
(12) United States Patent
Coldicott et al.

USOO8589439B2

(10) Patent No.: US 8,589.439 B2

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

(56)

PATTERN-BASED AND RULE-BASED DATA
ARCHIVE MANAGER

Inventors: Peter A. Coldicott, Austin, TX (US);
Mei Y. Selvage, Pocatello, ID (US);
Xiao Fend Tao, Shanghai (CN)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 213 days.

Appl. No.: 12/630,997

Filed: Dec. 4, 2009

Prior Publication Data

US 2011 FO137871 A1 Jun. 9, 2011

Int. C.
G06F 7700 (2006.01)
U.S. C.
USPC .. 707f783
Field of Classification Search
USPC .. 707/783,758,611
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

8,260,813 B2 9, 2012 Coldicott et al.
2002/0138301 A1 9, 2002 Karras et al.
2003.0193994 A1 10, 2003 Stickler
2004, OO15890 A1 1/2004 Wong et al.
2004/0096729 A1 5/2004 Tanaka et al.
2006,0009942 A1 1/2006 Keck et al.
2006/0143231 A1* 6/2006 Boccasam et al. TO7 104.1
2006.0167929 A1 7/2006 Chakraborty et al.
2007/0276883 A1* 11/2007 Kumar et al. 707,204
2007/0283417 A1 12/2007 Smolen et al.

304

318 Rule-based data archive manager
Fact Meta-data

(45) Date of Patent: Nov. 19, 2013

2008/0263007 A1 10, 2008 Schmidt
2008/0275829 A1* 11/2008 Stull et al. 7O6/17
2009/0249290 A1 10, 2009 Jenkins et al.
2010/0070538 A1* 3/2010 Spinelli et al. 707/8O2
2011 0137869 A1 6, 2011 Coldicott et al.
2011/O137872 A1 6, 2011 Coldicott et al.

FOREIGN PATENT DOCUMENTS

WO 201OO68443 4/2009

OTHER PUBLICATIONS

“Reference Model for an Open Archival Information System
(OAIS)”. Consultative Committee for Space Data Systems, CCSDS
650,0-B-1, Blue Book, Issue 1, Jan. 2002, 148 pages.
International Search Report and Written Opinion for International
Application No. PCT/EP2010/068443 dated Mar. 21, 2011.
Smith et al., “Creating Preservation-Ready Web Resources”, D-Lib
Magazine, ISSN 1082-98.73, Jan./Feb. 2008, vol. 14, No. 12, 11
pageS.
Fraternali et al., “Model-Driven Development of Web Applications:
The Autoweb System”, ACM Transactions on Information Systems,
vol. 28, No. 4, Oct. 2000, pp. 323-382.

(Continued)

Primary Examiner — Truong Vo
(74) Attorney, Agent, or Firm — Mark C. Vallone; Keohane
& D'Alessandro, PLLC

(57) ABSTRACT

The present invention relates to a method or system of data
archival using a pattern-based and rule-based data archive
manager for a flexible, generic archive solution. The method
and system allow for the user to create rules and allow for the
system to archive based upon those rules input by the user and
to select data to be archived against the facts about the data.
The system has a rule based data archive manager having a
pattern matcher, a decision scheduler and a rule executor, a
fact meta-data storage for storing facts, and a rule library
storage for storing user input data about rules.

14 Claims, 6 Drawing Sheets

1 - 300

Component

Pattern Matcher

3 C
Rule Library

Rule Selector

Data
Archive
Engine

Sequencing
Component N 322

- 320
Submitter

Prioritizor

Decision
Scheduler

Rule
Executor

US 8,589.439 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Chen et al., “A Semantic Web Service Based Approach for Aug
mented Provenance”. Proceedings of the 2006 IEEE/WC/ACM
International Conference on Web Intelligence.
Yusuf et al., “Implement model-driven development to increase the
business value of your IT system”, Jan. 24, 2006, http://www.ibm.
com/developerworks/librarylar-mddlf.
Lawson, “DB2 Data Test Data Generation and Archiving. Two
Underappreciated Arts', ftpftp://ftp. software.ibm.com/software/
data/db2imstools, whitepapers/lawson-testarchiving-reoprt.pdf.
Final Office Action dated Jan. 30, 2012 for U.S. Appl. No.
12/631,088, filed Dec. 4, 2009.

Final Office Action dated Oct. 19, 2011 for U.S.
12/631,014, filed Dec. 4, 2009.
Truong V. Vo, USPTO Office Action, U.S. Appl. No.
Mail Date Jan. 27, 2012, 11 pages.
Truong V. Vo, USPTO Office Action, U.S. Appl. No.
Mail Date Apr. 16, 2012, 9 pages.
Truong V. Vo, USPTO Office Action, U.S. Appl. No.
Mail Date Jul. 20, 2012, 17 pages.
Truong V. Vo, USPTO Office Action, U.S. Appl. No.
Mail Date Oct. 20, 2011, 18 pages.
Truong V. Vo, USPTO Office Action, U.S. Appl. No.
Mail Date Jan. 30, 2012, 13 pages.

* cited by examiner

Appl. No.

12/631,014,

12/631,014,

12/631,014,

12/631,088,

12/631,088,

US 8,589.439 B2 Sheet 1 of 6 Nov. 19, 2013 U.S. Patent

US 8,589.439 B2 Sheet 3 of 6 Nov. 19, 2013 U.S. Patent

US 8,589.439 B2 Sheet 5 of 6 Nov. 19, 2013 U.S. Patent

US 8,589.439 B2 Sheet 6 of 6 Nov. 19, 2013 U.S. Patent

| FIZIEW,
909

879

US 8,589,439 B2
1.

PATTERN-BASED AND RULE-BASED DATA
ARCHIVE MANAGER

FIELD OF THE INVENTION

The present invention relates to a method or system of data
archival using a pattern-based and rule-based data archive
manager for a flexible, generic archive Solution. It provides a
data archiving solution by using a pattern-based and rule
based data archive manager for a flexible, generic archive
solution. The method and system allow for the user to create
rules and allow for the system to archive based upon those
rules input by the user and to select data to be archived against
the facts about the data. The system has a rule based data
archive manager having a pattern matcher, a decision sched
uler and a rule executor, a fact meta-data storage for storing
facts, and a rule library storage for storing user input data
about rules.

BACKGROUND OF THE INVENTION

Data archives create huge challenges to enterprises. Regu
lations such as Sarbanes-Oxley and HIPAA mandate enter
prises proactively manage the end-to-end data life cycle from
data creation to archive. The Sarbanes-Oxley Act of 2002,
also known as the “Public Company Accounting Reform and
Investor Protection Act' (in the Senate) and “Corporate and
Auditing Accountability and Responsibility Act' (in the
House) and commonly called Sarbanes-Oxley, Sarbox or
SOX, is a United States federal law enacted on Jul. 30, 2002,
as a reaction to a number of major corporate and accounting
scandals including those affecting Enron, Tyco International,
Adelphia, Peregrine Systems and WorldCom. The Health
Insurance Portability and Accountability Act (HIPAA) was
enacted by the U.S. Congress in 1996. According to the
Centers for Medicare and Medicaid Services (CMS) website,
Title I of HIPAA protects health insurance coverage for work
ers and their families when they change or lose their jobs.
Today, there are certain data archive tools that define data
storage management backup policies. They are coarse
grained and fixed rules, e.g., what is the storage pool target,
what to do if file is in use, how long to keep backup versions
and archive copies. These rules are pre-defined and cannot be
customized. Current data archive solutions are not flexible
enough to fulfill a variety of data archive requirements.
One of the primary methods to archive data is for a user to

select, move and remove data manually. For instance, data
base administrators may issue SQL queries. (Structured
Query Language is a database computer language designed
for managing data in relational database management sys
tems (RDBMS) or use generic database utilities to search and
select against relational databases and save the result as files,
and then send via FTP to another location. (File Transfer
Protocol (FTP) is a standard network protocol used to
exchange and manipulate files over a TCP/IP based network,
such as the Internet.)) This method may be simple and doesn’t
create large, upfront cost, but it has disadvantages. Specifi
cally, it creates high risk of archiving the wrong data or not
archiving enough data and frequently leads to data integrity
issues, so the manual archive method is of potential damage to
an enterprise and even result in an enterprise disaster.

Other data archive technologies usually provide a config
urable console and programmable tool for data archive. How
ever, these products also have limitations:

These tools may have limited data source and location
Support. Most of these tools may only Support specific
relational databases (such as IBM(R) DB2(R), Oracle,

10

15

25

30

35

40

45

50

55

60

65

2
etc.), and just archive to tables or flat files. (DB2 is one
of the families of relational database management sys
tem (RDBMS) software products within IBM's broader
Information Management Software line. DB2 is a reg
istered trademark of International Business Machines
Corporation. The Oracle Database (commonly referred
to as Oracle RDBMS or simply Oracle) consists of a
RDBMS produced and marketed by Oracle Corpora
tion. Oracle(R) is a registered trademark of Oracle Cor
poration.).

These tools may have limited data type support. Most of
them only support common data types in relational data
base.

Some archive tools may just simply copy documents (files)
just like a backup system, never consider business logic.

These tools may not be flexible enough to change archive
rules.

None of the prior art systems use model-driven develop
ment (MDD) to model data archive specifications, then
transform specifications into executable code.

A rule-based approach has proven itself as an effective way
to deal with the problems resulting from frequent changes
businesses need to comply with. The approach has been lever
aged at the generic data archive framework for data archive
business rules definition, which makes the framework more
flexible and adaptive to various requirements.

Therefore, there is a need to solve the problems associated
with data archive technology as described above.

SUMMARY OF THE INVENTION

The present invention provides a system and at least one
method for data archiving. It provides a method and system of
data archival using a pattern-based and rule-based data
archive manager for a flexible, generic archive solution. The
method and system allow for a user to create rules and allow
for the system to archive based upon those rules input by the
user and to select data to be archived against the facts about
the data. The system may have a rule based data archive
manager having a pattern matcher, a decision scheduler and a
rule executor, a fact meta-data storage for storing facts, and a
rule library storage for storing user input data about rules.
The data archival system of the present invention provides

for the operation of moving data from original data repository
into archive data repository. The present invention helps
enterprise applications define and implement a flexible data
archive flow though dynamic configuration. The rule mecha
nism is taken into consideration and designed into data
archive meta-model, as key elements of the meta-model,
things like “archive conditions”, “schedule”, “Evaluation',
“Expression, etc., therefore it’s more flexible. The present
invention defines when and how to archive the data, what the
business rules are. It is much more fine grained. It offers a
comprehensive solution to allow end users to specify fine
grained, business-rule driven and flexible rules.
The present invention may include a method for flexible

data archival using a model-driven approach in a system
having a data archive engine, a rule based data archive man
ager having a pattern matcher, a decision scheduler and a rule
executor, a fact meta-data storage and a rule library storage,
the method having Such steps as selecting rules based upon
input data from the rule library storage, routing the rules to the
decision scheduler, Submitting the rules to the rule executor,
and archiving data archive tasks based upon the rules.
A computer system of the present invention for flexible

data archival using a rule-driven approach may have a rule
based data archive manager having program instructions for

US 8,589,439 B2
3

archiving data based upon data, a pattern matcher having
program instructions for matching patterns, a decision sched
uler having program instructions for scheduling decisions, a
rule executor having program instructions for executing rules,
a fact meta-data storage having storage and program instruc
tions for storing facts and a rule library storage having storage
and program instructions for storing user input data about
rules.
The present invention may comprise a computer program

product for implementing a method in a system for flexible
data archival, the computer program product comprising a
computer readable storage media, program instructions to
select rules based upon input data from the rule library stor
age, program instructions to route the rules to a decision
scheduler, program instructions to Submit the rules to a rule
executor and program instructions to archive data archive
tasks based upon the rules, and wherein the program instruc
tions are stored on the computer readable storage media.
One other aspect of the present invention may be a method

for deploying a computing infrastructure comprising inte
grating computer-readable code into a computing system,
wherein the code in combination with the computing system
is capable of performing a process for archiving data, the
process may have the steps of selecting rules based upon input
data from the rule library storage, routing the rules to the
decision scheduler, submitting the rules to the rule executor
and archiving data archive tasks based upon the rules.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of this invention will be more
readily understood from the following detailed description of
the various aspects of the invention taken in conjunction with
the accompanying drawings in which:

FIG. 1 shows a data processing system suitable for imple
menting an embodiment of the present invention.

FIG. 2 shows a network for implementing an embodiment
of the present invention.

FIG.3 illustrates an embodiment of a system of the present
invention.

FIG. 4 illustrates a method for implementing the system
and method of the present invention.

FIG.5 illustrates another embodiment of the method of the
present invention.

FIG. 6 illustrates a sample generated data archive specifi
cation model.
The drawings are not necessarily to Scale. The drawings are

merely schematic representations, not intended to portray
specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention comprises a system and method for
archiving data. The system and method of the present inven
tion consider data archiving on enterprise business objects
level, not on database records, tables and files level. Data
archiving is business-oriented and different enterprise appli
cations have different data archive rules. It is very important
to have a flexible, generic end-to-end data archive Solution
that is business-oriented, independent from individual appli
cations, databases and systems.
Some of the advantages of using the system and method of

the present invention are the following. It allows for a user to
create rules and allow for the system to archive based upon

10

15

25

30

35

40

45

50

55

60

65

4
those rules input by the user and to select data to be archived
against the facts about the data. The system may have a rule
based data archive manager having a pattern matcher, a deci
sion scheduler and a rule executor, a fact meta-data storage for
storing facts, and a rule library storage for storing user input
data about rules.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module' or
“system’. Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable storage medium(s) having com
puter readable program code embodied thereon.
Any combination of one or more computer readable stor

age medium(s) may be utilized. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, or semiconductor system, appara
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com
puter readable storage medium would include the following:
a portable computer diskette; a hard disk; a random access
memory (RAM); a read-only memory (ROM); an erasable
programmable read-only memory (EPROM or Flash
memory); a portable compact disc read-only memory (CD
ROM); an optical storage device, a magnetic storage device;
or any Suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

Program code embodied on a computer readable storage
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wire line, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any com
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. Java is a registered trade
mark of Sun Microsystems. Smalltalk is an object-oriented,
dynamically typed, reflective programming language. C++ is
a statically typed, free-form, multi-paradigm, compiled, gen
eral-purpose programming language. In the latter scenario,
the remote computer may be connected to the user's com
puter through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the

US 8,589,439 B2
5

processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable storage medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, Such that the
instructions stored in the computer readable storage medium
produce an article of manufacture including instructions
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara
tus or other devices to produce a computer implemented
process Such that the instructions which execute on the com
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 1 shows a system 100 that may have a data processing
system 102 suitable for implementing an embodiment of the
present invention. Data processing system 102 may have a
computer system 104 connected to a display 120, external
device(s) 116 or other peripheral devices for providing a user
an interface to computer system 104 being connected via I/O
interface(s) 114. Computer system 104 may have an internal
bus 112 for providing internal communication between Such
modules as processing unit 106, I/O interface(s) 114, network
adapter 138 and memory 110. Memory 110 may have random
access memory (RAM) 130, cache 132 and storage system
118 or other forms of memory. RAM may take the form of
integrated circuits that allow stored data to be accessed in any
order, that is, at random. Storage system 118 may take the
form of tapes, magnetic discs and optical discs and are gen
erally used for long term storage of data. Cache 132 is a
memory for storing a collection of data—duplicating original
values stored elsewhere or computed earlier, where the origi
nal data is expensive to fetch (owing to longer access time) or
to compute, compared to the cost of reading the cache. In
other words, a cache is a temporary storage area where fre
quently accessed data can be stored for rapid access. Once the
data is stored in the cache, it can be used in the future by
accessing the cached copy rather than re-fetching or re-com
puting the original data. A cache has proven to be extremely
effective in many areas of computing because access patterns
in typical computer applications have locality of reference.

FIG. 2 shows a network system 200 for implementing an
embodiment of the present invention. Network system 200
may have a network 210 or group of interconnected comput
ers. Such as data processing units 202, 204, via network
connections 206, 208 and may be of the type, e.g., a local area
network (LAN) or internetwork. Printer 212 and storage 214
may be connected to network 210 via network connections
216, 218. Basic network components may include network
interface cards, repeaters, hubs, bridges, Switches and routers.
Data processing units 202, 204 may be computers such as
web servers or personal computers, or other user agents. A
web server generally has hardware and software that are
responsible for accepting HTTP requests from clients (user
agents such as web browsers), and serving them HTTP
responses along with optional data contents, which usually
are web pages such as HTML documents and linked objects
(images, etc.). In this document, the term “web browser' is

10

15

25

30

35

40

45

50

55

60

65

6
used but any application for retrieving, presenting, and tra
versing information resources on the Internet must be con
sidered.
FIG.3 illustrates a rule based data archive manager 302 in

a computer system 300 having a fact meta-data database 304
and a rule library database 306. Rule based data archive
manager 302 may have a pattern matcher 308 that may have
program instructions to pattern match based upon rules in a
rule based data archive manager having a pattern matcher, a
decision scheduler 310 that may have program instructions to
schedule decisions and a rule executor 312 that may have
program instructions to execute rules. Pattern matcher 308,
decision scheduler 310 and rule executor 312 constitute the
rule-based data archive manager 302 of the generic data
archive framework.

Pattern matcher 308 is responsible for the rule selection
based on input data in the rule library storage 306 and routing
the matched rules to decision scheduler 310. Decision sched
uler 310 prioritizes all the matched rules based on facts stored
in fact meta-data storage 304 and may have program instruc
tions to store meta-data facts in the fact meta-data storage, and
then submits them (via submitter 324) to rule executor 312 in
sequence. Submitter 324 may have program instructions to
Submit the matched rules to the rule executor in sequence.
Rule executor 312 completes data archive tasks via data
archive engine 314 in terms of rule definition and may have
program instructions to select rules based on the rules in the
rule library storage. Rule executor 312 may have program
instructions to store user input data about rules in the rule
library storage and program instructions to match the rules
with the facts and program instructions to route matched rules
to the decision scheduler. Using a pattern- and rule-based data
archive manager (module)302, users only need to define rules
and facts based on business requirements and may have pro
gram instructions to prioritize the matched rules based upon
facts stored in fact meta-data storage. A generic data archive
framework provides generic rule templates and fact descrip
tion templates for users. The framework may have program
instructions to archive data in terms of rule definition.
The benefits of using pattern- and rule-based data archive

manager may be as follows:
it may provide template and rule-based approach can

handle changing business requirements and regulations;
it may provide fine-grained rules allows accurate and com

plex rule specifications;
it may be flexible and adoptable:
no programming may be required and may be based on

patterns and rules, users only need to complete the data
archive configuration and use the generic data archive frame
work to implement a data achieve application for their enter
prise applications; and

it may mitigate risks for regulatory compliance.
A data relationship diagram (shown in FIG. 4) for rule

configuration in the framework includes rule data, fact data
and pattern data. Rule data consists of rule template 406
(RuleTemplate) and rule repository 412 (RuleRepository).
Rule template 406 includes filter conditions and criteria of
original data (RuleName, Description, etc.), archive data (is
ArchiveData) and out-of-date data. Rule template 406 also
contains flags of whether or not removing original data (Cri
terionForDeletedSourceData), archiving data (Criterion
ForArchiveData) and purge out-of-date data (IsPurgeEx
piredDate). Rule repository 412 consists of sets of data
archive rules. Pattern matcher queries and matches rules
through obtaining the handle of the rule repository 412. Fact
data consists of table information template 408 (TableIn
foTemplate) and fact template 410 (FactTemplate). Table

US 8,589,439 B2
7

information template 408 includes two pieces of key infor
mation, which is table name and table description. Fact tem
plate 410 defines information about data source and data
destination, and a set of specific table information. Pattern
matcher (308 from FIG. 3) retrieves fact data through fact
template 410. Pattern template 404 consists of pattern tem
plate (PatternTemplate) and pattern repository 402 (Pattern
Repository). Pattern template 404 defines the relationship
between fact data and rules. Pattern matcher 308 attaches
corresponding data archive rules to specific data needed
archiving in terms of the relationship, and then sends the
corresponding information to decision scheduler 310. Deci
sion scheduler 310 prioritizes the rule tasks and submits them
to rule tasks to rule executor 312 for actual archive operation.
Pattern repository 402 consists of a set of patterns. Pattern
matcher 308 retrieves corresponding patterns through the
handle of pattern repository 402.

FIG. 5 illustrates an embodiment of a method 500 of the
present invention that starts at 502. At 504, rules may be
selected based upon input data from the rule library storage.
At 506, rules are matched based upon the input data from the
rule library storage. At 508, the matched rules are routed to
the decision scheduler. At 510, all of the matched rules are
prioritized based on facts stored in fact meta-data storage. At
512, the prioritized matched rules are sequenced. At 514, the
sequenced prioritized matched rules are submitted to the rule
executor. At 516, data archive tasks are being archived and
ends at 518.

FIG. 6 illustrates a simple but typical scenario 600 to dem
onstrate the process of capturing rules while archive multi
tables and files with corresponding relationships. There are 3
objects that need to be archived in this scenario: Table1 610
and Table2 612 are stored in a relational database; file1 may
be stored in a file system such as in a system of FIG. 1. The
file1 may be a type of files from business perspective, e.g., a
set of audit trail log files. Table2612 contains the absolute file
path of file1.

Below are the archive requirements, which are business
rules:

1. all data in Table2 612 should be archived periodically:
2. only those records in Table1 610 can be archived, the

value of which in the field “cola” (Attr2 624,
attriName="cola), are no less than the maximum value of the
field “colb” (Attr1632, attriName="colb) in Table2612:

3. the information of database management system
(DBMS) for Table1 610 and Table2 612 in Location 1618,
Location 2 620, Location 3 630, Location 4 628 as follows:

Server: 9.181.106.193:9001; and
User/Password: dbadmin/dbadmin
4. file1 should be archived, once an absolute file path

appears in a record of the field “filepath of Table2 612; and
5. all data may be archived once every “30 days’ periodi

cally after “2007-01-01” as shown in schedule1608.
The generated data archive specification model in FIG. 6

reflects business rules.
"Objectset as in Archive element 602 is used to represent

data to be archived. It contains all necessary information and
attributes to describe data;

ArchiveConditions” (as in archive element 602 and its
reference elements contain the attributes to model data selec
tion) conditions in archive element 602.

"Schedule' (as in schedule 1608) defines when to perform
data archive behavior.

“Location’ (Location 1618, Location 2 620. Location 3
630, Location 4628) is to model the data source and archive
repository and model where to perform data archive.

5

10

15

25

30

35

40

45

50

55

60

65

8
“Archive' 602 is the root element of this meta-model. It

represents a data archive application. It refers to all to-be
archived data, the archive rules (i.e., Schedule and condi
tions). The archive behavior is directed to be "purge', i.e., del.
and “Schedule1: start time is “2007-01-01 at schedule 608:
interval is every 30 days.
As used herein, it is understood that the terms “program

code' and "computer program code' are synonymous and
mean any expression, in any language, code or notation, of a
set of instructions intended to cause a computing device hav
ing an information processing capability to perform a particu
lar function either directly or after either or both of the fol
lowing: (a) conversion to another language, code or notation;
and/or (b) reproduction in a different material form. To this
extent, program code can be embodied as one or more of an
application/software program, component software/a library
of functions, an operating system, a basic I/O System/driver
for a particular computing and/or I/O device, and the like.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard
ware and computer instructions.
The foregoing description of various aspects of the inven

tion has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and obviously, many
modifications and variations are possible. Such modifications
and variations that may be apparent to a person skilled in the
art are intended to be included within the scope of the inven
tion as defined by the accompanying claims.
What is claimed is:
1. A method for flexible data archival using a model-driven

approach, the method comprising:
a computer system pattern-matching input data against a

set of stored rules that define a set of archive conditions
that contain attributes to model data selection and an
archive schedule that defines when to perform a data
archive behavior, wherein the input data comprises a set
of archive requirements and a set of facts about archive
data, wherein the set of archive requirements and the set
of facts about archive data are based on business require
ments of an enterprise application, and wherein the set of
facts about archive data is stored in meta-data;

the computer system selecting one or more rules from the
set of stored rules based on a result of the pattern-match
ing of the input data against the set of stored rules;

the computer system prioritizing the selected one or more
rules from the set of stored rules based on the set of facts
about archive data;

the computer system routing the selected one or more rules
from the set of stored rules to a scheduler;

US 8,589,439 B2

the computer system Submitting the selected one or more
rules from the set of stored rules to a rule executor; and

the computer system archiving data archive tasks based
upon the selected one or more rules from the set of stored
rules.

2. The method as defined in claim 1 further comprising:
the computer system matching the selected one or more

rules from the set of stored rules with one or more facts
of the set of facts about archive data; and

the computer system Submitting the matched one or more
rules from the set of stored rules to the scheduler.

3. The method as defined in claim 1 further comprising:
the computer system sequencing the prioritized one or

more rules from the set of stored rules; and
wherein the Submitting comprises Submitting, to the rule

executor, the sequenced and prioritized set of rules.
4. The method as defined in claim 3 further comprising the

computer system archiving data archive tasks based upon the
prioritized one or more rules from the set of rules and the
input data.

5. A computer system for flexible data archival using a
model-driven approach, the computer system comprising:

a CPU, a computer readable memory and a computer read
able storage media;

program instructions, stored on the computer readable stor
age media for execution by the CPU via the computer
readable memory, to pattern match input data against a
set of stored rules that define a set of archive conditions
that contain attributes to model data selection and an
archive schedule that defines when to perform a data
archive behavior, wherein the input data comprises a set
of archive requirements and a set of facts about archive
data, wherein the set of archive requirements and the set
of facts about archive data are based on business require
ments of an enterprise application, and wherein the set of
facts about archive data is stored in meta-data;

program instructions, stored on the computer readable stor
age media for execution by the CPU via the computer
readable memory, to select one or more rules from the
set of stored rules based on a result of pattern matching
the input data against the set of stored rules;

program instructions, stored on the computer readable stor
age media for execution by the CPU via the computer
readable memory, to prioritize the selected one or more
rules from the set of stored rules based on the set of facts
about archive data;

program instructions, stored on the computer readable stor
age media for execution by the CPU via the computer
readable memory, to execute the selected one or more
rules from the set of stored rules;

program instructions, stored on the computer readable stor
age media for execution by the CPU via the computer
readable memory, to store meta-data facts in a storage;
and

program instructions, stored on the computer readable stor
age media for execution by the CPU via the computer
readable memory, to store the input data in a storage.

6. The system as defined in claim 5 further comprising
program instructions, stored on the computer readable Stor
age media for execution by the CPU via the computer read
able memory, to match the selected one or more rules from the
set of stored rules with one or more facts of the set of facts
about archive data; and

program instructions, stored on the computer readable stor
age media for execution by the CPU via the computer
readable memory, to route, to a scheduler, the matched

5

10

15

25

30

35

40

45

50

55

60

65

10
one or more rules from the set of stored rules matched
with the one or more facts of the set of facts about
archive data.

7. The system as defined in claim 6 further comprising
program instructions, stored on the computer readable Stor
age media for execution by the CPU via the computer read
able memory, to prioritize, based upon facts stored in meta
data, the one or more rules from the set of stored rules
matched with the one or more facts of the set of facts about
archive data.

8. The system as defined in claim 7 further comprising
program instructions, stored on the computer readable Stor
age media for execution by the CPU via the computer read
able memory, to Submit, to a rule executor, in sequence, the
prioritized one or more rules from the set of stored rules
matched with the one or more facts of the set of facts about
archive data.

9. The system as defined in claim 6 further comprising
program instructions, stored on the computer readable Stor
age media for execution by the CPU via the computer read
able memory, to archive data archive tasks of the input data
based on the selected one or more rules from the set of stored
rules matched with the one or more facts of the set of facts
about archive data.

10. A computer program product for flexible data archival,
the computer program product comprising:

a computer readable storage device storing computer pro
gram instructions, the computer program instructions
being executable by a computer system, the computer
program instructions including:

program instructions to pattern-match input data against a
set of stored rules that define a set of archive conditions
that contain attributes to model data selection and an
archive schedule that defines when to perform a data
archive behavior, wherein the input data comprises a set
of archive requirements and a set of facts about archive
data, wherein the set of archive requirements and the set
of facts about archive data are based on business require
ments of an enterprise application, and wherein the set of
facts about archive data is stored in meta-data;

program instructions to select one or more rules from the
set of stored rules based on a result of pattern-matching
the input data against the set of stored rules;

program instructions to prioritize the selected one or more
rules from the set of stored rules based on the set of facts
about archive data;

program instructions to route the selected one or more rules
from the set of stored rules to a scheduler;

program instructions to Submit the selected one or more
rules from the set of stored rules to a rule executor; and

program instructions to archive data archive tasks based
upon the selected one or more rules from the set of stored
rules.

11. The computer program product as defined in claim 10
wherein the stored computer program instructions further
include:

program instructions to match the selected one or more
rules from the set of stored rules with one or more facts
of the set of facts about archive data; and

program instructions to Submit the matched one or more
rules from the set of stored rules to the scheduler.

12. The computer program product as defined in claim 10
wherein the stored computer program instructions further
include:

US 8,589,439 B2
11

program instructions to sequence the prioritized one or
more rules from the set of stored rules prioritized based
on the set of facts about archive data stored in meta-data;
and

wherein the program instructions to Submit comprise pro
gram instructions to Submit, to the rule executor, the
sequenced and prioritized set of stored rules.

13. A method comprising a computing system integrating
computer-readable code, wherein the code in combination
with the computing system is capable of performing a process
for archiving data, the process comprising:

pattern-matching input data against a set of stored rules that
define a set of archive conditions that contain attributes
to model data selection and an archive schedule that
defines when to perform a data archive behavior,
wherein the input data comprises a set of archive
requirements and a set of facts about archive data,
wherein the set of archive requirements and the set of
facts about archive data are based on business require
ments of an enterprise application, and wherein the set of
facts about archive data is stored in meta-data;

10

15

12
selecting one or more rules from the set of stored rules

based on a result of the pattern-matching of the input
data against the set of stored rules;

prioritizing the selected one or more rules from the set of
stored rules based on the set of facts about archive data;

routing the selected one or more rules from the set of stored
rules to a scheduler;

submitting the selected one or more rules from the set of
stored rules to a rule executor, and

archiving data archive tasks based upon the selected one or
more rules from the set of stored rules.

14. The method as defined in claim 13 wherein the process
further comprises:

matching the selected one or more rules from the set of
stored rules with one or more facts of the set of facts
about archive data; and

submitting the matched one or more rules from the set of
stored rules to the scheduler.

k k k k k

