(54) 발명의 명칭 신규한 플루오란텐 옥심 에스테르 유도체, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물

(57) 요 약
본 발명은 신규한 플루오란텐 옥심에스테르 유도체, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물에 관한 것으로, 상세하게는 본 발명에 따른 플루오란텐 옥심 에스테르 유도체 화합물은 하기 화학식 1로 표시되는 것을 특징으로 한다.

[화학식 1]
발명자
이득락
대전광역시 유성구 구즉로 16, 103동 803호 (송강동, 한마을아파트)
이원중
대전광역시 서구 도안북로 125, 106동 1505호 (도안동, 예미지아파트)
이재훈
대전광역시 유성구 엑스포로 448, 502동 1401호 (전민동, 엑스포아파트)
조용일
대전광역시 서구 문산로 155, 106동 209호 (문산동, 크로바아파트)
명 세 서

청구범위

청구항 1

저항 화학식 1로 표시되는 플루오란텐 옥심 에스테르 유도체:

상기 화학식 1에서,

\(R_1 \) 내지 \(R_2 \)는 각각 독립적으로 수소, 할로겐, \((C_1-C_{20})\)알킬, \((C_1-C_{20})\)아릴, \((C_6-C_{20})\)아릴(\(C_1-C_{20})\)알킬, 히드록시(\(C_1-C_{20})\)알킬, 히드록시(\(C_1-C_{20})\)알콕시(\(C_1-C_{20})\)알킬, 히드록시(\(C_6-C_{20})\)아릴(\(C_1-C_{20})\)알킬, 히드록시(\(C_1-C_{20})\)알콕시(\(C_6-C_{20})\)아릴(\(C_1-C_{20})\)알킬, 히드록시(\(C_1-C_{20})\)알콕시(\(C_6-C_{20})\)아릴(\(C_1-C_{20})\)알킬이고;

\(n \)은 0 또는 1이다.

청구항 2

제 1항에 있어서,

상기 \(R_1 \) 내지 \(R_2 \)는 각각 독립적으로 수소, 브로모, 클로로, 아이오도, 메틸, 에틸, \(n \)-프로필, \(i \)-프로필, \(n \)-부틸, \(i \)-부틸, \(t \)-부틸, \(n \)-펜틸, \(i \)-펜틸, \(n \)-헥실, \(i \)-헥실, 펜닐, 나프틸, 바이페닐, 터페닐, 안트릴, 안데닐, 패난트릴, 메톡시, 에톡시, \(n \)-프로필옥시, \(i \)-프로필옥시, \(n \)-부톡시, \(i \)-부톡시, \(t \)-부톡시, \(n \)-헥실메톡시, 히드록시\(n \)-프로필, 히드록시\(i \)-프로필, 히드록시\(n \)-부تكل, 히드록시\(i \)-부تكل, 히드록시\(n \)-헥실, 히드록시\(i \)-헥실

청구항 3

제 1항에 있어서,

저항 화학식 1a 내지 1p의 화합물로부터 선택되는 것을 특징으로 하는 플루오란텐 옥심 에스테르 유도체:

[화학식 1a]
청구항 4
제 1항 내지 제 3항 중 어느 한 항의 플루오란텐 육십 에스테르 유도체를 포함하는 광중합 개시제.

청구항 5
제 1항 내지 제 3항 중 어느 한 항의 플루오란텐 육십 에스테르 유도체, 마이너 수지 및 에틸렌계 불포화 결합을 갖는 화합물을 포함하는 포토레지스트 조성물.

청구항 6
제 6항에 있어서, 상기 플루오란텐 육십 에스테르 유도체는 포토레지스트 조성물 총 100중량%에 대하여 0.01 내지 10 중량%로 포함되는 것을 특징으로 하는 포토레지스트 조성물.

청구항 7
제 6항의 포토레지스트 조성물에 카본블랙을 더 포함하는 블랙 매트릭스용 포토레지스트 조성물.

청구항 8
제 6항의 포토레지스트 조성물에 염료 분산액을 더 포함하는 컬러 매트릭스용 포토레지스트 조성물.

청구항 9
제 7항에 따른 블랙 매트릭스용 포토레지스트 조성물을 포함하는 것을 특징으로 하는 블랙 매트릭스.

청구항 10
제 8항에 따른 컬러 매트릭스용 포토레지스트 조성물을 포함하는 것을 특징으로 하는 컬러 필터.

발명의 설명
기술 분야
본 발명은 신규한 플루오란텐 육십 에스테르 유도체, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물에 관한 것이다.

배경 기술
포토레지스트 조성물에 사용되는 광중합 개시제의 일반적인 예는 아세토페논 유도체, 벤조페논 유도체, 트리아진 유도체, 비아미딘 유도체, 아실포스핀 유도체 및 육십 에스테르 유도체 등 여러 종류가 알려져 있으며, 이중 육십 에스테르 유도체는 자외선을 흡수하여 색을 거의 나타내지 않고, 라디칼 발생 효율이 높으며, 포토레지스트 조성물 제조 과정과의 상용성 및 안정성이 우수한 장점을 갖고 있다. 그러나 초기에 개발된 육십 에스테르 유도체 화합물은 광개시 효율이 낮으며, 특히 패턴 노광 공정시 감도가 낮아 노광량을 늘려야 하고 이로 인해 생산량이 줄어드는 문제가 있다.

그러므로 광 감도가 우수한 광중합 개시제의 개발은 적은 양으로 충분한 감도를 구현할 수 있어 원가 절감 효과 및 수수한 감도로 인해 노광량을 낮출 수 있어 생산량을 높일 수 있다.

포토레지스트 조성물에 광중합 개시제로 사용 가능한 하기 화학식 A로 표시되는 다양한 육십 에스테르 유도체가 이미 공지되어 있다.
옥심 에스테르기를 갖는 광중합 개시제의 경우 화합물의 R, R’, R”에 적절한 치환기를 도입하여 광중합 개시제의 흡수영역을 조절 가능한 다양한 광중합 개시제의 합성이 용이하다.

옥심 에스테르 유도체 화합물은 포토레지스트 조성물에 365-435 nm의 빛을 조사함으로서 불포화 결합을 갖는 중합성 화합물을 중합 및 경화시킬 수 있어서 플렉테트릭, 컬러짐, 컬러스페이시, 유연결연막, 오버코트용 포토레지스트 조성을 등에 이용되고 있다.

따라서, 광개시제는 365-435nm 등 장파장 광원에 높은 감도를 가지며, 광중합 반응성이 좋고, 제조가 용이하며, 열안정성 및 저장안정성이 높아 취급이 용이하며 용제(PGMEA; 프로필렌 글리콜 모노메틸 에테르 아세테이트)에 대한 만족할 만한 용해도 등 산업 현장의 요구를 충족시킬 수 있는 다양한 용도에 적합한 새로운 광개시제가 지속적으로 요구되고 있다.

최근에는 액정표시소자 및 OLED 등 박막 디스플레이에 사용되는 포토레지스트 조성물에 관하여, 보다 상세하게는 알칼리 현상액으로 현상되어 TFT-LCD와 같은 액정표시소자의 유기 점막, 컬럼스페이시어, UV 오버코트, R.G.B. 컬러 레지스트 및 Black Matrix 등으로 패턴 형성이 가능한 고감도 광중합 개시제를 함유하는 포토레지스트 조성물에 관한 연구가 많이 진행되고 있다.

일반적으로 패턴을 형성하기 위해서는 레지스트 조성물로는 바인더 수지, 에틸렌 불포화 결합을 갖는 다관능성 모노머 및 광중합 개시제를 함유하는 포토레지스트 조성물이 선호되고 있다.

그러나 종래의 광중합 개시제를 이용하여 패턴을 형성하는 경우 패턴 형성을 위한 노광 공정 시 감도가 낮아 광중합 개시제의 사용량을 늘리거나 노광량을 늘려야 하고 이로 인해 노광 공정에서 마스크를 오염시키고, 고온 가교 시에 광중합 개시제가 분해한 후 발생하는 부산물로 수율이 저하되는 단점이 있고, 노광량 증가에 따른 노광공정 시간이 늘어나 생산량이 줄어드는 문제점 등이 있어 이를 해결하기 위한 노력이 진행되고 있다.

발명의 내용
해결하려는 과제
본 발명의 목적은 감도, 내열성, 내광성, 내화학성 및 내현상성이 우수한 신규 플루오란텐 옥실 에스테르 (fluoranthene oxime ester) 유도체, 이를 함유하는 광중합 개시제 및 포토레지스트 조성물을 제공하는 것이다.

과제의 해결 수단
상기의 목적을 달성하기 위하여, 본 발명의 일양태에서는 하기 화학식 1로 표시되는 플루오란텐 옥실 에스테르 유도체, 이를 포함하는 광중합 개시제 및 포토레지스트 조성물을 제공한다.

화학식 1

상기 화학식 1에서,
\[R_1 \text{ 및 } R_2 \text{는 각각 독립적으로 수소, 할로겐, (C}_1-C_{20}\text{)알킬, (C}_6-C_{20}\text{)아릴, (C}_1-C_{20}\text{)알콕시, (C}_6-C_{20}\text{)아릴(C}_1-C_{20}\text{)알킬, 히드록시(C}_1-C_{20}\text{)알킬, 히드록시(C}_1-C_{20}\text{)알콕시(C}_1-C_{20}\text{)알킬, (C}_3-C_{20}\text{)사이클로알킬 또는 (C}_3-C_{20}\text{)사이클로알킬(C}_1-C_{20}\text{)알킬이고;}
\]
\[n\text{은 0 또는 1이다.}
\]

본원 명세서에 기재되어 있는 용어 "알로겐" 또는 "할로겐"은 불소, 염소, 브롬 또는 요오드 원자를 의미한다.

본원 명세서에 기재되어 있는 용어 "알킬"은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 구체적인 예로 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, n-펜틸, i-펜틸, s-펜틸, n-헥실, i-헥실, s-헥실, n-የsit, n-노닐, n-데실, n-데실, n-도데실, n-티리데실, n-테트라데실, n-카나데실 및 n-헥사데실 등을 포함하지만 이에 한정되지 않는다.

본원 명세서에 기재되어 있는 용어 "아릴"은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합 고리계를 포함하며, 다수개의 아릴 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 케닐, 나프틸, 벤조닐, 테레닐, 안트릴, 인테닐(indenyl), 플루오레닐, 페난트릴 등을 포함하지만, 이에 한정되지 않는다.

본원 명세서에 기재되어 있는 용어 "알콕시"는 -O-알킬 라디칼을 의미하는 것으로, 메톡시, 에톡시, 이소프로톡시, 부톡시, 이소부톡시, 메톡시메틸, 메톡시에틸, 메톡시프로필, 메톡시프로필, 메톡시부틸, 메톡시부틸, 메톡시헥실 등을 포함하지만 이에 한정되지 않는다.

본원 명세서에 기재되어 있는 용어 "아릴알킬"은 상기 정의한 아릴이 치환된 알킬 기로, 벤질 등으로 예시될 수 있다.

본원 명세서에 기재되어 있는 용어 "알킬"은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 구체적인 예로 메틸, 에틸, n-프로필, i-프로필, n-부틸, i-부틸, s-부틸, t-부틸, n-펜틸, i-펜틸, s-펜틸, n-헥실, i-헥실, s-헥실, n-የsit, n-노닐, n-데실, n-데실, n-도데실, n-티리데실, n-테트라데실, n-카나데실 및 n-헥사데실 등을 포함하지만 이에 한정되지 않는다.

본원 명세서에 기재되어 있는 용어 "히드록시알킬"은 히드록시가 치환된 알킬 기로, 히드록시메틸, 히드록시에틸, 히드록시프로필, 히드록시프로필, 히드록시부틸, 히드록시부틸, 히드록시헥실 등을 포함하지만, 이에 한정되지 않는다.

본원 명세서에 기재되어 있는 용어 "히드록시알콕시알킬"은 히드록시알콕시로 치환된 알킬 기로, 구체적인 예로 히드록시메톡시메틸, 히드록시메톡시에틸, 히드록시메톡시프로필, 히드록시메톡시프로필, 히드록시메탁시부틸, 히드록시메탁시부틸, 히드록시메탁시헥실 등을 포함할 수 있다.
개 이상의 단환상 알킬이 융합된 다환상 알킬 기를 의미한다. 구체적인 예로는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 등을 들 수 있으나, 이에 한정되지 않는다.

본원 명세서에 기재되어 있는 용어 “시클로알킬알킬”은 상기 정의한 시클로알킬이 치환된 알킬기를 의미하는 것으로, 시클로프로필메틸, 시클로부틸메틸, 시클로펜틸메틸, 시클로헥실메틸 등으로 예시될 수 있다.

또한, 본원 명세서에 기재되어 있는 ‘(C₁-C₂₀)알킬’ 기는 바람직하게는 (C₁-C₁₀)알킬이고, 더 바람직하게는 (C₁-C₆)알킬이다. ‘(C₆-C₂₀)아릴’ 기는 바람직하게는 (C₆-C₁₈)아릴이다. ‘(C₁-C₂₀)알콕시’ 기는 바람직하게는 (C₁-C₁₀)알콕시이고, 더 바람직하게는 (C₁-C₄)알콕시이다. ‘(C₆-C₂₀)아릴(C₁-C₂₀)알킬’ 기는 바람직하게는 (C₆-C₁₈)아릴(C₁-C₁₀)알킬이다.

상기 화학식 1에서, 각각의 R₁과 R₂는 서로 동일하거나 상이할 수 있다.

하나의 대표적인 예로는 화합물 (C₁-C₂₀)알킬, (C₆-C₂₀)아릴, (C₆-C₂₀)아릴(C₁-C₂₀)알킬, 히드록시(C₁-C₂₀)알킬, 히드록시(C₁-C₂₀)알콕시(C₁-C₂₀)알킬, (C₃-C₂₀)사이클로알킬, (C₃-C₂₀)사이클로알킬(C₁-C₂₀)알킬의 등을 들 수 있다.

본 발명에 따른 플루오란텐 옥심 에스테르 유도체의 대표적인 화합물은 화학식 1a와 1b이다.
[화학식 1c]

[화학식 1d]

[화학식 1e]

[화학식 1f]

[화학식 1g]
[화학식 1h]

[화학식 1i]

[화학식 1j]

[화학식 1k]

[화학식 1l]
본 발명에 따르면 상기 화학식 1로 표시되는 플루오란텐 옥심 에스테르 유도체는 하기 반응식 1에 나타난 바와 같이 제조될 수 있다.

[반응식 1]

여기 반응식 1에서 R₁ 및 R₂는 화학식 1에서의 정의와 동일하고, X₁ 및 X₂는 각각 독립적으로는 할로겐일 수 있다.

또한, 본 발명의 다른 양태에서는 상기 화학식 1로 표시되는 플루오란텐 옥심 에스테르 유도체를 포함하는 광중합 개시제를 제공한다.

또한, 본 발명의 또 다른 양태에서는 상기 화학식 1로 표시되는 플루오란텐 옥심 에스테르 유도체를 포함하는 포토레지스트 조성물을 제공한다.

본 발명에서 상기 화학식 1로 표시되는 플루오란텐 옥심 에스테르 유도체는 광중합 개시제로서 포토레지스트 조성물에 포함될 수 있다.

본 발명의 포토레지스트 조성물은 상기 화학식 1로 표시되는 플루오란텐 옥심 에스테르 유도체, 아크릴 중합체 또는 측체에 아크릴 불포화 결합을 갖는 아크릴 중합체, 에틸렌성 불포화결합을 갖는 중합성 화합물 및 용매 등을 포함하며, 폐턴 특성 조절과 내열성 및 내화학성 등의 박막 물성이 뛰어나다.

본 발명의 포토레지스트 조성물에 있어서 바인더 수지로 사용되는 아크릴 중합체 또는 측체에 아크릴 불포화 결합을 갖는 아크릴 중합체는 평균 분자량 2,000 내지 300,000, 분산도는 1.0 내지 10.0 인 것을 사용하는 것이 바람직하며, 평균 분자량 4,000 내지 100,000 인 것을 사용하는 것이 더욱 바람직하다.

상기 아크릴 중합체는 하기 단량체들을 포함하는 단량체들의 공중합체로서 단량체들의 레포는 메틸(메타)아크릴레
이트, 에틸(메타)아크릴레이트, 프로필(메타)아크릴레이트, 부틸(메타)아크릴레이트, 캔틸(메타)아크릴레이트, 핵실(메타)아크릴레이트, 시클로헥실(메타)아크릴레이트, 헥틸(메타)아크릴레이트, 도시칠(메타)아크릴레이트, 캔틸(메타)아크릴레이트, 테트라데실(메타)아크릴레이트, 핵실데실(메타)아크릴레이트, 이소보닐(메타)아크릴레이트, 아다만틸(메타)아크릴레이트, 다이클로펜타닐(메타)아크릴레이트, 다이클로펜테닐(메타)아크릴레이트, 벤질(메타)아크릴레이트, 2-메톡시에틸(메타)아크릴레이트, 2-에톡시에틸(메타)아크릴레이트, 아크릴산, 메타아크릴산, 이타코닉산, 말레익산, 말레익산무수물, 말레익산모노알킬 에스터, 모노알킬 이타코네이트, 모노알킬 퓨말레이트, 글리시딜아크릴레이트, 글리시딜메타아크릴레이트, 3,4-에폭시부틸(메타)아크릴레이트, 2,3-에폭시시클로헥실(메타)아크릴레이트, 3,4-에폭시시클로헥실메틸(메타)아크릴레이트, 3-메틸옥세탄-3-메틸(메타)아크릴레이트, 3-תחריש에 아크릴 불포화 결합을 갖는 아크릴 중합체는 카르복실 산을 함유한 아크릴 공중합체에 에폭시 시수지를 부가반응한 공중합체로서 아크릴산, 메타아크릴산, 이타코닉산, 말레익산, 말레익산모노알킬 에스터 등의 카르복실산을 함유한 아크릴 보일미데와 메틸(메타)아크릴레이트, 핵실(메타)아크릴레이트 등의 카르복실산을 함유한 아크릴 공중합체에 글리시딜아크릴레이트, 글리시딜메타아크릴레이트, 이소보닐(메타)아크릴레이트, 아다만틸(메타)아크릴레이트, 다이클로펜타닐(메타)아크릴레이트, 다이클로펜테닐(메타)아크릴레이트, 벤질(메타)아크릴레이트, 2-메톡시에틸(메타)아크릴레이트, 스틸렌, α-메틸스틸렌, 아세톡시스틸렌, α-메틸알킬아미드, α-메틸알킬아미드, N-메틸(메타)아크릴아미드 등의 모노머 2종 이상을 공중합하여 얻어진 바인더 수지를 사용할 수 있다.

[0078] 측면에 아크릴 불포화 결합을 갖는 아크릴 중합체는 카르복실 산을 함유한 아크릴 공중합체에 에폭시 시수지를 부가반응한 공중합체로서 카르복실산을 함유한 아크릴 공중합체에 에폭시를 함유한 아크릴 공중합체에 글리시딜아크릴레이트, 글리시딜메타아크릴레이트, 3,4-에폭시시클로헥실(메타)아크릴레이트, 2-메톡시에틸(메타)아크릴레이트, 2-에톡시에틸(메타)아크릴레이트, 스틸렌, α-메틸스틸렌, 아세톡시스틸렌, α-메틸알킬아미드, α-메틸알킬아미드, N-메틸(메타)아크릴아미드 등의 모노머 2종 이상을 공중합하여 얻어진 바인더 수지를 사용할 수 있다.

[0079] 측면에 아크릴 불포화 결합을 갖는 아크릴 중합체의 또 다른 예로는 에폭시기를 함유한 아크릴 공중합체를 이용한 공중합체로서 카르복실산을 함유한 아크릴 공중합체에 글리시딜아크릴레이트, 글리시딜메타아크릴레이트, 3,4-에폭시시클로헥실(메타)아크릴레이트, 2-메톡시에틸(메타)아크릴레이트, 2-에톡시에틸(메타)아크릴레이트, 스틸렌, α-메틸스틸렌, 아세톡시스틸렌, α-메틸알킬아미드, α-메틸알킬아미드, N-메틸(메타)아크릴아미드 등의 모노머 2종 이상을 공중합하여 얻어진 바인더 수지를 사용할 수 있다.

[0080] 본 발명의 포토레지스트 조성물에 있어서 바인더 수지로 사용되는 아크릴 중합체 또는 측면에 아크릴 불포화 결합을 갖는 아크릴 중합체는 패턴 특성 조절과 내열성 및 내화학성 등의 박막 물성을 부여하기 위하여 포토레지스트 조성물 100 중량%에 대하여 3 내지 50 중량%를 사용하는 것이 바람직하며, 아크릴 중합체의 평균 분자량은 2,000 내지 300,000, 분산도는 1.0 내지 10.0 인 것을 사용하는 것이 바람직하며, 평균 분자량 4,000 내지 100,000 인 것을 사용하는 것이 더욱 바람직하다.

[0081] 본 발명의 포토레지스트 조성물에 있어서 에틸렌성 불포화결합을 갖는 중합성 화합물은 패턴 형성시 광반응에 의하여 가교되어 패턴 형성의 역할을 하며 고온 가열시 가교되어 내화학성 및 내열성을 부여한다. 상기 에틸렌성 불포화결합을 갖는 중합성 화합물은 포토레지스트 조성물 100 중량%에 대하여 0.001 내지 40 중량%를 사용하는 것이 바람직하며, 에틸렌성 불포화결합을 갖는 중합성 화합물이 과량 첨가되면 가교도가 저하되어 패턴의 연성을 저하시킬 수 있다.

[0082] 상기 에틸렌성 불포화결합을 갖는 중합성 화합물은 구체적으로 메틸(메타)아크릴레이트, 에틸(메타)아크릴레이트, 부틸(메타)아크릴레이트, 2-에틸髻(h)메틸(메타)아크릴레이트, 라우릴(메타)아크릴레이트 등의 (메타)아크릴산의 알킬에스테르, 글리시딜(메타)아크릴레이트, 에틸렌옥사이드기의 수가 2 내지 14인 폴리에틸렌 글리코스모노(메타)아크릴레이트, 에틸렌글리코스디(메타)아크릴레이트, 에틸렌옥사이드기의 수가 2 내지 14인 폴리에틸렌 글리코스디(메타)아크릴레이트, 프로필렌옥사이드기의 수가 2 내지 14인 폴리프로필렌글리코스디(메타)아크릴레이트, 공개특허 10-2016-0144161
레이트, 트리메틸올프로판디(메타)아크릴레이트, 비스페놀 A 디글리시드목에테르아크릴산 부가물, β-히드록시 에틸(메타)아크릴레이트의 폴산디에테르, β-히드록시에틸(메타)아크릴레이트의 투렌 디이소피아이드 부가물, 트리메틸올프로판디(메타)아크릴레이트, 펜타에리스리톨트리(메타)아크릴레이트, 디펜타에리스리톨펜타(메타)아크릴레이트, 디펜타에리스리톨헥사(메타)아크릴레이트, 트리메틸올프로판디(메타)아크릴레이트와 같이 다가 알코올과 a,β-불포화 카르복시산을 에스테르화하여 얻어지는 화합물, 트리메틸올프로판디(메타)아크릴레이트 부가물과 같이 다가 글리시드산화합물의 아크릴산 부가 물 등등을 들 수 있으며, 이들을 각각 단독으로 또는 2종 이상 함께 사용할 수 있다.

또한, 본 발명의 포토레지스트 조성물에서 광중합 개시제로 사용되는 상기 화학식 1의 플루오란텐 옥심 에스테르 유도체의 첨가량은 투명성을 높이며 노광량을 최소화하기 위한 함량으로서 포토레지스트 조성물 100 중량%에 대하여 0.01 내지 10 중량%, 바람직하게는 0.1 내지 5 중량%를 사용하는 것이 보다 효과적이다.

또한, 본 발명의 포토레지스트 조성물은 필요에 따라 접착보조제로 에폭시기 또는 아민기를 갖는 실리콘계 화합물을 더 포함할 수 있다.

또한, 본 발명의 포토레지스트 조성물에서 실리콘계 화합물은 ITO 전극과 포토레지스트 조성물과의 접착력을 향상시키며, 경화 후 내열 특성을 증대시킬 수 있다. 상기 에폭시기 또는 아민기를 갖는 실리콘계 화합물로는 (3-클리스탕프로필)트리메톡시실레인, (3-클리스탕프로필)메틸디에톡시실레인, (3-클리스탕프로필)메틸디메톡시실레인, (3-클리스탕프로필)트리에톡시실레인, (3-클리스탕프로필)메틸디에톡시실레인, (3-클리스탕프로필)메틸디메톡시실레인, (3-클리스탕프로필)트리에톡시실레인, (3-클리스탕프로필)메틸디에톡시실레인, (3-클리스탕프로필)메틸디메톡시실레인, (3-클리스탕프로필)트리에톡시실레인, (3-클리스탕프로필)메틸디에톡시실레인 등이 있으며, 이들은 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 상기 에폭시기 또는 아민기를 갖는 실리콘계 화합물은 포토레지스트 조성물 100 중량%에 대하여 0.0001 내지 3 중량%이다.

또한, 본 발명의 포토레지스트 조성물은 필요에 따라 광중합제, 염중합 급지제, 소포제, 레벨링제 등의 상용성이 있는 첨가제를 더 포함할 수 있다.

본 발명의 포토레지스트 조성물은 용매를 가하여 기판 위에 스프레이하여 후 마스크를 이용하여 자외선을 조사하여 알칼리 현상액으로 현상하는 방법을 통하여 패턴을 형성하게 되는데, 포토레지스트 조성물 100 중량%에 대하여 10 내지 95 중량%의 용매를 첨가하여 점도를 1 내지 50 cps 범위가 되도록 조절하고 10중량%의 용매를 첨가하여 점도를 1 내지 50 cps 범위가 되도록 조절하는 것이 바람직하다.

또한, 본 발명은 상기 화학식 1로 표시되는 플루오란텐 옥심 에스테르 유도체 및 색재를 포함하는 착색 포토레지스트 조성물을 제공한다.

또한, 본 발명은 상기 착색 포토레지스트 조성물을 포함하는 컬러필터 및 블랙 매트릭스를 제공한다.

또한, 본 발명은 상기 착색 포토레지스트 조성물을 제조하기 위한 레지스트 공정을 제공한다.

또한, 본 발명은 상기 착색 포토레지스트 조성물을 포함하는 컬러필터 및 블랙 매트릭스를 제공한다.
본 발명의 일 실시예에 따른 상기 착색 포토레지스트 조성물을 이용한 구현예 중 하나인 컬러 필터는 하기와 같은 제조방법으로 제조될 수 있으나 이에 한정되는 것은 아니다.

유리기판 위에 스피나 도포, 롤러 도포, 스프레이 도포 등의 적당한 방법을 사용하여, 예를 들어, 0.5 내지 10 μm의 두께로 전술한 착색 포토레지스트 조성물을 도포한 후 상기 기판에 컬러 필터에 필요한 패턴을 형성하도록 광을 조사한다. 조사에 사용되는 광원으로는 UV, 전자선 또는 X선을 사용할 수 있고, 예를 들면, 190 내지 450 nm, 구체적으로는 200 nm 내지 400 nm 영역의 UV를 조사할 수 있다.

또한 상기 조사하는 공정에서 포토레지스트 마스크를 사용하여 실시할 수도 있다.

이와 같이 조사하는 공정을 실시한 후, 상기 광원이 조사되어 페턴화된 착색 포토레지스트 조성물 중을 형성한 부분인 컬러 필터를 얻는 것으로 처리한다. 이때, 상기 착색 포토레지스트 조성물 중에서 비노광 부분은 용해됨으로써 컬러 필터에 필요한 패턴이 형성되는 것일 수 있다. 이러한 조사를 필요한 색의 수에 따라 반복함으로써 원하는 패턴을 갖는 컬러 필터를 수득할 수 있다. 또한 상기 공정에서 형성해 컬러필터를 다시 가열하거나 발라필터 등에 의해 형성시키면서 내크랙성, 내용성 등이 향상된 컬러 필터를 구현할 수 있다.

발명의 효과

본 발명의 플루오란텐 옥심 에스테르 유도체는 포토레지스트 조성물의 광중합 개시제로 사용될 때 우수한 감도를 나타내며, 절연, 내화학성, 내화성 및 연성 등의 물성이 뛰어나 TFT-LCD 제조 공정 중의 노광 및 포스트베이크 공정에서 광중합 개시제로부터 발생하는 아웃개싱을 최소화할 수 있어 오염을 줄일 수 있고 이로 인해 발생할 수 있는 불량을 최소화할 수 있는 장점이 있다.

발명을 실시하기 위한 구체적인 내용

이하에서, 본 발명의 상세한 이해를 위하여 본 발명의 대표 화합물을 실시 예 및 비교 예를 들어 상세하게 설명하겠으며, 본 발명에 따른 실시 예들은 여러 가지 다른 형태로 변화될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되는 것으로 해석되어야 할 것이다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.

[제조예 1] 1-(플루오란텐-3-닐)프로판온 O-아세틸옥실탄(화학식 1a, (4))의 제조

반응 1. 1-(플루오란텐-3-닐)프로판온 (2) 합성

출처: 공개특허 10-2016-0144161
19.8 g (148.32 mmol)을 천천히 가해준 다음 반응물의 온도가 승온되지 않도록 주의하면서 염화프로피오닐 8.64 ml (98.88 mmol)을 천천히 가해주고 실온에서 반응물을 교반하였다. 그다음 반응물을 얼음물에 천천히 뿌고 교반하여 용액 중 물리적인 수용에 의한 용액을 섞은 후, 유수로 빼어주고 회수한 유수 중에 염업 중류하여 1-(플루오란텐-3-닐) 프로판온 (2) 8.26 g (64.6 %)을 얻었다.

\[\begin{align*}
\text{H NMR (δ ppm; CDCl}_3 \text{):} & \quad 1.38 (3H, t), 3.20 (2H, q), 7.72-7.76 (1H, d), 7.95 (1H, d), 8.00-8.05 (4H, m), 8.21-8.23 (1H, d), 8.52 (1H, d), 8.80 (1H, d) \\
\text{MS (m/e):} & \quad 258
\end{align*} \]

반응 2. 1-(플루오란텐-3-닐)프로판온 옥심 (3)의 합성

1-(플루오란텐-3-닐)프로판온 (2) 5.0 g (19.35 mmol)을 에탄올에 분산시키고 염산히드록실아민 2.7 g (38.71 mmol)과 초산나트륨 3.18 g (38.71 mol)을 가해준 다음, 반응용액을 서서히 승온하여 50℃에서 반응하였다. 반응물을 얼음물에 천천히 뿌고 교반하여 용액 중 물리적인 수용에 의한 용액을 섞은 후, 유수로 빼어주고 회수한 유수 중에 염업 중류하여 1-(플루오란텐-3-닐)프로판온 옥심 (3) 2.58 g (48.7 %)을 얻었다.

\[\begin{align*}
\text{H NMR (δ ppm; DMSO}_d \text{)} & \quad 1.11 (3H, t), 2.90 (2H, q), 7.69-7.75 (4H, m), 8.04 (1H, d), 8.06 (1H, d), 8.22 (2H, d), 8.31 (1H, d), 11.24 (1H, s) \\
\text{MS (m/e):} & \quad 273
\end{align*} \]

반응 3. 1-(플루오란텐-3-닐)프로판온 O-아세틸 옥심 (4)의 합성

수소화나트륨 0.42 g (17.56 mmol)을 테트라하이드로퓨란에 용해시키고 반응물을 -5℃로 유지한 다음, 테트라 하이드로퓨란에 희석시킨 1-(플루오란텐-3-닐)프로판온 옥심 (3) 2.0g (7.31 mmol)을 가해주고 반응용액을 30분 동안 교반한 후 액화아세틸 0.7 ml (8.77 mmol)을 천천히 가해주고, 실온에서 교반하였다. 그다음 반응물을 천천히 가해주고 30분 동안 교반하여 용액 중 물리적인 수용에 의한 용액을 섞은 후, 유수로 빼어주고 회수한 유수 중에 염업 중류하여 1-(플루오란텐-3-닐)프로판온 O-아세틸 옥심 (4) 1.12 g (48.6 %)을 얻었다.

\[\begin{align*}
\text{H NMR (δ ppm; CDCl}_3 \text{):} & \quad 1.04 (3H, t), 1.48 (3H, s), 2.14 (2H, q), 7.54 (1H, d), 7.61-7.68 (4H, m), 7.87 (1H, d), 7.95-7.98 (2H, m), 8.21-8.25 (1H, d) \\
\text{MS (m/e):} & \quad 315
\end{align*} \]

제조 예 2 1-(플루오란텐-3-닐)프로판온 O-헥사노일 옥심(화학식 1b, (5))의 제조

\[\begin{align*}
\text{[제조 예 2] 1-(플루오란텐-3-닐)프로판온 O-헥사노일 옥심(화학식 1b, (5))의 제조}
\end{align*} \]

제조 예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)프로판온 옥심 (3)과 화학 핵시노이드를 반응하여 1-(플루오란텐 -3-닐)프로판온 O-핵시노일 옥심 (5) (39.08 %)을 얻었다.
1H NMR(δ ppm; CDCl₃) : 0.93 (3H, t), 1.27 (3H, t), 1.40-1.42 (4H, m), 1.79-1.81 (2H, m), 2.57 (2H, q), 3.04 (2H, q), 7.65-7.75 (5H, m), 7.91 (1H, d), 7.97-8.0 (2H, m), 8.29-8.33 (1H, dd)

MS(m/e):371

제조예 3] 1-(플루오란텐-3-닐)프로판온 O-벤조일 옥심(화학식 1c, (6))의 제조

제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)프로판온 옥심 (3)과 염화 벤조일을 반응하여 1-(플루오란텐-3-닐)프로판온 O-벤조일 옥심 (6) (34.1 %)을 얻었다.

1H NMR(δ ppm; CDCl₃) : 1.04 (3H, t), 2.14 (2H, q), 7.54 (1H, d), 7.61-7.68 (4H, m), 7.73-7.75 (3H, m), 7.81-7.83 (2H, m), 7.87 (1H, d), 7.95-7.98 (2H, m), 8.21-8.25 (1H, d)

MS(m/e):377

제조예 4] 1-(플루오란텐-3-닐)프로판온 O-사이클로헥산카보닐 옥심 (화학식 1d, (7))의 제조

제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)프로판온 옥심 (3)과 시클로헥산카보닐 클로라이드를 반응하여 1-(플루오란텐-3-닐)프로판온 O-사이클로헥산카보닐 옥심 (6)(38.2 %)을 얻었다.

1H NMR(δ ppm; CDCl₃) : 1.12 (3H, t), 1.23-1.26 (4H, m), 1.58-1.62 (4H, m), 1.78-1.82 (3H, m), 2.25 (2H, q), 7.52 (1H, d), 7.71-7.74 (4H, m), 7.82-7.84 (2H, m), 7.97-8.01 (1H, d), 8.03-8.07 (1H, d)

MS(m/e):383

제조예 5] 1-(플루오-3-닐)옥탄온 O-아세틸 옥심 (화학식 1e, (10))의 제조
반응 1. 1-(플루오란텐-3-닐)옥탄온 (8) 합성
제조예 1의 반응 1 조건으로 플루오란텐(1)과 염화 옥타노일을 반응하여 1-(플루오란텐-3-닐)옥탄온 (8)(46.4 %)을 얻었다.

1H NMR(δ ppm; CDCl₃) : 0.90 (3H, t), 1.28-1.42 (8H, m), 1.79 (2H, t), 3.10 (2H, t), 7.36-7.38 (2H, m), 7.67-7.69 (1H, d), 7.84-7.9 (4H, m), 8.11-8.13 (1H, d), 8.66-8.68 (1H, d)

MS(m/e): 328

반응 2. 1-(플루오란텐-3-닐)옥산 옥심 (9) 합성
제조예 1의 반응 2 조건으로 1-(플루오란텐-3-닐)옥탄온 (8)을 1-(플루오란텐-3-닐)옥산 옥심 (9)(40.5 %)을 얻었다.

1H NMR(δ ppm; DMSO_d6) : 0.80 (3H, t), 1.1-1.9 (8H, m), 1.51-1.54 (2H, m), 2.90 (2H, t), 7.66-7.72 (4H, m), 8.02 (1H, d), 8.04 (1H, d), 8.19-8.28 (2H, m), 8.29 (1H, d), 11.21(1H, s)

MS(m/e): 343

반응 3. 1-(플루오란텐-3-닐)옥산 O-아세틸 옥심 (10) 합성
제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)옥산 옥심 (9)과 염화아세틸을 반응하여 1-(플루오란텐-3-닐)프로판온 O-아세틸 옥심 (4) (33.5 %)을 얻었다.

1H NMR(δ ppm; CDCl₃) : 0.87 (3H, t), 1.25-1.40 (8H, m), 1.49-1.51 (2H, m), 2.19 (3H, s), 2.52-2.58 (2H, m), 7.65-7.73 (4H, m), 7.9 (1H, d), 7.90-7.97 (2H, m), 8.31-8.33 (2H, m)

MS(m/e): 385
제조예 6 1-(플루오란텐-3-닐)옥탄온 O-헥사노일옥심 (화학식 1f, (11))의 제조

\[
\text{\begin{align*}
\text{\includegraphics[width=0.5\textwidth]{image1}}
\end{align*}}
\]

\begin{align*}
\text{\textbf{NMR}} & \text{\(\delta\ ppm; CDCl}_3\text{)}: 0.87 (3\text{H, t}), 0.94 (3\text{H, t}), 1.28-1.42 (8\text{H, m}), 1.49-1.53 (4\text{H, m}), 1.79-1.83 (4\text{H, m}), 2.52-2.58 (2\text{H, m}), 2.93 (2\text{H, t}), 7.65-7.73 (4\text{H, m}), 7.9 (1\text{H, d}), 7.90-7.97 (2\text{H, m}), 8.31-8.33 (2\text{H, m})
\end{align*}

\begin{align*}
\text{\textbf{MS}} & \text{\(m/e\): 441}
\end{align*}

제조예 7 1-(플루오란텐-3-닐)옥탄온 O-벤질옥심 (화학식 1g, (12))의 제조

\[
\text{\begin{align*}
\text{\includegraphics[width=0.5\textwidth]{image2}}
\end{align*}}
\]

\begin{align*}
\text{\textbf{NMR}} & \text{\(\delta\ ppm; CDCl}_3\text{)}: 0.84 (3\text{H, t}), 1.21-1.34 (8\text{H, m}), 1.45-1.49 (2\text{H, m}), 2.52-2.58 (2\text{H, m}), 7.64-7.72 (4\text{H, m}), 7.77-7.82 (3\text{H, m}), 7.9 (1\text{H, d}), 7.90-7.97 (2\text{H, m}), 8.11-8.15 (2\text{H, m}), 8.31-8.33 (2\text{H, m})
\end{align*}

\begin{align*}
\text{\textbf{MS}} & \text{\(m/e\): 447}
\end{align*}

제조예 8 1-(플루오란텐-3-닐)옥탄온 O-사이클로헥산카보닐옥심 (화학식 1h, (13))의 제조

\[
\text{\begin{align*}
\text{\includegraphics[width=0.5\textwidth]{image3}}
\end{align*}}
\]

\begin{align*}
\text{\textbf{NMR}} & \text{\(\delta\ ppm; CDCl}_3\text{)}: 0.87 (3\text{H, t}), 1.25-1.40 (8\text{H, m}), 1.49-1.51 (2\text{H, m}), 1.55-1.59 (5\text{H, m}), 1.65-1.69 (3\text{H, m}), 1.83-1.87 (3\text{H, m}), 2.52-2.58 (2\text{H, m}), 7.65-7.73 (4\text{H, m}), 7.9 (1\text{H, d}), 7.90-7.97 (2\text{H, m}), 8.31-8.33 (2\text{H, m})
\end{align*}

\begin{align*}
\text{\textbf{MS}} & \text{\(m/e\): 447}
\end{align*}
제조예 9] 2-(아세톡시아미노)-1-(플루오란텐-3-닐)프로판온 (화학식 1i, (15))의 제조

반응 1. 1-(플루오란텐-3-닐)-2-(하이드록시아미노)프로판온 (14)의 합성

1-(플루오란텐-3-닐)프로판온 (2) 5.0 g (19.35 mmol)을 테트라히드로푸란에 용해시키고 반응물을 -5 ℃로 유지한 다음, HCl 2.45 ml와 이소부틸아질산 4 ml (38.7 mmol)를 차례로 가해주고 반응물을 실온에서 교반하였다. 그런 다음 반응 용액에 에틸아세테이트를 가해주고 30분 동안 교반하여 유기 층을 분리한 후 증류수로 씻어준 다음, 회수한 유기 층을 무수 황산마그네슘으로 건조한 후 증류수로 씻어주고, 건조물과 함께 에틸아세테이트(전개용매: 에틸아세테이트 : n-헥산 = 1 : 6)로 정제하여 1-(플루오란텐-3-닐)-2-(하이드록시아미노)프로판온 (14) 3.12 g (56.1 %)을 얻었다.

\[^1H \text{NMR} (\delta \text{ ppm; DMSO}_d^6) : 2.14 (3H, s), 7.78-7.80 (2H, m), 7.92-7.95 (2H, m), 8.03 (1H, d), 8.05 (1H, d), 8.14-8.16 (2H, d), 8.51 (1H, s), 12.53 (1H, s) \]

MS (m/e): 287

반응 2. 2-(아세톡시아미노)-1-(플루오란텐-3-닐)프로판온 (15)의 합성

제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)-2-(하이드록시아미노)프로판온 (14)과 염화아세틸을 반응하여 1-(플루오란텐-3-닐)프로판온 O-아세틸 옥심 (4) (54.5 %)을 얻었다.

\[^1H \text{NMR} (\delta \text{ ppm; CDCl}_3) : 1.22 (3H, s), 2.24 (3H, s) 7.57-7.67 (2H, m), 7.87-7.88 (3H, m), 7.97-7.98 (2H, m), 8.20 (1H, d), 8.39 (1H, d) \]

MS (m/e): 329

[제조예 10] (E)-2-(헥사노옥시아미노)-1-(플루오란텐-3-닐)프로판온 (화학식 1j, (16))의 제조
제조예 1의 반응 3 조건으로 1-(フルオランタン-3-닐)-2-(ハイドロキシアミノ)プロパノ아민 (14)와 염화 혼성산을 반응하여 2-(핵산옥시아미노)-1-(フルオランタン-3-닐)프로판온 (16) (50 %)을 얻었다.

`H NMR(δ ppm; CDCl₃) : 0.87 (3H, t), 1.22-1.27 (4H, m), 1.52-1.55 (2H, m), 2.25 (2H, t), 2.51 (3H, s), 7.55-7.62 (2H, m), 7.82-7.85 (3H, m), 7.94-7.96 (2H, m), 8.18 (1H, d), 8.30 (1H, d)

MS(m/e):385

제조예 11] 2-(벤조일옥시아미노)-1-(フルオランタン-3-닐)プロパノアミン (화학식 1k, (17))의 제조

제조예 1의 반응 3 조건으로 1-(フルオランタン-3-닐)-2-(ハイドロキシアミノ)プロパノアミン (14)와 염화 벤조산을 반응하여 2-(벤조일옥시아미노)-1-(フルオランタン-3-닐)プロパノアミン (17) (39.6 %)을 얻었다.

`H NMR(δ ppm; CDCl₃) : 1.22 (3H, s), 7.57-7.67 (2H, m), 7.70-7.73 (3H, m), 7.79-7.82 (2H, m), 7.87-7.88 (3H, m), 7.97-7.98 (2H, m), 8.20 (1H, d), 8.39 (1H, d)

MS(m/e):391

제조예 12] 2-(사이클로헥산카보닐옥시아미노)-1-(フルオランタン-3-닐)プロパノアミン (화학식 1l, (18))의 제조

제조예 1의 반응 3 조건으로 1-(フルオランタン-3-닐)-2-(ハイドロキシアミノ)プロパノアミン (14)과 염화 사이클로헥산카보닐을 반응하여 2-(사이클로헥산카보닐옥시아미노)-1-(フルオランタン-3-닐)プロパノアミン (18) (34.3 %)을 얻었다.

`H NMR(δ ppm; CDCl₃) : 1.19 (3H, s), 1.23-1.28 (2H, m), 1.54-1.66 (6H, m), 1.78-1.81 (3H, m), 7.57-7.67 (2H, m), 7.87-7.88 (3H, m), 7.97-7.98 (2H, m), 8.20 (1H, d), 8.39 (1H, d)
제조예 13] 2-(아세톡시아미노)-1-(플루오란텐-3-닐)옥탄온 (화학식 1m, (20))의 제조

반응 1. 1-(플루오란텐-3-닐)-2-(하이드록시아미노)옥탄온(19)의 합성

제조예 9의 반응 1 조건으로 1-(플루오란텐-3-닐)옥탄온 (2)과 1-(플루오란텐-3-닐)-2-(하이드록시아미노)옥탄온(19)(68.9 %)을 얻었다.

\[^1\]H NMR (δ ppm; DMSO \(d_6\)) : 0.80 (3H, t), 1.15-1.19 (2H, m), 1.21-1.24 (2H, m), 1.49-1.53 (4H, m), 2.75-2.80 (2H, q), 7.78-7.80 (2H, d), 7.92-7.94 (2H, m), 8.03-8.05 (2H, m), 8.11-8.14 (2H, m), 8.48 (1H, d), 12.50 (1H, s)

MS(\(m/e\)) : 357

반응 2. 2-(아세톡시아미노)-1-(플루오란텐-3-닐)옥탄온 (20)의 합성

제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)-2-(하이드록시아미노)옥탄온(19)과 염화아세틸을 반응하여 1-(플루오란텐-3-닐)프로판온 O-아세틸 옥신 (4) (47 %)을 얻었다.

\[^1\]H NMR (δ ppm; CDCl \(3\)) : 0.89 (3H, t), 1.29-1.31 (2H, m) 1.32-1.35 (2H, m), 1.55-1.60 (4H, m), 2.24 (3H, s), 2.84-2.86 (2H, q), 7.75 (1H, dd), 7.95 (1H, d), 8.01-8.06 (3H, m), 8.24 (1H, d), 8.25 (1H, d), 8.69 (2H, dd)

MS(\(m/e\)) : 399

제조예 14] 1-(플루오란텐-3-닐)-2-(헥사노일옥시아미노)옥탄온 (화학식 1n, (21))의 제조
제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)-2-(하이드록시아미노)옥탄온(19)과 염화 헥사노일을 반응하여 1-(플루오란텐-3-닐)-2-(헥사노일옥시아미노)옥탄온(21) (53 %)을 얻었다.

\[^1H \text{NMR} (\delta \text{ ppm: CDCl}_3) : 0.89 (3H, t), 1.28-1.38 (8H, m), 1.49-1.54 (4H, m), 1.76-1.79 (2H, m), 2.20 (3H, t), 2.32-2.38 (2H, q), 2.71 (2H, q), 7.61-7.68 (4H, m), 7.7 (1H, d), 7.80-7.87 (2H, dd), 8.29-8.31 (2H, dd) \]

MS(m/e): 445

제조예 15] 2-(벤조일옥시아미노)-1-(플루오란텐-3-닐)옥탄온 (화학식 22)의 제조

제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)-2-(하이드록시아미노)옥탄온(19)과 염화 벤조일을 반응하여 2-(벤조일옥시아미노)-1-(플루오란텐-3-닐)옥탄온(22) (37.9 %)을 얻었다.

\[^1H \text{NMR} (\delta \text{ ppm: CDCl}_3) : 0.87 (3H, t), 1.29-1.31 (2H, m), 1.32-1.37 (2H, m), 1.55-1.60 (4H, m), 2.84-2.86 (2H, q), 7.75 (1H, dd), 7.79-7.83 (3H, m), 7.89-7.91 (2H, m), 7.95 (1H, d), 8.01-8.06 (3H, m), 8.24 (1H, d), 8.26 (1H, d), 8.69 (2H, dd) \]

MS(m/e): 461

제조예 16] (E)-2-(사이클로헥산카보닐옥시아미노)-1-(플루오란텐-3-닐)옥탄온 (화학식 23)의 제조

제조예 1의 반응 3 조건으로 1-(플루오란텐-3-닐)-2-(하이드록시아미노)옥탄온(19)과 염화 사이클로헥산카보닐을 반응하여 2-(사이클로헥산카보닐옥시아미노)-1-(플루오란텐-3-닐)옥탄온(23) (39.3 %)을 얻었다.

\[^1H \text{NMR} (\delta \text{ ppm: CDCl}_3) : 0.88 (3H, t), 1.29-1.31 (2H, m), 1.32-1.37 (4H, m), 1.40-1.45 (4H, m), 1.55-1.60 (4H, m), 1.68-1.72 (3H, m), 1.75-1.78 (2H, m), 2.84-2.86 (2H, q), 7.73 (1H, dd), 7.91 (1H, d), 8.01-8.04 (3H, m), 8.21 (1H, d), 8.23 (1H, d), 8.59 (2H, dd) \]

MS(m/e): 467
<바인더 수지 제조>

a) 바인더 수지 1의 제조

500 mL 중합용기에 프로필렌글리콜메틸에테르아세테이트 (Propylene Glycol Methyl Ether Acetate : PGMEA) 200 mL과 AIBN(azobisisobutyronitrile) 1.5 g을 첨가한 후, 메타아크릴산, 글리시딜메타아크릴산, 메틸메타아크릴산 및 미토록로닐아크릴산을 각각 20:20:40:20의 몰비로 아크릴 모노머의 고형분을 40 중량%로 첨가한 다음, 질소 분위기 하에서 70℃에서 5시간 동안 교반하며 중합시켜 아크릴 중합체인 바인더 수지 1을 제조하였다. 이와 같이 제조된 공중합체의 평균 분자량은 25,000, 분산도는 1.9로 확인되었다.

b) 바인더 수지 2의 제조

500 mL 중합용기에 프로필렌글리콜메틸에테르아세테이트 200 mL과 AIBN 1.0 g을 첨가한 후, 메타아크릴산, 스틸렌, 메틸메타아크릴산 및 시클로헥실 메타아크릴산을 각각 40:20:20:20의 몰비로 아크릴 모노머의 고형분을 40 중량%로 첨가한 다음, 질소 분위기 하에서 70℃에서 5시간 동안 교반하며 중합시켜 공중합체를 합성하였다. 이 반응기에 N,N-디메틸아닐린 0.3 g과 전체 단량체의 고형분 100몰에 대하여 글리시딜메타아크릴산 20 몰비를 첨가한 후 100℃에서 10시간 동안 교반하여 중합체의 응용 알불포화 결합을 갖는 아크릴 중합체인 바인더 수지 2를 제조하였다. 이와 같이 제조된 공중합체의 평균 분자량은 20,000, 분산도는 2.0로 확인되었다.

c) 바인더 수지 3의 제조

500 mL 중합용기에 프로필렌글리콜메틸에테르아세테이트 200 mL과 AIBN 1.0 g을 첨가한 후, 글리시딜메타아크릴산, 스틸렌, 메틸메타아크릴산 및 시클로헥실메타아크릴산을 각각 40:20:20:20의 몰비로 아크릴 모노머의 고형분을 40 중량%로 첨가한 다음, 질소 분위기 하에서 70℃에서 5시간 동안 교반하며 중합시켜 공중합체를 합성하였다. 이 반응기에 N,N-디메틸아닐린 0.3 g과 전체 단량체의 고형분 100몰에 대하여 아크릴산 20 몰비를 첨가한 후 100℃에서 10시간 동안 교반하여 중합체의 응용 알불포화 결합을 갖는 아크릴 중합체인 바인더 수지 3을 제조하였다. 이와 같이 제조된 공중합체의 평균 분자량은 18,000, 분산도는 1.8로 확인되었다.

[실시예 1 내지 16] 포토레지스트 조성물의 제조

자외선 차단막과 교반기가 설치되어 있는 반응 혼합조에 표 1에 기재된 성분과 함량에 따라 바인더 수지 1 내지 3; 광반응성 화합물; 본 발명의 광중합 개시제; 및 FC-430(3M사의 레벨링제)을 순차적으로 첨가하고, 상온에서 교반한 다음, 조성물이 총 100 중량%가 되도록 용매로 PGMEA를 가하여 포토레지스트 조성물을 제조하였다.

[실시예 17] Black Matrix 포토레지스트 조성물의 제조

하기 표 1에 기재된 바와 같이, 자외선 차단막과 교반기가 설치되어 있는 반응 혼합조에 표 1에 기재된 성분과 함량에 따라 바인더 수지 1 내지 3; 광반응성 화합물; 본 발명의 광중합 개시제; 및 FC-430(3M사의 레벨링제)을 순차적으로 첨가하고, 상온에서 교반한 다음, 조성물이 총 100 중량%가 되도록 용매로 PGMEA를 가하여 Black Matrix 포토레지스트 조성물을 제조하였다.

[실시예 18] Red 포토레지스트 조성물의 제조

하기 표 1에 기재된 바와 같이, 상기 실시예 16에서 카본블랙 대신에 고형분 25 중량%의 Pigment Red 177(P.R. 177) 분산액을 50 중량%를 사용한 것을 제외하고는 동일한 방법으로 Red 포토레지스트 조성물을 제조하였다.
포토레지스트 조성물

<table>
<thead>
<tr>
<th>실시예</th>
<th>바인더 수지 (중량%)</th>
<th>광반응성 화합물 (중량%)</th>
<th>광중합 개시제 (중량%)</th>
<th>첨가제 (중량%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 (40)</td>
<td>디펜타에리스리톨헥사아크릴산 (20)</td>
<td>화학식 1a의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>2</td>
<td>1 (40)</td>
<td>펜타에리스리톨트리아크릴산 (20)</td>
<td>화학식 1c의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>3</td>
<td>1 (40)</td>
<td>트리메틸올프로판트리아크릴산 (10)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>4</td>
<td>1 (40)</td>
<td>디펜타에리스리톨헥사아크릴산 (20)</td>
<td>화학식 1g의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>5</td>
<td>1 (40)</td>
<td>디펜타에리스리톨헥사아크릴산 (20)</td>
<td>화학식 11의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>6</td>
<td>1 (40)</td>
<td>펜타에리스리톨트리아크릴산 (20)</td>
<td>화학식 1k의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>7</td>
<td>1 (40)</td>
<td>트리메틸올프로판트리아크릴산 (10)</td>
<td>화학식 1m의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>8</td>
<td>1 (40)</td>
<td>디펜타에리스리톨헥사아크릴산 (20)</td>
<td>화학식 11a의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>9</td>
<td>1 (40)</td>
<td>펜타에리스리롤트리아크릴산 (20)</td>
<td>화학식 1o의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>10</td>
<td>1 (40)</td>
<td>트리메틸올프로판트리아크릴산 (10)</td>
<td>화학식 1p의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>11</td>
<td>2 (40)</td>
<td>비스페놀-A 디글리시달에테르아크릴산 부가물 (20)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>12</td>
<td>2 (40)</td>
<td>트리메틸올프로판트리글리시달에테르아크릴산 부가물 (20)</td>
<td>화학식 1g의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>13</td>
<td>3 (40)</td>
<td>펜타에리스리롤트리아크릴산 (20)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>14</td>
<td>3 (40)</td>
<td>펜타에리스리롤트리글리시달에테르아크릴산 (20)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>15</td>
<td>1 (20) 2 (20)</td>
<td>디펜타에리스리톨헥사아크릴산 (20)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>16</td>
<td>1 (20) 3 (20)</td>
<td>디펜타에리스리톨헥사아크릴산 (20)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1)</td>
</tr>
<tr>
<td>17</td>
<td>1 (20)</td>
<td>디펜타에리스리톨헥사아크릴산 (10)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1) P.R.177 (50)</td>
</tr>
<tr>
<td>18</td>
<td>1 (20)</td>
<td>디펜타에리스리톨헥사아크릴산 (10)</td>
<td>화학식 1e의 화합물 (0.5)</td>
<td>FC-430 (0.1) P.R.177 (50)</td>
</tr>
</tbody>
</table>

비교예 1 포토레지스트 조성물의 제조

광중합 개시제로 화학식 1e의 화합물(10) 대신에 하기 화학식 B의 광중합 개시제를 사용한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 포토레지스트 조성물을 제조하였다.

화학식 B

![화학식 B]
[0225] [비교예 2] 포토레지스트 조성물의 제조

광중합 개시제로 화학식 1e의 화합물(10) 대신에 “3-(아세톡시이미노)-1-(6-니트로-9H-플루오렌-3-일)프로판-1-온”을 광중합 개시제로 사용한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 포토레지스트 조성물을 제조하였다.

[0227] [평가]

상기 방법으로 제조된 상기 실시예 1 내지 18 및 비교예 1과 2에서 제조한 포토레지스트 조성물의 평가는 유리 기판 위에서 실시하였으며, 포토레지스트 조성물의 감도, 잔막율, 패턴 안정성, 내화학성 및 연성 등의 성능을 측정하여 그 평가 결과를 하기 표 2 에 나타냈다.

1) 감도

유리 기판 위에 포토레지스트를 스핀 코팅하여 100 ℃에서 1분 동안 햇플레이트에서 건조한 후 스텝 마스크를 이용하여 노광한 후 0.04% KOH 수용액에서 현상하였다. 스텝 마스크 패턴이 초기 두께 대비 80% 두께를 유지하는 노광량을 감도로 평가하였다.

2) 잔막율

포토레지스트 조성물을 기판 위에 스핀 코팅하여 도포한 후, 100℃에서 1분간 프리베이크(prebake)하고, 365 nm에서 노광시킨 후, 230℃에서 20분 동안 포스트베이크(postbake)를 실시하여 레지스트 막의 포스트베이크 전 후의 두께 비율(%)을 측정하였다.

3) 패턴 안정성

포토레지스트 패턴을 형성한 실리콘 웨이퍼를 홀(Hole) 패턴의 수직방향에서부터 절단하고, 패턴의 단면 방향에서 전자현미경으로 관찰한 결과를 나타냈다. 패턴 사이드 벽(side wall)이 기판에 대하여 55도 이상의 각도로 세워져 있고, 막이 감소되지 않은 것을 '양호'로 하고, 막의 감소가 인정된 것을 '막감(膜減)'으로 판정하였다.

4) 내화학성

포토레지스트 조성물을 기판 위에 스핀 코팅을 이용하여 도포한 후, 프리베이크(prebake) 및 포스트베이크(postbake) 등의 공정을 거쳐 형성된 레지스트 막의 스트리퍼(Stripper) 용액에 40℃에서 10분 동안 담근 후 레지스트 막의 두께 및 두께의 변화가 있는지 살펴보았다. 두께 및 두께의 변화가 2% 이하한 경우 '양호'로 하고, 두께 및 두께의 변화가 2% 이상이면 '불량'으로 판정하였다.

5) 연성

포토레지스트 조성물을 기판 위에 스핀 코팅을 도포한 후, 100℃에서 1분 동안 프리베이크(prebake)하고, 포토레지스트의 감도로 노광시킨 후, KOH 수용액으로 현상하여 20 um x 20 um의 패턴을 형성하였다. 형성된 패턴을 230℃에서 20분 동안 포스트베이크(postbake)를 실시하여 가교시키고, 이 패턴을 나노인덴터 (Nano indentor)를 이용하여 연성을 측정하였다. 나노인덴터의 측정은 5g.f 로딩으로 총 변이량이 500 nm 이상이면 '양호', 500 nm 이하이며 '불량'으로 판단하였다.

<table>
<thead>
<tr>
<th>감도 (mJ/cm²)</th>
<th>잔막율(%)</th>
<th>패턴안정성</th>
<th>내화학성</th>
<th>연성</th>
</tr>
</thead>
<tbody>
<tr>
<td>실시예 1</td>
<td>85</td>
<td>88</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 2</td>
<td>80</td>
<td>90</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 3</td>
<td>75</td>
<td>92</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 4</td>
<td>80</td>
<td>91</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 5</td>
<td>85</td>
<td>90</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 6</td>
<td>80</td>
<td>92</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 7</td>
<td>85</td>
<td>90</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 8</td>
<td>75</td>
<td>92</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 9</td>
<td>75</td>
<td>93</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 10</td>
<td>85</td>
<td>89</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실시예 11</td>
<td>85</td>
<td>88</td>
<td>양호</td>
<td>양호</td>
</tr>
</tbody>
</table>
상기 표 2로부터 본 발명에 따른 플루오란텐 옥심 에스테르 유도체가 포토레지스트 조성물의 광중합 개시제로 사용될 때 소량을 사용하여도 감도가 월등히 우수하며, 잔막율, 패턴안정성, 내화학성 및 연성 등의 물성이 뛰어나 TFT-LCD 제조 공정 중의 노광 및 포스트베이크 공정에서 광중합 개시제로부터 발생하는 아웃가싱을 최소화 할 수 있어 오염을 줄일 수 있고 이로 인해 발생할 수 있는 불량을 최소화할 수 있음을 확인하였다.

<table>
<thead>
<tr>
<th>실험예 12</th>
<th>80</th>
<th>91</th>
<th>양호</th>
<th>양호</th>
<th>양호</th>
</tr>
</thead>
<tbody>
<tr>
<td>실험예 13</td>
<td>75</td>
<td>92</td>
<td>양호</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실험예 14</td>
<td>75</td>
<td>92</td>
<td>양호</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실험예 15</td>
<td>75</td>
<td>91</td>
<td>양호</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실험예 16</td>
<td>80</td>
<td>91</td>
<td>양호</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>실험예 17</td>
<td>80</td>
<td>90</td>
<td>양호</td>
<td>양호</td>
<td>양호</td>
</tr>
<tr>
<td>비교예 1</td>
<td>200</td>
<td>87</td>
<td>막감</td>
<td>불량</td>
<td>양호</td>
</tr>
<tr>
<td>비교예 2</td>
<td>250</td>
<td>80</td>
<td>막감</td>
<td>불량</td>
<td>불량</td>
</tr>
</tbody>
</table>