04/046866 A 2 I 0K O 0 OO OO OO

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

3 June 2004 (03.06.2004)

(10) International Publication Number

WO 2004/046866 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2003/036638

(22) International Filing Date:
13 November 2003 (13.11.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/295,538 15 November 2002 (15.11.2002) US

(71) Applicant (for all designated States except US): MEN-
TOR GRAPHICS CORPORATION [US/US]; 8005
S.W. Boeckman Road, Wilsonville, OR 97070-7777 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): KLEIN, Russell, Alan
[US/US]; 2075 Alpine Dr., West Linn, OR 97068 (US).

(74) Agent: PETERSEN, David, P.; Klarquist, Sparkman,
LLP, One World Trade Center, Suite 1600, 121 S.W.
Salmon Street, Portland, OR 97204 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BW, BY, BZ, CA, CH, CN, CO, CR,
CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD,
GE, GH, GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR,
KZ,1L.C,LK,LR,LS,LT, LU, LV, MA, MD, MG, MK, MN,
MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU,
SC,SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US,UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FL, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE,
SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: AUTOMATED REPARTITIONING OF HARDWARE AND SOFTWARE COMPONENTS IN AN EMBEDDED SYS-

TEM

(57) Abstract: A hardware-software system design optimization tool is described. The tool allows a designer to optimize the system
performance by allowing him to select software components of the system and move them to a hardware representation. The soft-
ware components are selected by using a performance profile of the system, which comprises time data related to execution of the
software components, memory and bus transactions. In another aspect, the tool automatically collects the performance data and gen-
erates the performance profile. In another aspect, performance data is collected by modeling the execution of the hardware-software
system. In another aspect, hardware-software system is modeled again after selected software components are moved to a hardware
representation to inquire whether the move improved overall system performance.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

AUTOMATED REPARTITIONING OF HARDWARE AND SOFTWARE
COMPONENTS IN AN EMBEDDED SYSTEM

CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Patent Application No. 10/295,538 filed

November 15, 2002, which is incorporated herein by reference.

TECHNICAL FIELD
The technical field relates to electronic system design and more particularly relates

to optimizing system design by repartitioning hardware and software components.

BACKGROUND

Many electronic systems being designed today are embedded systems, which
generally consist of both software and hardware components. Such embedded systems are
found in a wide variety of applications, such as cellular phones, microwave ovens,
automobiles, etc. As with any system, designers of an embedded system strive to obtain
better performance by attempting to increase the processing speed of the system as a whole,
while trying to reduce the cost and power consumption associated with the hardware
components.

One factor that impacts the performance of an embedded system is whether a given
function of the sys‘tem is implemented as hardware or software. Implementing a particular
function in software provides flexibility because software is easily modifiable, whereas it is
usually cost prohibitive to change hardware components. On the other hand, implementing
a function in hardware is generally faster than software. Hardware implementation may also
reduce the demand on the processors executing the software and speed up software
execution. Furthermore, by implementing a function in hardware, a designer may be able to
use smaller, less powerful processors, which reduces the cost of the system as a whole.
These are some of the competing goals a designer needs to balance in arriving at an optimal
design.

In order to optimize a system design, the designer may need to move software
components into hardware to improve system performance. Such a process may have to be
repeated several times until an optimal design is found. Unfortunately, this process is time

consuming and cost prohibitive.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

Until recently, software and hardware components could not even be tested or
verified to see if they functioned together. Hardware emulators or simulators were used to
verify the hardware design and the software components were tested separately using a
compiler, debugger and other software testing tools. Currently, tools are available for co-
verification of software and hardware components of an embedded system. One such
system is described in U.S. Pat. No. 5,771,370 (hereafter “the ‘370 patent”) to Klein.
Designers may now use such co-verification tools to simultaneously verify that the hardware
and software components of a system function together to yield the desired results.

Even with the use of such co-verification tools, the design of the software and
hardware components may still occur separately and independent of each other. Co-
verification tools are limited to verifying that a completely designed system performs its
intended functions. Such systems do not currently have the capability to inform the
designers about other performance factors such as, which software functions may use the
most processor capacity, perform the most memory accesses, or use the bus most often.
Such information can aid a designer in deciding whether to implement a given functionality
of the system in software or hardware. Some software profiling systems (e.g. Microsoft ®
Visual Studio® and Rational® Purify®) have the capability to provide a profile of a software
execution that may pinpoint which of the various functions implemented in the software
require the most processor time. However, such systems cannot account for the processor’s
transactions with the other hardware components in the system, such as bus contention and
bus utilization.

Therefore, there is a need for a tool that will generate a performance profile of an
embedded system that accounts for processor transactions related to both the hardware and
software components of the system. There is further need for a tool that can selectively
repartition software to hardware to improve system performance.

SUMMARY

As described herein, a tool is provided that allows designers to optimize the
performance of a system by selectively moving functions from software to hardware.
Additionally, the tool may evaluate the system for any performance gains. The designers
can select the various software functions and evaluate the impact (on the performance of the
system) of implementing the selected software function in hardware. This will allow the
designers to quickly arrive at an optimal design for the hardware-software system by
determining an optimal partition of the system between its hardware and software

components.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

In one aspect, a designer can model repartitioning hardware-software systems by
removing selected components from software and replacing them with new hardware
components and modified software components adapted to achieve the same functionality as
the original system. The new hardware components are created by first generating a design
of the hardware components in synthesizable HDL (Hardware Description Language). The
HDL description of the new hardware components may then be used to verify that the
repartitioned system achieves the same functionality as the original system. The modified
software components correspond to the removed components and are automatically
generated and adapted to provide inputs to and receive outputs from the newly generated
hardware components.

In another aspect, the tool may automatically generate hardware bus interfaces
adapted for the newly generated hardware components to communicate effectively with the
rest of the components of the hardware-software system.

In yet another aspect, the tool may create performance profiles of the existing
system and use the profile for selecting software components to be modeled as hardware
components. The profiles are adapted to provide performance data related to utilization of
one or more processors running the software. The profile data is used to determine which of
the software functions place the greatest demands on the processors’ capacity and select
such functions to be implemented in hardware instead. The designers can generate the
performance profile again for a system once the system is repartitioned and analyze the
profile data to determine the potential impact of moving a selected function from a software
implementation to a hardware implementation. If the designers are dissatisfied with the
performance, they can select more or different software functions to be moved to a hardware
implementation and repeat the process until an optimal design is reached.

In another aspect, the performance profile is also adapted to provide data related to
referencing of the memory elements of the system and utilization of the various buses
associated with executing the software before and after its repartitioning. Such data can be
used in addition to the processor speed and utilization data for arriving at an optimal design
for the system.

In a final aspect, all of the various features and capabilities of the system mentioned
above are done automatically allowing the designers to shorten the design cycles of their
products.

These and other aspects will become apparent from the following detailed

description, which makes references to the accompanying drawings.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary hardware-software system prior to
conversion of selected software components to hardware components.

FIG. 2 is a flow chart of an exemplary method for optimizing the performance of a
hardware-software system by selectively converting software components of the system into
hardware components.

FIG. 3 is a block diagram of an exemplary hardware-software system after selected
software components of the system are converted to hardware components according to the
method of FIG. 2.

FIG. 4 is a flow chart depicting an exemplary method for optimizing the
performance of the hardware-software system by selectively converting software
components of system to hardware components and evaluating the performance of the
repartitioned system.

FIG. 5 is a block diagram of an exemplary tool for optimizing the performance of a
hardware-software system.

FIG. 6 is a block diagram depicting an exemplary implementation of the tool shown
in FIG. 5.

FIG. 7 is a flow chart of an exemplary method for generating a performance profile
of the hardware-software system.

FIG. 8 is an exemplary time log corresponding to the execution of the hardware-
software system used for generating the performance of the system.

FIG. 9 is an exemplary table containing a summary of the time data from the time
log of FIG. 8, related to the execution of the instructions of the various software components
for generating a performance profile.

FIG. 10 is an exemplary bar chart corresponding to the summary table of FIG. 9.

FIG. 11 is a chart profiling the memory transactions related to execution of the
software components.

FIG. 12 is a chart profiling the bus transactions related to execution of the software
components.

FIG. 13 is a flow chart of an exemplary method for converting a software function
described in a programming language into synthesizable HDL.

FIG. 14 is a flow chart of an exemplary method for generating a bus interface in
hardware for enabling the generated hardware component to communicate with the rest of

the repartitioned hardware-software system.

WO 2004/046866 PCT/US2003/036638

FIG. 15 is a flow chart of an exemplary method for generating an interface in
software for enabling the modified software components to communicate with the rest of the
repartitioned system.

FIG. 16 is a diagram illustrating an exemplary client-server network environment.

5 ' FIG. 17 is a diagram illustrating an exemplary method of optimizing a hardware-‘

software system design using a client-server network, such as the one illustrated in FIG. 16.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

DETAILED DESCRIPTION

Overview

In a hardware-software system having both hardware and software components,
deciding whether to implement a given function of the system as software or as hardware
can impact the system’s overall performance. In order to arrive at a optimal system design,
a designer may need to select functions originally implemented in software and move them
to hardware to improve system performance. This is commonly referred to as
“repartitioning" a hardware-software system. However, to achieve design optimization
through repartitioning may be time consuming without the aid of automation. A designer
may use the methods and systems described below to automatically optimize system
performance by evaluating and analyzing the performance of the original system and

repartitioning the system when desired.

Exemplary hardware-software system

FIG. 1 shows an exemplary hardware-software system 100 comprising both
software components and hardware components adapted to function together to implement
the desired functionality of the system. The system 100 comprises a processor instance 110
(e.g. Intel ® Pentium®4, a RISC processor, etc.). The processor instance 110 may be
adapted to receive and execute instructions from software programs, such as the pre-existing
software component FOO 130. Thus, a part of the functionality of the system may be
implemented in the form of software programs. The rest of the functionality of the system
may be implemented in the form of hardware logic components 120. The system may
include one or more memory elements, such as memories 140, 150. One or more system
buses 160 may be provided for the various components to communicate with each other.
Communication means other than system buses 160 (e.g. a network of buses, a point-to-
point network, etc.) may also be used to connect the components together.

Although FIG. 1 shows just one processor instance 110, it is possible for a
hardware-software system to have multiple processors of various types for handling
multiple functions. Furthermore, FOO is only an example of a software component of a
hardware-software system. Software components other than FOO 130 may also be stored at
memory elements 140 and 150. The other software components may include operating
system components and other software necessary to implement the system functionality.
The memory elements 140 and 150 may be a wide variety of memory types, such as static
RAM’s (Random Access Memory), dynamic RAM’s, hard disc drives, etc. These memory

elements may also be accessed by the hardware components 120 for processing

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

(e.g. receiving input data or storing output data). Additionally, the processors 110 may also
access data or instructions from other sources outside of the system 100 for implementing
some or all of the desired system functionality.

The hardware components 120 may include off-the—shelf gate level logic, custom
hardware (e.g. PLD’s (Programmable Logic Devices)), or ASIC’s (Application Specific
Integrated Circuit). Although the processor instance 110 is shown separately in FIG. 1, it
may also be integrated into the other hardware components. Similarly, memory elements
140 and 150 too may be integrated into the hardware components. However, unless
otherwise specified, all references to hardware components hereafter should be assumed to
refer to those hardware components implementing the functionality of the system that is not
implemented using software components.

To optimize the design of system 100, a designer may have to select some functions
of the system to be initially implemented as software components 130 and the rest as
hardware components 120. It is also possible that the functionality of the system may be
initially implemented entirely in software. If the performance is unsatisfactory, some of the
functionality originally implemented as software components 120 may be converted to

hardware components 130 to speed system performance.

Exemplary method for optimizing the performance
of the hardware-software system

FIG. 2 illustrates an exemplary method 200 for optimizing the performance of a
hardware-software system, such as the one shown in FIG. 1. At 210 one or more of
components of software implementing various functions of the system a]re selected. As
described further below, the selected software components are generally those components
that use a significant amount of system resources. At 220 new hardware components are
generated from the selected software components. Software components of various levels
of complexity corresponding to various levels of system functionality may be selected for

conversion to hardware. Entire software programs handling complex functions of the .

system as well as individual functions within such programs may be selected to be

converted to hardware. For example, an entire calculator program originally implemented
in software can be selected and converted to hardware or individual functions within the
calculator program (e.g. ADD or SUBTRACT functions) can be selected and converted to
hardware.

Once the software components are identified and corresponding hardware

components are generated at 220, the selected software components are replaced by

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

modified software components at 230 adapted to ensure that the system as a whole
maintains its original functionality. Thus, an interface is created within the remaining
software to communicate with the newly created hardware components. Such a modified
software component may be necessary because the rest of the components of system
continue to send input data to, and/or expect to receive output data from the function
originally implemented in software. An interface is capable of directing such
communications through to the newly generated hardware components.

Once some of the functions originally implemented in software are converted into
hardware implementations, the original design of the system 100 of FIG. 1 is said to have
been "repartitioned" or “partitioned”(if the system functionality was initially implemented
entirely in software) between its hardware and software components. A more optimal
design may be achieved in this manner. Selecting software components at 210, generating
new hardware components at 220 and replacing the selected software components with

modified functions at 230 are achieved automatically as will be described below in detail.

Exemplary hardware-software system after selected software
components have been converted to hardware

FIG. 3 illustrates the hardware-software system 100 of FIG. 1 after being
repartitioned between its hardware and software components using the methods described
above with reference to FIG. 2. In FIG. 3, the repartitioned system 300 has retained the
processor instance 110, the memory elements 140 and 150, the system bus 160 and the pre-
existing hardware components 120. However, as described above with reference to FIG. 2,
a selected software component, such as FOO at 130, has been removed from the
repartitioned system 300. The software component FOO 130 is replaced by the modified
software component FOO 310 and a newly generated hardware component FOO 320. The
modified software component FOO ° 310 in combination with the hardware 320 are adapted
to enable the repartitioned system 300 to continue to maintain the same functionality as the
original system 100 of FIG. 1. More specifically, the modified software component 310
may be adapted to direct the communications associated with the original software
component FOO 130 to its corresponding newly generated hardware component at 320 in
the repartitioned system 300.

Furthermore, it may be necessary to enable the newly generated hardware
component 320 to send and receive communications with the rest of the system via the
system bus 160. To that end, it may be necessary to generate a hardware interface 330.

Using the modified software component 310 and the generated hardware interface 330, the

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

designers can enable the newly generated component 320 to function with the rest of the
system without changing the functionality of the original system 100.

A designer may achieve improved system performance by moving a selected
software component, such as FOO 130, to a hardware implementation, such as the generated
hardware component FOO 320, in the manner described above.

Although the exemplary methods above have been described by referring to moving
a single function from a software implementation to a hardware implementation, they may
also be used to move multiple functions implemented as software components
simultaneously or at different times into a hardware implementation. Furthermore, the
methods above are equally effective for “partitioning” a system initially implemented

entirely software by moving selected functions of the system to hardware.

Exemplary method for automatically
converting software components in to hardware

The process of optimizing the system performance through repartitioning will be
less valuable without the use of design automation tools that allow measurement and
verification of hardware-software system’s performance without having to create a physical
implementation of the hardware components. Instead of physically implementing the
hardware components of the system, the functions to be implemented as hardware may be
described using a hardware description language (HDL) (e.g. Verilog or VHDL). The
hardware description in HDL can then be used by hardware simulation tools such as logic
simulators (e.g. ModelSim by Mentor Graphics © of Wilsonville, OR) or hardware
emulation tools for modeling the behavior of the hardware components. Such simulation
and emulation tools are capable of modeling many hardware components including any
processors or memory elements for executing the software components. In case of hardware
emulators, the HDL description may be fed to synthesis tools (e.g. Leanordo Spectrum by
Mentor Graphics® of Wilsonville, OR) to generate a synthesis of the hardware components
suitable for use by the emulator tools to model the behavior of the hardware components.
Such tools allow a designer to verify and measure the performance of a hardware design
without the need to develop a physical implementation of the hardware. Such tools may be
used in conjunction with other tools for automatically generating hardware implementations
of selected software components to repartition a system. Also, once the system is
repartitioned, the system performance may need to be measured again to evaluate whether

the repartitioning improved system performance.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

10

FIG. 4 shows such an automated process 400 for selecting a software function to be
moved to a hardware implementation, repartitioning the system by making such a move, and
evaluating the performance of the repartitioned system without having to create a physical
implementation of its hardware components. At 410 a performance profile of a hardware-
software system is generated, which is used at 420 to select the software components to be
moved to a hardware implementation in the repartitioned system. Such a performance
profile includes data indicative of the system’s performance as whole and particularly data
relevant to the execution of the various functions implemented as software components. For
example, data relevant to software execution may include time data associated with
execution of the software instructions, and memory and bus transactions initiated by
processor during the software execution. Using such profile data, a designer will be able to
determine which of the software functions most negatively impact the performance of the
system and select such software components to be moved to a hardware implementation
(process block 420).

Software components may originally be developed using any of the numerous
computer-programming languages (e.g. C, C"™* or JAVA). Once the software components
are selected to be moved to a hardware implementation, at 430 a synthesizable HDL
description of the selected components may be generated by converting their current
description in a programming language. The synthesizable HDL description can later be
used to model the software component as a hardware component.

Next, at 440 hardware interfaces are generated to enable the newly generated
hardware components to communicate with the rest of system. Primarily, the interfaces are
adapted to enable the newly generated hardware components to receive input parameters
from and to provide output data to the rest of the system. If the newly generated hardware
components are being modeled as opposed to being physically implemented in hardware
logic, the hardware interfaces are also generated in form of their HDL description.
However, they may be generated as a high-level algorithmic description and later converted
to HDL or initially generated in a programming language and later converted to HDL.

Then at 450 the software components of repartitioned system are modified to
replace the converted software components. The modified software components are
software interfaces adapted to intercept and direct system communications related to
original software components to their corresponding newly generated hardware components.

Once the software and hardware interfaces are generated at 440 and 450, a
repartitioned form of the original system is evaluated to determine whether the

repartitioning enhanced system performance. A performance profile of the repartitioned

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

11

system is generated at 460 to analyze whether the system performance may be improved
through further repartitioning. Process blocks 410-460 may be repeated as many times as

necessary for the designer to attain an optimal design.

Exemplary tool for modeling a hardware-software system

To generate a performance profile, the system may be physically implemented or its
hardware components may be modeled on a modeling tool, such as an emulator or a
simulator. FIG. 5 illustrates an exemplary tool for modeling the behavior of a hardware-
software system. The tool comprises a software execution vehicle 510 adapted for modeling
the behavior of processors that execute the software components of the system. The tool
also comprises a hardware execution vehicle 520 for modeling the behavior of the hardware
components of the system.

For example, software execution vehicle 510 may be one or more Instruction Set
Simulators (ISS) that are adapted to emulate the behavior of a particular processor.
Typically, an ISS emulates a processor’s execution of instructions from a compiled software
program. Thus, an ISS has the ability to mimic the functionality of a processor and is
typically unique to a processor. For example, the ARMulator™ is an ISS that is unique to
the processors based on processor designs licensed by ARM® Ltd. of Cambridge, England.
Likewise, other processors may have their own corresponding ISSs. The software execution
vehicle may also be implemented by using In Circuit Emulators (ICE) or other well-known
devices. Less complex processors may even be emulated by a physical implementation of a
gate level logic design, which can be driven by software components. However the
processor may be modeled, it is desirable that the software execution vehicle be capable of
generating the data associated with the execution of the software components for creating
the performance profile.

Also, the hardware execution vehicle may be implemented in many different ways.
For example, a logic simulator may be used to model the hardware components. A typical
logic simulator is capable of interpreting hardware design descriptions in various forms (e.g.
HDL) and providing overall control of simulating the functionality of the design. An
example of a logic simulator is ModelSim™ by Mentor Graphics® of Wilsonville, OR. The
hardware execution vehicle may also be implemented using FPGAs, accelerators (e.g. an
IKOS machine from Mentor Graphics of Wilsonville, OR) or ICEs programmed to
implement the functionality of hardware components of the system. Furthermore, the
hardware execution vehicle may be a general purpose computer programmed to implement

state machines with functionality of the hardware components of the system. These state

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

12

machines may be adapted to be identical in their timing characteristics to a physical
implementation of the hardware components of the system. The programming required to
implement the state machines may be accomplished using any of well known programming
languages (e.g. C, C++, JAVA).

To simultaneously verify the performance of hardwaré and software components of
a system, the software execution vehicle 510 and the hardware execution vehicle 520
communicate with each other. Furthermore, a computer 530 may be provided to control the
execution of the software execution vehicle 510 and the hardware execution vehicle 520. A
source code debugger program (not shown) may be used by the computer 530 to control the
execution of the software components on the software execution vehicle 510. A debugger
provides a user greater control over the execution of a software program, for example, by
allowing the user to set break points to stop the execution as desired for debugging and
troubleshooting. Similar controls may be implemented for the hardware execution vehicle.

The software execution vehicle and the hardware execution vehicle do not have to
function simultaneously to model the hardware-software system. In order to decide which
software component should be moved to hardware for repartitioning, a designer may model
the execution of the software components separately. For example, the designer may
execute the software component separately on a general purpose computer and use profiling
software (e.g. Microsoft ® Visual Studio ® or Rational® Purify®) to collect performance data
related to software execution. The performance data provided by the profilers may later be
used to select the software component to be moved to hardware. However, such methods do
not provide the complete picture of the execution of a system having both hardware and
software components. Without a complete picture the designers cannot truly optimize the
system performance. Better modeling of a system having hardware and software
components is possible by modeling the system as a whole with the hardware and software
components functioning together.

Once the hardware execution vehicle and the software execution vehicle are
functionally communicative and there is a mechanism in place to control the execution, the
performance data related to the system may be collected for creating a performance profile
indicative of the system’s performance. Designers may use the profile to decide which
software components are to be moved to repartition the system and use the tool again to
determine whether repartitioning improved the system’s performance. The collection of the
performance data and the processing of the collected data to create a profile may be done

using the same computer 530 or by programming other computers.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

13

Alternatively, the collection of data may also be accomplished separately using test
equipment well known in the art (e.g. logic analyzers) and the collected data may later be

processed to create a profile.

Exemplary implementation of a tool for modeling
a hardware-software system

The software execution vehicle 510 and the hardware execution vehicle 520 of FIG.
5 may be connected together directly such as on a test board with the various FPGAs
modeling both the hardware components of the system and the processors executing the
software components.

Alternatively, if one or more ISS’s are used as software execution vehicles and logic
simulators are used as hardware execution vehicles, a hardware-software co-verification tool
may be necessary for modeling the system performance. FIG. 6 illustrates such an
exemplary co-verification tool 610 being used in conjunction with an ISS 620 for emulating
the processor instance 625 and a logic simulator 630 simulating the hardware logic 635, the
system bus 660, the bus interface model 633 and the memory elements 650. The bus
interface model 633 has the same pin out as the processor instance 625 being simulated by
the ISS 620 and is capable of simulating the communication of the processor instance 625
with the rest of the system. A bus interface model 633 may be necessary because typical
ISS’s are only capable of emulating the processor instance 625 executing instructions and
do not have the capability to drive the communications through to the rest of the system
being simulated. A

A co-verification tool such as 610 is described in U.S. Pat. No. 5,771,370 (hereafter
“the ‘370 patent”) to Klein. When simulating a hardware-software system using ISS’s 620
and logic simulators 630, the memory transactions related to software execution may be
simulated using the logic simulators 630. However, simulating memory transactions or bus
transactions using logic simulators 630 may be time consuming. Typical logic simulators
630 execute at a speed of 1 instruction per second and high-end simulators may execute 2-3
instructions per second. However, typical software programs generate a great number of
memory transactions and bus transactions. Thus simulating the execution of software
components of a system using simulators can be very time consuming. Although, typical
ISS’s 620 execute at a speed of 1,000,000 instructions per second they do not have the
capability of emulating the bus transactions and the hardware components of a system.
Therefore, the co-verification tool 610 may be necessary to model the memory transactions

and bus transactions of a system to speed up the modeling process.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

14

The co-verification tool 610 such as the one described in the ‘370 patent provides a
memory server 640 which stores the software components or data elements typically stored
in the memory elements associated with a system (e.g. 650). Instead of using the logic
simulator 630 to interact with memory elements 650, the ISS 620 uses the co-verification
tool 610 to communicate with the memory server 640 to retrieve instructions from the
software components or data elements stored therein. When compared to interacting with
the simulator 630, interacting with the memory server 640 is much faster. Thus, using a co-
verification tool 610 allows a designer to model the behavior of a hardware-software system
having complex software components and do it within times that are reasonable for a

designer to pursue repartitioning.

Exemplary method for generating a performance profile

Once a tool for modeling the execution of software and hardware components of a
hardware-software system is in place, the modeling tool may be used to generate a
performance profile of the system for optimizing the system performance as described with
reference to FIG. 4. FIG. 7 illustrates such an exemplary method for generating a
performance profile corresponding to the process 410 of FIG. 4. The performance profile
may be used, among other things, for selecting the software components to be converted to a
hardware implementation. At 710, the existing hardware design is loaded onto to a
hardware execution vehicle for modeling or implementing the hardware logic related to the
hardware-software system. At 720, the hardware execution vehicle is associated with a
software execution vehicle capable of modeling the execution of the software components
on processors associated with the system. The software execution vehicle and the hardware
execution vehicle may be implemented as described with reference to FIG.’s 5 and 6. Once
the software and hardware execution vehicles are functional at 730, the system is executed
for collecting the data related to its performance. At 740, data related to executing each
instruction of the software components is collected. At 750, memory transaction and bus
transaction data related to the execution of the software components is collected. Once the
data related to execution of instructions, memory transactions and bus transactions are
collected, a time log corresponding to execution of the software component is generated at
760. Finally at 770, the time log is organized according to the various sub-components of
software being executed to create a performance profile to be used for optimizing the system

performance.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

15

Exemplary time log used for generating a performance
profile of a hardware-software system

FIG. 8 illustrates an exemplary time log 800 for creating the performance profile of
a hardware-software system. The time log 800 is generated by monitoring the performance
of the hardware-software system as the system is executed on the modeling tool comprising
hardware and software execution vehicles of FIG. 5. The time log 800 contains a record of
data related to the execution of the instructions of the software components, memory and
bus transactions. As shown in column 803, the time log may be ordered in time using a time
stamp starting at 0 to the end of the simulation as measured by a system clock. The time log
800 may also track the nature of the transactions as shown in column 810, which lists such
transaction types as memory, branch (which is related to execution of software instructions)
and bus. Also, the source and destination address for each of the transactions are recorded
at the “from” column 815 and the “to” column at 820, respectively.

In one embodiment, only the branch records related to the software instructions
executed by the processors is recorded in the time log 800. The entry into a branch related
to particular software component and the exit from the branch may be determined by
tracking the source address 815 and destination address 820 related to each instruction.
Once the addresses are known, executable files associated with the software components
may be opened to access their symbol tables. The symbol tables list each of the various
software components, their address locations and word sizes. The address information in
columns 815 and 820 is compared to the symbol tables to identify which software
component is associated with the instructions being executed in the time log 800.

For example, if a software component, such as function FOO, has an address
location between 1000-1200 and a word size equal to 4 and the time log has a branch record
825 with a source address of 123 at 821 and a destination address 1000 (which is within the
range 1000-1200) at 822 then a branch entry into function FOO is identified. The next few
time log records show that several other instructions related to function FOO were executed
within the address range corresponding to FOO at 830, 835 and 840. However, at some
point later at 845 the time log shows an exit from the FOO branch because the destination
address 127 at 823 is equal to the original source address outside FOO 123 at 821 plus the
word size 4. Thus, time log records 825-840 are identified as branch records associated
with the software component, function FOO. The same process may be repeated to identify
all the branch records associated with function FOO. However, word sizes may vary
according to processors. For example, a processor with 16-bit instruction architecture may

have a word size of 2 instead 6f 4,

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

16

Alternatively, it is also possible to record each and every instruction related to FOO
instead of just recording the entry and exit into branches. However, such entries will create
a large amount of data to be manipulated for creating the profile without adding much value

to the accuracy of the profile itself.

Exemplary summary table used for generating a performance profile

Once the branch records associated with the execution of each of the software
components are identified, then the records may be summarized and ordered according to
each software component. FIG. 9 shows the data extracted from the time log 800 of FIG. 8
ordered in the form of a summary table 900. The various components are listed in column
910. Using the time stamp column 803 of FIG. 8, the processing times associated with the
branch records of each function is added to yield the total time spent by a software
execution vehicle executing each of the software components at column 920. This may be
translated to a percentage figure in column 930 to rank each of the components according to
the demand each of them are likely to place on the processoré. For example, in FIG. 9
function FOO is most likely to dominate a processor’s time and thus a good candidate to be

moved to a hardware implementation.

Profile of software instruction execution
FIG. 10 is an illustration of a bar chart that may be used to illustrate the profile data
generated using the time log of FIG. 8 and a summary table, such as the one in FIG. 9.

Profile of memory transactions

Besides the time data related to execution of software components, other data
related to execution of the components are important to a designer for deciding which
component should be moved to a hardware implementation. Although it is generally true
that moving it to hardware can increase the processing speed of executing a software
component, such a change may impact the system as a whole in other aspects. For example,
the number of memory and bus transactions may increase as the newly converted hardware
component reads and writes data. This could slow down the processing speed of the system
as a whole even though the individual function is being executed faster in its hardware
implementation. Therefore it may be desirable to analyze the time log 800 of FIG. 8 to
identify the memory and bus transactions related to the execution of a software component.

Once the selected software components are converted to hardware the memory and bus

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

17

transactions related to the repartitioned system may be analyzed again to identify whether
the system performance as a whole improved or not.

FIG. 11 illustrates a chart profiling the memory transactions related to the execution
of the software components prior to repartitioning. The chart shows the number of memory
accesses on the y-axis 1110 versus time which is shown on the x-axis 1120. The access data
may also be split between the memory reads at 1130 and the memory writes at 1140.

Within the time log 800 the individual memory transactions are matched to their
corresponding software component using the time stamp column 805. The memory
transaction associated with the execution of a particular function will occur within the same
time frame as the execution of the instructions related to the function. In this manner
memory transactions can be profiled not only by totaling all transactions of the system but
also by transactions related to each individual function. A similar profile may be a generated
after the system is repartitioned to compare the impact of repartitioning on the memory
transactions. For example, if the function FOO is moved to hardware and replaced by a
modified function FOO * for repartitioning then memory transactions related to FOO prior
to repartitioning may be compared with transactions related to FOO °© after repartitioning.
Profile of Bus transactions

Similar to memory transactions described above, bus transactions before and after
repartitioning may be compared to determine whether repartitioning was beneficial or not.
FIG. 12 shows bus load data prior to repartitioning. The time log 800 of FIG. 8 may be used
to identity times when a particular system bus was owned by a master and those times it was
not owned by any master. This bus load data can be translated to a percentage of bus
utilization as shown on y-axis 1210 of FIG. 12 and tracked over time on the x-axis 1220. A
similar bus utilization profile can be generated for a repartitioned system to determine
whether repartitioning had a positive impact on the system performance. The bus
transactions may be matched to the corresponding functions or software components
initiating them by matching each bus transaction’s source and destination address on
columns 815 and 820 to that of the addresses related to the corresponding software
component. Tracking the bus transactions may be necessary because even if the processing
speeds of selected components are increased by moving them to a hardware implementation
the bus utilization may be negatively affected thereby slowing down the processing speed of

the system as a whole.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

18

Exemplary method of generating a performance profile for a
hardware-software system being simulated using ISS’s and logic simulators

As shown in FIG. 6 one method of simulating the execution of a hardware-software
system is to use ISS 620 to serve as software execution vehicles, logic simulators 630 to
serve as hardware execution vehicles and a co-verification tool 610 to connect the two
vehicles. Typical ISS are only capable of emulating processors. They do not have the
ability to indicate the time taken for executing each instruction run by the processor.
Therefore in order to generate a time log, such as the one shown in FIG. 8 (using the
simulation environment of FIG. 6), the ISS 620 may need to be annotated with time data
related to execution of various instructions. Such data may be obtained through the
manufacturers or designers of the processors being emulated. Some ISS’s may already be
equipped with such data.

Once the ISS 620 is annotated with time data related to execution of instructions,
the simulation of a system may be monitored to collect the performance data necessary to
generate a time log such as the one shown in FIG. 8. A monitor 1 at 670 in conjunction with
the ISS 620 can monitor the execution of instructions within the ISS and use the annotated
time data to generate instruction execution records in time log of FIG. 8. The same monitor
can also record the memory transactions initiated by the simulated processor instance 620
with the associated cache memory 623.

At times during the simulated execution, the ISS 620 may need to go to memory
elements other than the cache memory 623 to perform memory read and write operations.
Such instances create bus traffic on a bus such as 660 connecting the ISS to the rest of the
simulated system through the co-verification tool 610. Another monitor, monitor 2 (shown
at 680) can be within the co-verification tool 610 to monitor such transactions. These
transactions may be logged in the time log as both a memory transaction and an associated
bus transaction initiated by the simulated processor instance 625. Another monitor, the
monitor 3 at 690 may be used to record the memory transactions and the bus transactions
initiated by other hardware components 635 of the system. All records generated by the
monitors mentioned above could be added to create the time log as shown in FIG. 8.

Within the ISS 620 and the co-verification tool 610, the monitors 670 and 680 can
be implemented as software functions adapted to generate a record entry in the time log
whenever the ISS advances through instructions within the execution queue of the simulated
processor 625. The monitor at 690 may be implemented in HDL in order to be simulated
within the logic simulator 630. Thus, using the monitors 670, 680 and 690 a time log, such

as the one shown in FIG. 8, can be generated using the simulation environment of FIG. 6.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

19

Exemplary method for converting software components
from a programming language to synthesizable HDL

Once the performance profile of a hardware-software system is generated, the
profile may be used to select the software components to be converted to hardware for
optimizing the system performance (see 420 in FIG. 4). According to the process at 430 of
FIG. 4, the selected software components are to be converted from a current form in a
programming language (e.g. C, C++ or JAVA) to a corresponding form in HDL. FIG. 13
shows an exemplary method for automatically converting the software components from a
programming language to synthesizable HDL, which is later used to emulate or simulate the
newly generated hardware components.

The performance profile of the system is used to select software components to be
converted to hardware at 1310. Then at 1320, the software components are provided in a
programming language. At 1330, the software components in a programming language are
converted to a synthesizable form in the programming language. This may be necessary
since the software components in their original programming language form do not describe
the input and output connections necessary to connect the newly generated hardware
component to the rest of the system. For example, the surrounding hardware to be
connected to the new hardware component may need to be specified in order to generate the
synthesizable HDL. Such a synthesizable form of the software component in its
programming language form may be used at 1340 to generate the synthesizable HDL. One
way to convert the software components in a synthesizable form of programming language
may be to translate it to high-level flow charts that correspond to the functionality of the
software components. Such high-level flow charts may then be used to generate the
synthesizable HDL. Several tools that are currently available have the ability to convert
software components in a programming language to a HDL representation (e.g. Behavioral
Compiler™ by Synopsys® of San Jose, CA and DK1 by Celoxica® of Abingdon, UK).
Additionally, such tools are also described in U.S. Pat. Nos. 6,021,266 to Kay, 6,438,739 to
Yamada and 6,449,763 to Yamada et. al. An emulator or a simulator to model the newly
generated hardware component could use the synthesizable HDL for modeling the

repartitioned hardware-software system.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

20

Exemplary method for creating hardware interfaces for
the newly generated hardware component to communicate
with the rest of the system

The newly generated hardware components corresponding to the converted software
components may need to be adapted to communicate with the rest of the system for
receiving inputs and providing outputs. FIG. 14 illustrates an exemplary method for
generating such a hardware interface or device driver. When the new hardware component
(e.g. hardware FOO) is generated it is provided with input and output registers for receiving
input data and sending output data at 1410. The input and output registers correspond to
input and output data associated with the converted software component (software FOO).
However, the bus (any standard industry bus e.g. AHB) associated with the newly generated
component may not be capable of driving the input data into the appropriate input registers
and retrieving the data from the appropriate output registers. Therefore at 1420 address
decode logic is implemented to read from and write to the appropriate registers of the newly
generated hardware component. Such decode logic can then be used along with a standard
bus to drive the communication of the new hardware component with the rest of the system
1430. For example, when input data is received from the rest of the system, the decode
logic may be used to correlate the address associated to the input data to the appropriate
input register within the newly generated hardware logic. The same process is repeated for
the output data. This enables the rest of the components to communicate with the newly

generated hardware components.

Exemplary method for creating software interfaces for the newly generated
hardware component to communicate with the rest of the system

Once the software components (e.g. FOO) are selected and moved to a hardware

" implementation, the source code associated with such components is removed from the

original software. However, a mechanism may be necessary to redirect the communications
related to the original function (software FOO) to the corresponding hardware
implementation (hardware FOO) after repartitioning. FIG. 15 illustrates an exemplary
method for generating an interface for directing the communication between the rest of the
software components and the newly generated hardware components. At 1510 the original
software components (e.g. FOO) selected to be moved to hardware is replaced with
modified components (e.g. FOO) in code which has the same function name and signature
as the original component. The modified components omit the internal implementation of
the original software components in code but are adapted to pass the input parameters to the

appropriate registers of the newly generated hardware components at 1520. Furthermore, at

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

21

1530 the modified components are adapted to retrieve output data from the appropriate
output registers of the newly generated hardware components and pass the data to other
components of the system. The decode logic created for generating hardware interface (as
described above with reference to FIG. 14) is used by the software interface to enable the

communication of the newly generated hardware component with the rest of the system.

Use of a client-server network

Any of the aspects of the method described above may be performed in a distributed
computer network. FIG. 16 shows an exemplary network. A server computer 1610 may
have an associated database 1620 (internal or external to the server computer). The server
computer 1610 may be configured to perform any of the methods associated with the above
embodiments. The server computer 1610 may be coupled to a network, shown generally at
1630. One or more client computers, such as those shown at 1640, 1650, may be coupled to
the network 1630 and interface with the server computer 1610 using a network protocol.

FIG. 17 shows that a hardware-software system design may be optimized according
to the disclosed method using a remote server computer, such as a server computer 1710 in
FIG. 16. In process block 1710, the client computer sends data relating to the existing
design of a hardware-software system for which an optimal design is to be calculated. In
process block 1720, the data is received and loaded by the server computer. In process
block 1730, the method disclosed above is performed and an optimal system design is
calculated and selected. In process block 1740, the client computer receives the optimal

system design sent by the server computer.

Alternatives

Having illustrated and described the principles of the illustrated embodiments, it
will be apparent to those skilled in the art that the embodiments can be modified in
arrangement and detail without departing from such principles. Although, the methods and
systems have been described above with reference to “repartitioning” a system initially
having both software and hardware components for implementing its functionality, these
methods are equally applicable for “partitioning” a system whose functionality is initially
implemented entirely in software. Furthermore, the methods and systems above have been
described above primarily with reference to a system bus connecting the various
components of the system (e.g. FIG. 1, FIG. 3, and FIG. 6). However, other means of
communication (e.g. a point-to-point connection, a network of buses etc.) are equally

effective for practicing the methods and system described above.

WO 2004/046866 PCT/US2003/036638

22

In view of the many possible embodiments, it will be recognized that the illustrated
embodiments include only examples and should not be taken as a limitation on the scope of
the invention. Rather, the invention is defined by the following claims. I therefore claim as

the invention all such embodiments that come within the scope of these claims.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

23

I Claim:

1. A method for repartitioning software and hardware in a system comprising:

selecting a software component having a predetermined function;

automatically generating a hardware component having functionality corresponding
to the selected software component; and

replacing the selected software component with a modified software component that
interacts with the generated hardware component so that the modified software component
and the hardware component together achieve the predetermined function of the selected

software component.

2. The method of claim 1, further comprising generating a first performance

profile of the system prior to selecting the software component.

3. The method of claim 2, further comprising using the first performance

profile of the system to select the software component.

4. The method of claim 2, wherein generating the first performance profile of
the system comprises one or more of the following:

recording time data related to execution of the system;

recording memory transactions related to the execution of the system; and

recording bus transactions related to the execution of the system.

5. The method of claim 2, further comprising generating a second
performancé profile of the system after replacing the selected software component with the

modified software component.

6. The method of claim 5, wherein generating the second performance profile
of the system comprises one or more of the following:
. recording time data related to the execution of the system;
recording memory transactions related to the execution of the system; and

recording bus transactions related to the execution of the system.

7. The method of claim 5, further comprising using the second performance

profile of the system to optimize performance of the system.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

24

8. The method of claim 7, wherein optimizing the performance of the system
comprises comparing the first performance profile of the system to the second performance

profile of the system.

9. The method of claim 1, wherein generating the hardware component
comprises generating a synthesizable HDL description of the hardware component from a

programming language description of the selected software component.

10. The method of claim 9, further comprising converting the selected software
component from a programming language description to a synthesizable programming

language description prior to generating the synthesizable HDL description.

11. The method of claim 1, further comprising generating a hardware interface

adapted to enable the hardware component to communicate with components of the system.

12. The method of claim 11, wherein generating the hardware interface further
comprises:

providing the generated hardware component with input and output registers
corresponding to input and output data of the selected software component; and

generating address decode logic to drive the input data to the corresponding input

register and retrieve the output data from the corresponding output register.

13. The method of claim 11, wherein the modified software component is
adapted to use the hardware interface to pass input parameters to the hardware component

and receive output data from the hardware component.

14. A tool for optimizing performance of a hardware-software system
comprising:

a software execution vehicle;

a hardware execution vehicle; and

one or more processors coupled to the software execution vehicle and the hardware
execution vehicle, the one or more processors programmed to replace a selected software
component of the system with a modified software component and a newly generated

hardware component so that the modified software component and the newly generated

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

25

hardware component together achieve the same functionality as the selected software

component.

15. The tool of claim 14, wherein the one or more processors are further

adapted for collecting performance data of the hardware-software system.

16. The tool of claim 15, wherein the one or more processors are further

programmed for generating displays of the collected performance data.

17. The tool of claim 14, further comprising a source debugger coupled to the

software execution vehicle.

“18. The tool of claim 14, wherein the software execution vehicle comprises

FPGAs adapted to model processors executing the software components of the system.

19. The tool of claim 14, wherein the software execution vehicle comprises

logic gates adapted to model processors executing the software components of the system.

20. The tool of claim 14, wherein the software execution vehicle comprises an

ISS adapted to model processors executing the software components of the system.

21. The tool of claim 14, wherein the hardware execution vehicle comprises

logic simulators adapted to model the hardware components of the system.

22, The tool of claim 14, wherein the hardware execution vehicle comprises

accelerators adapted to model the hardware components of the system.

23. The tool of claim 14, wherein the hardware execution vehicle comprises in-

circuit emulators adapted to model the hardware components of the system.,

24, The tool of claim 14, whereiﬁ the hardware execution vehicle comprises

FPGAs adapted to model the hardware components of the system.

25. A method for optimizing performance of a hardware-software system

comprising:

WO 2004/046866

10

15

20

25

30

PCT/US2003/036638

26

generating a performance profile of the hardware-software system;

using the performance profile to select a software component of the system to be
converted to a hardware component;

repartitioning the hardware-software system by generating the hardware component
from the selected software component;

generating a software interface to replace the software component;

generating a hardware interface that communicates between the generated hardware
component and the software interface; and

generating a performance profile of the repartitioned hardware-software system.

26. The method of claim 25, wherein generating the performance profile of the
hardware-software system comprises recording data related to execution of the hardware-

software system.

27. The method of claim 26, wherein the data related to execution of the
hardware-software system consists of time data, memory transaction data or bus transaction

data or a combination thereof.

28. The method of claim 25, wherein generating the hardware component
comprises generating a synthesizable HDL description of the hardware component from a

programming language description of the selected software component.

29. The method of claim 28, further comprising converting the selected
software component from a programming language description to a synthesizable

programming language description prior to generating the synthesizable HDL description.

30. The method of claim 29, wherein the programming language description

comprises C.

31. The method of claim 25, wherein generating the software interface
comprises replacing the selected software component with a modified software component,
the modified software component being adapted to pass input data to the new hardware

component and retrieve output data from the new hardware component.

WO 2004/046866 PCT/US2003/036638

10

15

20

25

30

35

27

32. The method of claim 25, wherein generating the hardware interface
comprises: _

providing input and output registers for the generated hardware component, the
registers corresponding to input and output data of the selected software component;

generating address decode logic for driving the input data to the corresponding input
registers of the generated hardware component and for retrieving the output data from the

corresponding output registers of the generated hardware component.

33. The method of claim 25, wherein generating the performance profile of the
repartitioned hardware-software system comprises recording data related to execution of the

repartitioned hardware-software system.

34, The method of claim 33, wherein the data related to execution of the
repartitioned hardware-software system consists of time data, memory transaction data or

bus transaction data or a combination thereof.

35. A tool for optimizing performance of a hardware-software system having
software and hardware components, the tool comprising:

a logic simulator capable of simulating the hardware components;

instruction set simulators coupled to the logic simulators and capable of emulating
processors adapted to execute the software components;

memory servers capable of storing content of memory elements associated with the
execution of the software components, the memory servers coupled to the memory elements
and the instruction set simulators; and

processors programmed to generate new hardware components from selected

" software components and to replace the selected software components with modified

software components so that the modified software components and the generated hardware

components together achieve the same functionality as the selected software components.

36. The tool of claim 35, wherein the processors are further programmed to

collect performance data related to execution of the software components.

37. The tool of claim 36, wherein the processors are further programmed to

generate displays of the performance data.

WO 2004/046866 PCT/US2003/036638

28

38. The tool of claim 35, wherein the processors are further programmed to

generate hardware interfaces for the generated new hardware components.

39, The tool of claim 35, wherein the instruction set simulators are annotated

5 with time data related to the execution of the software components.

PCT/US2003/036638

WO 2004/046866

1/16

001

SINANOdINOD
HIVMAIVH
DNILSTXH-Hdd

WHIN

0ST \

WNHIN

o1 k

00d
LINHNOJINOD
M/S
DNILSIXH-3dd

JOSSHOOAd

0€1 K 011 \

| BRI

WO 2004/046866

FIG. 2

2/16

PCT/US2003/036638

200

“

SELECT SOFTWARE COMPONENTS
OF A SYSTEM HAVING MULTIPLE
SOFTWARE AND HARDWARE
COMPONENTS

~

210

GENERATE NEW HARDWARE
COMPONENTS FROM THE
SELECTED SOFTWARE
COMPONENTS

REPLACE THE SELECTED
SOFTWARE COMPONENTS WITH
MODIFIED SOFTWARE
COMPONENTS ADAPTED TO
ACHIEVE THE SAME
FUNCTIONALITY FOR THE SYSTEM

220

230

PCT/US2003/036638

WO 2004/046866

3/16

061

00

0z¢e /

0cC1 |/

004
TIVMTIVH
QALVIENTD SINANOdNOD
— TIVMTIVH
NILSIXH-H3d
| SnEmVMTIVE PRES
0€€ CEAREINED)
ooﬁnl///
004 00d
WA AN Hzmzzm%aoo N 09 YOSSTO0Ud
QELIIAON ONIISIXAId

\
S/

g \

Sm\

0€I \

o:k

K |

WO 2004/046866

FIG. 4

4/16

GENERATE A PERFORMANCE
PROFILE OF AN EMBEDDED SYSTEM
HAVING SOFTWARE AND
HARDWARE COMPONENTS

v

USE THE PROFILE TO SELECT
SOFTWARE COMPONENTS TO BE
CONVERTED TO SYNTHESIZABLE

HDL FOR REPARTITIONING THE
SYSTEM

|

CONVERT SELECTED SOFTWARE
COMPONENTS INTO
SYNTHESIZABLE HDL FOR
GENERATING NEW HARDWARE
COMPONENTS

|

GENERATE HARDWARE
INTERFACES FOR THE NEW
HARDWARE COMPONENTS

v

GENERATE SOFTWARE INTERFACES
FOR THE NEW HARDWARE
COMPONENTS

!

GENERATE A PERFORMANCE
PROFILE OF THE REPARTITIONED
SYSTEM

410

420

430

440

450

460

PCT/US2003/036638

400

/

PCT/US2003/036638

WO 2004/046866

5/16

01¢

HTOIHHA NOLLODHAXH
JIVMIAOS

ALLNdINOD

HTOIHHA NOLLODHAXH
HIVMAIVH

> > > > > > s/
> > > > > > 3 »

| E—

B S—

0¢S &

1748

S "OId

PCT/US2003/036638

WO 2004/046866

6/16

JHAIES

059 —~ ! TAGON
A1 SNd
NI
j €€9

¢ JOLINOIN ¢—¢

Q%K M/H

ce9

JOLVTIIS DIDOT

— €79

AIOWAN
019
089
T00L
LrH,Hozuﬂ\owmmm\w.oo.rT 0wo— |
019 -
—
NHIN
HHOVD
~—0¢9 029 — |
FOSSEO0Ud
529 —
SSI
0L9

9 “OId

WO 2004/046866

FIG. 7

PCT/US2003/036638

7/16

LOAD THE EXISTING HARDWARE
DESIGN ON TO A HARDWARE \

EXECUTION VEHICLE
710

Y

ASSOCIATE THE HARDWARE

EXECUTION VEHICLE WITH A
SOFTWARE EXECUTION VEHICLE

CAPABLE OF EMULATING PROCESSORS F\
TO EXECUTE A SOFTWARE 720
COMPONENT '

v

EXECUTE THE ENTIRE SYSTEM USING
THE HARDWARE EXECUTION VEHICLE
AND THE SOFTWARE EXECUTION \

VEHICLE 730
COLLECT DATA RELATED TO
EXECUTING EACH INSTRUCTION OF \
THE SOFTWARE COMPONENT 740

COLLECT DATA RELATED TO MEMORY

AND BUS TRANSACTIONS ASSOCIATED
WITH THE EXECUTION OF THE \

SOFTWARE COMPONENT 750

v

USING THE COLLECTED DATA, CREATE
A TIME LOG CORRESPONDING TO
EXECUTION OF THE SOFTWARE \
COMPONENT 760

Y

ORGANIZE AND SUMMARIZE THE TIME
LOG ACCORDING TO EACH SUB-
COMPONENT OF THE SOFTWARE AND \
CREATE A PERFORMANCE PROFILE 770

WO 2004/046866

TIME

10
15
19
21
32

132
142

164
825~ 166

0
83 TSR 174

833
178

845, 1oe
324
442

500

8/16

PCT/US2003/036638

800
FIG. 8 / 803/ 810 / 815 / 820 IV
TYPE FROM TO ATTRIBUTES
MEMORY MEMADD! MEMADD?2 MEM READ
MEMORY MRMADD3 MEM ADD 4 MEM WRITE
ENTRY MAIN MAIN+4 INVOCATION 1
BRANCH MAIN +10 MAIN+12
EXIT MAIN + 2 ALT INVOCATION 2
BUS BUSADD1 BUSADD2 BUS INFO
MEMORY MEM ADD 5 821 822
ENTRY 123 1000 INVOCATION 3
BRANCH FOO+144 FOO+96
BRANCH FOO+144 FOO+96
BRANCH FOO+144 FOO+96
EXIT FOO+96 127 1 INVOCATION 4
BUS 823
MEMORY
MEMORY
900

FIG. 9/- 910

/ 920

'4

SOFTWARE EXECUTION TIME PERCENTAGE OF
COMPONENTS TOTAL EXECUTION TIME
FOO 106 53%
FOO BAR 50 25%

ALB

30

15%

PCT/US2003/036638

WO 2004/046866

9/16

%S

%S
%1
%L

%00
%0°0
%00
%00
%00
%0°0
%00
%00
%00
%00
%00
%01
%10 [
%C0 [
| I

%ES
.

1dasoe

puiq

aul[Jxau 3o3
uajsy|

Jouad
Jorlq o8
19008
Zumotyun
urew

IoUURDS AZI[R)Iul
ANMYM 198
uedss op

eJep puss

BJEP pUaS
joxid 108
UONO3LI0Y 1009
sjaxid Jo ouj 303
qa1v
g 004
00

01 'OId

PCT/US2003/036638

WO 2004/046866

10/16

TN~ A

S9sS999y Alowd|)

OTTI1

09

001

oSl

00¢

0S¢

00€

0gg

[K|

FIG. 12

WO 2004/046866 PCT/US2003/036638

11/16

Bus Loading

\
N—1220

100

WO 2004/046866 PCT/US2003/036638

12/16

FIG. 13

USING THE PERFORMANCE
PROFILE, SELECT SOFTWARE
COMPONENTS TO BE CONVERTED ~
TO HARDWARE COMPONENTS FOR
REPARTITIONING 1310

l

PROVIDE SELECTED SOFTWARE
COMPONENTS IN A PROGRAMMING
LANGUAGE §\\\
1320

l

ADD HARDWARE SPECIFIC
INTERFACES AND CONNECTIONS TO
THE SOFTWARE COMPONENTS IN
PROGRAMMING LANGUAGE TO ~

GENERATE THE SYNTHESIZABLE
FORM OF SOFTWARE COMPONENTS | 1330
IN PROGRAMMING LANGUAGE

l

CONVERT THE SOFTWARE
COMPONENTS FROM
SYNTHESIZABLE PROGRAMMING
LANGUAGE INTO SYNTHESIZABLE \
HDL 1340

WO 2004/046866 PCT/US2003/036638

13/16

FIG. 14

PROVIDE INPUT AND OUTPUT
REGISTERS FOR THE
GENERATED HARDWARE \
COMPONENTS SUCH AS FOO 1410

!

IMPLEMENT DECODE LOGIC
NECESSARY TO READ AND
WRITE FROM THE
APPROPRIATE INPUT AND
OUTPUT REGISTERS OF \

GENERATED HARDWARE 1420
COMPONENTS SUCH AS FOO

!

USE THE DECODE LOGIC AND
A STANDARD BUS TO DRIVE
COMMUNICATION FROM THE
REST OF THE HARDWARE
COMPONENTS TO THE ~

APPROPRIATE INPUT AND
 OUTPUT REGISTERS OF 1430

GENERATED HARDWARE
COMPONENTS SUCH AS FOO

WO 2004/046866 PCT/US2003/036638

14/16

FIG. 15

CREATE A FUNCTION (FOO")
WHICH USES THE SAME
INPUT PARAMETERS AS THE
SOFTWARE COMPONENT

BEING CONVERTED TO THE \
GENERATED HARDWARE 1510
COMPONENT (FOO)

l

PASS THE INPUT
PARAMETERS TO THE
APPROPRIATE INPUT
REGISTERS IN THE —~
GENERATED HARDWARE
COMPONENT (FOO) USING | 1520
THE HARDWARE INTERFACE

l

RETRIEVE OUTPUT DATA
FROM THE OUTPUT
REGISTERS OF THE

GENERATED HARDWARE

COMPONENT USINGTHE | {53
HARDWARE INTERFACE

WO 2004/046866 PCT/US2003/036638

15/16
FIG. 16
1610
SERVER
1620
1630
1650
- 1640
CLIENT | e

CLIENT

WO 2004/046866

16/16

FIG. 17

CLIENT

1710
\ SEND EXISTING SYSTEM

1740

K RECEIVE OPTIMZED /

SYSTEM DESIGN

DESIGN \

PCT/US2003/036638

SERVER

N

LOAD EXISTING
SYSTEM DESIGN

f 1720

l

vd

OPTIMIZE SYSTEM
DESIGN

f 1730

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

