(19) World Intellectual Property Organization International Bureau # (43) International Publication Date 13 March 2003 (13.03.2003) # **PCT** # (10) International Publication Number WO 03/020756 A2 - (51) International Patent Classification⁷: C07K 14/195 - (21) International Application Number: PCT/IB02/03904 - (22) International Filing Date: 6 September 2002 (06.09.2002) - (25) Filing Language: English - (26) Publication Language: English - (30) Priority Data: 0121591.2 6 September 2001 (06.09.2001) G - (71) Applicant (for all designated States except US): CHIRON SPA [IT/IT]; Via Fiorentina, 1, I-53100 Siena (IT). - (72) Inventor; and - (75) Inventor/Applicant (for US only): PIZZA, Mariagrazia [IT/IT]; Chiron S.p.A., Via Fiorentina, 1, I-53100 Siena (TT) - (74) Agents: MARSHALL, Cameron, John et al.; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB). - (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW. - (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). [Continued on next page] #### (54) Title: HYBRID AND TANDEM EXPRESSION OF NEISSERIAL PROTEINS | Δ G287-919-His Δ G287-Orf46.1-His Δ G287-953-His Δ G287-961-His Δ G287-230-His Δ G287-936-His Δ G287-287-His Δ G287-287-His Δ G287-287- $_{\rm nz}$ -His Δ G287-741 $_{\rm ET37}$ -His Δ G287-741 $_{\rm ET37}$ -His | 961c-741 _{MC58} -His
961c-983-His
961c-Orf46.1-His
961cL-741 _{MC58}
961cL-287
961c-230-His
961c-936-His | Orf46.1-287-His
Orf46.1-919-His
Orf46.1-741 _{MC58} -His
Orf46.1-961-His
Orf46.1-961c-His
Orf46.1-983-His
Orf46.1-936-His
Orf46.1-230-His | |---|--|--| | $\Delta G287_{nz}$ -919-His $\Delta G287_{nz}$ -953-His $\Delta G287_{nz}$ -961-His $\Delta G287_{nz}$ -287-His $\Delta G287_{nz}$ -287-His $\Delta G287_{nz}$ -287 _{nz} -His $\Delta G287_{nz}$ -741 _{MC58} -His | Δ G741 _{MC58} -961c-His Δ G741 _{MC58} -961-His Δ G741 _{MC58} -983-His Δ G741 _{MC58} -Orf46.1-His Δ G741 _{MC58} -741 _{MC58} -His Δ G741 _{MC58} -741 _{MC58} -His | 230-741 _{MC58} -His
230-Orf46.1-His
230-961-His
230-961c-His
936-741 _{MC58} -His
936-Orf46.1-His
936-961-His | | Δ G287-919-Orf46.1-His Δ G287-Orf46.1-919-His 919-287-Orf46-His Orf46.1-287-919-His | 919-287
953-287
919-Orf46.1-His | $\Delta G983-741_{MCS8}$ -His $\Delta G983-961$ c-His $\Delta G983-961$ -His $\Delta G983$ -Orf46.1-His | (57) **Abstract:** Two or more Neisserial proteins are joined such that they are translated as a single polypeptide chain. Hybrid proteins are represented by the formula NH_2 -A- $[-X-L-]_n$ -B-COOH where X is an amino acid sequence, L is an optional linker amino acid sequence, A is an optional N-terminal amino acid sequence, B is an optional C-terrninal amino acid sequence, and n is an integer greater than I. Proteins where each of the n-X- moieties shares sequence identity to each other -X- moiety, the protein is a 'tandem protein'. # WO 03/020756 A2 #### Published: without international search report and to be republished upon receipt of that report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette. #### HYBRID AND TANDEM EXPRESSION OF NEISSERIAL PROTEINS All documents cited herein are incorporated by reference in their entirety. #### **TECHNICAL FIELD** 5 10 15 20 This invention is in the field of protein expression. In particular, it relates to the expression of proteins from *Neisseria* (e.g. N.gonorrhoeae or, preferably, N.meningitidis). #### **BACKGROUND ART** References 1 and 2 disclose alternative and improved approaches for the expression of the Neisserial proteins disclosed in references 3 to 6. One such method is to produce 'hybrid' proteins in which two or more Neisserial proteins are expressed as a single polypeptide chain. This approach offers two advantages. First, a protein that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem. Second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two separately-useful proteins. It is an object of the present invention to provide further alternative and improved approaches for the expression of Neisserial proteins. #### DISCLOSURE OF THE INVENTION # Hybrid proteins Thus the invention provides a method for the simultaneous expression of two or more (e.g. 3, 4, 5, 6 or more) Neisserial proteins, in which said two or more proteins are joined such that they are translated as a single polypeptide chain. In general, the hybrid proteins of the invention can be represented by the formula: $NH_2-A-[-X-L-]_n-B-COOH$ wherein X is an amino acid sequence, L is an optional linker amino acid sequence, A is an optional A-terminal amino acid sequence, A is an optional A-terminal amino acid sequence, and A is an integer greater than 1. The value of n is between 2 and x, and the value of x is typically 3, 4, 5, 6, 7, 8, 9 or 10. Preferably n is 2, 3 or 4; it is more preferably 2 or 3; most preferably, n = 2. # The -X- moieties There are two main groups of hybrid proteins according to the invention. These two groups are not mutually exclusive. # 30 In the first group, each -X- moiety is: (a) an orf1, orf4, orf25, orf40, orf46.1, orf83, NMB1343, 230, 233, 287, 292, 594, 687, 736, 741, 907, 919, 936, 953, 961 or 983 amino acid sequence; - (b) an amino acid sequence having sequence identity to an amino acid sequence from (a); or - (c) an amino acid sequence comprising a fragment of an amino acid sequence from (a). A preferred subset of (a) is: orf46.1, 230, 287, 741, 919, 936, 953, 961 and 983. A more preferred subset of (a) is: orf46.1, 287, 741 and 961. Figure 3 shows preferred hybrid proteins. - In the second group, the hybrid protein comprises a first -X- moiety (- X_a -) and a second -X- moiety (- X_b -). The - X_a moiety has one of the following amino acid sequences: - (d) the 446 even SEQ IDs (i.e. 2, 4, 6, ..., 890, 892) disclosed in reference 3. - (e) the 45 even SEQ IDs (i.e. 2, 4, 6, ..., 88, 90) disclosed in reference 4; - (f) the 1674 even SEQ IDs 2-3020, even SEQ IDs 3040-3114, and all SEQ IDs 3115-3241, disclosed in reference 5; - (g) the 2160 amino acid sequences NMB0001 to NMB2160 from reference 7; or - (h) an amino acid sequence disclosed in reference 1 or reference 2. 10 25 30 The $-X_{b}$ - moiety is related to $-X_{a}$ - such that: (i) $-X_{b}$ - has sequence identity to $-X_{a}$ -, and/or (j) $-X_{b}$ -comprises a fragment of $-X_{a}$ -. Examples of this second type of hybrid protein include proteins in which two or more -X- moieties are identical, or in which they are variants of the same protein *e.g.* two polymorphic forms of the same protein may be expressed as -X_a-X_b-, and three polymorphic forms may be expressed as -X_a-X_b-X_c- *etc*. The -X_a- and -X_b- moieties may be in either order from N-terminus to C-terminus. The -X_a- moiety is preferably an orf1, orf4, orf25, orf40, orf46.1, orf83, NMB1343, 230, 233, 287, 292, 594, 687, 736, 741, 907, 919, 936, 953, 961 or 983 amino acid sequence. The -X_a- moiety is more preferably an orf46.1, 230, 287, 741, 919, 936, 953, 961 or 983 amino acid sequence. The -X_a- moiety is most preferably an orf46.1, 287, 741 or 961 amino acid sequence. In proteins where each of the n-X- moieties shares sequence identity to each other -X- moiety, the protein is referred to as a 'tandem protein'. Tandem proteins in which n=2 are preferred. The degree of 'sequence identity' referred to in (b) and (i) is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, up to 100%). This includes mutants, homologs, orthologs, allelic variants etc. [e.g. see ref. 8]. Identity is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1. Typically, 50% identity or more between two proteins is considered as an indication of functional equivalence. The 'fragment' referred to in (c) and (j) should consist of least m consecutive amino acids from an amino acid sequence from (a), (d), (e), (f), (g) or (h) and, depending on the particular sequence, m is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). Preferably the fragment comprises an epitope from an amino acid sequence from (a),
(d), (e), (f), (g) or (h). Preferred fragments are those disclosed in references 9 and 10. Preferred (c) and (j) fragments are C- and/or N-terminal truncations (e.g. Δ1-287, Δ2-287 etc.). 5 10 15 20 25 30 Preferred (b), (c), (i) and (j) sequences omit poly-glycine sequences. This has been found to aid expression [ref. 2]. Poly-glycine sequences can be represented as $(Gly)_g$, where $g \ge 3$ (e.g. 4, 5, 6, 7, 8, 9 or more). If a -X- moiety includes a poly-glycine sequence in its wild-type form, it is preferred to omit this sequence in the hybrid proteins of the invention. This may be by disrupting or removing the $(Gly)_g$ - by deletion (e.g. CGGGGS \rightarrow CGGGS, CGS, CGS or CS), by substitution (e.g. CGGGGS \rightarrow CGXGGS, CGXXGS, CGXGXS etc.), and/or by insertion (e.g. CGGGGS \rightarrow CGGXGGS, CGXGGGS, etc.). Deletion of $(Gly)_g$ is preferred, and deletion of the N-terminus portion of a protein up to and including the poly-glycine sequence (e.g. deletion of residues 1-32 in SEQ ID 1) is referred to herein as ' Δ G'. Poly-glycine omission is particularly useful for proteins 287, 741, 983 and Tbp2 (Δ G287, Δ G741, Δ G983 and Δ GTbp2 – references 1 & 2). Preferred (c) and (j) fragments omit complete protein domains. This is particularly useful for protein 961, 287, and ORF46. Once a protein has been notional divided into domains, (c) and (j) fragments can omit one or more of these domains (*e.g.* 287B, 287C, 287BC, ORF46₁₋₄₃₃, ORF46₄₃₄₋₆₀₈, 961c – reference 2; Figures 4 and 5 herein). 287 protein has been notionally split into three domains, referred to as A, B & C (see Figure 5 of reference 2). Domain B aligns with IgA proteases, domain C aligns with transferrin-binding proteins, and domain A shows no strong alignment with database sequences. An alignment of polymorphic forms of 287 is disclosed in reference 8. ORF46 has been notionally split into two domains – a first domain (amino acids 1-433; ORF46.1) which is well-conserved between species and serogroups, and a second domain (amino acids 434-608) which is not well-conserved. The second domain is preferably deleted, leaving ORF46.1. An alignment of polymorphic forms of ORF46 is disclosed in reference 8. 961 protein has been notionally split into several domains (Figure 4). If a -X- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid proteins of the invention. Where the leader peptide is omitted, this is a preferred example of an amino acid sequence within (c) and (j). In one embodiment, the leader peptides will be deleted except for that of the -X- moiety located at the N-terminus of the hybrid protein *i.e.* the leader peptide of X_1 will be retained, but the leader peptides of X_2 ... X_n will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X_1 as moiety -A-. When n=2, preferred pairs of -X- moieties are: $\Delta G287$ and 230; $\Delta G287$ and 936; $\Delta G287$ and 741; 961c and 287; 961c and 230; 961c and 936; 961cL and 287; 961cL and 230; 961cL and 936; -4- ORF46.1 and 936; ORF46.1 and 230; 230 and 961; 230 and 741; 936 and 961; 936 and 741. When n=2, preferred pairs of -X- moieties for tandem proteins are: Δ G741 and 741; Δ G287 and 287. More specifically, the following combinations of X_1 and X_2 are preferred when n=2: | X ₁ | X ₂ | |--|--| | ΔG287 | 230 | | ΔG287 | 936 | | ΔG287 | 741 | | ΔG287 | 961 | | ΔG287 | ORF46.1 | | ΔG287 | 919 | | ΔG287 | 953 | | 961c | 287 | | 961c | 230 | | 961c | 936 | | 961c | 741 | | 961c | 983 | | 961c | ΔG983 | | 961c | ORF46.1 | | 961 | ORF46.1 | | 961cL | 287 | | 961cL | 230 | | 961cL | 936 | | ORF46.1 | 936 | | ORF46.1 | 230 | | ORF46.1 | 741 | | ORF46.1 | ΔG741 | | ORF46.1 | 983 | | ORF46.1 | ΔG983 | | 230 | 961 | | 230 | 741 | | 230 | ΔG741 | | 936 | 961 | | 936 | 741 | | 936 | ΔG741 | | | | | ORF46.1 | 983 | | | ORF46.1 | | ΔG741 | 983 | | ΔG741 | 961 | | ΔG741 | 961c | | | ORF46.1 | | | 961 | | | · · · · · · · · · · · · · · · · · · · | | 936
ΔG741
ORF46.1
ΔG741
ΔG741
ΔG741 | ΔG741 741 983 ORF46.1 983 961 961c ORF46.1 | 5 | 230 ΔG287 936 ΔG287 741 ΔG287 961 ΔG287 961 ΔG287 919 ΔG287 953 ΔG287 287 961c 230 961c 936 961c 983 961c 0RF46.1 961c 0RF46.1 961c 0RF46.1 961c 230 961cL 936 961cL 936 961cL 936 ORF46.1 230 ORF46.1 AG741 ORF46.1 AG983 ORF46.1 961 230 741 230 AG741 230 AG741 936 961 AG741 961 AG741 961 | X_1 | X ₂ | | | | |--|---------|----------------|--|--|--| | 741 ΔG287 961 ΔG287 ORF46.1 ΔG287 919 ΔG287 953 ΔG287 287 961c 230 961c 936 961c 983 961c 983 961c 0RF46.1 961c ORF46.1 961c 0RF46.1 961c 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 AG741 ORF46.1 AG741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 AG741 936 961 AG741 961 | 230 | ΔG287 | | | | | 961 ΔG287 ORF46.1 ΔG287 919 ΔG287 953 ΔG287 287 961c 230 961c 936 961c 983 961c 983 961c 0RF46.1 961c ORF46.1 961c 0RF46.1 961c 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 AG741 ORF46.1 ORF46.1 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 961 AG741 961 AG741 961 AG741 961 | 936 | ΔG287 | | | | | ORF46.1 ΔG287 919 ΔG287 953 ΔG287 287 961c 230 961c 936 961c 983 961c 983 961c 0RF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 AG741 ORF46.1 983 ORF46.1 983 ORF46.1 961 230 741 230 961 936 741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 983 ORF46.1 AG741 983 AG741 961c AG741 < | 741 | ΔG287 | | | | | 919 ΔG287 953 ΔG287 287 961c 230 961c 936 961c 983 961c 983 961c ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 ORF46.1 230 ORF46.1 230 ORF46.1 AG741 ORF46.1 ORF46.1 ORF46.1 983 ORF46.1 961 230 741 230 961 230 741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 983 ORF46.1 AG741 983 AG741 984 AG741 985 AG741 986 AG741 986 AG741 986 AG741 <td>961</td> <td>ΔG287</td> | 961 | ΔG287 | | | | | 953 ΔG287 287 961c 230 961c 936 961c 741 961c 983 961c 0RF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 AG741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 230 961 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 983 ORF46.1 AG741 983 ORF46.1 ORF46.1 AG741 983 AG741 981 AG741 983 AG741 981 AG741 | ORF46.1 | ΔG287 | | | | | 287 961c 230 961c 936 961c 741 961c 983 961c ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 ORF46.1 230 ORF46.1 230 ORF46.1 AG741 ORF46.1 ORF46.1 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 983 ORF46.1 AG741 983 AG741 983 AG741 961 AG741 961 AG741 961 AG741 961 AG741 | 919 | ΔG287 | | | | | 230 961c 936 961c 741 961c 983 961c ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 983 ORF46.1 AG741 983 AG741 983 AG741 961 AG741 961 AG741 961 AG741 | 953 | ΔG287 | | | | | 936 961c 741 961c 983 961c ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 983 ORF46.1 961 230 741 230 ΔG741 230 961 936 741 230 961 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 983 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961 ΔG741 961 ΔG741 961 ΔG741 961c ΔG741 | 287 | 961c | | | | | 741 961c 983 961c ΔG983 961c ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 AG741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 ORF46.1 AG741 983 ORF46.1 ORF46.1 AG741 983 AG741 961 AG741 961 AG741 961 AG741 961 AG741 961 AG741 | 230 | 961c | | | | | 983 961c ΔG983 961c ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 AG741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 961 AG741 AG741 983 ORF46.1 ORF46.1 AG741 961 AG741 961 AG741 961 AG741 961 AG741 | 936 | 961c | | | | | ΔG983 961c ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 983 ORF46.1 984 ORF46.1 961 230 741 230 961 936 741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 937 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 984 ΔG741 985 ΔG741 986 ΔG741 986 ΔG741 986 ΔG741 | 741 | 961c | | | | | ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 AG741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 AG741 983 ORF46.1 ORF46.1 AG741 983 AG741 961 AG741 961 AG741 961 AG741 961c AG741 | 983 | 961c | | | | | ORF46.1 961c ORF46.1 961 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 AG741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 936 AG741 983 AG741 961 AG741 961 AG741 961c | ΔG983 | 961c | | | | | 287 961cL 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1
741 ORF46.1 ΔG741 ORF46.1 983 ORF46.1 961 230 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΛG741 AG741 983 ORF46.1 ORF46.1 ΔG741 961 ΔG741 961 ΔG741 961 ΔG741 961 ΔG741 961c ΔG741 | ORF46.1 | | | | | | 230 961cL 936 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 ΔG741 ORF46.1 983 ORF46.1 961 230 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961 ΔG741 961 ΔG741 961c ΔG741 | ORF46.1 | 961 | | | | | 936 961cL 936 ORF46.1 230 ORF46.1 741 ORF46.1 AG741 ORF46.1 983 ORF46.1 961 230 741 230 AG741 230 961 936 741 936 AG741 936 AG287 287 983 ORF46.1 ORF46.1 AG741 983 AG741 961 AG741 961 AG741 961 AG741 | 287 | 961cL | | | | | 936 ORF46.1 230 ORF46.1 741 ORF46.1 ΔG741 ORF46.1 983 ORF46.1 961 230 741 230 ΔG741 230 ΔG741 230 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 941 961 ΔG741 983 ΔG741 983 ΔG741 961 ΔG741 | 230 | 961cL | | | | | 230 ORF46.1 741 ORF46.1 ΔG741 ORF46.1 983 ORF46.1 ΔG983 ORF46.1 961 230 741 230 ΔG741 230 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 | 936 | 961cL | | | | | 741 ORF46.1 ΔG741 ORF46.1 983 ORF46.1 ΔG983 ORF46.1 961 230 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG741 936 ΔG741 936 ΔG741 ΔG741 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 | 936 | ORF46.1 | | | | | ΔG741 ORF46.1 983 ORF46.1 ΔG983 ORF46.1 961 230 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | 230 | ORF46.1 | | | | | 983 ORF46.1 ΔG983 ORF46.1 961 230 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961 ΔG741 961c ΔG741 | 741 | ORF46.1 | | | | | ΔG983 ORF46.1 961 230 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | ΔG741 | ORF46.1 | | | | | 961 230 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | 983 | ORF46.1 | | | | | 741 230 ΔG741 230 961 936 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | ΔG983 | ORF46.1 | | | | | ΔG741 230 961 936 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | 961 | 230 | | | | | 961 936 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | 741 | 230 | | | | | 741 936 ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | ΔG741 | 230 | | | | | ΔG741 936 ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | 961 | 936 | | | | | ΔG287 287 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | 741 | 936 | | | | | 983 ORF46.1 ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | ΔG741 | 936 | | | | | ORF46.1 ΔG741 983 ΔG741 961 ΔG741 961c ΔG741 | ΔG287 | 287 | | | | | 983 ΔG741
961 ΔG741
961c ΔG741 | 983 | ORF46.1 | | | | | 961 ΔG741
961c ΔG741 | ORF46.1 | ΔG741 | | | | | 961c ΔG741 | 983 | ΔG741 | | | | | | 961 | ΔG741 | | | | | ORF46.1 ΔG983 | 961c | ΔG741 | | | | | | ORF46.1 | ΔG983 | | | | | 961 ΔG983 | 961 | ΔG983 | | | | | 961c ΔG983 | 961c | ΔG983 | | | | Where 287 is used in full-length form, it is preferably at the C-terminal end of a hybrid protein; if it is to be used at the N-terminus, if is preferred to use a ΔG form of 287. Similarly, Where 741 is used in full-length form, it is preferably at the C-terminal end of a hybrid protein; if it is to be used at the N-terminus, if is preferred to use a ΔG form of 741. -5- ### The -L- moieties 5 10 20 For each n instances of [-X-L-], linker amino acid sequence -L- may be present or absent. For COOH, NH₂-X₁-X₂-L₂-COOH, etc. Linker amino acid sequence(s) -L- will typically be short (e.g. 20 or fewer amino acids i.e. 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include short peptide sequences which facilitate cloning, poly-glycine linkers (i.e. Gly_n where n = 2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and histidine tags (i.e. His, where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. A useful linker is GSGGGG (SEQ ID 27), with the Gly-Ser dipeptide being formed from a BamHI restriction site, thus aiding cloning and manipulation, and the Gly₄ tetrapeptide being a typical poly-glycine linker. If X_{n+1} is a ΔG protein and L_n is a glycine linker, this may be equivalent to X_{n+1} not being a ΔG 15 protein and L_n being absent. # The -A- moiety -A- is an optional N-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include leader sequences to direct protein trafficking, or short peptide sequences which facilitate cloning or purification (e.g. histidine tags i.e. His, where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable N-terminal amino acid sequences will be apparent to those skilled in the art. If X₁ lacks its own N-terminus methionine, -Amay be a methionine residue. # The -B- moiety -B- is an optional C-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer 25 amino acids i.e. 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include sequences to direct protein trafficking, short peptide sequences which facilitate cloning or purification (e.g. comprising histidine tags i.e. His, where n = 3, 4, 5, 6, 7, 8, 9, 10 or more), or sequences which enhance protein stability. 30 Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art. #### Polymorphic forms of proteins The invention can use amino acid sequences from any strains of N. meningitidis. References to a particular protein (e.g. '287', or 'ORF46.1') therefore include that protein from any strain. Sequence variations between strains are included within (b), (c), (i) and (j). Reference sequences from N.meningitidis serogroup B include: | Protein | Reference | Protein | Reference | |---------|---------------------|---------|---------------------| | orf1 | Ref. 3, SEQ ID 650 | orf4 | Ref. 3, SEQ ID 218 | | orf25 | Ref. 3, SEQ ID 684 | orf40 | Ref. 4, SEQ ID 4 | | orf46 | Ref. 6, SEQ ID 1049 | orf83 | Ref. 3, SEQ ID 314 | | NMB1343 | Ref. 7, NMB1343 | 230 | Ref. 5, SEQ ID 830 | | 233 | Ref. 5, SEQ ID 860 | 287 | Ref. 5, SEQ ID 3104 | | 292 | Ref. 5, SEQ ID 1220 | 594 | Ref. 5, SEQ ID 1862 | | 687 | Ref. 5, SEQ ID 2282 | 736 | Ref. 5, SEQ ID 2506 | | 741 | Ref. 5, SEQ ID 2536 | 907 | Ref. 5, SEQ ID 2732 | | 919 | Ref. 5, SEQ ID 3070 | 936 | Ref. 5, SEQ ID 2884 | | 953 | Ref. 5, SEQ ID 2918 | 961 | Ref. 5, SEQ ID 940 | | 983 | Ref. 7, NMB1969 | | | Reference 8 discloses polymorphic forms of proteins ORF4, ORF40, ORF46, 225, 235, 287, 519, 726, 919 and 953. Polymorphic forms of 961 are disclosed in references 11 & 12. Any of these polymorphic forms may be used in accordance with the present invention. The sequence listing herein includes polymorphic forms of proteins 741 (SEQ IDs 1-22) and NMB1343 (SEQ IDs 23-24) which have been identified. #### Serogroups and strains 5 Preferred proteins of the invention comprise -X- moieties having an amino acid sequence found in *N.meningitidis* serogroup B. Within a single protein of the invention, individual -X- moieties may be from one or more strains. Where n=2, for instance, X_2 may be from the same strain as X_1 or from a different strain. Where n=3, the strains might be (i) $X_1=X_2=X_3$ (ii) $X_1=X_2\neq X_3$ (iii) $X_1\neq X_2\neq X_3$ (iv) $X_1\neq X_2\neq X_3$ or (v) $X_1=X_3\neq X_2$, etc. Within serogroup B, preferred -X- moieties are from strains 2996, MC58, 95N477, or 394/98. Strain 95N477 is sometimes referred to herein as 'ET37', this being its electrophoretic type. Strain 394/98 is sometimes referred to herein as 'nz', as it is a New Zealand strain. Where a form of 287 is used, this is preferably from strain 2996 or from strain 394/98. Where a form of 741 is used, this is preferably from serogroup B strains MC58, 2996, 394/98, or 95N477, or from serogroup C strain 90/18311. Where a form of 961 is used, this is preferably from strain 2996. Strains are indicated as a subscript e.g. 741_{MC58} is protein 741 from strain MC58. Unless otherwise stated, proteins mentioned herein (e.g. with no subscript) are from N.meningitidis strain 2996, which can be taken as a 'reference' strain. It will be appreciated, however, that the invention is not in general limited by strain. As mentioned above, general references to a protein (e.g. '287', '919' etc.) may be taken to include that protein from any strain. This will typically have sequence identity to 2996 of 90% or more (eg. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more). # 5 Domain-based expression of protein 961 References 1 and 2 disclose how a protein can be notionally divided into domains and how the protein can be manipulated based on these domains. The present invention extends the application of this approach to protein 961 (also known as 'NadA' [11,12]). In *N.meningitidis* serogroup B strain 2996, NadA has 405 amino acids. This protein has notionally been divided into the following nine domains (Figure 4): | Domain name | Amino acids | Domain name | Amino acids | |-------------|-------------|-------------|-------------| | 961-1 'L' | 1-23 | 961-6 | 269-286 | | 961-2 | 24-87 | 961-7 | 287-330 | | 961-3 | 88-143 | 961-8 | 331-350 | | 961-4 | 144-180 | 961-9 | 351-405 | | 961-5 | 181-268 | | | This information can be used to locate the same domains in other forms of 961. These domains have been deleted from 961 in strain 2996 in various ways (Figure 5). Preferred fragments of 961 omit one or more of these nine domains *e.g.* the following: - 961-2
to 961-5 ('961a') - 961-6 to 961-9 ('961b') 15 20 25 - 961-1 to 961-8 ('961cL') - 961-2 to 961-8 ('961c') - 961-2 to 961-6 and amino acids 287-325 from domain 961-7 ('961d') - 961-2 to 961-8 and amino acids 351-383 from domain 961-9 ('961Δ1') - 961-1 to 961-8 and amino acids 351-383 from domain 961-9 ('961 Δ 1L') - 961-1 to 961-7 and amino acids 331-343 from domain 961-8 ('961cL-Δaro') - 961-1 to 961-6 and amino acids 287-315 from domain 961-7 ('961cL-Δcc') - 961-1 to 961-5 ('961aL') - 961-1 to 961-4 ('961aL- Δ 1') - 961-1 to 961-3 ('961aL- Δ 2') - 961-1 to 961-2 ('961aL- Δ 3') These thirteen fragments (and sub-fragments thereof missing 1, 2, 3, 4 or 5 amino acids at either or both ends) are preferred (c) and (j) fragments, but they may also be expressed in their own right *i.e.* not in the form of a hybrid protein of the invention. Thus the invention provides a protein comprising -8- one of these fragments, providing that the protein is not full-length 961 and is not a protein specifically disclosed in reference 1 or 2. This protein may be a fusion protein (e.g. a GST-fusion or a His-tag fusion). #### Sequences 10 The invention also provides a protein having an amino acid sequence from SEQ IDs 1 to 24. It also provides proteins and nucleic acid having sequence identity to these. As described above, the degree of 'sequence identity' is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). The invention also provides nucleic acid encoding such proteins. Furthermore, the invention provides nucleic acid which can hybridise to this nucleic acid, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution). The invention also provides nucleic acid encoding proteins according to the invention. It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes). Nucleic acid according to the invention can, of course, be prepared in many ways (*eg.* by chemical synthesis, from genomic or cDNA libraries, from the organism itself *etc.*) and can take various forms (*eg.* single stranded, double stranded, vectors, probes *etc.*). In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc. #### Mixtures - 20 The invention also provides a composition comprising two or more (i.e. 2, 3, 4, 5, 6 or 7) of the following proteins: - (1) 287 - (2)741 - (3) ORF46.1 - 25 (4) 961 - (5) NH₂-A-[-X-L-]_n-B-COOH, wherein n=2, $X_1=287$, $X_2=953$ - (6) NH₂-A-[-X-L-]_n-B-COOH, wherein n=2, X₁=287, X₂=919 - (7) NH₂-A-[-X-L-]_n-B-COOH, wherein n=2, $X_1=287$, $X_2=961$ The mixture may include one or both of the following proteins, either in combination with two or more of (1) to (7), or in combination with only one of (1) to (7): - (8) NH₂-A-[-X-L-]_n-B-COOH, wherein n=2, $X_1=287$, $X_2=741$ - (9) NH₂-A-[-X-L-]_n-B-COOH, wherein n=2, X₁=936, X₂=741 Where proteins 287 and 741 are included in the mixture (i.e. in protein 1, 2, 5, 6, 7 or 8), they may be in the ' Δ G' form. Where protein 961 is included, it is preferably in the form of '961c' in which the N-terminus leader and C-terminus membrane anchor are absent [e.g. see refs. 1, 2 & 11]. A preferred mixture comprises the following three proteins: - (1) 961c, preferably 961c₂₉₉₆ (e.g. SEQ ID 31 herein); - (2) NH₂-A-[-X-L-]_n-B-COOH, wherein n is 2, -X₁- is Δ G287 (preferably Δ G287_{NZ}), -X₂- is 953 (preferably 953₂₉₉₆) lacking its leader peptide, -L₁- is GSGGGG, and -A- comprises a N-terminus methionine (e.g. -A- is M or MA) (e.g. SEQ IDs 28 & 29 herein); and - (3) NH₂-A-[-X-L-]_n-B-COOH, wherein n=2, $X_1=936$ (preferably 936₂₉₉₆), $X_2=\Delta G741$ (preferably $\Delta G741_{MC58}$), L₁=GSGGGG (*e.g.* SEQ ID 30 herein). The mixtures may also comprise *N.meningitidis* outer membrane vesicles. # Heterologous host 5 10 15 20 25 30 Whilst expression of the proteins of the invention may take place in *Neisseria*, the present invention preferably utilises a heterologous host. The heterologous host may be prokaryotic (e.g. a bacterium) or eukaryotic. It is preferably *E.coli*, but other suitable hosts include *Bacillus subtilis*, *Vibrio cholerae*, *Salmonella typhi*, *Salmonenna typhimurium*, *Neisseria lactamica*, *Neisseria cinerea*, *Mycobacteria* (e.g. *M.tuberculosis*), yeast etc. #### Vectors etc. The invention provides (a) nucleic acid encoding the proteins described above (b) vectors comprising these nucleic acid sequences (c) host cells containing said vectors (d) compositions comprising the proteins or nucleic acids of the invention, which may be suitable as immunogenic compositions (e.g. vaccines) or as diagnostic reagents (e) these compositions for use as medicaments (e.g. as vaccines) or as diagnostic reagents (f) the use of these compositions in the manufacture of (1) a medicament for treating or preventing infection due to Neisserial bacteria (2) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisseria bacteria, and/or (3) a reagent which can raise antibodies against Neisseria bacteria and (g) a method of treating a patient, comprising administering to the patient a therapeutically effective amount of these compositions. Implementing the invention will typically involve the basic steps of: obtaining a first nucleic acid encoding a first protein; obtaining a second nucleic acid encoding a second protein; and ligating the first and second nucleic acids. The resulting nucleic acid may be inserted into an expression vector, or may already be part of an expression vector. To improve solubility, purification of hybrid proteins may involve the refolding techniques disclosed herein. ## Immunogenic compositions and medicaments The compositions of the invention are preferably immunogenic composition, and are more preferably vaccine compositions. The pH of the composition is preferably between 6 and 7. The pH may be maintained by the use of a buffer. The composition may be sterile. - Vaccines according to the invention may either be prophylactic (*i.e.* to prevent infection) or therapeutic (*i.e.* to treat infection), but will typically be prophylactic. - The invention also provides a composition of the invention for use as a medicament. The medicament is preferably able to raise an immune response in a mammal (i.e. it is an immunogenic composition) and is more preferably a vaccine. - 10 The invention also provides the use of a composition of the invention in the manufacture of a medicament for raising an immune response in a mammal. The medicament is preferably a vaccine. - The invention also provides a method for raising an immune response in a mammal comprising the step of administering an effective amount of a composition of the invention. The immune response is preferably protective. The method may raise a booster response. - The mammal is preferably a human. Where the vaccine is for prophylactic use, the human is preferably a child (*e.g.* a toddler or infant); where the vaccine is for prophylactic use, the human is preferably an adult. A vaccine intended for children may also be administered to adults *e.g.* to assess safety, dosage, immunogenicity, *etc.* - These uses and methods are preferably for the prevention and/or treatment of a disease caused by a 20 Neisseria (e.g. meningitis, septicaemia, gonorrhoea etc.). The prevention and/or treatment of bacterial meningitis is preferred. # Further components of the composition 25 30 The composition of the invention will typically, in addition to the components mentioned above, comprise one or more 'pharmaceutically acceptable carriers', which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolised macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, trehalose (WO00/56365) and lipid aggregates (such as oil droplets or liposomes). Such carriers are well known to those of ordinary skill in the art. The vaccines may also contain diluents, such as water, saline, glycerol, *etc*. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present. A thorough discussion of pharmaceutically acceptable excipients is available in *Remington's Pharmaceutical Sciences*. Immunogenic compositions used as vaccines comprise an immunologically effective amount of antigen, as well as any other of the above-mentioned components, as needed. By 'immunologically WO 03/020756 5 10 15 20 25 30 35 -11- PCT/IB02/03904 effective amount', it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated (e.g. non-human primate, primate, etc.), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials. Dosage treatment may be a single dose schedule or a multiple dose schedule (e.g. including booster doses). The vaccine may be administered in conjunction with other immunoregulatory agents. The vaccine may be administered in conjunction with other immunoregulatory agents. The composition may include other adjuvants in addition to (or in place of) the aluminium salt. Preferred adjuvants to enhance effectiveness
of the composition include, but are not limited to: (1) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59TM (WO90/14837; Chapter 10 in ref. 13), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing MTP-PE) formulated into submicron particles using a microfluidizer, (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) RibiTM adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (DetoxTM); (2) saponin adjuvants, such as QS21 or StimulonTM (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes), which ISCOMS may be devoid of additional detergent e.g. WO00/07621; (3) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (4) cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 (WO99/44636), etc.), interferons (e.g. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc.; (5) monophosphoryl lipid A (MPL) or 3-O-deacylated MPL (3dMPL) e.g. GB-2220221, EP-A-0689454; (6) combinations of 3dMPL with, for example, QS21 and/or oil-inwater emulsions e.g. EP-A-0835318, EP-A-0735898, EP-A-0761231; (7) oligonucleotides comprising CpG motifs [Krieg Vaccine 2000, 19, 618-622; Krieg Curr opin Mol Ther 2001 3:15-24; Roman et al., Nat. Med., 1997, 3, 849-854; Weiner et al., PNAS USA, 1997, 94, 10833-10837; Davis et al., J. Immunol., 1998, 160, 870-876; Chu et al., J. Exp. Med., 1997, 186, 1623-1631; Lipford et al., Eur. J. Immunol., 1997, 27, 2340-2344; Moldoveanu et al., Vaccine, 1988, 16, 1216-1224, Krieg et al., Nature, 1995, 374, 546-549; Klinman et al., PNAS USA, 1996, 93, 2879-2883; Ballas et al., J. Immunol., 1996, 157, 1840-1845; Cowdery et al., J. Immunol., 1996, 156, 4570-4575; Halpern et al., Cell. Immunol., 1996, 167, 72-78; Yamamoto et al., Jpn. J. Cancer Res., 1988, 79, 866-873; Stacey et al., J. Immunol., 1996, 157, 2116-2122; Messina et al., J. Immunol., 1991, 147, 1759-1764; Yi et al., J. Immunol., 1996, 157, 4918-4925; Yi et al., J. Immunol., 1996, 157, 5394-5402; Yi et al., J. Immunol., 1998, 160, 4755-4761; and Yi et al., J. Immunol., 1998, 160, 5898-5906; International patent applications WO96/02555, WO98/16247, WO98/18810, WO98/40100, WO98/55495, WO98/37919 and WO98/52581] i.e. containing at least one CG dinucleotide, with 5-methylcytosine optionally being used in place of cytosine; (8) a polyoxyethylene ether or a polyoxyethylene ester e.g. WO99/52549; (9) a polyoxyethylene sorbitan ester surfactant in combination with an octoxynol (e.g. WO01/21207) or a polyoxyethylene alkyl ether or ester surfactant in combination with at least one additional nonionic surfactant such as an octoxynol (e.g. WO01/21152); (10) an immunostimulatory oligonucleotide (e.g. a CpG oligonucleotide) and a saponin e.g. WO00/62800; (11) an immunostimulant and a particle of metal salt e.g. WO00/23105; (12) a saponin and an oil-in-water emulsion e.g. WO99/11241; (13) a saponin (e.g. QS21) + 3dMPL + IL-12 (optionally + a sterol) e.g. WO98/57659; (14) other substances that act as immunostimulating agents to enhance the efficacy of the composition. Muramyl peptides include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE), etc. # Further antigens 5 10 Further antigens which can be included in the composition of the invention include: - an outer-membrane vesicle (OMV) preparation from *N.meningitidis* serogroup B, such as those disclosed in refs. 14, 15, 16, 17 etc. - a saccharide antigen from N.meningitidis serogroup A, C, W135 and/or Y, such as the oligosaccharide disclosed in ref. 18 from serogroup C [see also ref. 19] or the oligosaccharides of ref. 20. - a saccharide antigen from Streptococcus pneumoniae [e.g. refs. 21, 22, 23]. - 25 a protein antigen from *Helicobacter pylori* such as CagA [e.g. 24], VacA [e.g. 24], NAP [e.g. 25], HopX [e.g. 26], HopY [e.g. 26] and/or urease. - an antigen from hepatitis A virus, such as inactivated virus [e.g. 27, 28]. - an antigen from hepatitis B virus, such as the surface and/or core antigens [e.g. 28, 29]. - an antigen from hepatitis C virus [e.g. 30]. - 30 an antigen from Bordetella pertussis, such as pertussis holotoxin (PT) and filamentous haemagglutinin (FHA) from B.pertussis, optionally also in combination with pertactin and/or agglutinogens 2 and 3 [e.g. refs. 31 & 32]. - a diphtheria antigen, such as a diphtheria toxoid [e.g. chapter 3 of ref. 33] e.g. the CRM₁₉₇ mutant [e.g. 34]. - a tetanus antigen, such as a tetanus toxoid [e.g. chapter 4 of ref. 33]. - a saccharide antigen from *Haemophilus influenzae* B [e.g. 19]. - an antigen from *N.gonorrhoeae* [e.g. 3, 4, 5]. - an antigen from *Chlamydia pneumoniae* [e.g. 35, 36, 37, 38, 39, 40, 41]. - an antigen from Chlamydia trachomatis [e.g. 42]. - an antigen from *Porphyromonas gingivalis* [e.g. 43]. - 5 polio antigen(s) [e.g. 44, 45] such as IPV or OPV. - rabies antigen(s) [e.g. 46] such as lyophilised inactivated virus [e.g. 47, RabAvert™]. - measles, mumps and/or rubella antigens [e.g. chapters 9, 10 & 11 of ref. 33]. - influenza antigen(s) [e.g. chapter 19 of ref. 33], such as the haemagglutinin and/or neuraminidase surface proteins. - 10 an antigen from Moraxella catarrhalis [e.g. 48]. - a protein antigen from Streptococcus agalactiae (group B streptococcus) [e.g. 49, 50]. - a saccharide antigen from Streptococcus agalactiae - an antigen from *Streptococcus pyogenes* (group A streptococcus) [e.g. 50, 51, 52]. - an antigen from Staphylococcus aureus [e.g. 53]. 20 25 15 The composition may comprise one or more of these further antigens. Where a saccharide or carbohydrate antigen is used, it is preferably conjugated to a carrier protein in order to enhance immunogenicity [e.g. refs. 54 to 63]. Preferred carrier proteins are bacterial toxins or toxoids, such as diphtheria or tetanus toxoids. The CRM₁₉₇ diphtheria toxoid is particularly preferred. Other suitable carrier proteins include the *N.meningitidis* outer membrane protein [e.g. ref. 64], synthetic peptides [e.g. 65, 66], heat shock proteins [e.g. 67], pertussis proteins [e.g. 68, 69], protein D from *H.influenzae* [e.g. 70], toxin A or B from *C.difficile* [e.g. 71], etc. Where a mixture comprises capsular saccharides from both serogroups A and C, it is preferred that the ratio (w/w) of MenA saccharide:MenC saccharide is greater than 1 (e.g. 2:1, 3:1, 4:1, 5:1, 10:1 or higher). Saccharides from different serogroups of *N.meningitidis* may be conjugated to the same or different carrier proteins. Any suitable conjugation reaction can be used, with any suitable linker where necessary. Toxic protein antigens may be detoxified where necessary (e.g. detoxification of pertussis toxin by chemical and/or genetic means [32]). Where a diphtheria antigen is included in the composition it is preferred also to include tetanus antigen and pertussis antigens. Similarly, where a tetanus antigen is included it is preferred also to include diphtheria and pertussis antigens. Similarly, where a pertussis antigen is included it is preferred also to include diphtheria and tetanus antigens. Antigens are preferably mixed with (and more preferably adsorbed to) an aluminium salt (e.g. phosphate, hydroxide, hydroxyphosphate, oxyhydroxide, orthophosphate, sulphate). The salt may take any suitable form (e.g. gel, crystalline, amorphous etc.). Antigens in the composition will typically be present at a concentration of at least 1µg/ml each. In general, the concentration of any given antigen will be sufficient to elicit an immune response against that antigen. As an alternative to using proteins antigens in the composition of the invention, nucleic acid encoding the antigen may be used [e.g. refs. 72 to 80]. Protein components of the compositions of the invention may thus be replaced by nucleic acid (preferably DNA e.g. in the form of a plasmid) that encodes the protein. # **Definitions** 10 WO 03/020756 The term "comprising" means "including" as well as "consisting" e.g. a composition "comprising" X may consist exclusively of X or may include something additional e.g. X + Y. The term "about" in relation to a numerical value x means, for example, $x \pm 10\%$. #### 15 BRIEF DESCRIPTION OF DRAWINGS Figure 1 shows an alignment of twenty-three sequences for protein 741. These are SEQ IDs 1 to 22 plus the sequence from MC58. Figure 2 shows an alignment of the NMB1343 sequence from gonococcus (top; SEQ ID 25) and meningococcus (bottom; SEQ ID 26). Figure 3 shows hybrid and tandem proteins of the invention. Figure 4 shows 9 domains within 961₂₉₉₆, and Figure 5 shows how these have been manipulated. # MODES FOR CARRYING OUT THE INVENTION # Hybrid proteins – $X_1 = \Delta G287$ In addition to those disclosed in references 1 & 2, seven hybrid proteins with $\Delta G287$ from strain 25 2996 at the N-terminus were constructed. Eight 287 tandem proteins were also made (see below). | # | n | X_1 | L_1 | X ₂ | L ₂ | |---|---|--------------------|-------|-------------------------|--------------------| | 1 | 2 | | _ | 230 | (His) ₆ | | 2 | 2 | | - | 936 | (His) ₆ | | 3 | 2 | A C 297 | - | 741 _{MC58} | (His) ₆ | | 4 | 2 | ΔG287 | - | 741 _{ET37} | (His) ₆ | | 5 | 2 | | - | 741 _{90/18311} | (His) ₆ | | 6 | 2 | | - | 741 _{95N477} | (His) ₆ | | 7 | 2 |
$\Delta G287_{nz}$ | - | 741 _{MC58} | (His) ₆ | WO 03/020756 5 These proteins were adjuvanted with either Freund's complete adjuvant (FCA) or 3mg/ml alum and used to immunise mice. The resulting sera were tested against various Neisserial strains using the bactericidal assay. Titres using protein #3 were as follows: | Strain (serogroup) | 2996 (B) | MC58 (B) | NGH38 (B) | 394/98 ^(B) | 44/76 ^(B) | F6124 (A) | |--------------------|----------|----------|-----------|-----------------------|----------------------|-----------| | Al hydroxide | 8192 | 32768 | 8192 | >2048 | 16384 | 8192 | | FCA | 16384 | 262144 | 8192 | >2048 | >32768 | 8192 | In further experiments using protein #3 adjuvanted with aluminium hydroxide, anti-287 and anti-741 ELISA titres each exceeded 984150 and BCA titres were as follows: | 2996 ^(B) | MC58 (B) | NGH38 (B) | 394/98 ^(B) | 44/76 ^(B) | F6124 (A) | BZ133 (C) | |---------------------|----------|-----------|-----------------------|----------------------|-----------|-----------| | 8000 | 65000 | 4000 | 4000 | 32000 | 8000 | 16000 | Results obtained after immunisation with proteins disclosed in refs. 1 & 2, tested against the homologous strain, were as follows: | | v | т | Bactericidal titre | | idal titre | ELISA | | | |---|-------------------------|-------|--------------------|--------------------|------------|--------|---------|---------| | n | X_1 | L_1 | \mathbf{X}_{2} | L_2 | FCA | Alum | FCA | Alum | | | | | 961
919 | - | 32768 | = | >109350 | | | 2 | AC207 | | | (His) | 32768 | 4096 | 4718 | 3678 | | 2 | ΔG287 _{394/98} | - | 953 | (His) ₆ | >32768 | >16384 | 1900 | 6936 | | | | | 741 | | 16384 | 2048 | 232 | 862 | | | | | 961 | | 65536 | 32768 | 108627 | >109350 | | 2 | AC207 | | 919 | (Hia) | 128000 | 32000 | 11851 | 2581 | | 2 | ΔG287 ₂₉₉₆ | _ | 953 | (His) ₆ | 65536 | - | 3834 | - | | | | | 741 | | 16384 | 8192 | 315 | 4645 | # Hybrid proteins – $X_1 = 961c$ or 961cL In addition to those disclosed in references 1 & 2, eight hybrid proteins with either 961c or 961cL (i.e. 961c + leader peptide) at the N-terminus were constructed: | # | n | X_1 | L_1 | X ₂ | L ₂ | |---|---|-------|----------|----------------|--------------------| | 1 | 2 | | - | 287 | _ | | 2 | 2 | 961c | <u>-</u> | 287 | (His) ₆ | | 3 | 2 | | _ | 230 | (His) ₆ | | 4 | 2 | | _ | 936 | (His) ₆ | | 5 | 2 | | _ | 287 | _ | | 6 | 2 | 961cL | - | 287 | (His) ₆ | | 7 | 2 | | _ | 230 | (His) ₆ | | 8 | 2 | | - | 936 | (His) ₆ | These proteins were adjuvanted with either Freund's complete adjuvant (FCA) or 3.3mg/ml alum and used to immunise mice. The resulting sera were tested against various Neisserial strains using the bactericidal assay. Titres using protein #8 were as follows: | Strain (serogroup) | 2996 ^(B) | MC58 (B) | 394/98 ^(B) | 44/76 ^(B) | F6124 (A) | |--------------------|---------------------|----------|-----------------------|----------------------|-----------| | Al hydroxide | 8192 | 8192 | 512 | 1024 | <16 | | FCA | 65536 | 16384 | >2048 | >2048 | 8192 | Titres obtained after immunisation with 961c-741 [refs. 1 & 2] were as follows: | Strain (serogroup) | 2996 (B) | MC58 (B) | 394/98 ^(B) | 44/76 ^(B) | F6124 (A) | BZ133 (C) | |--------------------|----------|----------|-----------------------|----------------------|-----------|-----------| | Al hydroxide | 65536 | 32768 | 4096 | >32768 | 16384 | >2048 | | FCA | >16384 | 262144 | 4096 | >16384 | - | >2048 | These results could be improved by mixing 961c-741 with ORF46.1 or with $\Delta G287-919$. Results obtained after immunisation with proteins disclosed in refs. 1 & 2, tested against the homologous strain, were as follows: | | v | т | v | L ₂ | Bactericidal titre | | ELISA | | |---|-------|----------------|----------------|--------------------|--------------------|------|---------|---------| | n | X_1 | L ₁ | X ₂ | | FCA | Alum | FCA | Alum | | | | | ORF46.1 | (His) ₆ | 32768 | 1024 | >109350 | >109350 | | 2 | 961c | - | 741 | | >16384 | 8192 | >109350 | >109350 | | | | | 936 | | >32768 | 8192 | >109350 | >109350 | # 10 Hybrid proteins – $X_1 = ORF46.1$ 5 15 In addition to those disclosed in references 1 & 2, two hybrid proteins with ORF46.1 at the N-terminus were constructed: | # | n | X_1 | L_1 | X_2 | L ₂ | |---|---|---------|-------|-------|--------------------| | 1 | 2 | ORF46.1 | - | 936 | (His) ₆ | | 2 | 2 | OKF40.1 | - | 230 | (His) ₆ | These proteins were adjuvanted with either Freund's complete adjuvant (FCA) or 3mg/ml alum and used to immunise mice. The resulting sera were tested against the homologous strain using the bactericidal assay and by ELISA. Results obtained after immunisation with proteins disclosed in refs. 1 & 2 were as follows: | | v | ı | | | Bacteric | idal titre | EI | JISA | |---|----------------|----------------|----------------|--------------------|----------|------------|-------|---------| | n | \mathbf{A}_1 | L ₁ | X ₂ | L ₂ | FCA | Alum | FCA | Alum | | | ODE46 1 | - | 961 | (His) ₆ | 8192 | 8192 | 21558 | >109350 | | 2 | ORF46.1 | | 961c | (His) ₆ | 8192 | 128 | 9020 | 76545 | # Hybrid proteins – $X_1 = 230$ In addition to those disclosed in references 1 & 2, four hybrid proteins with 230 at the N-terminus were constructed: | # | n | X_1 | L_1 | X ₂ | L ₂ | |---|---|-------|-------|---------------------|--------------------| | 1 | 2 | | - | ORF46.1 | (His) ₆ | | 2 | 2 | 220 | - | 961 | (His) ₆ | | 3 | 2 | 230 | - | 961c | (His) ₆ | | 4 | 2 | | - | 741 _{MC58} | (His) ₆ | 5 10 # Hybrid proteins – $X_1 = 936$ In addition to those disclosed in references 1 & 2, seven hybrid proteins with 936 at the N-terminus were constructed: | # | n | X ₁ | L_1 | X ₂ | L_2 | |---|---|----------------|-------|-------------------------|--------------------| | 1 | 2 | | - | ORF46.1 | (His) ₆ | | 2 | 2 | | - | 961 | (His) ₆ | | 3 | 2 | | - | 741 _{ET37} | (His) ₆ | | 4 | 2 | 936 | - | 741 _{MC58} | (His) ₆ | | 5 | 2 | | - | 741 _{90/18311} | (His) ₆ | | 6 | 2 | | - | 741 _{95N477} | (His) ₆ | | 7 | 2 | | - | 741 | (His) ₆ | These proteins were adjuvanted with either Freund's complete adjuvant (FCA) or 3mg/ml alum and used to immunise mice. The resulting sera were tested against various Neisserial strains using the bactericidal assay. Titres using protein #2 were as follows: | Strain (serogroup) | 2996 ^(B) | MC58 (B) | 394/98 ^(B) | 44/76 ^(B) | F6124 (A) | |--------------------|---------------------|----------|-----------------------|----------------------|------------| | Al hydroxide | 16384 | 32768 | 1024 | 2048 | <16 | | FCA | 65536 | 65536 | >2048 | 8192 | 2048 (36%) | Titres using protein #4 were as follows: | Strain (serogroup) | 2996 ^(B) | MC58 (B) | 394/98 ^(B) | 44/76 ^(B) | F6124 (A) | |--------------------|---------------------|----------|-----------------------|----------------------|-----------| | Al hydroxide | 256 | >262144 | >2048 | 32768 | 8192 | | FCA | 1024 | >262144 | >2048 | >32768 | >32768 | Titres using protein #7 were as follows: | Strain (serogroup) | 2996 ^(B) | MC58 (B) | 394/98 ^(B) | 44/76 ^(B) | F6124 (A) | BZ133 (C) | |--------------------|---------------------|----------|-----------------------|----------------------|-----------|-----------| | Al hydroxide | 256 | 130000 | 16000 | 32000 | 8000 | 16000 | Results obtained after immunisation with proteins disclosed in refs. 1 & 2, tested against the homologous strain, were as follows: | | v | _ | v | T | Bacteric | idal titre | EL | ISA | |---|----------------|--------------------------|----------------|--------------------|----------|------------|---------|---------| | n | \mathbf{A}_1 | $\mid \mathbf{L}_1 \mid$ | $\mathbf{X_2}$ | L_2 | FCA | Alum | FCA | Alum | | | 026 | | 741 | (Hia) | 1024 | 256 | 1466 | 5715 | | 2 | 936 | - | 936 | (His) ₆ | >32768 | >32768 | >109350 | >109350 | # Mixtures of hybrid proteins Mice were immunised with of three proteins adjuvanted with aluminium hydroxide, either single or in a triple combination: (1) 287_{NZ}–953; (2) 936–741; and (3) 961c. The mixture was able to induce high bactericidal titres against various strains: | | 2996 (B) | MC58 (B) | NGH38 | 394/98 ^(B) | H44/76 (B) | F6124 (A) | BZ133 (C) | C11 (C) | |-----|----------|----------|--------|-----------------------|------------|-----------|-----------|---------| | (1) | 32000 | 16000 | 130000 | 16000 | 32000 | 8000 | 16000 | 8000 | | (2) | 256 | 131000 | 128 | 16000 | 32000 | 8000 | 16000 | <4 | | (3) | 32000 | 8000 | _ | _ | | 8000 | _ | 32000 | | mix | 32000 | 32000 | 65000 | 16000 | 260000 | 65000 | >65000 | 8000 | | (X) | 4000 | 4000 | 1000 | 1000 | >4000 | 1000 | 4000 | n.d. | '-' indicates that this strain contains no NadA gene (X) was a combination of protein 287 with outer membrane vesicles, for comparison 10 Looking at individual mice, the mixture induced high and consistent bactericidal titres: | # | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 2996 | 32768 | 16384 | 65536 | 32768 | 32768 | 65536 | 65536 | 32768 | 65536 | 8192 | | MC58 | 65536 | 32768 | 65536 | 65536 | 65536 | 8192 | 65536 | 32768 | 32768 | 65536 | | 394/98 | 65536 | 4096 | 16384 | 4096 | 8192 | 4096 | 32768 | 16384 | 8192 | 16384 | #### Tandem proteins 15 Hybrid proteins of the invention can be represented by formula NH_2 -[-X-L-]_n-COOH. Where all n instances of -X- are the same basic protein (either identical, or the same protein from different strains or species), the protein is referred to as a 'tandem' protein. Twelve specific tandem proteins are: | # | n | X ₁ | L ₁ | X ₂ | L_2 | |---|---|-------------------------|--------------------|-------------------------|--------------------| | 1 | 2 | ΔG741 _{MC58} | - | 741 _{MC58} | (His) ₆ | | 2 | 2 | ΔG287 ₂₉₉₆ | (Gly) ₆ | ΔG287 _{394/98} | (His) ₆ | | 3 | 2 | ΔG287 ₂₉₉₆ | (Gly) ₆ | ΔG287 ₂₉₉₆ | (His) ₆ | | 4 | 2 | ΔG287 _{394/98} | (Gly) ₆ | ΔG287 _{394/98} | (His) ₆ | | 5 | 2 | ΔG287 _{394/98} |
(Gly) ₆ | ΔG287 ₂₉₉₆ | (His) ₆ | -19- | 6 | 2 | $\Delta G287_{2996}$ | (Gly) ₆ | ΔG287 _{394/98} | - | |----|---|-------------------------|--------------------|-------------------------|--------------------| | 7 | 2 | $\Delta G287_{2996}$ | (Gly) ₆ | $\Delta G287_{2996}$ | - | | 8 | 2 | ΔG287 _{394/98} | (Gly) ₆ | ΔG287 _{394/98} | - | | 9 | 2 | ΔG287 _{394/98} | (Gly) ₆ | ΔG287 ₂₉₉₆ | - | | 10 | 2 | ΔG741 _{MC58} | - | 741 _{394/98} | (His) ₆ | | 11 | 2 | ΔG741 _{MC58} | - | 741 _{90/18311} | (His) ₆ | | 12 | 2 | ΔG741 _{MC58} | - | 741 _{95N477} | (His) ₆ | Proteins #1 to #5 have all been expressed in soluble form in *E.coli*. Expression levels were between 0.24 and 0.50 mg protein per litre of culture. The tandem proteins were purified and mixed with aluminium phosphate as an adjuvant. Tandem proteins #2, #4 and #5 adsorbed readily to aluminium phosphate; adsorption was less complete for tandem proteins #1 and #3. #### 5 Allelic variants – 741 10 Twenty-two polymorphic sequences of 741 were found (SEQ IDs 1 to 22). These and the MC58 sequence are aligned in Figure 1. #### Allelic variants - NMB1343 Using PCR on 42 strains of meningococcus of various serogroups, the gene encoding NMB1343 protein was found in 24/42 and was absent in 18/42 strains (Table 1). The NMB1343 gene was sequenced for 10 of the NMB1343⁺ strains (Table 1, column 3). The nucleic acid sequence (and thus amino acid sequence SEQ ID 23; GenBank AAF41718) was identical in all 10 strains. NMB1343 was also detected in two strains of *N.gonorrhoeae* (F62 and SN4). The amino acid sequence from gonococcus is SEQ ID 24. An alignment with the meningococcal sequence is: | 15 | | 1020304050 | |----|----|--| | | Ng | 1:INNLWEISYLYRGISCQQDEQNNGQLKPKGNKAEVAIRYDGKFKYDGKAT: 50 | | | Nm | 1:~~~~MGNFLYRGISCQQDEQNNGQLKPKGNKAEVAIRYDGKFKYDGKAT: 45 | | • | | 60708090 100 | | 20 | Ng | 51:HGPSVKNAVYAHQIETDLYDGCYISTTTDKEIAKKFATSSGIENGYIYVL:100 | | | Nm | 46: HGPSVKNAVYAHQIETGLYDGCYISTTTDKEIAKKFATSSGIENGYIYVL: 95 | | | | 110 120 130 140 150 | | | Ng | 101:NRDLFGQYSIFEYEVEHPENPDEKEVTIRAEDCGCIPEEVIIAKELIEIN:150 | | 25 | Nm | 96:NRDLFGOYSIFEYEVEHPENPNEKEVTIRAEDCGCIPEEVIIAKELIEIN: 145 | An alignment of the corresponding nucleotide sequences is shown in Figure 2. This shows that the gonococcal sequence has a 4mer insertion in the 5' region of the NMB1343 gene which causes a frameshift and consequent loss of the 5' methionine residue. #### Domain deletion - 961 5 10 15 25 961 is not present in the *N.meningitidis* serogroup A genome sequence [81], even though the surrounding regions are conserved (>90%) between serogroups A and B. References 11 and 12 disclose polymorphic forms of 961. The gene was found to be present in 91% of serogroup B strains belonging to hypervirulent lineages ET-5, ET-37 and cluster A4, but was absent in all strains of lineage 3 tested. Most of the serogroup C strains tested were positive even if not belonging to hypervirulent lineages. The same was true for the serogroup B strains with serotype 2a and 2b. For serogroup A, one strain belonging to subgroup III was positive whereas the other two strains belonging to subgroup IV-1 were negative. 961 was absent in *N.gonorrhoeae* and in commensal species *N.lactamica* and *N.cinerea*. Figures 4 and 5 show domains in protein 961. When the anchor region (domain 9) of protein 961 is deleted ('961cL') and expressed in *E.coli*, the protein is exported in the periplasm and secreted in the supernatant of the culture. To investigate this further, deletion mutants in the C-terminal region of 961 were constructed (961cL-Δaro, 961cLΔcc, 961aL, 961aL-Δ1, 961aL-Δ2, 961aL-Δ3) on the basis of structural features (deletions of aromatic residues in the cases of 961cΔaro mutant, and of coiled-coil regions for the others). These were analysed for expression and secretion into the periplasm and the supernatant of the culture. In all of these deletion mutants, the protein is produced in large amount, is present in periplasmic fraction, and is released in the supernatant of the culture. #### 20 \(\delta G287 - cross-strain bactericidal activity 287 was cloned for five different *N.meningitidis* serogroup B strains and was manipulated to delete the N-terminus up to the end of the poly-glycine region and to introduce a C-terminal his-tag. This gave five ΔG287 proteins. These were adjuvanted with FCA and used to raise immune sera in mice, which were then tested for bactericidal activity against all five serogroup B strains and also against serogroup A and C strains. Bactericidal titres were as follows: | Protein
strain | Sera tested for bactericidal activity against strain * | | | | | | | | |-------------------|--|-------|-------|-------|--------|-------|-------|--| | | 2996 | BZ232 | MC58 | 1000 | 394/98 | F6124 | BZ133 | | | 2996 | 16000 | 128 | 4096 | 4096 | 1024 | 8000 | 16000 | | | BZ232 | >8000 | 256 | 2048 | 8000 | 2048 | 16000 | 8000 | | | MC58 | >8000 | 64 | >8000 | 8000 | 2048 | 8000 | 8000 | | | 1000 | >8000 | 64 | 4096 | 8000 | 1024 | 16000 | 16000 | | | 394/98 | >16000 | 128 | 16000 | >2048 | >16000 | - | - | | ^{*} titres against homologous strain shown in bold # Refolding 15 To improve the levels of soluble protein for some hybrid proteins, alternative refolding protocols to those disclosed in reference 2 were adopted. Inclusion bodies (IBs) were isolated as follows: - 5 1. Homogenize cells (5g wet weight) in 25 ml 0.1 M Tris-HCl pH 7, 1mM EDTA, at 4°C using an ultraturrax (10 000 rpm) - 2. Add 1.5mg lysozyme per gram cells, mix shortly with an ultraturrax, and incubate at 4°C for 30 min. - 3. Use sonication or high-pressure homogenization (French press) to disrupt the cells. - 4. To digest DNA, add MgCl₂ to a final concentration of 3mM and DNase to a final concentration of 10μg/ml, and incubate for 30 min at 25°C - 5. Add 0.5 vol. 60 mM EDTA, 6% Triton X-100, 1,5M NaCl pH7, to the solution, and incubate for 30 min at 4°C. - 6. Spin down inclusion bodies by centrifugation at 31000g (20 000 rpm) for 10 min, 4°C. - 7. Resuspend pellet in 40 ml 0.1 M tris-HCl pH 7, 20mM EDTA, using an ultraturrax - 8. Repeat centrifugation step 6. - 9. The inclusion body pellet may be used, or stored frozen at -20°C. Hybrid proteins were expressed in *E.coli* as follows: | Protein | Culture
volume
(litres) | Flask
volume
(litres) | Temp | Final
OD ₆₀₀ | Inclusion
body yield
(w/w) | |------------------|-------------------------------|-----------------------------|------|----------------------------|----------------------------------| | ORF46.1-961-His | 1 | 2 | 37 | 1.51 | 33.2% | | ORF46.1-961c-His | 1 | 2 | 37 | 1.6 | 28.3% | | 961c-ORF46.1His | 1 | 2 | 37 | 1.18 | 23.5% | | orf46.1-741 His | 5 | 5 | 37 | 12.42 | 35.2 | The pellets were solubilised, refolded, ultrafiltered, dialysed, and protein was then purified: ORF46.1-961-His IBs were solubilised as follows: IB proteins were resuspended in 4 ml of 6M guanidine HCl, 1 mM EDTA pH 8.5 buffer, to a final protein concentration of 1 mg/ml. To refold the protein, 2 ml of solubilised protein was diluted in 400 ml of refolding buffer (0.1M Tris HCl,1M L-arginine, 2mM EDTA pH 8.2) and incubated for 1 hour at 15°C, resulting in a protein concentration of 5μg/ml. Subsequently, another 2 ml of the solubilised protein was added and incubated for an additional hour at the same temperature resulting in a final protein concentration of 10 μg/ml. The material was ultrafiltered using a 300 ml Amicon ultrafiltration cell (8400), applying a 3 bar pressure on an Amicon membrane with a 30 kDa cut-off (YM30) resulting in 130 ml final volume. The WO 03/020756 10 15 35 -22- PCT/IB02/03904 ultrafiltered material was dialysed using a regenerated cellulose tubular membrane with a 12-14 kDa cutoff (Cellusep – Step bio) for 24hours against 10 L of 0.1M Tris HCl pH 8,2 buffer. A second dialysis of 24h against 10 L of 300mM NaCl, 50 mM sodium phosphate pH 8,0 buffer was performed. The dialysed material was centrifuged at 22000 rpm for 45 minutes at 4°C in a Beckman centrifuge rotor JA25.5 The supernatant isolated after centrifugation was used for His-tag purification. orf 46.1-961c-His IBs were solubilised as follows: IB proteins were resuspended in 4 ml of 6M guanidine HCl, 1 mM EDTA pH 8.5 buffer, to a final protein concentration of 1 mg/ml. To refold the protein, 2 ml of the solubilised protein was diluted in 400 ml refolding buffer (0.5M Tris HCl,1M L-arginine,2 mM EDTA pH 8.2) and incubated for 1 h at 15°C, resulting in a protein concentration of 5μg/ml. Subsequently another 2 ml of the solubilised protein was added and incubated for an additional hour at the same temperature resulting in a final protein concentration of 10μg/ml. The material was ultrafiltered using a 300 ml Amicon ultrafiltration cell (8400), applying a 3 bar pressure on an Amicon membrane with a 30 kDa cut-off (YM30) resulting in 150 ml final volume. The ultrafiltered material was dialysed using a regenerated cellulose tubular membrane with a 12-14 kDa cutoff (Cellusep – Step bio) for 24h against 10 L of 0.1M Tris HCl pH 8,2 buffer. A second dialysis of 24h against 10 L of 300mM NaCl, 50 mM sodium phosphate pH 8,0 buffer was performed. The dialysed material was centrifuged at 22000 rpm for 45 minutes at 4°C in a Beckman centrifuge rotor JA25.5. The supernatant isolated after centrifugation was used for His-tag purification. 20 961c-orf46.1-His IBs were solubilised as follows: IB proteins were resuspended in 4 ml of 6M guanidine HCl, 1 mM EDTA pH 8.5 buffer, to a final protein concentration of 1 mg/ml. To refold the protein, 2 ml of the solubilised protein was diluted in 400 ml refolding buffer (0.1M Tris HCl,0.5 M L-arginine, 2 mM EDTA pH 8.2) and incubated for 1 h at 15°C, resulting in a protein concentration of 5 µg/ml. Subsequently another 2 ml of the solubilized protein was added and incubated
for an 25 additional hour at the same temperature resulting in a final protein concentration of 10 µg/ml. The material was ultrafiltered using a 300 ml Amicon ultrafiltration cell (8400), applying a 3 bar pressure on an Amicon membrane with a 30 kDa cut-off (YM30) resulting in 150 ml final volume. The ultrafiltered material was dialysed using a regenerated cellulose tubular membrane with a 12-14 kDa cutoff (Cellusep - Step bio) for 24h against 10 L of 0.1M Tris HCl pH 8,2 buffer. A second dialysis of 24h against 10 L of 300mM NaCl, 50 mM sodium phosphate pH 8,0 buffer was performed. The 30 dialysed material was centrifuged at 22000 rpm for 45 minutes at 4°C in a Beckman centrifuge rotor JA25.5. The supernatant isolated after centrifugation was used for His-tag purification. orf46.1-741-His IBs were solubilised as follows: IB proteins were resuspended in 4 ml of 6M guanidine HCl, 1 mM EDTA pH 8.5 buffer, to a final protein concentration of 10 mg/ml. To refold, 2 ml of the solubilised protein was diluted in 400 ml of the refolding buffer (0.5M Tris HCl,0.7 M Larginine,2 mM EDTA pH 7.2) and incubated for 1 h at 15°C, resulting in a protein concentration of 5 15 20 25 50μg/ml. Subsequently another 2 ml of the solubilised protein was added and incubated for an additional hour at the same temperature resulting in a final protein concentration of 100μg/ml. The material was ultrafiltered using a 300 ml Amicon ultrafiltration cell (8400), applying a 3 bar pressure on an Amicon membrane with a 30 kDa cut-off (YM30) resulting in 120 ml final volume. The ultrafiltered material was dialysed using a regenerated cellulose tubular membrane with a 12-14 kDa cutoff (Cellusep – Step bio) for 24h against 10 L of 0.1M Tris HCl pH 8,2 buffer. A second dialysis of 24h against 10 L of 300mM NaCl, 50 mM sodium phosphate pH 8,0 buffer was performed. The dialysed material was centrifuged at 22000 rpm for 45 minutes at 4°C in a Beckman centrifuge rotor JA25.5 The supernatant isolated after centrifugation was used for His-tag purification. 10 Compared with proteins purified as described in ref. 2, bactericidal assay titres were as follows: | | Refe | rence 2 | | | | |------------------|-------|---------------------|------------------------|------|---------------------| | Protein | CFA | Aluminium hydroxide | Aluminium
hydroxide | MF59 | Aluminium phosphate | | ORF46.1-961-His | 8192 | 8192 | 32768 | - | - | | ORF46.1-961c-His | 8192 | 128 | <64 | 8192 | - | | 961c-ORF46.1His | 32768 | 1024 | 16384 | - | - | | orf46.1-741 His | <4 | 16 | <4 | 256 | - | Similar procedures were used for ORF46.1 to purify the protein from IBs when expressed with no His-tag ('ORF46.1K'): | Protein | Culture
volume
(litres) | Flask
volume
(litres) | Temp
(°C) | Final
OD ₆₀₀ | Inclusion
body yield
(w/w) | |----------|-------------------------------|-----------------------------|--------------|----------------------------|----------------------------------| | orf46.1K | 5 | 5 | 37 | 13.7 | 29.4 | IB proteins were resuspended in 4 ml of 6M guanidine HCl, 1 mM EDTA pH 8.5 buffer, to a final protein concentration of 10 mg/ml. To refold, 2 ml of the solubilised protein was diluted in 400 ml of the refolding buffer (0.5M Tris HCl,0.7 M L-arginine,2 mM EDTA pH 7.2) and incubated for 1 hours at 15°C, resulting in a protein concentration of 50μg/ml. Subsequently another 2 ml of the solubilised protein was added and incubated for an additional hour at the same temperature resulting in a final protein concentration of 100μg/ml. The material was ultrafiltered using a 300ml Amicon ultrafiltration cell (8400), applying a 3 bar pressure on an Amicon membrane with a 30kDa cut-off (YM30) resulting in 120 ml final volume. The ultrafiltered material was dialysed using a regenerated cellulose tubular membrane with a 12-14 kDa cutoff (Cellusep – Step bio) for 12h against 10 L of 50mM sodium phosphate, 2mM EDTA, pH 7,2 buffer. A second dialysis of 24h against 10 L of the same buffer was performed. The dialysed material was centrifuged at 22000 rpm for 45 minutes at 4°C in a Beckman centrifuge rotor JA25.5. The supernatant isolated after centrifugation was used for cationic exchange chromatography. The purification was done on a AKTA explorer chromatography -24- system (Amersham-Pharmacia Biotech) using a 5 ml HiTrap SP sepharose HP column (Amersham-Pharmacia Biotech). The flow rate applied was of 1.5 ml per minute. The column was washed with 35 ml of 50mM sodium phosphate buffer pH 7.2. A linear gradient (0-1 M NaCl) was performed using a 50mM sodium phosphate buffer pH 7.2. The protein eluted in two peaks at 92 mM and 380mM NaCl. The fractions constituting each peak were pooled and respectively named pool 1 and pool 2. 5 Compared with proteins purified as described in ref. 2, bactericidal assay titres when adjuvanted with aluminium hydroxide were improved from <4 to 1024. The titre using aluminium phosphate adjuvant with the refolded protein was 2048. ELISA titres were as follows: | Protein | Aluminium adjuvant | Elisa
(M7) | SBA
(2996) | |--------------------|---------------------|---------------|---------------| | O-646 11. (mag1.1) | Hydroxide 3.3mg/ml | 1212 | 512 | | Orf46.1k (pool 1) | Phosphate 0.6 mg/ml | 154 | 1024 | | O-\$46 11- (12) | Hydroxide 3.3mg/ml | 1085 | 1024 | | Orf46.1k (pool 2) | Phosphate 0.6 mg/ml | 250 | 1024 | 10 It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention. TABLE 1 | Strain | 1343 | Sequence | Strain classification | |-------------------|------|----------|--| | 70/00 | | - | ETE D:15:D1 7 19 190 | | 72/00
30/00 | + | | ET5 B:15:P1.7,13,13a
ET5 B:15:P1.7,16 | | | + | | ET5 C:15:P1.7,16 | | 39/99 | + | | ET5 B:4:P1.15 | | 95330
M4102 | + | | ET5 D.4.F 1.13 | | | + | | ET5 B:15:P1.7,16b | | MC58(21) | + | + | ET5 B:NT:P1.16 | | BZ169(7) | + | + | ET5 B:15: | | BZ83(19)
CU385 | + | • | ET5 B:4:P1.15 | | | + | + | ET5 NG:4:P1.15 | | 220173I | + | • | | | 64/96 | + | + | ET5 NG:15:P1.7,16 (carrier) | | 2201731 | + | | ET5 B:4:P1.15 (carrier) | | ISS1071 | + | | nd B:15:P1.7,16 (ET5?) | | BZ198(2) | + | + | lin.3 B:8:P1.1 | | 980-2543 | + | + | lin.3 B:NT:P1.4 | | 16060 | + | + | other B:4:P1.14 (carrier) | | 394-98 | + | | nd B:4:P1.4 (lin 3?) | | ISS1106 | + | | nd B:4:P1.4 (lin.3?) | | BZ133(10) | + | + | sub I B:NT: | | S3446 | + | + | nd B:14:P1.23,14 | | ISS1001 | + | + | nd B:14:P1.13 | | 2411751 | + | | other NG:21:P1.16 (carrier) | | 1712741 | + | | other NG:15:- (carrier) | | 66/96 | + | | other B:17:P1.15 (carrier) | | 961-5945 | - | | A4 | | 96217 | - | | A4 | | 312294 | - | | A4 | | 90/18311(24) | - | | ET37 | | 93/4286(25) | - | | ET37 | | M986 | - | | ET37 | | 1000(5) | - | | other | | NGE28(13) | - | | other carrier | | NGH38(14) | - | | other carrier | | BZ232(18) | - | | other | | F6124(23) | - | | sub III A: | | C11 | - | | C:- | | NMB | - | | nd | | 8047 | - | | nd | | ISS759 | - | | nd C:2b:P1.2 | | ISS1113 | - | | nd C:2:P1.5 | | 65/96 | - | | nd 4:P1.14 | | 2996(96) | - | | nd B:2b:P1.5,2 | | | | | | # **REFERENCES** (the contents of which are hereby incorporated by reference) - 1 International patent application WO01/64920. - 2 International patent application WO01/64922. - 3 International patent application WO99/24578. - 4 International patent application WO99/36544. - 5 International patent application WO99/57280. - 6 International patent application WO00/22430. - 7 Tettelin et al. (2000) Science 287:1809-1815. - 8 International patent application WO00/66741. - 9 International patent application WO00/71574. - 10 International patent application WO01/04316 - 11 International patent application PCT/IB02/03396. - 12 Comanducci et al. (2002) J Exp Med 195:1445-1454. - 13 Vaccine Design: subunit & adjuvant approach (1995) Powell & Newman (ISBN: 030644867X). - 14 International patent application WO01/52885. - 15 Bjune et al. (1991) Lancet 338(8775):1093-1096. - 16 Fukasawa et al. (1999) Vaccine 17:2951-2958. - 17 Rosenqvist et al. (1998) Dev. Biol. Stand. 92:323-333. - 18 Costantino et al. (1992) Vaccine 10:691-698. - 19 Costantino et al. (1999) Vaccine 17:1251-1263. - 20 International patent application PCT/IB02/03191. - 21 Watson (2000) Pediatr Infect Dis J 19:331-332. - 22 Rubin (2000) Pediatr Clin North Am 47:269-285, v. - 23 Jedrzejas (2001) *Microbiol Mol Biol Rev* 65:187-207. - 24 International patent application WO93/18150. - 25 International patent application WO99/53310. - 26 International patent application WO98/04702. - 27 Bell (2000) Pediatr Infect Dis J 19:1187-1188. - 28 Iwarson (1995) APMIS 103:321-326. - 29 Gerlich et al. (1990) Vaccine 8 Suppl:S63-68 & 79-80. - 30 Hsu et al. (1999) Clin Liver Dis 3:901-915. - 31 Gustafsson et al. (1996) N. Engl. J. Med. 334:349-355. - 32 Rappuoli et al. (1991) TIBTECH 9:232-238. - 33 Vaccines (1988) eds. Plotkin & Mortimer. ISBN 0-7216-1946-0. - 34 Del Guidice et al. (1998) Molecular Aspects of Medicine 19:1-70. - 35 International patent application WO02/02606. - 36 Kalman et al. (1999) Nature Genetics 21:385-389. - 37 Read et al. (2000) Nucleic Acids Res 28:1397-406. - 38 Shirai et al. (2000) J. Infect. Dis. 181(Suppl 3):S524-S527. - 39 International patent application WO99/27105. - 40 International patent application WO00/27994. - 41 International patent application WO00/37494. - 42 International patent application WO99/28475. - 43 Ross et al. (2001) Vaccine 19:4135-4142. - 44 Sutter et al. (2000) Pediatr Clin North Am 47:287-308. - 45 Zimmerman & Spann (1999) Am Fam Physician 59:113-118, 125-126. - 46 Dreesen (1997) Vaccine 15 Suppl:S2-6. - 47 MMWR Morb Mortal Wkly Rep 1998 Jan 16;47(1):12, 19. - 48 McMichael (2000) Vaccine 19 Suppl 1:S101-107. - 49 Schuchat (1999) Lancet 353(9146):51-6. - 50 WO02/34771. - 51 Dale (1999) Infect Dis Clin North Am 13:227-43, viii. - 52 Ferretti
et al. (2001) PNAS USA 98: 4658-4663. - 53 Kuroda et al. (2001) Lancet 357(9264):1225-1240; see also pages 1218-1219. - 54 Ramsay et al. (2001) Lancet 357(9251):195-196. - 55 Lindberg (1999) Vaccine 17 Suppl 2:S28-36. - 56 Buttery & Moxon (2000) *J R Coll Physicians Lond* 34:163-168. - 57 Ahmad & Chapnick (1999) Infect Dis Clin North Am 13:113-133, vii. - 58 Goldblatt (1998) J. Med. Microbiol. 47:563-567. - 59 European patent 0 477 508. - 60 US patent 5,306,492. - 61 International patent application WO98/42721. - 62 Conjugate Vaccines (eds. Cruse et al.) ISBN 3805549326, particularly vol. 10:48-114. - 63 Hermanson (1996) Bioconjugate Techniques ISBN: 0123423368 or 012342335X. - 64 European patent application 0372501. - 65 European patent application 0378881. - 66 European patent application 0427347. - 67 International patent application WO93/17712. - 68 International patent application WO98/58668. - 69 European patent application 0471177. - 70 International patent application WO00/56360. - 71 International patent application WO00/61761. - 72 Robinson & Torres (1997) Seminars in Immunology 9:271-283. - 73 Donnelly et al. (1997) Annu Rev Immunol 15:617-648. - 74 Scott-Taylor & Dalgleish (2000) Expert Opin Investig Drugs 9:471-480. - 75 Apostolopoulos & Plebanski (2000) Curr Opin Mol Ther 2:441-447. - 76 Ilan (1999) Curr Opin Mol Ther 1:116-120. - 77 Dubensky et al. (2000) Mol Med 6:723-732. - 78 Robinson & Pertmer (2000) Adv Virus Res 55:1-74. - 79 Donnelly et al. (2000) Am J Respir Crit Care Med 162(4 Pt 2):S190-193. - 80 Davis (1999) Mt. Sinai J. Med. 66:84-90. - 81 Parkhill et al. (2000) Nature 404:502-506. #### **CLAIMS** 5 10 15 20 1. A hybrid protein having formula: $$NH_2$$ -A-[-X-L-]_n-B-COOH wherein L is an optional linker amino acid sequence, A is an optional N-terminal amino acid sequence, B is an optional C-terminal amino acid sequence, and n is an integer greater than 1, and X is either: - (a) an orf1, orf4, orf25, orf40, orf46.1, orf83, NMB1343, 230, 233, 287, 292, 594, 687, 736, 741, 907, 919, 936, 953, 961 or 983 amino acid sequence; - (b) an amino acid sequence having sequence identity to an amino acid sequence from (a); or - (c) an amino acid sequence comprising a fragment of an amino acid sequence from (a). - 2. A hybrid protein having formula: wherein X is an amino acid sequence, L is an optional linker amino acid sequence, A is an optional N-terminal amino acid sequence, B is an optional C-terminal amino acid sequence, n is an integer greater than 1, and wherein a first X moiety (- X_a -) has one of the following amino acid sequences: - (d) the 446 even SEQ IDs (i.e. 2, 4, 6, ..., 890, 892) disclosed in reference 3. - (e) the 45 even SEQ IDs (i.e. 2, 4, 6, ..., 88, 90) disclosed in reference 4; - (f) the 1674 even SEQ IDs 2-3020, even SEQ IDs 3040-3114, and all SEQ IDs 3115-3241, disclosed in reference 5; - (g) the 2160 amino acid sequences NMB0001 to NMB2160 from reference 7; or - (h) an amino acid sequence disclosed in reference 1 or reference 2, and a second -X- moiety (- X_b -), wherein - X_b - has sequence identity to - X_a - and/or - X_b - comprises a fragment of - X_a -. - 25 3. The hybrid protein of claim 1 or claim 2, wherein n=2. - 4. The hybrid protein of claim 2, wherein $-X_a$ is an orf46.1, 230, 287, 741, 919, 936, 953, 961 or 983 amino acid sequence. - 5. The hybrid protein of claim 2, wherein X_1, \ldots, X_n all have sequence identity to each other. - 6. The hybrid protein of any preceding claim, wherein n=2, and wherein the -X- moieties are: 30 ΔG287 and 230; ΔG287 and 936; ΔG287 and 741; 961c and 287; 961c and 230; 961c and 936; - 961cL and 287; 961cL and 230; 961cL and 936; ORF46.1 and 936; ORF46.1 and 230; 230 and 961; 230 and 741; 936 and 961; 936 and 741; Δ G741 and 741; or Δ G287 and 287. - 7. The hybrid protein of any preceding claim, wherein L has 20 or fewer amino acids. - 8. The hybrid protein of any preceding claim, wherein L is a poly-glycine linker. - 5 9. The hybrid protein of any preceding claim, wherein A has 40 or fewer amino acids. - 10. The hybrid protein of any preceding claim, wherein B has 40 or fewer amino acids. - 11. The hybrid protein of any preceding claim, wherein the -X- moieties have an amino acid sequence found in *N.meningitidis* serogroup B. - 12. The hybrid protein of any preceding claim, wherein at least one -X- moiety is a 961 amino acid sequence in which one or more domains has been deleted. - 13. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 1 to 38. - 14. Nucleic acid encoding a protein of any preceding claim. - 15. A composition comprising protein or nucleic acid according to any preceding claim. - 15 16. A composition comprising two or more of the following proteins: - (1)287 - (2)741 - (3) ORF46.1 - (4)961 - 20 (5) NH_2 -A-[-X-L-]_n-B-COOH, wherein n=2, X_1 =287, X_2 =953 - (6) NH₂-A-[-X-L-]_n-B-COOH, wherein n=2, X_1 =287, X_2 =919 - (7) NH_2 -A-[-X-L-]_n-B-COOH, wherein n=2, X_1 =287, X_2 =961 - (8) NH_2 -A-[-X-L-]_n-B-COOH, wherein n=2, X_1 =287, X_2 =741 - (9) NH_2 -A-[-X-L-]_n-B-COOH, wherein n=2, X_1 =936, X_2 =741 - 25 17. The composition of claim 16, comprising proteins (4), (5) and (9). - 18. The composition of claim 17, wherein protein (4) comprises SEQ ID 31, protein (5) comprises SEQ ID 28 or SEQ ID 29, and protein (9) comprises SEQ ID 30. - 19. The composition of any one of claims 15 to 18, further comprising: - a protein antigen from *N.meningitidis*; - an outer-membrane vesicle (OMV) preparation from *N.meningitidis*; - a saccharide antigen from *N.meningitidis*; - a saccharide antigen from Streptococcus pneumoniae; -30- - an antigen from hepatitis A, B or C virus; - an antigen from Bordetella pertussis; - a diphtheria antigen; - a tetanus antigen; - 5 a protein antigen from *Helicobacter pylori*; - a saccharide antigen from Haemophilus influenzae; - an antigen from N.gonorrhoeae; - an antigen from Chlamydia pneumoniae; - an antigen from Chlamydia trachomatis; - an antigen from *Porphyromonas gingivalis*; - polio antigen(s); - rabies antigen(s); - measles, mumps and/or rubella antigens; - influenza antigen(s); - an antigen from *Moraxella catarrhalis*; - an antigen from Streptococcus agalactiae; - an antigen from Streptococcus pyogenes; and/or - an antigen from Staphylococcus aureus. - 20. The composition of any one of claims 15 to 19, further comprising a pharmaceutically acceptable carrier. - 21. The composition of claim 20 for use as a medicament. - 22. A method of treating a patient, comprising administering to the patient a therapeutically effective amount of the composition of claim 20. #### 1/7 ``` 10 20 30 312294 50 96 96217 50 M1090 #TRSRPVNRTAFCCLSLTAALILTACSSGGGVAADIGACHADALHAP 50 1: MTRSKPVNRTAFCCLSLTAALILTACSSGGGVAADICAG ADAL: AF 50 95N477 1: MTRSKPVNRTAFOCLSLTAALILTAUSSGGGGVAAFFGAGLADALFAR 50 C11 TRSKPVNRTAFCCLSLTAALILTACSSGGGVAADTGAC APALTAF 599 50 11 24 rskpvnrtafcclsltaafiltacssggggvaadfgac afai 1000 50 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADICAGHADAL 50 M1096 RSKPVNRTAFCCLSLTAALILTACSSGGGVAAD (CACLALA) BZ232 50 SRPVRRTAPCCLSLTARLILTACSSGGGGVAADICAC 50 NGH38 ~~~~~~~~~VAADIGAGNAI 25 18 SLTAALILTACS.SGGGGVAADIGACUADALIAP 6700 50 RSKPVNRTAFCC<mark>F</mark>SLTAALILTACSSGGGVAADIGAG: ADAM AP' 50 93114 VNRTAFOC<mark>T</mark>SLT<mark>T</mark>ALILTACSSGGGVAADTGAGLADALEAR 44 21 3999 3000 7 7200 50 M198172 MTRSKPVNRTAFCCLSLTAALILTACSSGGGVAADIGAGLADALDAFL 50 BZ133 1: MTRSKPVNRTAFCCLSLTTALILTACSSGGGGVAAD CACLAR AR BERN 220173I 80 90 HKDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR:100 312294 1:~UDKSLOSLTLDOSVRKNEKLKLAAOGAEKTYGNGDSLNTGKLKNDKVSR: 49 96 96217 51: HKDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 51: HRDRSLOSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSE: 100 M1090 51: KDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 95N477 51: HEDESLOSLILDQSVRKNEKLKLAAQGAEKTYGNGDSLNIGKLENDKVSF: 100 C11 599 51: HKDKGLOSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 24 12: WDKSLOSLTLDOSVRKNEKLKLAAOGAEKTYGNGDSLNTGKLKNDKVSR: 61 51: HKDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 1000 51: HIDKSLQSLTLDQSVRKNEKLKLAAQGAERTYGNGDSLNTGKLKNDKVSR: 100 M1096 51: HKDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 BZ232 51: AKDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 NGH38 19: KDKGLQSLMLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 25 51: HNDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 6700 93114 51: HKDKSLOSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 45: WDUGLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 94 21 1:~~ DKGLOSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 48 3999 3000 ~HPUGLOSLYLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 49 7 1:~~~~LQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 45 LQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 45 7200 51: KIKIKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 M198172 51: HUDKSLOSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSK: 100 BZ133 51: HKDKGLOSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSR: 100 220173I ``` 2/7 # FIGURE 1 CONTD... ``` 120 130 140 110 151:QRSFLVSGLGGEHTAFNQLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:199 100:QRSFLVSGLGGEHTAFNQLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:148 151:QRSFLVSGLGGEHTAFNQLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:148 151:QRSFLVSGLGGEHTAFNQLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:199 151:QRSFLVSGLGGEHTAFNQLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:199 151:QRSFLVSGLGGEHTAFNQLP 13. KAEYHGKAFSSDDPNGRLHYSIDFTKK:199 KAEYHGKAFSSDDPNGRLHYSIDFTKK:149 161:KRQFRIGDIAGEHTSFDKLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:144 100:KRQFRIGDIAGEHTSFDKLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:145 164:KRQFRIGDIAGEHTSFDKLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:145 165:KRQFRIGDIAGEHTSFDKLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:145 165:KRQFRIGDIAGEHTSFDKLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:200 151:KRQFRIGDIAGEHTSFDKLP 13. KAEYHGKAFSSDDAGGKLTYTIDFAAK:200 160 180 312294 96 96217 M1090 95N477 C11 599 24 1000 M1096 BZ232 NGH38 25 6700 93114 21 3999 3000 7 7200 M198172 151:KRQFRIGDIAGEHTSFDKLP BZ133
151:KRQFRIGDIAGEHTSFDKLP 220173I 151:KRQFRIGDIAGEHTSFDKLP ``` #### 3/7 # FIGURE 1 CONTD... 4/7 | Orf46.1-287-His Orf46.1-919-His Orf46.1-741 _{MC58} -His Orf46.1-961-His Orf46.1-983-His Orf46.1-936-His Orf46.1-230-His | 230-0rf46.1-His
230-961-His
230-961c-His
936-741 _{MCs8} -His
936-961-His
936-961-His | Δ G983-741 _{MC58} -His Δ G983-961c-His Δ G983-961-His Δ G983-Orf46.1-His | |--|--|---| | 961c-741 _{MC58} -His
961c-983-His
961c-Orf46.1-His
961cL-741 _{MC58}
961cL-287
961c-230-His | ΔG741 _{MC58} -961c-His
ΔG741 _{MC58} -961-His
ΔG741 _{MC58} -983-His
ΔG741 _{MC58} -Orf46.1-His
Δ G741 _{MC58} - 741 _{MC58} - His | 919-287
953-287
919-Orf46.1-His | | ΔG287-919-His ΔG287-Orf46.1-His ΔG287-953-His ΔG287-961-His ΔG287-230-His ΔG287-287-His ΔG287-287-His ΔG287-741 _{E137} -His | ΔG287 _{nz} -919-His
ΔG287 _{nz} -953-His
ΔG287 _{nz} -961-His
Δ G287 _{nz} -287-His
Δ G287 _{nz} -287 _{nz} -His | ΔG287-919-Orf46.1-His
ΔG287-Orf46.1-919-His
919-287-Orf46-His
Orf46.1-287-919-His | FIGURE 4 # 7/7 1 #### SEQUENCE LISTING 5 10 45 # SEQ ID 1 - 741 from strain 1000 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTTPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQTITLASGEFQIYKQNHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPDGKAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ # SEQ ID 2 - 741 from strain 220173I (premature stop codon, though reliable sequence) MTRSKPVNRTAFCCLSLTTALILTACSSGGGGVAADIGAGLADALTAPLDHKDKGLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQVYKQSHSALTAFQTEQIQ DSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGTAFGSDDAGGKLTYTIDFAAKQGNGKIEHLK SPELNVDLAAADIKPDGKRHAVISGSVLYNQAEKGSYSLGIFGGKA ### SEQ ID 3 - 741 from strain 90/18311 (incomplete) GLADALTAPLDHKDKSLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEV DGQLITLESGEFQIYKQDHSAVVALQIEKINNPDKIDSLINQRSFLVSGLGGEHTAFNQLPSGKAEYHGK AFSSDDPNGRLHYSIDFTKKQGYGRIEHLKTPEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLA LFGDRAQEIAGSATVKIREKVHET # SEQ ID 4 - 741 from strain L93/4286 (incomplete) VAADIGAGLADALTAPLDHKDKGLQSLMLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFD FIRQIEVDGQTITLASGEFQIYKQNHSAVVALQIEKINNPDKIDSLINQRSFLVSGLGGEHTAFNQLPDG KAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKTPEQNVELASAELKADEKSHAVILGDTRYGGEE KGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ #### SEQ ID 5 - 741 from strain 2996 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQIYKQDHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPDGKAEYHGKAFSSDDAGGKLTYTIDFAAKQGHGKIEHLKT PEQNVELAAAELKADEKSHAVILGDTRYGSEEKGTYHLALFGDRAQEIAGSATVKIGEKVHEIGIAGKQ # SEQ ID 6 - 741 from strain 30/00 KDKGLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEF QVYKQSHSALTAFQTEQIQDSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGTAFGSDDAGGKL 30 TYTIDFAAKQGNGKIEHLKSPELNVDLAAADIKPDGKRHAVISGSVLYNQAEKGSYSLGIFGGKAQEVAG SAEVKTVNGIRHIGLAAKQ #### SEQ ID 7 - 741 from strain 312294 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQIYKQDHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPDGKAEYHGKAFSSDDAGGKLTYTIDFAAKQGHGKIEHLKT PEQNVELAAAELKADEKSHAVILGDTRYGSEEKGTYHLALFGDRAQEIAGSATVKIGEKVHEIGIAGKQ ### SEQ ID 8 - 741 from strain 39/99 (incomplete) DKGLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQ VYKQSHSALTAFQTEQIQDSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGTAFGSDDAGGKLT 40 YTIDFAAKQGNGKIEHLKSPELNVDLAAADIKPDGKRHAVISGSVLYNQAEKGSYSLGIFGGKAQEVAGS AEVKTVNGIRHIGLAAKQ #### SEQ ID 9 - 741 from strain 5/99 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKGLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQIYKQDHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPSGKAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ 2 # SEQ ID 10 - 741 from strain 67/00 MTRSKPVNRTAFCCFSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQVYKQSHSALTALQTEQEQ DPEHSGKMVAKRRFKIGDIAGEHTSFDKLPKDVMATYRGTAFGSDDAGGKLTYTIDFAAKQGHGKIEHLK SPELNVELATAYIKPDEKHHAVISGSVLYNQDEKGSYSLGIFGGQAQEVAGSAEVETANGIHHIGLAAKQ # SEQ ID 11 - 741 from strain BZ169 5 10 15 20 25 30 35 40 45 LQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQVYK QSHSALTAFQTEQIQDSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGTAFGSDDAGGKLTYTI DFAAKQGNGKIEHLKSPELNVDLAAADIKPDGKRHAVISGSVLYNQAEKGSYSLGIFGGKAQEVAGSAEV KTVNGIRHIGLAAKQ # SEQ ID 12 - 741 from strain 72/00 LQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQVYK QSHSALTAFQTEQIQDSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGTAFGSDDAGGKLTYTI DFAAKQGNGKIEHLKSPELNVDLAAADIKPDGKRHAVISGSVLYNQAEKGSYSLGIFGGKAQEVAGSAEV KTVNGIRHIGLAAKQ # SEQ ID 13 - 741 from strain 93/114 MTRSKPVNRTAFCCFSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQVYKQSHSALTALQTEQEQ DPEHSGKMVAKRRFKIGDIAGEHTSFDKLPKDVMATYRGTAFGSDDAGGKLTYTIDFAAKQGHGKIEHLK SPELNVELATAYIKPDEKHHAVISGSVLYNQDEKGSYSLGIFGGQAQEVAGSAEVETANGIHHIGLAAKQ ### SEQ ID 14 - 741 from strain 95N477 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQIYKQDHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPSGKAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ #### SEQ ID 15 - 741 from strain 96217 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQIYKQDHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPDGKAEYHGKAFSSDDAGGKLTYTIDFAAKQGHGKIEHLKT PEQNVELAAAELKADEKSHAVILGDTRYGSEEKGTYHLALFGDRAQEIAGSATVKIGEKVHEIGIAGKQ #### **SEO ID 16 – 741 from strain BZ133** MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQVYKQSHSALTALQTEQVQ DSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGTAFGSDDASGKLTYTIDFAAKQGHGKIEHLK SPELNVDLAASDIKPDKKRHAVISGSVLYNQAEKGSYSLGIFGGQAQEVAGSAEVETANGIRHIGLAAKQ #### **SEQ ID 17 – 741 from strain BZ232** MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQTITLASGEFQIYKQNHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPDGKAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ #### SEQ ID 18 - 741 from strain C11 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQIYKQDHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPSGKAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ # SEQ ID 19 - 741 from strain M1090 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQIYKQDHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPSGKAEYHGKAFSSDDAGGKLTYTIDFAAKQGHGKIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ # SEQ ID 20 - 741 from strain M1096 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTTPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQTITLASGEFQIYKQNHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPDGKAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ #### SEQ ID 21 - 741 from strain M198/172 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGEFQVYKQSHSALTALQTEQVQ DSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGRATYRGTAFGSDDASGKLTYTIDFAAKQGHGKIEHLK SPELNVDLAASDIKPDKKRHAVISGSVLYNQAEKGSYSLGIFGGQAQEVAGSAEVETANGIRHIGLAAKQ # SEQ ID 22 - 741 from strain NGH38 MTRSKPVNRTAFCCLSLTAALILTACSSGGGGVAADIGAGLADALTAPLDHKDKSLQSLTLDQSVRKNEK LKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQTITLASGEFQIYKQNHSAVVALQIEKIN NPDKIDSLINQRSFLVSGLGGEHTAFNQLPDGKAEYHGKAFSSDDPNGRLHYSIDFTKKQGYGRIEHLKT PEQNVELASAELKADEKSHAVILGDTRYGGEEKGTYHLALFGDRAQEIAGSATVKIREKVHEIGIAGKQ #### SEQ ID 23 – NMB1343 from ten meningococcal strains MGNFLYRGISCQQDEQNNGQLKPKGNKAEVAIRYDGKFKYDGKATHGPSVKNAVYAHQIETGLYDGCYIS TTTDKEIAKKFATSSGIENGYIYVLNRDLFGQYSIFEYEVEHPENPNEKEVTIRAEDCGCIPEEVIIAKE LIEIN #### SEQ ID 24 – NMB1343 from gonococcus INNLWEISYLYRGISCQQDEQNNGQLKPKGNKAEVAIRYDGKFKYDGKATHGPSVKNAVYAHQIETDLYD GCYISTTTDKEIAKKFATSSGIENGYIYVLNRDLFGQYSIFEYEVEHPENPDEKEVTIRAEDCGCIPEEV IIAKELIEIN # SEQ ID 25 - NMB1343 nucleic acid sequence (gonococcus) #### SEQ ID 26 - NMB1343 nucleic acid sequence (meningococcus) #### SEO ID 27 - linker **GSGGGG** 25 .4 # SEQ ID 28 - preferred $\triangle G287-953$ hybrid MASPDVKSADTLSKPAAPVVAEKETEVKEDAPQAGSQGQGAPSTQGSQDMAAVSAENTGNGGAATTDKPK NEDEGPQNDMPQNSAESANQTGNNQPADSSDSAPASNPAPANGGSNFGRVDLANGVLIDGPSQNITLTHC KGDSCNGDNLLDEEAPSKSEFENLNESERIEKYKKDGKSDKFTNLVATAVQANGTNKYVIIYKDKSASSS SARFRRSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSYALR VOGEPAKGEMLAGTAVYNGEVLHFHTENGRPYPTRGRFAAKVDFGSKSVDGIIDSGDDLHMGTQKFKAAI DGNGFKGTWTENGGGDVSGRFYGPAGEEVAGKYSYRPTDAEKGGFGVFAGKKEQDGSGGGGATYKVDEYH ANARFAIDHFNTSTNVGGFYGLTGSVEFDQAKRDGKIDITIPVANLQSGSQHFTDHLKSADIFDAAQYPD IRFVSTKFNFNGKKLVSVDGNLTMHGKTAPVKLKAEKFNCYQSPMAKTEVCGGDFSTTIDRTKWGVDYLV 10 NVGMTKSVRIDIOIEAAKO # SEQ ID $29 - \Delta G287_{NZ}$ -953 hybrid ${\tt MASPDVKSADTLSKPAAPVVSEKETEAKEDAPQAGSQGQGAPSAQGGQDMAAVSEENTGNGGAAATDKPK}$ NEDEGAONDMPONAADTDSLTPNHTPASNMPAGNMENQAPDAGESEQPANQPDMANTADGMQGDDPSAGG ENAGNTAAQGTNQAENNQTAGSQNPASSTNPSATNSGGDFGRTNVGNSVVIDGPSQNITLTHCKGDSCSG 15
NNFLDEEVQLKSEFEKLSDADKISNYKKDGKNDGKNDKFVGLVADSVQMKGINQYIIFYKPKPTSFARFR RSARSRRSLPAEMPLIPVNQADTLIVDGEAVSLTGHSGNIFAPEGNYRYLTYGAEKLPGGSYALRVQGEP SKGEMLAGTAVYNGEVLHFHTENGRPSPSRGRFAAKVDFGSKSVDGIIDSGDGLHMGTQKFKAAIDGNGF KGTWTENGGGDVSGKFYGPAGEEVAGKYSYRPTDAEKGGFGVFAGKKEQDGSGGGGATYKVDEYHANARF AIDHFNTSTNVGGFYGLTGSVEFDQAKRDGKIDITIPVANLQSGSQHFTDHLKSADIFDAAQYPDIRFVS 20 TKFNFNGKKLVSVDGNLTMHGKTAPVKLKAEKFNCYQSPMAKTEVCGGDFSTTIDRTKWGVDYLVNVGMT KSVRIDIQIEAAKQ ## SEQ ID 30 - 936-∆G741 hybrid MKPKPHTVRTLIAAIFSLALSGCVSAVIGSAAVGAKSAVDRRTTGAOTDDNVMALRIETTARSYLRONNO TKGYTPOISVVGYNRHLLLLGQVATEGEKQFVGQIARSEQAAEGVYNYITVASLPRTAGDIAGDTWNTSK 25 VRATLLGISPATQARVKIVTYGNVTYVMGILTPEEQAQITQKVSTTVGVQKVITLYQNYVQRGSGGGGVA ADIGAGLADALTAPLDHKDKGLQSLTLDQSVRKNEKLKLAAQGAEKTYGNGDSLNTGKLKNDKVSRFDFI RQIEVDGQLITLESGEFQVYKQSHSALTAFQTEQIQDSEHSGKMVAKRQFRIGDIAGEHTSFDKLPEGGR ATYRGTAFGSDDAGGKLTYTIDFAAKQGNGKIEHLKSPELNVDLAAADIKPDGKRHAVISGSVLYNQAEK GSYSLGIFGGKAQEVAGSAEVKTVNGIRHIGLAAKQ #### 30 SEQ ID 31 - 961c 35 5 MATNDDDVKKAATVAIAAAYNNGOEINGFKAGETIYDIDEDGTITKKDATAADVEADDFKGLGLKKVVTN LTKTVNENKONVDAKVKAAESEIEKLTTKLADTDAALADTDAALDATTNALNKLGENITTFAEETKTNIV KIDEKLEAVADTVDKHAEAFNDIADSLDETNTKADEAVKTANEAKOTAEETKONVDAKVKAAETAAGKAE AAAGTANTAADKAEAVAAKVTDIKADIATNKDNIAKKANSADVYTREESDSKFVRIDGLNATTEKLDTRL ASAEKSIADHDTRLNGLDKTVSDLRKETRQGLAEQAALSGLFQPYNVG