发明名称
一种蚀刻废液或低含铜废水的提铜方法

摘要
本发明公开了一种蚀刻废液或低含铜废水的提铜方法，其特征在于该方法包括下列步骤：将蚀刻废液或低含铜废水与铜萃取剂充分混合，使蚀刻废液或低含铜废水中的铜离子转移至铜萃取剂中；将上述含铜离子的铜萃取剂用浓度为10%～50%的硫酸稀释液进行漂洗，得到硫酸铜液体；将上述硫酸铜液体泵入电解槽进行电解，制得电解铜；萃取处理后的蚀刻废液加入硫酸或氯化氨、液氨后循环再用。本发明通过电解而得到金属铜，从而给厂家带来了丰厚的经济效益，并且可降低厂家的蚀刻成本；萃取处理后的蚀刻废液加入硫酸或氯化氨、液氨后循环再用，从而完全避免了有害的蚀刻高浓度废液的排放，实现了清洁生产，有利于环境保护。
1. 一种蚀刻废液或低含铜废水的提铜方法，其特征在于该方法包括下列步骤：
 a) 将蚀刻废液或低含铜废水与铜萃取剂充分混合，使蚀刻废液或低含铜废水中的铜离子转移至铜萃取剂中；
 b) 将上述含铜离子的萃取剂用浓度为 10%~50% 的硫酸稀释液进行漂洗，得到硫酸铜液体；
 c) 将上述硫酸铜液体泵入电解槽进行电解，制得电解铜。

2. 根据权利要求 1 所述的一种蚀刻废液或低含铜废水的提铜方法，其特征在于将萃铜处理后的蚀刻废液加入硫酸或氯化氨、液氨后循环再用。

3. 根据权利要求 1 所述的一种蚀刻废液或低含铜废水的提铜方法，其特征在于萃铜处理后的低含铜废水排入厂家综合废水处理站进行处理。

4. 根据权利要求 1 或 2 或 3 所述的一种蚀刻废液或低含铜废水的提铜方法，其特征在于所述铜萃取剂由羟酮肟和羟醛肟复配组成。
一种蚀刻废液或低含铜废水的提铜方法

技术领域

本发明涉及一种印刷电路板行业中蚀刻废液或低含铜废水的提铜方法。

背景技术

在印制电路板行业中，蚀刻废液分为：酸性蚀刻废液、碱性蚀刻废液。低含铜废水分为：微蚀液、水洗液、粗化液及铬合铜废液等。这些废液、废水具有种类多，毒性大，腐蚀性强等特点，属国家一类危险废物，若未经处理任意排放，将对生态产生极为严重的破坏，甚至威胁到人民生命安全。而且这些废液、废水中含有大量价格昂贵的铜离子，若不进行提炼回收，将造成有价值资源大量损失。目前处理蚀刻废液的主要方法是将蚀刻废液中铜离子转化为晶体硫酸铜，再进行二次处理。但使用该方法处理，蚀刻废液中仍有40%以上的铜离子未被处理，加大了二次处理成本。而对低含铜废水则无法处理，不能有效解决环境污染的问题。

发明内容

为了克服现有技术的不足，本发明提供一种印刷电路板行业中蚀刻废液或低含铜废水的提铜方法，该方法能有效回收蚀刻废液或低含铜废水的铜离子。

本发明解决其技术问题所采用的技术方案是：

一种蚀刻废液或低含铜废水的提铜方法，其特征在于该方法包括
下列步骤：

a) 将腐蚀废液或低含铜废水与铜萃取剂充分混合，使腐蚀废液或低含铜废水中的铜离子转移至铜萃取剂中；

b) 将上述含铜离子的萃取剂用浓度为 10%～50%的硫酸稀释液进行漂洗，得到硫酸铜液体；

c) 将上述硫酸铜液体泵入电解槽进行电解，制得电解铜。

作为本发明上述技术方案的改进，萃取处理后的腐蚀废液加入硫酸或氯化氨、液氨后循环再用；萃取处理后的低含铜废水排入厂家综合废水处理站进行处理。

本发明可采用由羟酮肟和羟醛肟复配组成的铜萃取剂，也可采用其它型号的铜萃取剂，这些铜萃取剂可直接从市场购得，如上海莱雅化工有限公司生产的型号为 N902 的铜萃取剂，湖南长沙恒昌化工有限公司生产的 RE-608 高效铜萃取剂等。RE-608 高效铜萃取剂的物理参数如下：外观：黄色或琥珀色液体，无可见杂质，比重（25 ℃）0.95—0.97，黏度（厘泊）25 ℃：小于 190，闪点（℃）：大于 62；特性参数：铜饱和容量 g/(l(10v/v)):5.5—5.9，萃取动力学，25 ℃，接近平衡 %，15 秒：大于 85，30 秒：大于 95，反萃动力学，25 ℃，接近平衡 %，15 秒：大于 95，铜萃取等温点，25 ℃，g/l，有机相：大于 4.3，水相：小于 1.7，铜反萃等温点，25 ℃，g/l，有机相：不大于 2.3，水相：不小于 32.0，铜 /铁选择性：大于 2000，相分离 (秒)，萃取：小于 60，反萃：小于 60，萃合物溶解性：24 小时无沉淀。

本发明的有益效果是：本发明首先通过铜萃取剂将腐蚀废液或低
含铜废水中的铜离子转移至铜萃取剂中，再利用硫酸进行反萃取，得到硫酸铜液体，通过电解而得到金属铜，从而给厂家带来了丰厚的经济效益，并且可降低厂家的蚀刻成本；萃铜处理后的蚀刻废液加入硫酸或氯化氨、液氨后循环再用，从而完全避免了有害的蚀刻高浓度废液的排放，实现了清洁生产，有利于环境保护；而通过对低含铜废水中的铜离子的萃取，可降低低含铜废水的处理成本。

下面结合实施例对本发明进一步说明。

具体实施方式

实施例 1

将酸性蚀刻废液收集到相应的槽罐内并泵入萃取容器中，使其与由羟酮肟和羟醛肟复配组成的铜萃取剂充分混合，使酸性蚀刻废液中的铜离子转移至铜萃取剂中，萃取分离后，将含铜离子的萃取剂用浓度为 10% 的硫酸稀释液进行反萃，得到硫酸铜液体，再将硫酸铜液体泵入电解槽进行电解，制得电解铜；在萃铜后的酸性蚀刻废液中，加入适量的硫酸在线循环回用。

实施例 2

将碱性蚀刻废液收集到相应的槽罐内并泵入萃取容器中，使其与 RE-608 高效铜萃取剂充分混合，使碱性蚀刻废液中的铜离子转移至铜萃取剂中，萃取分离后，将含铜离子的萃取剂用浓度为 20% 的硫酸稀释液进行反萃，得到硫酸铜液体，再将硫酸铜液体泵入电解槽进行电解，制得电解铜；在萃铜后的碱性蚀刻废液中，加入适量的氯化氨、液氨后在线循环回用。
实施例 3

将低含铜废水收集到相应的槽罐内并泵入萃取容器中，使其与 RE-608 高效铜萃取剂充分混合，使低含铜废水中的铜离子转移至铜萃取剂中，萃取分离后，将含铜离子的萃取剂用浓度为 30%的硫酸稀释液进行反萃，得到硫酸铜液体，再将硫酸铜液体泵入电解槽进行电解，制得电解铜；将萃铜后的低含铜废水排入厂家综合废水处理站进行处理。