

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
16 June 2016 (16.06.2016)

(10) International Publication Number

WO 2016/092446 A1

(51) International Patent Classification:
A61N 1/39 (2006.01)

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/IB2015/059395

(22) International Filing Date:
7 December 2015 (07.12.2015)

(25) Filing Language: English

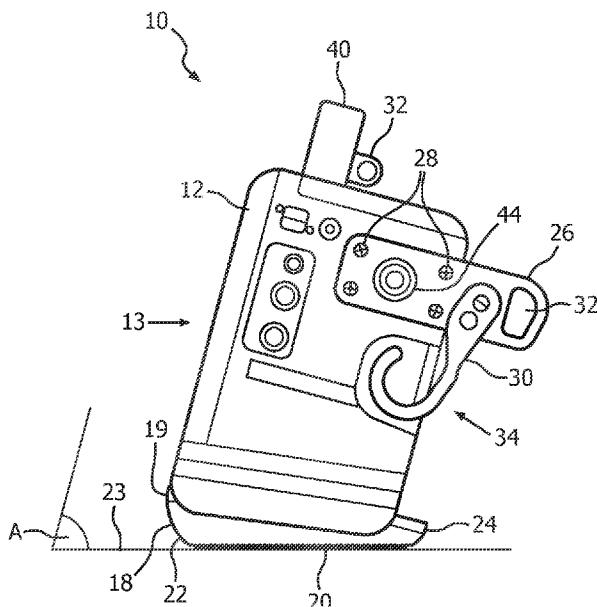
(26) Publication Language: English

(30) Priority Data:
62/090,049 10 December 2014 (10.12.2014) US

(71) Applicant: KONINKLIJKE PHILIPS N.V. [NL/NL];
High Tech Campus 5, 5656 AE Eindhoven (NL).

(72) Inventors: GUINEY, Patrick; c/o High Tech Campus, Building 5, 5656 AE Eindhoven (NL). HEATH, Stephen Robert; c/o High Tech Campus, Building 5, 5656 AE Eindhoven (NL). CASWELL, John Bench; c/o High Tech Campus, Building 5, 5656 AE Eindhoven (NL).

(74) Agents: STEFFEN, Thomas et al.; High Tech Campus Building 5, 5656 AE Eindhoven (NL).


(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

[Continued on next page]

(54) Title: EMERGENCY MEDICAL DEVICE POSITIONABLE AT TWO DIFFERENT VIEWING ANGLES AND A METHOD FOR ITS POSITIONING

(57) **Abstract:** An emergency medical device (10) includes a treatment device (12) including a display face (13), a base (18) including a bottom portion (20) configured to rest on a resting surface (23) and a back portion (24) configured to extend beyond a rear surface of the treatment device opposite a front portion. A rear structure (26) is connected to the treatment device and extends beyond the rear surface of the treatment device wherein the base is configured to provide a first angle of the display face when the bottom portion is resting on the resting surface and wherein the back portion and the rear structure provide a second angle of the display face when the back portion and the rear structure are resting on the resting surface.

FIG. 2

- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Published:

- with international search report (Art. 21(3))

**EMERGENCY MEDICAL DEVICE POSITIONABLE AT TWO DIFFERENT VIEWING
ANGLES AND A METHOD FOR ITS POSITIONING**

BACKGROUND:

5 Technical Field

This disclosure relates to medical instruments and more particularly to a treatment device with a touch screen including multiple pre-set angle positions for usage in different positions.

10 Description of the Related Art

Heart monitors and/or defibrillators typically include mechanical control knobs buttons and switches. With the current generation of products, the user directly controls power and adjusts settings by manually turning the device on and off, and adjusting knobs and buttons to achieve desired settings. Newer defibrillator / monitor devices include 15 advanced features and LCD displays but lack the sophistication and flexibility of modern interfaces, such as touchscreens, or other advanced devices.

Monitor/defibrillator screens are typically oriented at 60° to 90° relative to the horizontal plane or resting surface. Medics arriving at accident scenes where patients collapse or are otherwise on the ground must position the monitor defibrillator next to patient 20 on the floor or ground. While treating the patient from a kneeling position, medics must also operate and manipulate the monitor/defibrillator.

Operating a device positioned at 60° to 90° relative to the floor or ground when kneeling on the floor or ground requires an awkward wrist posture. When using a touchscreen, the operator must visualize the display while positioning their hand below the 25 target touch zone and then bend the wrist upward to touch the desired button. The hazards of increasing the wrist angle of bending are well documented in medical literature. Repetitive,

upward bending of the wrist causes irritation of tendons and tendon sheaths and will lead to a variety of health consequences including carpal tunnel syndrome. The angle of 60° to 90° relative to a horizontal surface is more appropriate for operating the monitor/defibrillator from a seated or standing posture when transporting a patient in an ambulance or on a gurney
5 or when the resting surface is a countertop / shelf in an ambulance or on a gurney.

SUMMARY

In accordance with the present principles, an emergency medical device includes a treatment device including a display face, a base including a bottom portion configured to rest on a resting surface, and a back portion configured to extend beyond a rear surface of the
10 treatment device opposite the front portion. A rear structure is connected to the treatment device and extends beyond the rear surface of the treatment device wherein the base is configured to provide a first angle of the display face when the bottom portion is resting on the resting surface, and wherein the back portion and the rear structure provide a second angle of the display face when the back portion and the rear structure are resting on the
15 resting surface.

Another emergency medical device includes a base coupled to a treatment device having a display face. The base includes a front portion, a bottom portion configured to rest on a resting surface and a back portion configured to extend beyond a rear surface of the treatment device opposite the front portion. A rear bracket is connected to the treatment
20 device and extends beyond the rear surface of the treatment device. The base is configured so that the front portion has a different offset dimension from the treatment device than the back portion to provide a first angle of the display face when the bottom portion is resting on the resting surface. The back portion and the rear bracket provide a second angle of the display face when the back portion and the rear bracket are resting on the resting surface.

Yet another emergency medical device includes a treatment device having a touchscreen display positioned on a face thereof. A base is coupled to the treatment device and includes a front portion, a bottom portion configured to rest on a resting surface and a back portion configured to extend beyond a rear surface of the treatment device opposite the face of the treatment device. At least one rear bracket is connected to the treatment device and extends beyond the rear surface of the treatment device wherein the base is configured to provide at least two viewing positions for the touchscreen display such that the front portion has a different offset dimension from the treatment device than the back portion to provide a first angle of the touchscreen display when the bottom portion is resting on the resting 5 surface, and wherein the back portion and the at least one rear bracket provide a second angle of the touchscreen display when the back portion and the at least one rear bracket are resting on the resting surface. A handle is disposed on the treatment device on a side opposite that of the base, the handle permitting a user to adjust the device between the at least two viewing 10 positions.

15 A method for positioning an emergency medical device includes providing a treatment device with a display face, a base coupled to the treatment device, the base including a front portion, a bottom portion configured to rest on a resting surface and a back portion configured to extend beyond a rear surface of the treatment device opposite the front portion; at least one rear bracket connected to the treatment device and extending beyond the 20 rear surface of the treatment device wherein the base is configured so that the front portion has a different offset dimension from the treatment device than the back portion to provide a first angle of the display face when the bottom portion is resting on the resting surface, and wherein the back portion and the at least one rear bracket provide a second angle of the display face when the back portion and the at least one rear bracket are resting on the resting 25 surface; and changing positions of the device between the first and second angles relative to

resting surfaces in accordance with an operator position.

These and other objects, features and advantages of the present disclosure will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.

5 BRIEF DESCRIPTION OF DRAWINGS

This disclosure will present in detail the following description of preferred embodiments with reference to the following figures wherein:

FIG. 1 is a front view showing a defibrillator/monitor device with a base and a handle in accordance with one embodiment;

10 FIG. 2 is a side view showing the defibrillator/monitor device of FIG. 1 with the base in contact with a resting surface to provide a first preset angle in accordance with one embodiment;

FIG. 3 is a side view showing the defibrillator/monitor device of FIG. 2 with the base and a rear bracket in contact with a resting surface to provide a second preset angle in accordance with one embodiment;

15 FIG. 4 is a bottom view showing the defibrillator/monitor device of FIG. 1 with a U-shaped base in accordance with one embodiment; and

FIG. 5 is a block/flow diagram showing a method for operating the defibrillator/monitor in different positions in accordance with illustrative embodiments.

20 DETAILED DESCRIPTION OF EMBODIMENTS

In accordance with the present principles, monitors and/or defibrillators may be provided with a touchscreen interface. The operation of a touchscreen on a monitor/defibrillator in accordance with the present principles employs more than one angle of the screen relative to a resting surface to accommodate multiple postures of medics in

different care settings. The monitor/defibrillator includes geometry with mechanical features that permit users to position the touchscreen at more than one angle. For example, one angle of the display may appropriately position the touchscreen for an operator kneeling on the ground or floor. This is particularly useful where medics and first responders provide care

5 from a kneeling position at accident scenes where patients collapse. A second angle may be employed to position the touchscreen for a seated or standing operator. During transport, medics may sit or stand in the back of an ambulance while caring for the patient. A monitor/defibrillator with features for multi-angle positioning meets the needs of medics that operate the user interface from more than one position or posture.

10 In particularly useful embodiments, operators utilize the touch screens to interact with the devices using single-touch controls. Menus and soft keys are activated using a single touch by the user on the touch screen. Multi-touch controls may also be employed for zooming, paging, scrolling, and other display navigation functions accomplished by having the user “pinch and expand” or “touch and swipe” the touch screen. A graphical user

15 interface in accordance with the present principles utilizing touch screen technology provides both single-touch and multi-touch controls. By providing preset stable angle positioning, touchscreen operations are easily carried out in multiple positions in an ergonomic manner (e.g., without back bending of the wrists, etc.)

Devices in accordance with the present principles have mechanical features and

20 geometry to permit users to position a display at more than one angle to accommodate multiple postures of caregivers in different care settings. The design geometry and features are simple and passive with no mechanisms, latches or moving parts to malfunction. The mechanical design allows fast operation with one hand in time critical, urgent care settings.

It should be understood that the present invention will be described in terms of medical instruments; however, the teachings of the present invention are much broader and are applicable to any monitor device or defibrillator operated in different positions. In some embodiments, the present principles are employed in defibrillators/monitors used in hospitals or emergency vehicles, in homes, in public places, etc. The elements depicted in the FIGS. 5 may be implemented in various combinations of hardware and software and provide functions which may be combined in a single element or multiple elements.

The functions of the various elements shown in the FIGS. can be provided through the use of dedicated hardware as well as hardware capable of executing software in 10 association with appropriate software. When provided by a processor or controller within a treatment device, the functions can be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which can be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and can implicitly include, 15 without limitation, digital signal processor (“DSP”) hardware, read-only memory (“ROM”) for storing software, random access memory (“RAM”), non-volatile storage, etc.

Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both 20 currently known equivalents as well as equivalents developed in the future (i.e., any elements developed that perform the same function, regardless of structure). Thus, for example, it will be appreciated by those skilled in the art that the block diagrams presented herein represent conceptual views of illustrative system components and/or circuitry embodying the principles of the invention.

Referring now to the drawings in which like numerals represent the same or similar elements and initially to FIGS. 1 and 2, a diagram shows an emergency medical apparatus or device 10, which includes a treatment device 12, such as a defibrillator, monitor, etc. or combination thereof in accordance with one embodiment. Device 12 includes a plurality of 5 controls 16 and a touch screen interactive display 14 on a display face 13. Apparatus 10 or device 12 includes one or more mechanical features that are attachable externally to the device 12 or may be integrated into the device 12.

In one embodiment, the mechanical features may include a base 18 connectable to the device 12 below the display 14. The base 18 includes a front portion 22 that includes 10 connection points 19 to a front of the device 12. The connection points 19 may include snap-fit mechanisms, screw holes, rivets, magnets, etc. or other connection mechanisms to hold the front portion 22 to the device 12. The base 18 may be permanently affixed to or temporarily mounted to the device 12. The base 18 provides a larger support height at the front portion 22 than a support height of a back portion 24. In this way, the base 18 supports device 12 in 15 an upright configuration at an angle "A" preferably between about 45 degrees to less than about 90 degrees with respect to a resting surface 23. In one embodiment, the angle A is even more preferably between about 60 degrees and 80 degrees. A bottom portion 20 rests on the resting surface 23 and may include grips, treads or other mechanical features that prevent slippage, reduce or absorb shock, etc. The base 18 may include a combination of 20 materials including rubber, plastics, metals, ceramics, etc. In one embodiment, at least the bottom portion 20 includes a rubber or rubberized surface.

In one embodiment, the mechanical design features on the base 18 of the device 12 position the touchscreen 14 to a 75° angle relative to a resting surface. The mechanical features or "feet" of the base 18 provide a stable base to support the entire weight of the 25 device 12 from front to rear on each side and across a back edge or back portion 24 of the

bottom portion 20. FIG. 2 shows a side view of the bottom portion 24 on the resting surface 23 to achieve the desired touchscreen angle of 75°. The bottom portion 20 may be textured to prevent slippage on smooth surfaces and is preferably made from durable, compliant material to help prevent damage from drop shock.

5 The position of the touch screen 14 in FIG. 2 provides an improved operational position while an operator is seated or standing. An angle A between about 60° and 90° is preferred in such positions. FIG. 2 also depicts a rear bracket 26 affixed to a side (or back surface) of the device 12. There may be a pair of rear brackets 26 one on each side of the device 12 that may be bolted, riveted, snapped or otherwise attached to the device 12. The 10 rear brackets 26 may be connected to one another across the rear of the treatment device 12. The rear brackets 26 may take on any suitable configuration or structure. The rear brackets 26 may include a shock absorbing, weight bearing material to permit the device to be rotated backward to support the device 12 in a position shown in FIG. 3.

Referring to FIG. 3, the device 12 is depicted in a second position in which the rear 15 brackets 26 and the back portion 24 are in contact with a resting surface. An angle position B for touch screen operation while an operator is in a kneeling position is preferably between about 0° to about 30°. In one embodiment, mechanical design features (the rear brackets 26 and the back portion 24) at the rear of the device 12, position the touchscreen at a 15° angle relative to the resting surface. The first position described in FIG. 2 is provided based upon a 20 shape of the base 18 whereas the second position in FIG. 3 is provided based upon the rear brackets 26 and the back portion 24 of the base 18. The same bottom surface features (24) (“feet”) described above that extend slightly beyond the rear edge of the device 12 are advantageously employed. The rear brackets 26 also provide attachment points for rail hooks 30, shoulder strap eyes 32, etc. These can be located at multiple locations. A space 34 can be 25

provided for rear storage or a storage pouch. Together, the rear brackets 26 of the back portion 24 form a stable support to achieve the desired 15° angle (or other angle) for operating the device from a kneeling or squatting position of the operator.

The base 18 and/or brackets 26 may include materials, such as plastic, metal, elastomers, etc. and fabrication methods may include, e.g., injection molding, machining, etc. A top handle 40 allows medics or operators to use a single hand to grasp the device top and push back the device to the low angle position of operation (0° to 30°) while kneeling. Alternatively, by grasping the handle 40 and pulling forward, the medic can return the device 12 to the high angle position of operation (60° to 90°) for the operation while seated/standing.

In one embodiment, the rear brackets 26 may be rotatably adjusted to change the second position angle B. In this embodiment, screws 28 may be removed or not included and a pivot 44 may be adjusted to determine a new angle for the second position. In other embodiments, the base 18 may be configured to provide an adjustment of the first position using a thumb screw or other adjustment mechanism to change the angle A. In yet other embodiments, other brackets or adjustments may be available to provide additional adjustment or to provide more than two set positions for the apparatus 10, for example, further extending or retracting brackets 26 or the back portion 24 of the base 18.

Referring to FIG. 4, a bottom view of the apparatus 10 is illustratively shown in accordance with one embodiment. In this embodiment, the bottom portion 20 of the base 18 includes a “U” shape following along sides and back of the apparatus 10. The bottom portion 20 includes grip features, treads 36 or textures to prevent slippage, etc. In some embodiments, a space 38 may include other structures or base features that may connect to the device 12 and provide support, dampening or additional structures.

While the present principles are described in terms of a monitor/defibrillator, two

types of monitor defibrillators, in particular, can benefit from multi-angle positioning as described herein. These include in-hospital monitor defibrillators (used by hospital personnel) and pre-hospital monitor defibrillators (used by emergency medical services (EMS), public safety, military personnel, etc.). Other medical devices used in care settings 5 that call for different operating postures may also benefit from the present principles.

Referring to FIG. 5, a method for positioning an emergency medical device is illustratively shown in accordance with the present principles. In block 102, a treatment device with a display face is provided. The treatment device preferably includes a touchscreen display on the display face, and mechanical features for setting stable preset 10 angle positions for the display. The treatment device may be integrated with or be retrofitted with a base and at least one rear bracket. The base is coupled (formed or connected) to the treatment device and includes a front portion, a bottom portion configured to rest on a resting surface and a back portion configured to extend beyond a rear surface of the treatment device opposite the front portion. The rear bracket or brackets is/are connected to the treatment 15 device and extend beyond the rear surface of the treatment device. The base is configured so that the front portion has a different offset dimension from the treatment device than the back portion to provide a first angle of the display face when the bottom portion is resting on the resting surface. The back portion and the rear bracket(s) provide a second angle of the display face when the back portion and the at least one rear bracket are resting on the resting 20 surface.

In block 104, the device can have its positions changed, e.g., between the first and second angles relative to a resting surface and in accordance with an operator position. The treatment device includes the touchscreen display positioned on the display face and the first angle and the second angle permit ergonomic touchscreen operation by a user in different 25 positions. For example, at the first angle, e.g., between about 60 degrees and about 90

degrees with the resting surface, the operator may be sitting or standing. At the second angle between about 0 degrees and about 30 degrees with the resting surface, the operator may be kneeling or squatting. The device is advantageously tilted back or forward to provide a preset display angle that is optimized for the position of the operator.

5 The device may include more than two present angle positions by providing other mechanical features to support additional stable positions of the device. In block 106, adjustments may be made to the base and/or the rear brackets to adjust the first and/or second angles. This may be made based on operator preference or other considerations.

In block 108, the device is operated in an ergonomic manner using the touchscreen 10 display. Since the touch screen display is appropriately angled based on the user's position, back bending of the wrist and other arm or wrist discomfort are avoided.

In interpreting the appended claims, it should be understood that:

- a) the word "comprising" does not exclude the presence of other elements or acts than those listed in a given claim;
- b) the word "a" or "an" preceding an element does not exclude the presence of a plurality of such elements;
- c) any reference signs in the claims do not limit their scope;
- d) several "means" may be represented by the same item or hardware or software implemented structure or function; and
- e) no specific sequence of acts is intended to be required unless specifically indicated.

Having described preferred embodiments for monitor defibrillator with multi-angle 25 positioning (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular

embodiments of the disclosure disclosed which are within the scope of the embodiments disclosed herein as outlined by the appended claims. Having thus described the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.

CLAIMS:

1. An emergency medical device, comprising:
 - a treatment device (12) including:
 - a display face (13);
 - 5 a base (18) including a bottom portion (20) configured to rest on a resting surface, and a back portion (24) configured to extend beyond a rear surface of the treatment device opposite the front portion; and
 - a rear structure (26) connected to the treatment device and extending beyond the rear surface of the treatment device;
 - 10 wherein the base is configured to provide a first angle of the display face when the bottom portion is resting on the resting surface, and wherein the back portion and the rear structure provide a second angle of the display face when the back portion and the rear structure are resting on the resting surface.
- 15 2. The device as recited in claim 1, wherein the treatment device includes a touchscreen display (14) positioned on the display face of the treatment device.
- 20 3. The device as recited in claim 1, wherein the bottom portion include treads (36) to prevent slippage relative to the resting surface.
4. The device as recited in claim 1, wherein the base (18) includes a U-shaped bottom portion extending along sides and the rear surface of the treatment device.
- 25 5. The device as recited in claim 1, wherein the rear structure (26) includes at least one rear bracket (26) affixed to a side or sides of the treatment device.

6. The device as recited in claim 5, wherein the at least one rear bracket (26) includes a support accessory including one or more of: a support hook and a support eye.

5 7. The device as recited in claim 1, wherein the first angle is between about 60 degrees and about 90 degrees with the resting surface.

8. The device as recited in claim 1, wherein the second angle is between about 0 degrees and about 30 degrees with the resting surface.

10

9. The device as recited in claim 1, wherein the treatment device (12) includes one of a monitor, a defibrillator or a combination thereof.

15 10. An emergency medical device, comprising:

a treatment device (12) having a touchscreen display (14) positioned on a face thereof;

a base (18) coupled to the treatment device and including:

a front portion (22);

a bottom portion (20) configured to rest on a resting surface; and

a back portion (24) configured to extend beyond a rear surface of the

20 treatment device opposite the face of the treatment device;

at least one rear bracket (26) connected to the treatment device and extending beyond the rear surface of the treatment device;

wherein the base is configured to provide at least two viewing positions for the touchscreen display such that the front portion has a different offset dimension from the 25 treatment device than the back portion to provide a first angle of the touchscreen display

when the bottom portion is resting on the resting surface, and wherein the back portion and the at least one rear bracket provide a second angle of the touchscreen display when the back portion and the at least one rear bracket are resting on the resting surface; and

a handle (40) disposed on the treatment device on a side opposite that of the base, the

5 handle permitting a user to adjust the device between the at least two viewing positions.

11. The device as recited in claim 10, wherein the bottom portion (20) includes treads (36) to prevent slippage relative to the resting surface.

10 12. The device as recited in claim 10, wherein the base (18) includes a U-shaped bottom portion extending along sides and the rear surface of the treatment device.

13. The device as recited in claim 10, wherein the at least one rear bracket (26) includes rear brackets affixed to opposite sides of the treatment device.

15 14. The device as recited in claim 10, wherein the at least one rear bracket (26) includes a support accessory including one or more of: a support hook and a support eye.

15. The device as recited in claim 10, wherein a first position forms an angle of
20 between about 60 degrees and about 90 degrees with the resting surface.

16. The device as recited in claim 10, wherein a second position forms an angle of between about 0 degrees and about 30 degrees with the resting surface.

25 17. The device as recited in claim 10, wherein the handle (40) includes a support

eye.

18. The device as recited in claim 10, wherein the treatment device (12) includes one of a monitor, a defibrillator or a combination thereof.

5

19. A method for positioning an emergency medical device, comprising:
providing (102) a treatment device with a display face, a base coupled or integrated with the treatment device, the base including a front portion, a bottom portion configured to rest on a resting surface and a back portion configured to extend beyond a rear surface of the treatment device opposite the front portion; at least one rear structure connected to the treatment device and extending beyond the rear surface of the treatment device wherein the base is configured so that the front portion has a different offset dimension from the treatment device than the back portion to provide a first angle of the display face when the bottom portion is resting on the resting surface, and wherein the back portion and the at least one rear structure provide a second angle of the display face when the back portion and the at least one rear structure are resting on the resting surface; and
changing (104) positions of the device between the first and second angles relative to resting surfaces in accordance with an operator position.

20. The method as recited in claim 19, wherein the treatment device (12) includes a touchscreen display positioned on the display face and the first angle and the second angle permit ergonomic touchscreen operation by a user in different positions.

25. 21. The method as recited in claim 19, wherein the first angle is between about 60

degrees and about 90 degrees with the resting surface.

22. The method as recited in claim 19, wherein the second angle is between about 0 degrees and about 30 degrees with the resting surface.

23. The method as recited in claim 19, further comprising making angle adjustments to at least one of the first and second angles.

1/3

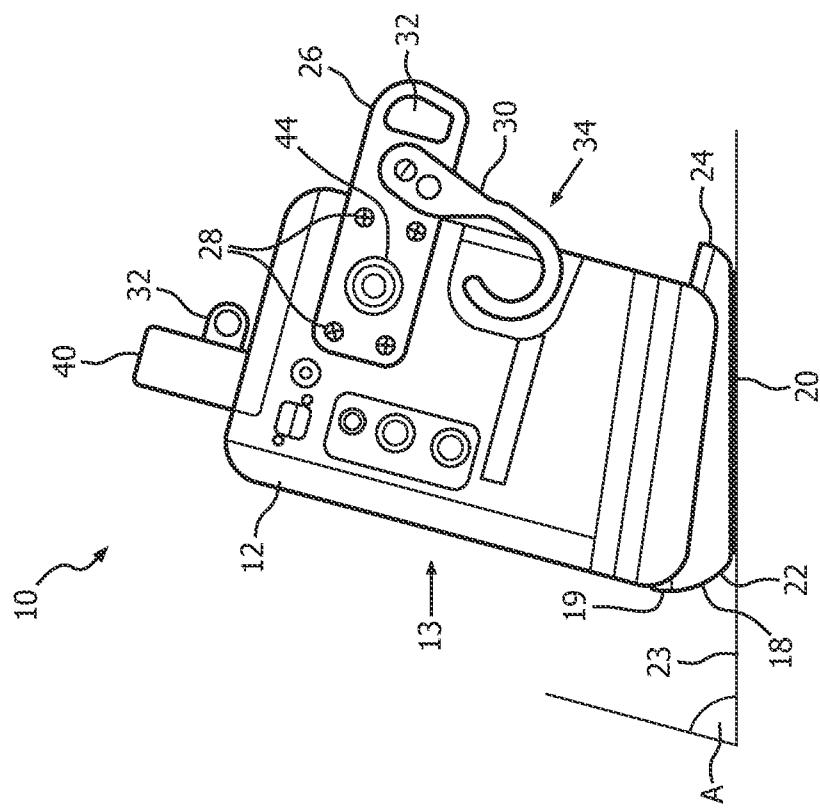


FIG. 2

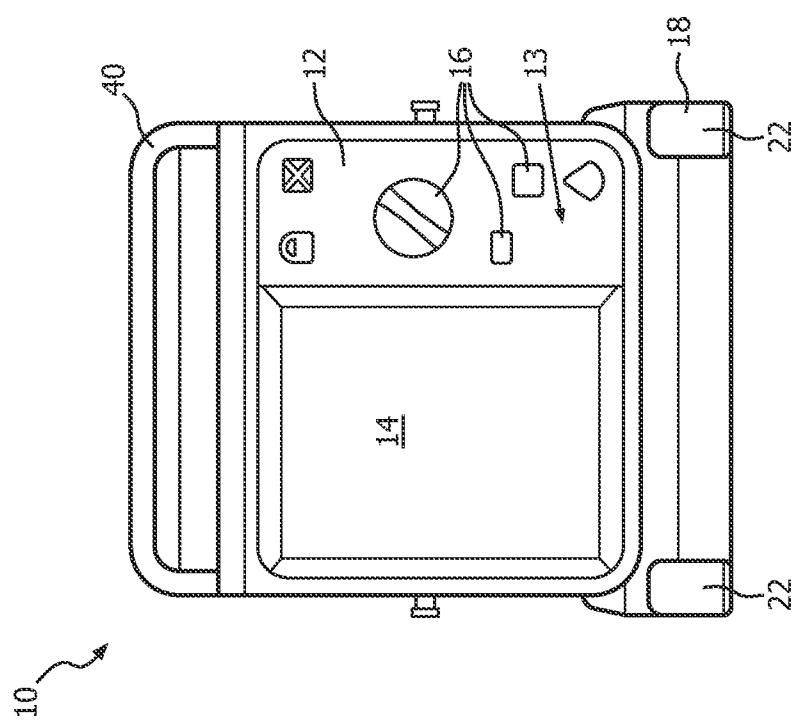


FIG. 1

2/3

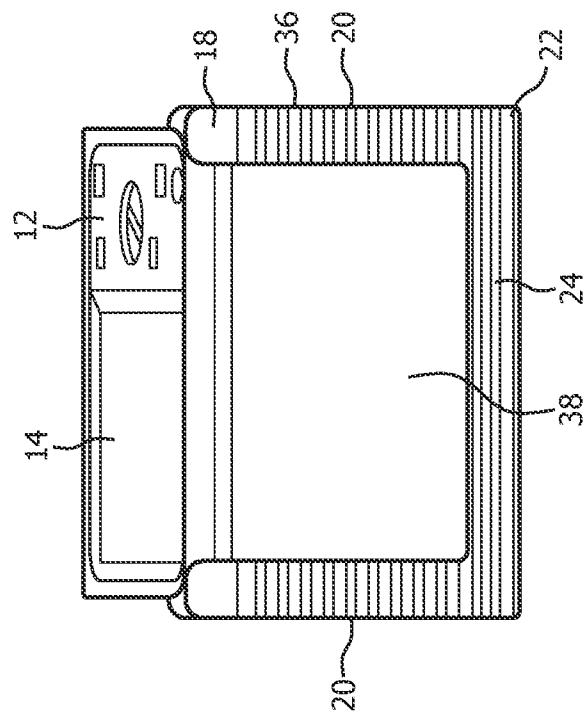


FIG. 4

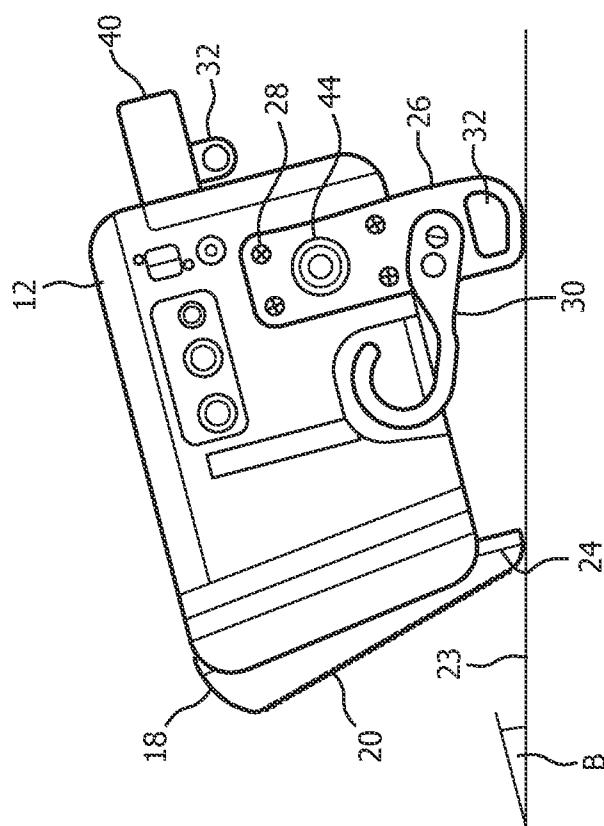


FIG. 3

3/3

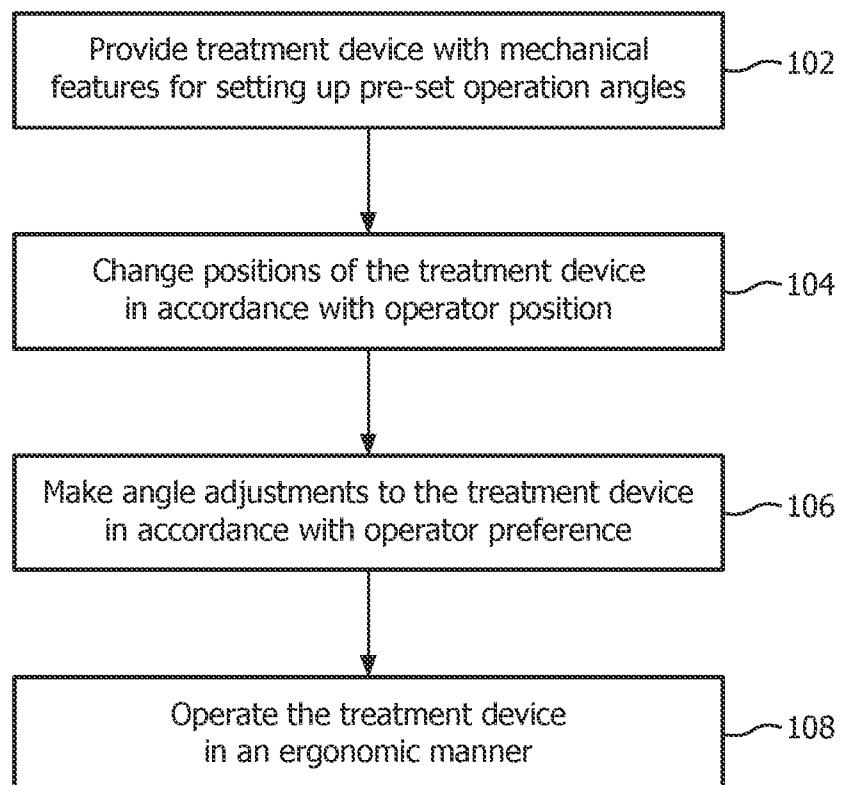


FIG. 5

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2015/059395

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61N1/39
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61N F16M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 935 152 A (MERRY RODNEY J [US] ET AL) 10 August 1999 (1999-08-10) column 3, line 60 - column 4, line 16 column 4, line 45 - line 68 column 5, line 23 - line 48; figures 1, 2, 4	1,3,5-9, 19,21-23 2,10,11, 14-18,20
Y	----- US 2003/167074 A1 (MERRY RODNEY [US]) 4 September 2003 (2003-09-04) paragraph [0033] - paragraph [0037] paragraph [0043]; figures 1, 3	1,4,5,7, 9 2,10,12, 13,15, 17,18
X	----- US 2004/122476 A1 (WUNG PETER [US]) 24 June 2004 (2004-06-24) paragraph [0023] - paragraph [0027] paragraph [0040] - paragraph [0047]; figures 4A, 4B	2,10-18, 20
Y	----- ----- -/-	

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

30 March 2016

08/04/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Sigurd, Karin

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2015/059395

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2007/270909 A1 (SAKETKHOU B BENJAMIN [US]) 22 November 2007 (2007-11-22) paragraph [0029] - paragraph [0031] paragraph [0038] - paragraph [0039]; figures 2, 3 -----	2,10-18, 20

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2015/059395

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
US 5935152	A 10-08-1999	NONE			
US 2003167074	A1 04-09-2003	NONE			
US 2004122476	A1 24-06-2004	AU 2003300352 A1			22-07-2004
		EP 1578264 A2			28-09-2005
		US 2004122476 A1			24-06-2004
		WO 2004058060 A2			15-07-2004
US 2007270909	A1 22-11-2007	CA 2652913 A1			06-12-2007
		US 2007270909 A1			22-11-2007
		WO 2007140142 A2			06-12-2007