METHOD FOR PROCESSING DATA VIA THE INTERNET

VERFAHREN ZUR VERARBEITUNG VON DATEN ÜBER DAS INTERNET

The invention relates to a method for processing data via the Internet comprising at least two clients (1, 2), a web-server (3) and at least one database server (4) for saving and retrieving data. According to said method, at least one first client (1) saves data to the database server (4) via the Internet using the webserver (3) and at least one second client (2), retrieves the data, preferably via the Internet, using the webserver (3). To achieve a rapid, simple and cost-effective transfer of information to and from a service provider, in particular a logistics service provider, the method is designed in such a way that an assignment takes place between the first client (1) and the data that has been saved to the database server (4) and also the second client (2), which retrieves the saved data and that the data of the first client (1) is assigned by means of the selection of the second client (2) using the first client (1).
Zusammenfassung: Ein Verfahren zur Verarbeitung von Daten über das Internet mit mindestens zwei Clients (1,2), einem Webserver (3) und mindestens einem Datenbankserver (4) zum Ablegen und Abrufen von Daten, wobei mindestens ein erster Client (1) via Internet mittels des Webservers (3) Daten auf dem Datenbankserver (4) ablegt und wobei mindestens ein zweiter Client (2), vorzugsweise via Internet mittels des Webservers (3), die Daten abruft, ist im Hinblick auf eine schnelle, einfache und kostengünstige Informationsübermittlung an einen und von einem Dienstleister, insbesondere einem Logistikdienstleister, derart ausgebildet, dass eine Zuordnung zwischen dem ersten Client (1) und dem auf dem Datenbankserver (4) abgelegten Daten sowie dem zweiten die abgelegten Daten abruflenden Clients (2) erfolgt und dass die Zuordnung der Daten des ersten Clients (1) durch die Auswahl des zweiten Clients (2) mittels des ersten Clients (1) erfolgt.
„Verfahren zur Verarbeitung von Daten über das Internet“

Die Erfindung betrifft ein Verfahren zur Verarbeitung von Daten über das Internet mit mindestens zwei Clients, einem Webserver und mindestens einem Datenbankserver zum Ablegen und Abrufen von Daten, wobei mindestens ein erster Client via Internet mittels des Webservers Daten auf dem Datenbankserver ablegt und wobei mindestens ein zweiter Client, vorzugsweise via Internet mittels des Webservers, die Daten abruft.

Für kleinere Kunden lohnt sich eine Investition in EDI allerdings nicht, da sich der finanzielle Aufwand zur Einführung von hard- und softwaremäßigen Lösungen in Relation zu den getätigten Aufträgen nicht rechnet. Demnach erfolgt die Übermittlung vieler kleiner Aufträge, für die aber ebenfalls die gleichen engen Zeitvorgaben wie für Großaufträge bestehen, oftmals in sehr schlechter Qualität. Im Allgemeinen erfolgt die Übermittlung dann nämlich handgeschrieben und per Fax, was dazu führt, dass unter Umständen wichtige Informationen fehlen oder aber auch dass Fehler bei der manuellen Eingabe der Daten dadurch passieren, dass die handgeschriebenen Daten nicht leserlich sind. Dies resultiert in einem Fehler anfälligen, qualitätsgefährdenden Prozess. Neben den durch die manuelle Eingabe entstehenden erhöhten Erstattungskosten entstehen zusätzlich durch die notwendigen Korrekturen, um Fehler zu
beheben, hohe Folgekosten. Alles in allem führt dies zu einer hohen Kundenzufriedenheit.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Verarbeitung von Daten über das Internet der einigungs genannten Art anzugeben, bei dem eine schnelle, einfache und kostengünstige Informationsübermittlung an einen und von einem Dienstleister, insbesondere einem Logistikdienstleister, möglich ist.

Erfindungsgemäß wird die voranstehende Aufgabe durch das Verfahren zur Verarbeitung von Daten über das Internet mit den Merkmalen des Patentanspruches 1 gelöst. Danach ist das in Rede stehende Verfahren zur Verarbeitung von Daten über das Internet derart ausgestaltet und weitergebildet, dass eine Zuordnung zwischen dem ersten Client und den auf dem Datenbanksystem abgelegten Daten sowie dem zweiten die abgelegten Daten abruftenden Client erfolgt und dass die Zuordnung der Daten des ersten Clients durch die Auswahl des zweiten Clients mittels des ersten Clients erfolgt.

In erfindungsgemäßer Weise ist erkannt worden, dass man in Abkehr zu der bisherigen Praxis Verfahren zur Verarbeitung von Daten über das Internet nicht allein nur
für Großkunden realisieren muss, sondern dass es auch kleineren Kunden möglich sein muss, Daten, insbesondere Auftragsdaten, standardisiert elektronisch zu übertragen. Die Übertragung von Daten über das Internet, wobei eine Zuordnung zwischen den jeweiligen Clients erfolgt, ermöglicht es auch kleineren Kunden, die nur einen allgemein üblichen Internetbrowser und -zugang zur Verfügung haben, die Vorteile der elektronischen Datenübermittlung zu nutzen. Durch diese Art der Datenübertragung werden zudem Fehlerquellen weitestgehend minimiert, die Qualität des Prozesses wird damit gesichert und eine schnelle sowie einfache Informationsübermittlung ist ermöglicht. Dies führt zu niedrigeren und allein transaktionsbezogenen Kosten.

Im Hinblick auf eine besonders große Unabhängigkeit des Dienstleisters könnte die Auswahl des zweiten Client mittels des ersten Clients auf festgelegte, insbesondere auf eine mittels des jeweiligen zweiten Clients freigeschaltete, Gruppe von zweiten Clients beschränkt sein. Der Dienstleister könnte so dem jeweiligen Kunden ermöglichen, Daten, insbesondere Aufträge, die für ihn bestimmt sind, zu erfassen. Dies würde dem jeweiligen Dienstleister ermöglichen, nur mit bestimmten Kunden bzw. Verladern Geschäfte abzuwickeln und so seinen Kundenkreis selbständig zu beschränken.

Im Rahmen einer individuellen Datenerfassung könnte die Datenmaske individuell auf den ersten und/oder den zweiten Client abgestimmt werden. Der Kunde und/oder der Dienstleister könnte somit besonders auf ihre Bedürfnisse abgestimmte Daten erfassen bzw. erfassen lassen.

Es wäre von weiterem Vorteil, wenn der Aufbau der Datenmaske mittels des jeweiligen Client verändert werden könnte. Dies würde es ermöglichen, dass die Daten-
maske und somit bspw. die Auftragsvorlage einfach und schnell auf jeweilige Veränderungen beim Kunden und/oder Dienstleister abgestimmt wird.

Im Rahmen einer ganz besonders bevorzugten Ausführung könnten die Daten der Datenbank auf dem Datenbankserver in mindestens eine weitere Datenbank auf mindestens einem weiteren Datenbankserver gespiegelt werden. Dadurch ist zum einen eine Sicherung der Daten erreicht, zum anderen wäre bei einer entsprechenden Ausgestaltung des Systems eine verbessernte Erreichbarkeit des Systems erlangt.

Die Daten könnten in besonders vorteilhafter Weise mittels eines EDI-Servers konvertiert werden, so dass eine nahezu medienbruchlose Weiterverarbeitung der Informationen erfolgen kann. Ein solcher Datenübertragungsstandard könnte bspw. ODETTÉ – Organization for Data Exchange by Teletransmission in Europe – sein,
wie er bspw. in der europäischen Automobilindustrie benutzt wird. Es könnte allerdings auch jeder andere Datenübertragungsstandart verwendet werden.

Im Rahmen einer besonders praktischen Ausführung könnten die Daten in Form eines Formulars, insbesondere in Form eines individuell gestaltbaren Formulars ausgegeben werden. Insbesondere wäre es dann möglich Auftragsbestätigungen, Rechnungen und dgl. besonders einfach und ohne zusätzlichen Aufwand zu erstellen.

Die Daten könnten mittels einer Software des zweiten Clients weiterbearbeitet werden, insbesondere in dessen Auftragserfassung überführt werden. Dies würde eine weitere Fehlerquelle dadurch ausschalten, dass keine manuelle Weiterverarbeitung der Daten erfolgt. Zusätzlich wäre somit die Änderung bereits erstellter Aufträge besonders einfach möglich.

Im Rahmen einer abermals sehr praktischen Ausgestaltung könnte die Kennzeichnung und/oder Teile der Daten und/oder die gesamten Daten in Form eines Labels ausgegeben werden. Diese Labels wären dann ganz einfach an den Objekten anbringbar, so dass keine zusätzlichen Fehler durch das manuelle Umtragen der Daten erfolgen.

Hinsichtlich einer komfortablen Track-and-Trace Funktion könnten die Bewegungsdaten mittels des ersten Clients und/oder des zweiten Clients, insbesondere mittels des jeweiligen Inhouseservers, abgerufen werden.

Die Daten könnten zudem durch Zusatzdaten, insbesondere durch Gefahrgutdaten, ergänzt werden. Dies würde die Erfassung von Daten abermals erleichtern.

Es könnte allerdings auch ein weiterer Dienstleister, vorzugsweise ein e-Shop, mittels eines dritten Clients zwischen Kunden und Dienstleister stehen, so dass die gesamten oder Teile der in die Datenmaske eingegebenen Daten an einen dritten Client via Internet mittels eines weiteren Webservers übermittelt werden. Damit wäre es für einen e-Shop möglich, direkt an einen Dienstleister in diesem Fall einen Lo-
gistikdienstleister angebunden zu werden und die Vorteile der elektronischen Datenübertragung zu nutzen, ohne dass zusätzlicher Erfassungsaufwand oder zusätzliche Fehler durch eine manuelle Erfassung entstehen. Zusätzlich könnten die Daten an einen weiteren Client übermittelt werden, der in diesem Fall der Verlader der Objekte sein könnte.

Im Rahmen einer Track-and-Trace Funktion könnten die gesamten und/oder Teile der Daten durch weitere Clients abgerufen werden, nämlich durch die Kunden des e-Shops. Im Hinblick auf eine besonders gute Datensicherheit könnten die Daten, die durch die weitere Clients abgerufen werden, durch den zweiten und/oder den dritten Client beschränkt werden. Somit ist gewährleistet, dass Kunden nur für sie relevante und bestimmte Daten abrufen können.

Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die dem Patentanspruch 1 nachgeordneten Patentansprüche und andererseits auf die nachfolgende Erläuterung bevorzugter Ausführungsbeispiele des erfindungsgemäßen Verfahrens zur Verarbeitung von Daten über das Internet anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung der bevorzugten Ausführungsbeispiele des erfindungsgemäßen Verfahrens anhand der Zeichnung werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigt die

Fig. 1 in einer schematischen Darstellung, ein Ausführungsbeispiel einer Systemstruktur zur Verwendung mit dem erfindungsgemäßen Verfahren zur Verarbeitung von Daten über das Internet,

Fig. 2 in einer schematischen Darstellung, ein weiteres Ausführungsbeispiel einer Systemstruktur zur Verwendung mit dem erfindungsgemäßen Verfahren,

Fig. 3 in einer schematischen Darstellung, den Datenfluss des Ausführungsbeispiels der Fig. 2 und
Das Verfahren zur Verarbeitung von Daten über das Internet umfasst, wie in Fig. 1 in einer Systemstruktur zur Verwendung mit dem Verfahren gezeigt, zwei Clients 1, 2, einen Webserver 3 und einen Datenbankserver 4 zum Ablegen und Abrufen von Daten. Mittels des ersten Clients 1 legt ein Kunde, nämlich ein Verlader, Daten via Internet unter Verwendung des Webserver 3 auf dem Datenbankserver 4 ab und mittels des zweiten Clients 2 werden dann die Daten via Internet mittels des Webserver 3 durch den Logistikdienstleister, nämlich eine Spedition, vornehmlich abgerufen.

In erfindungsgemäßer Weise erfolgt eine Zuordnung zwischen dem ersten Client 1, den auf dem Datenbankserver 4 abgelegten Daten und dem zweiten die abgelegten Daten abrufenden Client 2. Zudem findet eine Zuordnung der Daten des ersten Clients 1 durch die Auswahl des zweiten Clients 2 mittels des ersten Clients 1 statt. Dabei ist der Verlader ein Teil einer Gruppe von Verladern, die mittels jeweils eines ersten Clients 1 Daten vornehmlich ablegen und ist die Spedition ein Teil einer Gruppe von Sperditionen, die mittels jeweils eines zweiten Clients 2 Daten vornehmlich abrufen. Dies bedeutet, dass es eine Vielzahl von ersten und zweiten Clients 1, 2 gibt, die jeweils einem bestimmten Verlader bzw. einer bestimmten Spedition zugeordnet sind.

Die Auswahl des zweiten Clients 2 mittels des ersten Clients 1 ist auf eine feste mittels des jeweiligen zweiten Clients 2 freigeschaltete Gruppe von zweiten Clients 1 beschränkt. Dies ermöglicht der Spedition, nur mit bestimmten Kunden bzw. Verladern Geschäfte abzuwickeln und so ihren Kundenkreis selbst zu bestimmen. Die Daten werden mittels des ersten Clients 1 via Internet auf einer Website in einer Datenmaske erfasst. Die Datenmaske ist hierbei individuell auf die Spedition abgestimmt, so dass sie alle von ihr zur Auftragsabwicklung benötigten Informationen erhält. Der Aufbau der Datenmaske ist zudem mittels des zweiten Clients 2 durch die Spedition veränderbar, so dass die vom Verlader auszufüllenden Daten jederzeit angepasst werden können. Der Login des ersten Clients 1, die Datenübertragung vom ersten Client 1 zum Webserver 3, die Datenübertragung vom Webserver 3 zum Da-
tenbankserver 4 sowie zum zweiten Client 2 erfolgt mittels einer SSL-Verschlüsselung.

Die Daten in der Datenbank auf dem Datenbankserver 4 sind in eine weitere Datenbank auf einem weiteren Datenbankserver – hier nicht dargestellt – gespiegelt. Die Abfrage der Daten aus der Datenbank erfolgt mittels SQL.

Die Daten werden mittels eines EDI-Servers konvertiert und die Übertragung der Daten erfolgt mittels EDIFACT. Mittels des EDI-Servers 5 werden die Daten an die vom zweiten Client 2 verwendete Software angepasst, so dass die Daten direkt in die Auftragsabwicklung der Spedition übernommen werden. Die Übermittlung der Daten vom EDI-Server 5 zum zweiten Client 2 erfolgt mittels FTP – File Transfer Protocol –.

Zur Gewährleistung der Sicherheit der Daten ist der Webserver 3 mittels einer Firewall 7 und einer DMZ 8 geschützt.

Fig. 2 zeigt ein weiteres Ausführungsbeispiel einer Systemstruktur zur Verwendung mit dem erfindungsgemäßen Verfahren. Die Systemstruktur des in Fig. 1 gezeigten Ausführungsbeispiels ist hierbei derart erweitert, dass eine Track-and-Trace Funktion ausgeführt werden kann. Die Daten korrespondieren hierbei mit Aufträgen zur Bewegung von Objekten, in diesem Fall Waren. Dies bedeutet, dass der Verlader Waren mittels einer Spedition verschickt. Die Waren werden mittels einer Kennnummer gekennzeichnet, die in Form eines ausgegebenen Labels auf der Ware angebracht sind. Die Bewegungsdaten werden nun durch die Spedition derart erfasst, dass die Kennnummer und die jeweilige Station, an der die Ware sich befindet, mittels eines Mobiltelefons 6 via SMS und mittels des SMS Centers 10 des jeweiligen Mobilfunkanbieters an einen Kommunikationsserver 9 übermittelt werden. Die Bewegungsdaten werden sodann mittels des Kommunikationsservers 9 auf dem Datenbankserver 4 abgelegt und dabei derart aufbereitet, dass die Bewegungsdaten den jeweiligen Auftragsdaten zugeordnet werden können. Nun kann der Verlader mittels des ersten Clients 1 und die Spedition mittels des zweiten Clients 2 die Bewegungsdaten abrufen und ist somit jederzeit über den Aufenthaltsort der Waren informiert.
In Fig. 3 ist der Datenfluss des Ausführungsbeispiels der Fig. 2 gezeigt. Hierbei werden die Auftragsdaten mittels des Systems, d. h. des ersten Clients 1, des Webserver 3, des Datenbankservers 4 und des EDI-Servers 5, an den zweiten Client 2 übermittelt. Die Kennnummer der Ware wird dann mittels des zweiten Clients 2 an den Empfänger A der Ware übermittelt. Mittels dieser Kennnummer kann der Empfänger A Bewegungsdaten und somit den Aufenthaltsort der Ware via Internet vom Datenbankserver 4 abfragen. Die Spedition übermittelt nun nach Ablieferung der Ware mittels eines Mobiltelefons 6 via SMS und SMS Center 10 des Mobilfunkanbieters die neuen Bewegungsdaten an den Kommunikationsserver 9, wobei der Kommunikationsserver 9 die Bewegungsdaten aufbereitet und diese den Auftragsdaten zuordnet.

Fig. 4 zeigt den Datenfluss eines weiteren Ausführungsbeispiels des erfindungs gemäßen Verfahrens. Hierbei ist zwischen dem Kunden und Dienstleister ein e-shop zwischengeschaltet. Es erfolgt somit ein sogenanntes „Deep-Linking“. Der Kunde, der den e-Shop besucht, übermittelt mittels des ersten Clients 1 nunmehr via Internet sowie mittels eines weiteren – hier nicht dargestellten – Webservers Daten an einen dritten Client 11. Eine Track-and-Trace Funktion erfolgt hierbei über den dritten Client 11, nämlich den e-Shop. Die auf der Webseite des e-Shops erfassten Daten werden nun automatisch an einen Shopbetreiber B übermittelt, der die Warenwirtschaft ausführt. Teile der Daten, nämlich die für die Spedition relevanten Daten, werden mittels des dritten Clients 11 und/oder über den Shopbetreiber B über das bereits in Fig. 1 und Fig. 2 beschriebene Verfahren übermittelt.

Hinsichtlich weiterer Details wird zur Vermeidung von Wiederholungen auf die allgemeine Beschreibung verwiesen.

Schließlich sei ausdrücklich darauf hingewiesen, dass die voranstehend beschriebenen Ausführungsbeispiele lediglich zur Erörterung der beanspruchten Lehre dienen, diese jedoch nicht auf die Ausführungsbeispiele einschränken.
Patentansprüche

1. Verfahren zur Verarbeitung von Daten über das Internet mit mindestens zwei Clients (1, 2), einem Webserver (3) und mindestens einem Datenbankserver (4) zum Ablegen und Abrufen von Daten, wobei mindestens ein erster Client (1) via Internet mittels des Webserver (3) Daten auf dem Datenbankserver (4) ablegt und wobei mindestens ein zweiter Client (2), vorzugsweise via Internet mittels des Webserver (3), die Daten abruft, durch gekennzeichnet, dass eine Zuordnung zwischen dem ersten Client (1) und den auf dem Datenbankserver (4) abgelegten Daten sowie dem zweiten die abgelegten Daten abrufenden Client (2) erfolgt und dass die Zuordnung der Daten des ersten Clients (1) durch die Auswahl des zweiten Clients (2) mittels des ersten Clients (1) erfolgt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Auswahl des zweiten Client (2) mittels des ersten Clients (1) auf festgelegte, insbesondere auf eine durch den jeweiligen zweiten Client (2) frei geschaltete, Gruppe von ersten Clients (1) beschränkt ist.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Daten auf mindestens einer Webseite mittels mindestens einer Datenmaske mittels des ersten Clients (1) erfasst werden.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Datenmaske individuell auf den ersten und/oder zweiten Client (1, 2) abgestimmt wird.

5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Aufbau der Datenmaske mittels des jeweiligen Clients (1, 2) verändert wird.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Übertragung der Daten an den zweiten Client (2) automatisch erfolgt.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass
der Login und/oder die Datenübertragung verschlüsselt, vorzugsweise mittels einer SSL-Verschlüsselung, erfolgt.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Daten in der Datenbank auf dem Datenbankserver (4) in mindestens eine weitere Datenbank auf mindestens einem weiteren Datenbankserver gespiegelt werden.

9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Abfrage der Daten aus der Datenbank mittels SQL erfolgt.

10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Daten mittels eines EDI-Servers (5) konvertiert werden.

11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Übertragung der Daten mittels EDIFACT erfolgt.

12. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass mittels des EDI-Servers (5) die Daten an die vom zweiten Client (2) verwendete Software angepasst werden.

14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Daten oder Teile der Daten in Form eines Formulars, insbesondere eines individuell gestaltbaren Formulars, ausgeben werden.

15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Daten mittels der Software des zweiten Clients (2) weiterverarbeitet werden, insbesondere in dessen Auftragserfassung überführt werden.

16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass
die Daten mit Aufträgen zur Bewegung von Objekten korrespondieren.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Objekte mittels einer Kennzeichnung, vorzugsweise eines Barcodes, einer Kennnummer oder dergleichen, gekennzeichnet werden.

18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Kennzeichnung und/oder Teile der Daten und/oder die gesamten Daten in Form eines Labels ausgegeben werden.

19. Verfahren nach einem der Ansprüche 16 bis 18, dadurch gekennzeichnet, dass die ursprünglich abgelegten Daten durch Daten, die mit den Bewegungen der Objekte korrespondieren, ergänzt werden.

20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Bewegungsdaten mittels einer Erfassungseinrichtung, vorzugsweise einem Scanner, einem Mobiltelefon (6) oder dergleichen, erfasst werden.

21. Verfahren nach einem der Ansprüche 16 bis 20, dadurch gekennzeichnet, dass die Bewegungsdaten mittels eines Kommunikationsservers (9) auf dem Datenbanksystem (4) abgelegt werden.

22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass der Kommunikationsserver (9) die Bewegungsdaten aufbereitet und/oder die Bewegungsdaten den betreffenden Daten, die mit einem Auftrag korrespondieren, zuordnet.

23. Verfahren nach einem der Ansprüche 16 bis 22, dadurch gekennzeichnet, dass die Bewegungsdaten mittels des ersten Clients (1) und/oder des zweiten Clients (2) abgerufen werden.

24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass der Webserver (3) mittels einer Firewall (7) und/oder einer DMZ (8) geschützt wird.

25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, dass
eine automatische Überprüfung und/oder Vervollständigung der Daten mittels mindestens einer weiteren Datenbank erfolgt.

26. Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass die Daten durch Zusatzdaten, insbesondere durch Gefahrgutdaten, ergänzt werden.

27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, dass mittels des ersten und/oder des zweiten Clients (2) Statistiken über die Daten und/oder Teile der Daten abgerufen werden.

28. Verfahren nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, dass die gesamten oder Teile der in die Datenmaske eingegebenen Daten des ersten Clients (2) an einen dritten Client (11) via Internet mittels eines weiteren Webservers übermittelt werden.

29. Verfahren einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, dass die gesamten und/oder Teile der Daten durch weitere Clients abgerufen werden.

30. Verfahren nach Anspruch 29, dadurch gekennzeichnet, dass die Daten, die durch weitere Clients abgerufen werden, durch den ersten und/oder zweiten Client (1, 2) beschränkt werden.