67

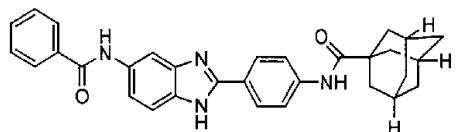

- 72 -


S-68

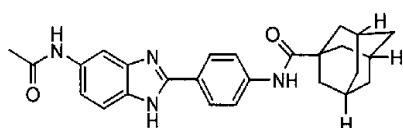
S-69



S-70

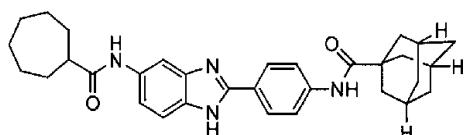

15

S-72


- 73 -

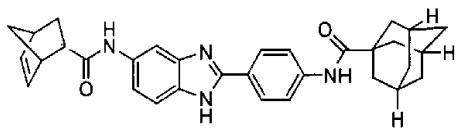
S-73

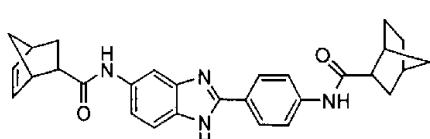
5


S-74

8
9
10
11

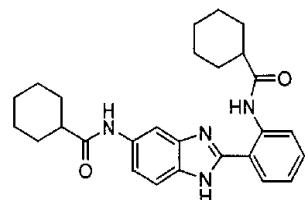
10


S-75


8
9
10
11

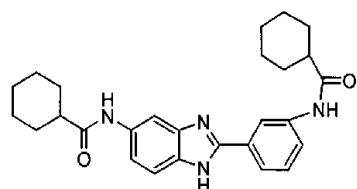
15

S-76

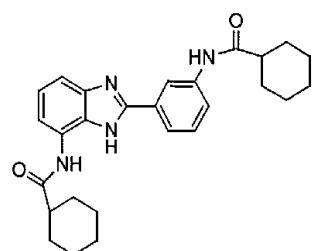


S-77

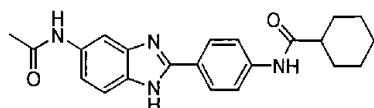
- 74 -


S-79

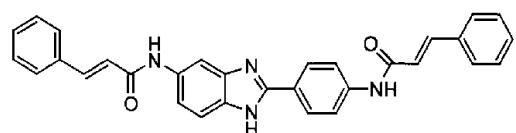
8
9
10
11
12
13
14
15


5

S-80

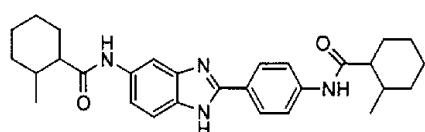

10

S-81


15

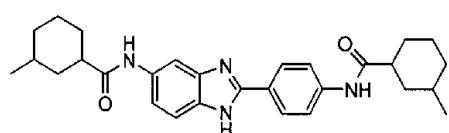
S-82

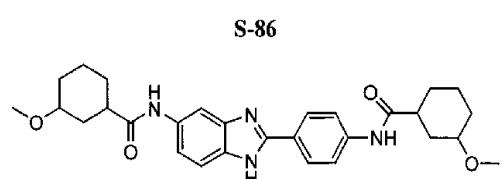
- 75 -


S-83

5

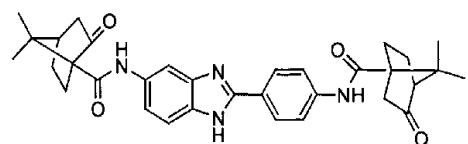
S-83


S-84

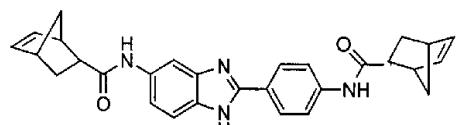

10

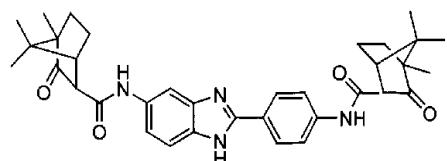
S-84

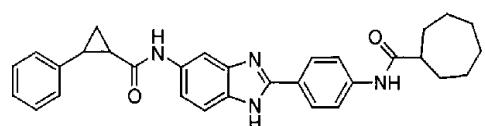
S-85


15

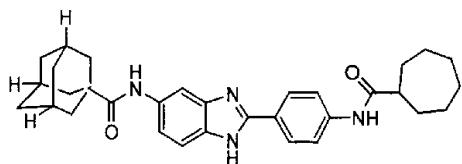

S-87


- 76 -

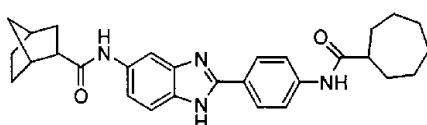

S-88


S-89

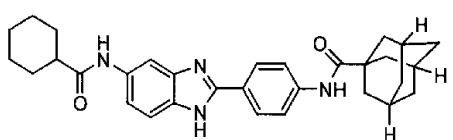
S-90



S-93

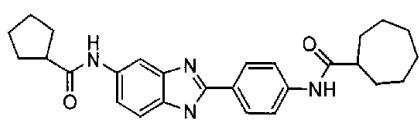

- 77 -

S-94



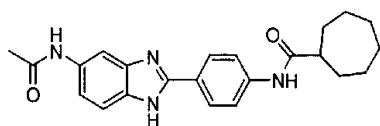
5
6
7
8
9
10

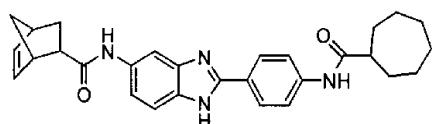
S-95



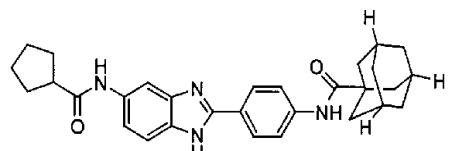
S-96

10
15


S-97

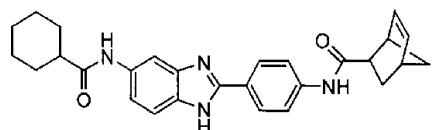

S-98

- 78 -

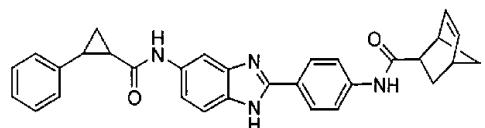

S-99

5

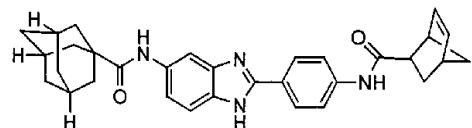
3
3
3
3


S-100

10

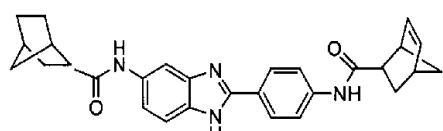

3
3
3
3

S-101


15

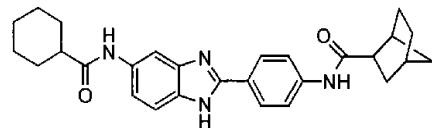
S-102

- 79 -

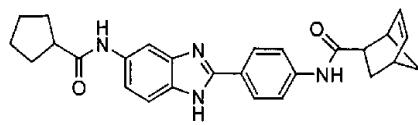

S-103

5

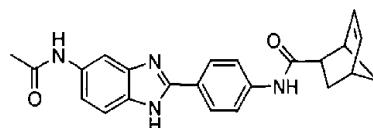
39
39
39


S-104

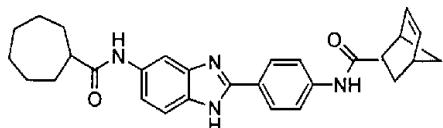
10


39
39
39

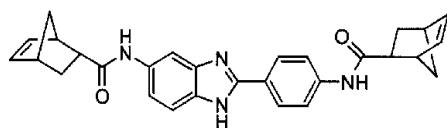
S-105



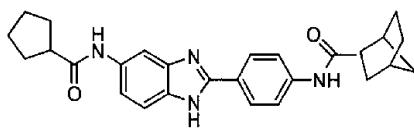
15


S-106

S-107



S-108


5

S-109

10

S-110

15

4. The pharmaceutical composition of any one of Claims 1-3 for use in the treatment of a disease condition associated with excess IgE.

5. The pharmaceutical composition of Claim 4 further comprising at least one additional ingredient which is active in reducing at least one symptom associated with the
20 disease condition associated with excess IgE.

6. The pharmaceutical composition of Claim 5 wherein said additional ingredient is selected from the group consisting of a short-acting β_2 -adrenergic agonist, a long-acting β_2 -adrenergic agonist, an antihistamine, a phosphodiesterase inhibitor, an anticholinergic

agent, a corticosteroid, an inflammatory mediator release inhibitor and a leukotriene receptor antagonist.

7. The pharmaceutical composition of any one of Claims 1-4 in the preparation of a medicament for treatment of a disease condition associated with excess IgE.

5 8. A method for treating or preventing an allergic reaction in a mammal wherein said reaction is caused by an increase in IgE levels comprising administering an IgE-suppressing amount of at least one compound of Claim 1.

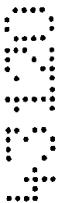
9. The method of Claim 8, further comprising administering at least one additional ingredient which is active in reducing at least one symptom associated with said allergic

10 reaction.

10. The method of Claim 9, wherein said additional ingredient is selected from the group consisting of a short-acting β_2 -adrenergic agonist, a long-acting β_2 -adrenergic agonist, an antihistamine, a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor and a leukotriene receptor

15 antagonist.

11. A method for treating or preventing asthma in a mammal comprising administering an IgE-suppressing amount of at least one compound of Claim 1.


12. The method of Claim 11, further comprising administering at least one additional ingredient which is active in reducing at least one symptom associated with said allergic

20 reaction.

13. The method of Claim 12, wherein said additional ingredient is selected from the group consisting of a short-acting β_2 -adrenergic agonist, a long-acting β_2 -adrenergic agonist, an antihistamine, a phosphodiesterase inhibitor, an anticholinergic agent, a corticosteroid, an inflammatory mediator release inhibitor and a leukotriene receptor 5 antagonist.

DATED this 30th day of August, 2002.

Avanir Pharmaceuticals

by DAVIES COLLISON CAVE

10 Patent Attorneys for the Applicant

