wo 2012/078693 A2 [N NPF V0 0RO A OO A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/078693 A2

14 June 2012 (14.06.2012) WIPO I PCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
HO4L 12/24 (2006.01) HO4L 29/06 (2006.01)
GO6F 15/16 (2006.01)

International Application Number:
PCT/US2011/063618

International Filing Date:
6 December 2011 (06.12.2011)

Filing Language: English
Publication Language: English
Priority Data:

12/964,749 10 December 2010 (10.12.2010) US

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, Washington 98052-6399 (US).

Inventors: SWAN, Paul R.; c/o Microsoft Corporation,
LCA - International Patents, One Microsoft Way, Red-
mond, Washington 98052-6399 (US). GEORGE, Math-
ew; c¢/o Microsoft Corporation, LCA - International Pat-
ents, One Microsoft Way, Redmond, Washington 98052-
6399 (US). KRUSE, David M.; c/o Microsoft Corpora-
tion, LCA - International Patents, One Microsoft Way,
Redmond, Washington 98052-6399 (US). BATTEPATI,
Roopesh C.; c/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsott Way, Redmond, Washington
98052-6399 (US). JOHNSON, Michael C.; c/o Microsott

Corporation, LCA - International Patents, One Microsoft
Way, Redmond, Washington 98052-6399 (US).

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

[Continued on next page]

(54) Title: PROVIDING TRANSPARENT FAILOVER IN A FILE SYSTEM

Connection State System
110 120 130 140
State State Resume
Collection Storing StastteoerGata Detection
Component Component Component
150 160 170 180
State State Blackout Resource
Retrieval Restoration Enforcement Suspension
Component Component Component Component
FIG. 1

(57) Abstract: A connection state system is described herein that allows a client to resume a connection with a server or a different
replacement server by remotely storing client state information in association with a resume key. The system provides a resume key
filter operating at the server that facilitates the storing of volatile server state information. The state information can include informa-
tion such as oplocks, leases granted to a client, and in-flight operations on a file handle. The resume key filter driver sits above the
file system, which allows multiple file access protocols to use the filter. Upon a failover event, such as a server going down or losing
connectivity to a client, the system can bring up another server or the same server and reestablish state for file handles held by vari-
ous clients using the resume key filter.

WO 2012/078693 A2 |00V 0N K A U

— as to the applicant's entitlement to claim the priority of Published:
the earlier application (Rule 4.17(iii)) — without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

PROVIDING TRANSPARENT FAILOVER IN A FILE SYSTEM
BACKGROUND

[0001] A variety of techniques exists for sharing files, printers, and other resources
between two computers on a network. For example, two application-layer network
protocols for sharing resources are Server Message Block (SMB) and Network File
System (NFS). SMB is used by MICROSOFT TM WINDOWS TM and other operating
systems to allow two computers or other resources to communicate, request access to
resources, specify intended access of resources (e.g., reading, writing, etc.), lock
resources, and so on. MICROSOFT TM WINDOWS TM Vista introduced SMB 2.0,
which simplified the command set of SMB 1.0 and added many other enhancements.
MICROSOFT TM WINDOWS TM 7 and Server 2008 R2 introduced SMB 2.1, which
added opportunistic locking (oplocks) and other enhancements.
[0002] Most protocols for remote sharing of resources assume a one-to-one relationship
between connections and sessions. A session represents the lifetime of any single request
to access a resource and the subsequent access of that resource until the connection is
terminated. A session may also be associated with a particular security principal and
validated security credentials that determine the actions that are authorized during the
session. A connection can include a Transmission Control Protocol (TCP), User
Datagram Protocol (UDP), or other type of connection over which higher-level protocols
like SMB and NFS can communicate to carry out commands. An SMB or NFS session
typically involves opening a TCP or UDP connection between a source of a request and a
target of the request, sending one or more SMB or NFS commands to access the target
resource, and then closing the session. Sometimes connections are lost during a session
(e.g., due to a network failure), tearing down any client and server state established during
the connection. To reestablish a connection the client and server typically have to repeat
all of the steps used to initially establish the connection over again.
[0003] The SMB?2 protocol provides a resume key that allows clients to quickly
reestablish a file handle to a server if a client is disconnected from the server, enabling
clients to reduce network round trips to the server and reduce the load on the server when
a client reconnects. However, today the resume key does not provide restoration of state
in the event of server failover in which the SMB2 server loses volatile state during a

server reboot or failover of a cluster. State information associated with existing opens is

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

lost and must be reestablished. In addition, the resume key is an application-level concept
that can only be created and used within the boundary of an application but not shared.
SUMMARY

[0004] A connection state system is described herein that allows a client to resume a
connection with a server or a different replacement server by remotely storing client state
information in association with a resume key. The system provides a resume key filter
operating at the server that facilitates the storing of volatile server state information. The
state information can include information such as oplocks, leases granted to a client, and
in-flight operations on a file handle. The resume key filter driver sits above the file
system, which allows multiple file access protocols to use the filter, as well as permitting
the filter to provide this functionality across multiple file systems. The system provides
state information to the protocol, independent of the actual protocol. Upon a failover
event, such as a server going down or losing connectivity to a client, the system can bring
up another server or the same server and reestablish state for file handles held by various
clients using the resume key filter. The filter enforces a blackout window on active files
after failover that guarantees that the active file state can be consistently restored and that
other clients do not step in to access the file in the interim. In the resume phase, the
resume key is used to map existing pre-failover file handles to post-failover preserved file
state stored by the resume key filter. Thus, the connection state system allows the same or
another server to resume the state of a previous session with a client after a failover event
with as little disruption as possible to clients.
[0005] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used to limit the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Figure 1 is a block diagram that illustrates components of the connection state
system, in one embodiment.
[0007] Figure 2 is a flow diagram that illustrates processing of the connection state
system to capture file system state information, in one embodiment.
[0008] Figure 3 is a flow diagram that illustrates processing of the connection state
system to resume a connection after failover, in one embodiment.
[0009] Figure 4 is a block diagram that illustrates the operating environment of the

connection state system, in one embodiment.

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

DETAILED DESCRIPTION
[0010] A connection state system is described herein that allows a client to resume a
connection with a server or a different replacement server by remotely storing client state
information in association with a resume key. The system provides a resume key filter
operating at the server that facilitates the storing of volatile server state information. The
state information can include information such as oplocks, leases granted to a client, and
in-flight operations on a file handle. The resume key filter driver sits above the file
system, which allows multiple file access protocols to use the filter, as well as permitting
the filter to provide this functionality across multiple file systems. The system provides
state information to the protocol, independent of the actual protocol. Upon a failover
event, such as a server going down or losing connectivity to a client, the system can bring
up another server or the same server (e.g., via different connection, such as a redundant
Ethernet connection) and reestablish state for file handles held by various clients using the
resume key filter.
[0011] The system provides a resume key filter that can be used for transparent failover
after a server loses its connection to a client. The resume key filter sits atop the file
system and is therefore independent of protocol used to access the file system. The
resume key filter records active file state and then restores the active file state after a
failover. The resume key filter can capture a variety of state information. For example,
the filter records the active file system state comprising open handles (statically referenced
by a resume key), uncommitted file state (such as delete on close, delete pending, and lock
state), and certain in-flight/interrupted file operations. The filter restores the active file
system state after failover such that the open handles are resumed to match those prior to
failover and in-flight operations can be consistently replayed. The filter provides a means
for multiple Remote File Systems (RFS) to store and retrieve private opaque data that is
associated with an open file handle referenced through a resume key. The filter enforces a
blackout window on active files after failover that guarantees that the active file state can
be consistently restored and that other clients do not step in to access the file in the
interim. The filter also allows a currently active file to be “suspended” and then resumed
without a failover in order to support SMB in the cluster scenario where nodes failover.
[0012] A remote file system (RFS) supplies a resume key with every file create
operation as an extra parameter during create. The key is unique to the RFS. The resume
key filter uses a resume key and an RFS identification key together as a globally unique

identifier (GUID) for a file handle. In the resume phase, the resume key is used to map

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

existing pre-failover file handles to post-failover preserved file state stored by the resume
key filter. Thus, the connection state system allows the same or another server to resume
the state of a previous session with a client after a failover event with as little disruption as
possible to clients.

[0013] Figure 1 is a block diagram that illustrates components of the connection state
system, in one embodiment. The system 100 includes a state collection component 110, a
state storing component 120, a state data store 130, a resume detection component 140, a
state retrieval component 150, a state restoration component 160, a blackout enforcement
component 170, and a resource suspension component 180. Each of these components is
described in further detail herein.

[0014] The state collection component 110 creates a state record for each file handle and
collects state information as a client request operations using the file handle. The
component 110 may operate at a server and store state information externally from the
server so that the state information can be accessed if the server is unavailable. For
example, the component 110 may store the state information the state data store 130
described further herein. The state collection component 110 may receive a resume key
from the client when the client connects to the server, and the component 110 associates
collected state information with the resume key in the state data store 130. If a client is
reconnecting after a failover event, the client will provide the same resume key used to
open the initial connection and the current server can find the state information stored by
the previous server and recreate the server state from the state information.

[0015] The state storing component 120 stores collected state information in association
with a resume key provided by the client. The component 120 stores the state information
in the state data store 130 and keeps a record of operations related to the resume key that
would be restored in the event of a failover event. The state information may include open
file handles, oplocks granted, leases and lease information, in-progress file operations,
byte range locks, and any other information that another server would use to carry out the
client’s requests without the client reestablishing all of the previous state.

[0016] The state data store 130 persistently stores file system state information that a
resuming server uses to recreate state information stored by a failing server. In some
cases, the resuming server and the failing server may be the same server using a different
connection to the client or coming back up after a brief outage. In other cases, the
resuming server and failing server are different servers, and the state data store 130 is

provided in a location accessible to both servers for sharing the state information. The

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

state data store 130 may include one or more files, file systems, hard drives, databases,
storage area networks (SANs), cloud-based storage services, or other storage facility for
persistently storing data and accessible to both the failing and resuming server for
exchanging information. As the failing server is performing operations, it is storing state
information about the operations’ progress in the state data store 130. Upon a failure, the
failing server will be interrupted, and a resuming server accesses the state information to
resume the state and continue carrying out any operations that did not complete.

[0017] The resume detection component 140 detects a condition that makes a failing
server unavailable and informs a resuming server to act in the failing server’s place. The
detection may be client driven, such that the system does not perform any resuming steps
until the client reconnects to the system and provides a previously used resume key. The
system identifies the key and any state information stored in association with the key and
restores that state information as part of setting up the connection. The resuming server
may be the same or a different server from the failing server, and the resume detection
component 140 ensures that the resuming server becomes active to handle the client’s
requests. In other embodiments, the detection may be server driven and the system may
proactively bring up a resuming server upon detecting that a failing server has gone down.
The system may also prepopulate the resuming server with stored state information even
before a client requests a connection to the server.

[0018] The state retrieval component 150 retrieves stored state information from a
location accessible to the resuming server, wherein the state information allows the
resuming server to resume any previously requested file system operations that were
interrupted by the detected failure condition. The state retrieval component 150 retrieves
state information from the state data store 130 and invokes the state restoration component
160 to load the information into the resuming server so that the resuming server can
continue the operations requested by the client.

[0019] The state restoration component 160 loads the retrieved state information into the
resuming server so that the resuming server can continue operations previously requested
by the client. The restoration may also include refreshing any oplocks and/or leases held
by the client to ensure that other clients abide by previously requested access levels and/or
exclusivity granted to the client. The state restoration component 160 allows a new server
or node to take the place of a failing server or node without placing a heavy burden upon
the client to restore state information by repeating past operations. Clients using protocols

like SMB 2.0 already know how to use a resume key to restore a connection to the same

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

server, and the connection state system allows a substitute server to take the place of a
failing server transparently to the client. Resume keys can also be used with NFS. In the
case of NFS, the concept of a resume key is completely opaque to the client. The client
does not explicitly refer to or participate in resume key generation, management, and
association. Rather, the resume key is a server side concept.

[0020] The blackout enforcement component 170 enforces a blackout period on access
to one or more files or other resources that prevents a second client from interfering with
resources in a way that would conflict with a first client resuming a connection to the
resuming server. The component 170 may automatically select a period deemed to be
long enough to avoid most conflicting operations (e.g., 15 or 30 seconds), but not so long
as to prevent other clients from accessing resources if the first client does not resume the
connection. The period allows the first client time to resume the connection if the first
client chooses. In some embodiments, the system allows an administrator or other user to
configure the duration of the blackout period to tune the system for application-specific
purposes. The system may also allow individual clients to request a blackout period as a
parameter to a create/open request or other application programming interface (API). In
response to attempts to access a blacked out resource, the component 170 may provide an
indication to try again after a particular period or simply fail the request. After the
blackout period if no client has resumed the connection, then the blackout is over and
requests to access the resource will succeed as normal.

[0021] The resource suspension component 180 allows a currently active resource to be
suspended and resumed without a failover event to allow a cluster to failover to another
node in planned manner. One example is load balancing. Suspending allows scenarios
where a subset of the state is being transitioned to a new node. For example, if one node
in the cluster is overloaded, an administrator may want to migrate half the node’s clients
to anew node. Suspending allows capturing the state of the opens that are being migrated
and allows the client to connect to the new node as a continuation of the same open (e.g.,
without reestablishing server state). As another example, SMB supports clustering
scenarios in which generic nodes are brought into a cluster and can be used
interchangeably to service client requests. Sometimes there is a reason to bring down a
particular node, such as for maintenance, and it is desirable to cleanly suspend the current
node, activate the new node, deactivate the old node, and then perform any maintenance

operations on the deactivated node. This can have an undesirable impact on clients, but

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

using the techniques described herein, the system 100 can suspend the node in an
organized manner, and allow clients to resume operations with the new node efficiently.
[0022] The computing device on which the connection state system is implemented may
include a central processing unit, memory, input devices (e.g., keyboard and pointing
devices), output devices (e.g., display devices), and storage devices (e.g., disk drives or
other non-volatile storage media). The memory and storage devices are computer-
readable storage media that may be encoded with computer-executable instructions (e.g.,
software) that implement or enable the system. In addition, the data structures and
message structures may be stored or transmitted via a data transmission medium, such as a
signal on a communication link. Various communication links may be used, such as the
Internet, a local area network, a wide area network, a point-to-point dial-up connection, a
cell phone network, and so on.

[0023] Embodiments of the system may be implemented in various operating
environments that include personal computers, server computers, handheld or laptop
devices, multiprocessor systems, microprocessor-based systems, programmable consumer
electronics, digital cameras, network PCs, minicomputers, mainframe computers,
distributed computing environments that include any of the above systems or devices, set
top boxes, systems on a chip (SOCs), and so on. The computer systems may be cell
phones, personal digital assistants, smart phones, personal computers, programmable
consumer electronics, digital cameras, and so on.

[0024] The system may be described in the general context of computer-executable
instructions, such as program modules, executed by one or more computers or other
devices. Generally, program modules include routines, programs, objects, components,
data structures, and so on that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program modules may be combined or
distributed as desired in various embodiments.

[0025] Figure 2 is a flow diagram that illustrates processing of the connection state
system to capture file system state information, in one embodiment. Beginning in block
210, the system receives from a client a request to access a remote resource stored on a
server. The access request may include one or more parameters, including a resume key
used to identify the session across multiple potential connections if a connection fails.
The resource access request may be the first in a series of access requests sent from the
client, and if the client is ever disconnected from the server the client may provide the

same resume key in a subsequent open request to the same or a new server to resume the

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

connection. The resume key helps the server respond to the client faster by correlating
state information maintained by the server (or across servers) between what would
otherwise appear to be independent client connections.

[0026] Continuing in block 220, the system determines an identifier that identifies a
client session related to the request. The identifier in some cases is a resume key that the
client provides for durable handles that allow resuming sessions that get disconnected for
various reasons. The access request may include one or more parameters at well-defined
locations in the protocol so that the system can extract the key by reading the appropriate
location in the request. Alternatively or additionally, the server may include an automated
process for determining the identifier that does not involve information explicitly provided
by the client. For example, the server may identify the client by Internet Protocol (IP)
address or other inferred data that indicates to the server that the client connection is
correlated with a previous session.

[0027] Continuing in block 230, the system creates a resume record searchable by the
extracted identifier that associates state information created by operations requested by the
client with the extracted identifier. The resume record can be stored at a location external
to the server handling the present access request so that if the server fails another server
will be able to read the record to resume the operations and act in the original server’s
place. The resume record may include a file, database record, or other form of storage.
The record may contain a list of open file handles, oplocks obtained by the client, leases,
or other file system state information.

[0028] Continuing in block 240, the system receives a file operation from the client that
requests access to a file accessible through the server. The file operation may be a request
to open a file, close a file, read a file, write a file, print to a shared printer, or other file
system operations. The received operation involves a certain amount of state information
being created on the server. For example, if the client opens a handle to the file, then the
server tracks that handle to manage other client requests related to the file and to manage
lifetime and/or cleanup processing for the handle.

[0029] Continuing in block 250, the system stores resume state information in the
created resume record that provides information to resume the received file operation if
the client loses its connection with the server. If the client connection fails, the client will
attempt to resume the connection by again opening a remote resource and specifying the
same resume key or other session identifier. This will allow the server or another server to

access the stored resume record and reestablish the previous state information.

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

[0030] Continuing in block 260, the system performs the requested file operation. The
operation may open a file, read the contents of the file, write data to the file, change access
rights to the file, or any other file system operation. The outcome of the operation may
change the state stored by the server. For example, if the client attempts to close a handle
and the server successfully closes the handle, then the server state will be updated to
remove the handle from a list of handles tracked by the server.

[0031] Continuing in block 270, the system updates the stored resume state information
in the created resume record based on an outcome of the performed file operation. The
system cannot know in advance when a failure will occur that causes failover, so the
system keeps an up to date view of the server state in the resume record that allows a
server to reestablish the state as close to the previous server’s state as possible.

Operations that were not completed may be replayed to complete the operations while
operations that did complete will not need to be repeated (but the server may resend the
result to the client). Thus, the system updates the state as needed during and after various
file system operations that change server state information.

[0032] Continuing in block 280, the system sends a response to the client that indicates
the outcome of the requested file operation. If the client and server are still connected,
then operations continue as they are requested by the client and the server continues to
track updated state information. If at any time the connection is lost, another server can be
brought up or the existing server repaired and the state information can be loaded from the
state store to reestablish the prior server state. Upon receiving a new request from the
client to resume the session, the client need not be aware that failover has occurred and
that the client is potentially interacting with a different server than the original one. After
block 280, these steps conclude.

[0033] Figure 3 is a flow diagram that illustrates processing of the connection state
system to resume a connection after failover, in one embodiment. Beginning in block 310,
the system receives from a client a request to open a remote resource stored on a server.
The access request may include one or more parameters, including a resume key used to
identify the session across multiple potential connections if a connection fails. Unlike the
resource access request discussed with reference to Figure 2, this request is a request to
reconnect to a previously connected session. The client provides the same resume key as
originally provided, so that the server can correlate the current session request with the

previous session.

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

[0034] Continuing in block 320, the system determines a session identifier that identifies
a client session related to the request. The identifier in some cases is an SMB 2 resume
key that the client provides for durable handles that allow resuming sessions that get
disconnected for various reasons. The access request may include one or more parameters
at well-defined locations in the protocol so that the system can extract the key by reading
the appropriate location in the request. In other cases, the server may determine the
identifier automatically based on information about the client.

[0035] Continuing in block 330, the system looks up the received session identifier in a
state store to identify a resume record associated with the session identifier. Any previous
server interacting with the client using a resumable session stores state information on an
ongoing basis throughout interaction with the client. When the client attempts to
reestablish the connection, the state information is available to a failover server standing
in for the original server. The state information may be stored externally to the original
server so that the information is accessible after a failure of the original server.

[0036] Continuing in block 340, the system receives from the state store previous state
information associated with the resume record. The state information identifies static
state, such as open file handles, obtained leases, obtained oplocks, and so forth, as well as
dynamic state, such as in-flight operations that may not have completed. The stored state
information allows the failover server to take the place of the original server without
specific processing by the client. The client understands resumable handles and performs
steps to make a connection resumable, but may not be aware of which server ends up
handling the connection at any particular time. The client may access the server via a
domain name or network file share that can resolve to an address of any one of several
servers, including the failover server.

[0037] Continuing in block 350, the system restores the received previous state
information by loading the information into the file system components that track file
system state. After loading the state, the local state of the failover server is similar to how
the state would look if all of the previous operations had occurred on the failover server.
Thus, the failover server is as useful to the client for continuing the series of operations as
the original server would have been had the connection not failed.

[0038] Continuing in block 360, the system responds to the client access request
indicating that the server found the resume record and is ready to receive client operations
related to the previous session. Based on the server’s response, the client can determine

whether the session is resumed or whether the client needs to take steps to repeat previous

10

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

operations. If the session was successfully resumed, then the client can continue knowing
the previous operations completed or were replayed to complete after the server resumed.
In some cases, the system may hand the client a new file handle that has the same state as
the pre-failover file handle. After block 360, these steps conclude.

[0039] Figure 4 is a block diagram that illustrates the operating environment of the
connection state system, in one embodiment. The environment includes one or more
operating system services or applications that interact with file systems. For example,
MICROSOFT TM WINDOWS TM includes a server service 420 known as SRV, and a
network file system service 410 known as NFS. The network file system service 410 and
server service 420 provides access to shared resources, such as files and printers, between
computer systems. The server service 420 uses the SMB protocol common to
WINDOWS TM networks, while the network file system service 410 provides access to
Unix-based systems that more commonly use NFS. Regardless of the protocol, the
resume key filter 430 captures file operations and stores state information for resuming the
operations in a remote data store. The operations pass through the file system level 440
(e.g., NTFS or other file system), and affect one or more user data files 450. Meanwhile,
the resume key filter 430 writes state information to a log file 460 or other data store, that
another server can access to retrieve state information and resume a connection to a client.
The system can operate independent of the particular protocol or file system involved, and
various components can be updated to save their own particular state information in the
state data store.

[0040] In some embodiments, the connection state system stores opaque blobs of data
on behalf of file system components to allow the system to resume connections without
component-specific knowledge. For example, the resume key filter described herein can
ask the server service for any data the server service would need to recreate its present
state. The filter can then store any received data as an opaque blob (i.e., the filter need not
know what is in the blob or its semantic meaning) in the state store. Upon a failover
condition, a resume key filter operating on the new server can access the stored state
information, retrieve the stored blob, and provide the blob to the server service so that the
server service can restore its own state. In this way, the system can be made to work with
many types of protocols without specific knowledge of the internal operations of
components that implement each protocol for a server.

[0041] In some embodiments, the connection state system blocks other clients from

accessing files or other resources related to a resumable handle for some amount of time

11

10

15

20

WO 2012/078693 PCT/US2011/063618

(i.e., blackout period). If the original client reconnects during the blackout period, then the
original client gets its connection back with all of the previous state, and can resume
operations. If another client attempts to connect, the server may provide a message
indicating to wait an amount of time and retry. Resume aware clients can use this
information to delay retrying until after the blackout period, while older clients may
simple fail the connection and manually retry at the user’s request. If the original client
does not return within the blackout period, the server cleans up the resume state
information and allows new clients to access the resources as usual.

[0042] In some embodiments, the connection state system can use a variety of storage
devices or strategies for speeding up resumes. For example, the system may use a fast,
nonvolatile storage device (e.g., a solid state disk (SSD)) for storing resume state
information so that resumes get faster access to data to avoid delaying operations already
interrupted by a failure any further. As another example, the system may broadcast all
changes made by each server to a group of servers, so that each server can maintain its
own copy of the state information and can be the elected failover server in the event of a
failure of the original server.

[0043] From the foregoing, it will be appreciated that specific embodiments of the
connection state system have been described herein for purposes of illustration, but that
various modifications may be made without deviating from the spirit and scope of the

invention. Accordingly, the invention is not limited except as by the appended claims.

12

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

CLAIMS

1. A computer-implemented method for capturing file system state information to
facilitate resuming connections, the method comprising;:

receiving from a client a request to access a remote resource stored on a server;

determining an identifier that identifies a client session related to the request;

creating a resume record searchable by the extracted identifier that associates state
information created by operations requested by the client with the extracted identifier;

receiving a file operation from the client that requests access to a file accessible
through the server;

storing resume state information in the created resume record that provides
information to resume the received file operation if the client loses its connection with the
server;

performing the requested file operation;

updating the stored resume state information in the created resume record based on
an outcome of the performed file operation; and

sending a response to the client that indicates the outcome of the requested file
operation,

wherein the preceding steps are performed by at least one processor.
2. The method of claim 1 wherein the access request includes one or more
parameters, including a resume key that identifies the client session across multiple
potential connections if a connection fails, and wherein the resume key is at least part of
the determined identifier.
3. The method of claim 1 further comprising, upon the client becoming disconnected
from the server, receiving at a failover server a new access request that that the server can
correlate with the original access request to help the failover server respond to the client
faster after a connection failure by correlating state information maintained by the server
between multiple client connections.
4. The method of claim 1 wherein a Network File System (NFS) server determines
the identifier automatically without receiving a resume key from the client.
5. The method of claim 1 wherein the extracted identifier is a Server Message Block
(SMB) resume key that the client provides for durable handles that allow resuming
sessions that get disconnected.
6. The method of claim 1 wherein creating the resume record comprises storing the

resume record at a location external to the server handling the present access request so

13

10

15

20

25

30

WO 2012/078693 PCT/US2011/063618

that if the server fails another server will be able to read the record to resume any
operations from the client and act in the original server’s place.

7. The method of claim 1 where receiving the file operation comprises a request to
perform an operation selected from the group consisting of opening a file, closing a file,
reading a file, writing a file, obtaining a lease on a file, and obtaining a lock on a file.

8. The method of claim 1 further comprising, upon the client becoming disconnected
from the server, loading at a failover server the stored resume record so that the client can
connect to the failover server and continue any previous operations.

9. The method of claim 1 wherein performing the requested file operation modifies
state stored by the server, and wherein updating the stored resume state information
captures the modified state.

10. The method of claim 1 wherein updating the stored resume state information
comprises keeping an up to date view of the server state in the resume record that allows
another server to reestablish the state and handle client requests in place of the original
server without requiring the client to reestablish at least some of the state information.

11. A computer system for providing transparent failover for clients in a file system,
the system comprising:

a processor and memory configured to execute software instructions embodied
within the following components;

a state collection component that creates a state record for each file handle and
collects state information as a client requests operations using the file handle;

a state storing component that stores collected state information in association with
a session identifier provided by the client;

a state data store that persistently stores file system state information that a
resuming server uses to recreate state information stored by a failing server;

a resume detection component that detects a condition that makes a failing server
unavailable and informs a resuming server to act in the failing server’s place;

a state retrieval component that retrieves stored state information from a location
accessible to the resuming server, wherein the state information allows the resuming
server to resume any previously requested file system operations that were interrupted by
the detected failure condition; and

a state restoration component that loads the retrieved state information into the
resuming server so that the resuming server can continue operations previously requested

by the client.

14

10

WO 2012/078693 PCT/US2011/063618

12. The system of claim 11 wherein the state collection component is further
configured to operate at a server and store state information externally from the server so
that the state information can be accessed if the server is unavailable.

13. The system of claim 11 wherein the state collection component is further
configured to receive a resume key from the client when the client connects to the server,
and associate collected state information with the resume key in the state data store.

14. The system of claim 11 wherein the state data store stores and provides
information for a resuming server that is the same server as the failing server using a
different connection to the client.

15. The system of claim 11 wherein the state data store receives state information as
the failing server is performing operations, and, upon a failure, provides access to the
previously received state information to the resuming server to resume the state and

continue carrying out any operations that did not complete.

15

WO 2012/078693 PCT/US2011/063618
1/4
100
Connection State System
r—b1 ’ r—bz ’ r—1J3 ’ r—1J4 ’
State State Resume
Collection Storing StaStE[aoE)eata Detection
Component Component Component
f_1J5 X f‘y3 X f_1] X f‘y3 X
State State Blackout Resource
Retrieval Restoration Enforcement Suspension
Component Component Component Component

FIG. 1

WO 2012/078693

2/4

Gapture State Informati@

Receive Open File
Request

" 210

Determine Session
Identifier

" 220

Create Resume Record

" 230

Receive File Operation

" 240

Store Resume State
Information

" 250

Perform File Operation

" 260

Update Resume State
Information

" 270

Send Operation
Response

" 280

< pone >

FIG. 2

PCT/US2011/063618

WO 2012/078693 PCT/US2011/063618

3/4

< Resume Connection>

Receive Open File
Request 310

Determine Resume Key (320

Lookup Key and Previous
State " 330

Receive Previous State
Information 340

Restore File System State \.~"350

Respond to Open
Request 7360

< pone)

FIG.3

WO 2012/078693 PCT/US2011/063618

4/4
410 420
—~ —~
NFS } SRV
Resume Key
S
State Log Filter 430
" 460
440
NTFS \
450
User Data
Files

FIG. 4

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings

