一种 LTE 耦合式金属边框手机天线

摘要

本实用新型涉及一种 LTE 耦合式金属边框手机天线，包括设于手机内的介质板、天线辐射体及围绕在介质板外的金属边框。金属边框由连续完整的四边形边框，也可以是上侧角位置开口的四边形边框。所述介质板四周与金属边框之间均设有缝隙，介质板分设为净空区域及辅地区域，所述天线辐射体设置于净空区域，金属边框一横梁及左右两侧梁上分别设置接地短路点，金属边框通过接地短路点与介质板上的辅地区域连接。所述天线辐射体采用单极子天线。本实用新型有效利用了金属边框，通过对天线主体形式的改变及其他辅助设计，使天线能覆盖多个频段，避免了通讯终端金属边框对天线性能的影响，保证了天线优良的性能同时尽量保持了金属边框的完整性。
1. 一种 LTE 藕合式金属边框手机天线，包括设于手机内的介质板、天线辐射体及围绕在介质板外侧的金属边框，其特征在于，所述介质板四周与金属边框之间均设有缝隙；介质板分设为净空区域及馈电区域，所述天线辐射体设置于净空区域，金属边框一横向及左右两侧梁上分别设置接地短路点，金属边框通过接地短路点与介质板上的馈电区域连接。

2. 根据权利要求 1 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述馈电区域包括覆盖介质板整个上部区域的矩形区域及位于天线辐射体右侧凸出部。

3. 根据权利要求 1 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述天线辐射体采用单极子天线。

4. 根据权利要求 1 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述馈电区域在与对应的金属边框横向及侧梁间的缝隙宽均为 1.5mm。

5. 根据权利要求 1 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述天线辐射体与对应的金属边框横向之间的缝隙宽 0.3mm。

6. 根据权利要求 3 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述天线辐射体包括一矩形辐射片及从矩形辐射片一边延伸出的一字型辐射走线，矩形辐射片一端作为馈电点连接射频电路。

7. 根据权利要求 1 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述金属边框为连续完整的四边形边框。

8. 根据权利要求 1 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述金属边框为上侧角位置开口的四边形边框。

9. 根据权利要求 1 所述的 LTE 藕合式金属边框手机天线，其特征在于，所述介质板为主 PCB 板。
一种LTE耦合式金属边框手机天线

技术领域
[0001] 本发明涉及天线技术领域，尤其涉及一种采用金属边框作为天线一部分的LTE天线设计方案。

背景技术
[0002] 随着信息技术的蓬勃发圈，人们对电子产品的需求数量日益增加，对于金属质感的手机成为众多受欢迎的设计之一。手机采用金属边框的设计形式，结构更加坚固，同时也可使手机重量有所减轻。然而金属边框的存在，将对手机天线产生较大的干扰，使天线性能受到影响比手机内金属器件更大影响。
[0003] 当前，为了消除金属边框对手机天线性能的影响，一般做法是在金属边框上挖开数个开口，使挖开的部分金属边框成为天线的一部分，这种做法破坏了金属边框的连续性，影响手机的整体美感，且当手或者其他导体握住边框上的缝时，天线的性能会急剧恶化，造成收发不良。

发明内容
[0004] 针对上述问题，本发明的目的是提供一种尽量减少金属边框开口数量以保持金属边框的连续性，同时能保持良好性能、覆盖多个频段的LTE耦合式金属边框手机天线。
[0005] 本发明的技术方案如下：一种LTE耦合式金属边框手机天线，包括设于手机内的介质板（主PCB板）、天线辐射体及围绕介质板本身的金属边框，所述介质板四周与金属边框之间均设有缝隙；介质板分设为净空区域及辅地区域，所述天线辐射体设置于净空区域，金属边框一模架及左右两侧梁上分别设置接地短路点，金属边框通过接地短路点与介质板上的辅地区域连接。
[0006] 所述辅地区域包括覆盖介质板整个上部分的矩形区域及位于天线辐射体右侧凸出部。
[0007] 所述天线辐射体采用单极子天线。
[0008] 所述辅地区域在与对应的金属边框横梁及侧梁间的缝隙宽均为1.5mm。
[0009] 所述天线辐射体与对应的金属边框横梁之间的缝隙0.3mm。
[0010] 所述天线辐射体包括一矩形辐射片及从矩形辐射片一端延伸出的一字型辐射线，矩形辐射片一角作为馈电点连接射频电路。
[0011] 所述金属边框为连续完整的四边形边框。
[0012] 所述金属边框为上侧角位置开口的四边形边框。
[0013] 与现有技术相比，本发明所述LTE金属边框天线有效利用了金属边框，通过对天线主体形式的改变及其他辅助设计，使天线能覆盖GSM、WCDMA、TDD-LTE等多个频段，避免了通讯终端金属边框对天线性能的影响，保证天线优良的性能；且整个金属边框可实现不断开，加工简单方便，节约成本。
附图说明
[0014] 图 1 为本发明所述手机天线实施例结构示意图；
[0015] 图 2 为本发明所述手机天线另一实施例结构示意图；
[0016] 图 3 为金属边框开孔 LTE 耦合式金属边框手机天线仿真与实测得到的回波曲线图；
[0017] 图 4 为金属边框不开孔 LTE 耦合式金属边框手机天线仿真与实测得到的回波曲线图；
[0018] 图 5 为图 1 及图 2 两实施例实测得到的效率曲线对比图；
[0019] 图 6 为图 1 及图 2 两实施例实测得到的最大增益曲线对比图；
[0020] 图 7 为图 1 及图 2 两实施例仿真得到的回波曲线对比图；
[0021] 图 8 为图 1 及图 2 两实施例实测得到的回波曲线对比图。

具体实施方式
[0022] 下面参考本发明实施例和附图，对本发明做进一步的详细介绍。
[0023] 如图 1 实施例所示，所述金属边框手机天线包括介质板 1、金属边框 3、天线辐射体 6、天线辐射体 6 与介质板 1 设于金属边框 3 内。介质板 1 一面覆盖接地金属形成地板 2，金属边框 3 与地板的之间留有 1.5mm 左右的缝隙（包括缝隙 501、502 及 503）。金属边框 3 通过接地短路点（包括接地点 701、702 及 703）与介质板上的地连接，调节各个短路点的位置可以调节天线的谐振。例如通过调节接地点 701 的位置，可以调节低频谐振及其产生的二阶高频谐振，调节接地点 703 的位置，可以调节高频谐振及其产生的更高频率的二阶谐振，从而使天线能够覆盖 LTE-TDD。地板 2 除包括矩形部分 102 外，还包括靠近天线辐射体右侧凸出部分 101。
[0024] 天线辐射体 6 采用单极子天线形式，其设于介质板下方净空区域，天线辐射体与金属边框留有 0.3mm 左右的狭长缝隙 504。天线辐射体 6 包括两个天线分支 601 和 602，两个天线分支通过缝隙 504 与金属边框 3 搭合。射频信号通过馈电点 8 馈电到天线辐射体 6 上，电流再经由边框左右两边的接地点 701 和 703 流回地板，从而形成双 Loop 天线。调节天线辐射体的两分支 601 和 602 的长宽及调节接地点 702 的位置，可以调节天线高频的带宽及深度。另外，所述天线地板 2 与天线辐射体 6 在同一平面，调节地板 101 部分的宽度，可以调节天线高频谐振的带宽及深度。
[0025] 图 2 与图 1 所示实施例，除了金属边框是否开口的区别外，其它部分都是相同的。即图 1 所示实施例中所述 LTE 耦合式金属边框手机天线采用无开口的金属边框 3，而图 2 所示实施例采用单开口的金属边框 3。所述单开口金属边框 3 是在手机金属边框上侧开有一个开口 4，调节开口 4 在金属边框上侧的位置及接地点 702 的位置，可以调节天线高频部分。参考图 1，对不开口的金属边框，其金属边框则无开口 4，但仍然可以调节接地点 702 的位置来调节高频谐振。
[0026] 以上两实施例所述 LTE 耦合式金属边框手机天线，其仿真和实测得到的回波损耗对比图分别如图 3、4 所示。可以看出金属边框开口与不开口的两种实施例仿真结果类似。两种实施例仿真曲线均较实测曲线的低频部分要宽，高频末端部分稍深，其它部分相当，仿真与实测都基本可以满足实用要求。
图 5 和图 6 分别为实测得到的不开口与单开口金属边框天线的效率与增益对比图。从图中可以看到，高频部分两种实施例的效率与增益相当，而低频部分，单开口金属边框天线比不开口金属边框天线的效率和增益都稍高，所以单开口的结果要稍好些，整体而言，单开口和不开口的金属边框天线都可满足实用要求。

图 7 为两实施例仿真得到的回损曲线对比图。可以看到，不开口金属边框天线高频前端比单开口金属边框天线稍深，其余部分相当。这样看不开口金属边框天线还要稍好些。实际制作出实物后，得到的回损曲线如图 8 所示。可以看到，单开口金属边框天线的低频回损较不开口金属边框天线的要深，但两者的带宽差不多，而且不开口金属边框天线的高频部分在整体上要比单开口金属边框天线的回损稍深，只是高频末端不如单开口的深。这样，从两者整体的回损曲线而言，不开口金属边框天线性能稍优，然而就两者的效率和增益看，开口金属边框天线稍优。

本发明所述 LTE 耦合式金属边框手机天线解决了由于天线环境差导致天线性能差的问题，同时满足了手机外观的金属质感要求，在尽量保证金属外框连续性的前提下实现了手机信号良好的需求。

在附图中，为清楚起见，可能放大了层及区域的尺寸及相对尺寸。实际应用中，本发明还可以许多不同形式实现，上述实施例不应解释对本发明实施的限制。相反，提出这些实施是为了达成充分及完整公开的目的，并且使本技术领域的技术人员完全了解本发明的范围。因此在不脱离本发明的发明构思的前提下，任何显而易见的替换均在本发明的保护范围之内。
图 1
图 2
图 3
图4
图 5
图 6
图 7
图 8