PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/45793

15 October 1998 (15.10.98)

(21) International Application Number: PCT/US98/07096

(22) International Filing Date: 8 April 1998 (08.04.98)

(30) Priority Data:

08/827,691 Us

8 April 1997 (08.04.97)

(71) Applicant: TECHWAVE, INC. [US/US]; Suite 920, 720 Olive
Way, Seattle, WA 98101 (US).

(72) Inventor: GUTHRIE, John; Apartment D333, 11513 Stone
Avenue North, Seattle, WA 98113 (US).

(74) Agents: PIRIO, Maurice, J. et al,; Seed and Berry LLP,
6300 Columbia Center, 701 Fifth Avenue, Seattle, WA
98104-7092 (US).

(81) Designated States: AL, AM, AT, AU, BA, BB, BG, BR, BY,
CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH,
GM, GW, HU, ID, IL, 1S, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.

(54) Titlee METHOD AND SYSTEM FOR INJECTING CODE TO CONDITIONALLY INCORPORATE A USER INTERFACE

COMPONENT IN AN HTML DOCUMENT

COMPUTER SYSTEM

/505
fﬁ'ﬂl
MEMORY
507
502 506 ya
o | Browser
Inferceptor|
Code
HMTL dec. 0
vith njected S5
code
sy 1S
n {local copy)
Object Vel Injeciable
class Component
regisiry
OTHER 504 Network HMTL
INPUT/OUTPUT f interface 512 Injection
DEVICES code System

(57) Abstract

A method and system for injecting code into an existing HTML document that enables the conditional generation and incorporation
of an injectable component is provided. The injection mechanism provided enables a user to display and add—on user interface component
within a web page using a technique that is transparent to the normal processing within the browser application. The injection mechanism
installs interceptor code as a proxy server between a client browser and a server. The interceptor code monitors all HTTP messages sent
from the client browser and injects code into each HTML document that is sent from a server to the client browser. The injected code when
executed by the client browser conditionally inserts HTML code into the received HTML document. The inserted HTML code is then used
by the client browser to generate a new component, for example a user interface component. The code injected by the interceptor code is
dependent upon the type of the browser and whether certain tags are present in the received HTML document. In addition, the code may

be written in a script language, such as Javascript or VBscript.




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Ttaly MX Mexico UZ Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway W Zimbabwe
Cote d’Ivoire KP Democratic People’s Nz New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany L1 Liechtenstein sD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore




10

15

20

25

WO 98/45793 PCT/US98/07096

METHOD AND SYSTEM FOR INJECTING CODE
TO CONDITIONALLY INCORPORATE A USER
INTERFACE COMPONENT IN AN HTML DOCUMENT

TECHNICAL FIELD

The present invention relates to transparently modifying an existing
document and, in particular, to injecting code into an HTML document that

conditionally generates a user interface component.

BACKGROUND OF THE INVENTION

Today’s computer networking environments, such as the Internet,
offer mechanisms for delivering documents between heterogeneous computer
systems. One such network, the World Wide WEB network, which comprises a
subset of Internet sites, supports a standard protocol for requesting documents
known as WEB pages and for receiving them. This protocol is known as the
Hypertext Transfer Protocol, or “HTTP.” HTTP defines a high-level message
passing protocol for sending and receiving packets of information between
diverse applications. Details of HTTP can be found in various documents
including T. Berners-Lee et al., Hypertext Transfer Protocol--HTTP 1.0, Request
for Comments (RFC) 1945, MIT/LCS, May, 1996, which is incorporated herein
by reference. Each HTTP message follows a specific layout, which includes
amongst other information a header, which contains information specific to the
request or response. Further, each HTTP request message contains a universal
resource identifier (a “URI”), which specifies to which network resource the
request is to be applied. A URI is either a Uniform Resource Locator (“URL”) or
Uniform Resource Name (“URN™), or any other formatted string that identifies a
network resource. The URI contained in a request message, in effect, identifies

the destination machine for a message. URLs, as an example-of URIs, are



10

15

20

25

WO 98/45793 PCT/US98/07096

discussed in detail in T. Berners-Lee, et al., Uniform Resource Locators (URL),
RFC 1738, CERN, Xerox PARC, Univ. of Minn., December, 1994, which is
incorporated herein by reference.

Figure 1 illustrates how a browser application enables users to
navigate among nodes on the WEB network by requesting and receiving WEB
pages. For the purposes of this application, a WEB page is any type of document
that abides by the HTML format. That is, the document includes an “<HTML>"
statement. Thus, a WEB page is also be referred to as an HTML document. The
HTML format is a document mark-up language, defined by the Hypertext
Markup Language (“HTML”) specification. HTML defines tags for specifying
how to interpret the text and images stored in an HTML document. For example,
there are HTML tags for defining paragraph formats and for emboldening and
underlining text. In addition, the HTML format defines tags for adding images to
documents and for formatting and aligning text with respect to images. HTML
tags appear between angle brackets, for example, <HTML>. Further details of
HTML are discussed in T. Bemners-Lee and D. Connolly, Hypertext Markup
Language-2.0, RFC 1866, MIT/W3C, November, 1995, which is incorporated
herein by reference.

In Figure 1, a WEB browser application 101 is shown executing on
a client machine 102, which communicates with a server machine 103 by sending
and receiving HTTP packets (messages). Web browser 101 “navigates” to new
locations on the network to browse (display) what is available at these locations.
In particular, when WEB browser 101 “navigates” to a new location, it requests a
new document from the new location (e.g., server machine 103) by sending an
HTTP-request message 104 using any well-known underlying communications
wire protocol. HTTP-request message 104 follows the specific layout discussed
above, which includes a header 105 and a URI ﬁeld. 106, which specifies the

network location to which to apply the request. When the server machine



10

15

20

25

WO 98/45793 PCT/U S98\/07096

specified by URI 106 (e.g., server machine 103) receives the HTTP-request
message, it decomposes the message packet and constructs a return message
packet to the source location that originated the message (e.g., client machine
102) in the form of an HTTP-response message 107. In addition to the standard
features of an HTTP message, such as the header 108, the HTTP-response
message 107 contains the requested HTML document 109. When the HTTP-
response message 107 reaches the client machine 102, the WEB browser
application 101 extracts the HTML document 109 from the message, and parses
and interprets (executes) the HTML code in the document in order to display the
document on a display screen of the client machine 102 as specified by the
HTML tags.

To provide additional security in a global network environment,
some WEB browser applications incorporate the use of an intermediary machine
between the client machine and other machines on the WEB. For example,
several client machines may be networked internally to a proxy server machine,
which acts as a “firewall” between the client machines and server machines on an
external network. Figure 2 illustrates the use of a proxy server machine to send
and receive HTTP documents. The WEB browser application 201, which is
shown executing on a client machine 202, sends an HTTP-request message 205
to a server machine 203. The server machine (e.g., server machine 203) is
specified by the URI field 206 contained in the HTTP-request message 205.
However, in contrast to Figure 1, the HTTP-request message 205 is sent first to a
proxy server machine 204, which then forwards the HTTP-request message 205
as message 207 to the server machine 203. Because the proxy server machine
204 contains a separate external network connection to server machine 203, the
client machine 202 is protected from ill-behaved applications, which may be
executing on or accessible via server machine 203. For example, the proxy

server machine may be specially programmed to detect viruses that may be sent



10

15

20

25

WO 98/45793 PCT/US98/07096

in an HTTP-response message. When the HTTP-request message 207 is
received, server machine 203 sends an HTTP-response message 208, which
contains the requested HTML document 209, to the originator of the message.
This time, the originator of the message is the proxy server 204. Thus, the
HTTP-response message 208 is first sent to the proxy server machine 204 before
the requested document is delivered to client machine 202. The proxy server
machine 204, by having previously established a specific network connection for
the original HTTP-request message 205 received from the client machine 202,
knows that the received HTTP-response message 208 corresponds to the HTTP-
request message 205 and thus forwards the HTTP-response message 208 as
HTTP message 210 to the client machine 202. The WEB browser application
201 is then responsible for decomposing the HTTP-response message 210 to
extract the HTML document and for executing the HTML code in the received
document to properly display the document on client machine 202.

In network environments such as those shown in Figures 1 and 2,
WEB browser applications, such as WEB browser 101, have attempted to make
the navigational process easier for users by adding various “links” to places of
interest. These links can be used to navigate to a pre-specified location by simple
maneuvers, such as clicking on a graphical button on a screen. A link in this
context refers to a URI, which is used by the browser application to locate
another document. For example, a WEB browser may provide graphical buttons,
which are placed below the standard menus in toolbars. These buttons provide
links that enable a user to easily navigate to specific locations defined by the
developer of the WEB browser. In order to ensure that such links are present in
every WEB page displayed, the browser application must include special code to
display these graphical button user interface components. Thus, when a user
invokes a different WEB browser application, the user may not have access to

links to which the user has become accustomed.



10

15

20

25

WO 98/45793 PCT/US98/07096

SUMMARY OF THE INVENTION

The present invention provides a method ahd system for injecting
code into an existing HTML document that enables the conditional generation
and incorporation of injectable components by a browser application. The
injection mechanism provided by the present invention enables a user to
incorporate add-on components in a WEB page that is displayed by any browser
application. These add-on components may provide an additional user interface
capability to the browser application. Also, the injection mechanism is able to
ensure that the add-on component is generated only under certain conditions, for
example, when the component is not already being displayed by the browser
application.

In one embodiment, the injection mechanism installs interceptor
code as a proxy server to intercept HTTP messages between client code and
server code. The interceptor code monitors HTTP messages sent from the client
and is responsible for injecting code into HTML documents that are sent from
servers to the client. The injected code, when executed by a client browser,
conditionally inserts HTML code into the HTML document, which is then used
by the browser to generate a new component, for example, a user interface
component. In one embodiment, the user interface component is conditionally
generated when the browser is not already displaying an instance of the
component.

In another embodiment, the code supporting the injectable
component is previously downloaded to a client machine. The injection
mechanism provides a means for updating this downloaded code. According to
one embodiment, the interceptor code is responsible for providing periodic

updates to the code that supports the injectable component. In another



10

15

20

25

WO 98/45793 PCT/US98/07096

embodiment, the code supporting the injectable component is downloaded
whenever it is displayed.

The injection mechanism also provides the ability to inject code
into both HTML documents that support HTML framesets and those that do not.
HTML framesets enable a page author to specify a hierarchical organization of
sub-pages within a page. When injecting code into an HTML document that
contains an existing frameset, the interceptor code injects code that conditionally
generates a new frameset tag statement, which surrounds the existing frameset.
The new frameset, when generated, specifies a frame that contains sufficient
information to generate an instance of the injectable component. In HTML
documents that do not contain framesets or for browsers that do not support
framesets, the interceptor code injects code into the body portion of the HTML
document. This injected code conditionally inserts an additional HTML tag that
is used by a browser to generate an object that corresponds to the injectable
component. In one embodiment, the injected code inserted by the interceptor
code is written in a script language, such as Javascript or VBscript.

As another aspect of the invention, the interceptor code installed as
the proxy server is responsible for detecting whether the browser supports
Active-X type objects, such as Microsoft’s browser, or supports embedded plug-
ins, such as Netscape’s browser. The interceptor codes injects code that produces

the correct component depending upon the browser mechanism.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates how a browser application enables users to
navigate among nodes on the WEB network by requesting and receiving WEB
pages.

Figure 2 illustrates the use of a proxy server machine to send and

receive HTTP documents.



10

15

20

25

WO 98/45793 PCT/US98/07096

Figure 3 is a block diagram illustrating an injectable component
that has been incorporated into an existing HTML document without modifying
the browser using the injection system of the present invention.

Figure 4 provides an overview block diagram of the techniques
used by the injection system of the present invention to modify the actions of a
browser to include an injectable component.

Figure 5 is a block diagram of a general purpose computer system
for practicing embodiments of the injection system.

Figure 6 is an overview flow diagram of the steps executed by a
browser to install the injection system and to properly parse and interpret the
HTML document such that the injectable component is conditionally generated.

Figure 7 is a flow diagram of the steps performed to install the
injection system of the present invention.

Figure 8 is a flow diagram of the steps performed by an installation
program to install interceptor code as a new proxy server.

Figure 9 is a flow diagram of the steps performed by the interceptor
code to process HTTP messages.

Figure 10 is a flow diagram of the steps performed by the
interceptor code to inject code into an HTML document.

Figure 11 is an overview flow diagram of the steps performed by a
browser to parse and interpret an HTML document.

Figure 12 is a flow diagram of the steps performed by a browser to
parse and interpret the injected code inserted by the interceptor code module.

Figure 13 is a flow diagram of the steps performed by a browser
that supports plug-ins when processing HTML tags.

Figure 14 is a flow diagram of the steps performed by a browser

that supports Active-X components when processing HTML tags.



10

15

20

25

WO 98/45793 PCT/US98/07096

Figure 15 is a flow diagram of the steps performed by the

interceptor code to update the code that implements the injectable component.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method and system for
transparently incorporating an injectable component, such as a user interface
component, into an existing HTML document when the document is processed
by a browser application (a “browser”) that supports HTML. Specifically, the
present invention provides an injection system that injects code into HTML
documents. The injected code causes an instance of an injectable component to
be transparently generated by the browser under certain conditions, for example,
when an instance of the injectable component is not already being displayed.
The browser tran_sparently generates the new component by executing the
injected code during its normal processing of HTML documents. Specifically,
when the browser executes the injected code, HTML tags are conditionally
inserted into the document. These tags then automatically cause the browser to
generate the instance of the injectable component. In this manner, the decision as
to whether to create the instance of the injectable component is delayed until the
actual processing of the HTML document by the browser.

To accomplish these functions, the injection system of the present
invention provides an injectable component, such as a user interface object, and
interceptor code for injecting, into every HTML document, code that
conditionally generates an instance of the injectable component. The injection
system operates by installing the interceptor code as a new proxy server between
the user’s current browser and a proxy server, if one exists. If a proxy server has
not been previously established by the user, then the interceptor code is installed
between the current browser and the network. The interceptor code then

monitors HTTP messages sent between the browser and the pre-existing proxy



10

15

20

25

WO 98/45793 PCT/US98/07096

server (or a destination server) and injects code into each HTML document
returned in an HTTP-response message intended for the browser. The injected
code in each HTML document is then processed by the browser as described to
conditionally generate an instance of the injectable component. Thus, the
injection system enables a user to supplement the user’s browser with the
additional functionality of the injectable component, without modifying the
browser, by intercepting HTTP messages and placing code in HTML documents
that causes the additional behavior to appear.

Figure 3 is a block diagram illustrating an injectable component
that has been incorporated into an existing HTML document without modifying
the browser using the injection system of the present invention. Browser window
301 contains its own control areas, such as browser window control area 302 and
scrollbar area 304, and an application window area 303, which is used to display
HTML documents. The HTML document currently displayed in the application
window 303 contains injected user interface component 305 and three pre-
existing frames of the HTML document, frames 306, 307, and 308. The example
injected user interface component 305 contains a drop-down menu 309 and
several graphical buttons 310, which provide links to portions of a 5-day weather
forecast. User interface component 305 enables a user to have near-immediate
access to the S5-day weather forecast from all HTML documents that are
displayed within the browser window 301. One skilled in the art will recognize
that any contents can be displayed as the injectable component 305, providing the
appropriate links and embedded objects can be created by the browser. Thus, the
present invention is not limited to providing weather forecasts or static
information but rather may be used to provide any kind of static or dynamic
information, interface, or component.

The injection system of the present invention provides a technique

for injecting a user interface component, such as the weather forecast bar shown



10

15

20

25

WO 98/45793 PCT/US98/07096

10

in Figure 3, each time an HTML document is newly loaded into the browser
application window 303. Moreover, the injection system provides a technique
for ensuring that only one instance of the injectable -component is generated and
displayed in the browser application window 303, regardless of which HTML
document is loaded, in what order, or from what source. .

Figure 4 provides an overview block diagram of the techniques
used by the injection system of the present invention to modify the actions of a
browser to include an injectable component. Before the installation of the
injection system, the WEB browser 401 sends and receives HTTP messages to a
proxy server (or destination server) 403 as previously discussed with respect to
Figures 1 and 2. As shown in Figure 4, after the injection system of the present
invention is installed, WEB browser 401 sends HTTP messages to and receives
HTTP messages from an interceptor code module 402, which is installed as the
current proxy server. Interceptor code module 402 is responsible for forwarding
all HTTP requests and responses through the pre-existing proxy server if one
existed prior to installation of the interceptor code module. As shown, WEB
browser 401 sends an HTTP-request message 404 for an HTML document to
interceptor code module 402, which forwards the request as an HTTP-request
message 405 to the previously designated proxy server or a destination server
403. (Hereinafter these messages are simply referred to as HTTP-requests and
HTTP-responses.) Once the destination server provides an HTTP-response
corresponding to the HTTP-request, the HTTP-response is forwarded (through
the pre-existing proxy server if designated) as HTTP-response message 406 to
the interceptor code module 402. Once received, the interceptor code module
402 determines whether the HTTP-response includes an HTML document (e.g.,
document 407) and, if so, modifies the contents of the HTML document to inject
code, shown as injected code 408. The injected codé 408 is used later by the

browser to conditionally generate an instance of the injectable component. Once



10

15

20

25

WO 98/45793 PCT/US98/07096

11

the HTML document 407 is modified, the interceptor code module 402 returns
the HTML document 407 with injected code 408 in an HTTP-response 409 to the
WEB browser 401. The WEB browser 401 then decomposes the HTTP-response
409 to extract the HTML document 407 and executes any code present in the
document 407 in order to display the document on display 410 as specified by the
code. The code processed by the browser may include any browser supported
code, such as scripts or HTML tag statements.

The injected code 408, which is injected into the HTTP-response
409 by interceptor code module 402, contains instructions that specifically cause
the WEB browser 401 to conditionally insert HTML tag statements (HTML
code) into the document 407 when the browser executes the injected code. The
HTML code is used by the WEB browser 401 to generate and display an instance
of the injectable component. The conditions are determined by the injected code
itself. In one embodiment, the injected code is written to only insert these HTML
tag statements when the component is not already being displayed. Thus, the
injected code, when executed, detects when the specified condition is met. Then,
when the specified condition is met, through its normal processing of the HTML
code in the HTML document 407, the WEB browser 401 creates an instance of
the component that is specified by the inserted HTML code. In one embodiment
of the present invention, the inserted HTML code specifies an <OBJECT> tag,
which defines an Active-X component for browsers that support Active-X
components, such as the Microsoft Internet Explorer. Active-X components and
the Microsoft Internet Explorer are defined in greater detail in J. O’Donnell et al.,
Special Edition Using Microsoft Internet Explorer 3, QUE Corp., 1996, which is
incorporated herein by reference. In another embodiment, the inserted HTML
code specifies an <EMBED> tag, which defines an embedded plug-in object for
browsers that support embedded plug-ins, such as the Netscape browser.

Embedded plug-ins and the Netscape browser are discussed in further detail in



10

15

20

25

WO 98/45793 PCT/US98/07096

12

the S. Kronick, Netscape Navigator Handbook, Netscape Communications Corp,,
ed. Aug. 1, 1996, available on the Internet via http://home
netscape.com/eng/mozilla/3.0/handbook/, which is incorporated herein by
reference.

Thus, using the injection system of the present invention, one can
conditionally modify any WEB page that abides by the HTML format to include
an additional user interface component. For example, the injection system can be
used to insert a specific set of menus supplied by a third party vendor into the
user’s current browser. Because the injection system techniques can ensure that
an instance of the injectable component is only generated if it is not already
displayed, the user will see only one set of these menus displayed no matter in
what order the user navigates to the various WEB pages. As another example,
the injectable component can specify a set of links to a weather forecast, such as
those shown in Figure 3.

In a preferred embodiment, the methods and systems of the
injection system are implemented on a computer system comprising a central
processing unit, a display, a memory, and other input/output devices. Preferred
embodiments are designed to operate in a globally networked environment, such
as a computer system that is connected to the Internet. Figure 5 is a block
diagram of a general purpose computer system for practicing embodiments of the
injection system. The computer system 501 contains a central processing unit
(CPU) 502, a display 503, a computer memory (memory) 505, or other
computer-readable memory medium, and other input/output devices 504. The
injection system 507 preferably resides in the memory 505 and executes on the
CPU 502. The interceptor code 508 of the injection system 507 is shown with a
local copy of the injectable component code 509 in the memory of the computer
system after the injection system has been installed on the computer system 501.

In addition, browser code 506 is also shown residing in the memory 505, along



10

15

20

25

WO 98/45793 PCT/US98/07096

13

with an HTML document 510, after the injected code has already been injected;
an object class registry 511, which is used to support communication with the
injection system and to create objects; and the network interface code 512, which
is used to interface with the network. Other programs not shown also reside in
the memory 505. One skilled in the art will recognize that the preferred injection
system can also be implemented in a distributed environment where the various
programs shown as currently residing in the memory 505 are distributed among
several computer systems. For example, the browser code 506 may reside on a
different computer system from the interceptor code 508 and from the injectable
component 509.

As discussed above, to be operable, the injection system of the
present invention is installed as an intermediary between the user’s current
browser and any server with which the browser communicates. There are two
ways the injection system is installed. First, a user may explicitly install the
injection system by navigating to a predetermined location (an HTML document)
on the network. Alternatively, the user may have received an HTML document
from some other means, such as via an email message, which contains the
injected code that is used to create an instance of the injectable user interface
component. When the injected code is executed, the browser recognizes that it
does not have the code that corresponds to the injectable component that is
specified by the HTML tag definition and attempts to use a location that is
designated by the HTML tag to download the needed code. The document
downloaded from the designated location preferably corresponds to the
predetermined location above, and the user is then given the option to install the
injection system at that time just as if the user were explicitly installing the
injection system. Once the injection system is installed, the interceptor code is
installed as the current proxy and the injected code is then automatically inserted

into each HTML document received by the browser.



10

15

20

25

WO 98/45793 PCT/US98/07096

14

Thus, in summary, the browser installs the injection system.
Thereafter, each time the browser receives an HTML document, the browser
executes the injected code inserted by the interceptor éode and conditionally
generates an instance of the specified injectable component by simply parsing
and interpreting the HTML document using its normal mechanisms. Figures 6-
14 describe the installation, injection, and execution techniques in more detail
and illustrate sample code injected by the interceptor code module.

Figure 6 is an overview flow diagram of the steps executed by a
browser to install the injection system and to properly parse and interpret the
HTML document such that the injectable component is conditionally generated.
Specifically, in step 601, the browser downloads an HTML document, which
enables the user to install the injection system by executing an installation
program. The steps performed by the installation program are described in detail
with reference to Figure 7. At some point during processing, in step 602, the
browser sends an HTTP-request to a designated server. At some other point
during processing, the browser receives a corresponding HTTP-response from
the previously designated server, and in step 604, extracts, parses and interprets
the HTML document contained within the HTTP-response in order to properly
process the HTML document.

Figure 7 is a flow diagram of the steps performed to install the
injection system of the present invention. These steps can be provided by a
standard installation and set-up program, which provides a standard interface for
installing files previously packaged by a vendor. To produce such a program, the
vendor provides to an installation building program a set of files to be installed,
designates where the files should be installed on the target machine, and provides
various other parameters. The installation building program uses these files and
the specified parameters to produce an installation progfam (such as “setup.exe”),

which is then executed by an end user to install the files. Thus, the steps shown



10

15

20

25

WO 98/45793 PCT/US98/07096
15

in Figure 7 are the steps provided when the created installation program is
actually executed by the user on the target machine. These steps are responsible
for unloading the files provided by the vendor and for placing them in the proper
locations on the target machine. In addition, the installation program for the
injection system is responsible for installing the interceptor code as the new
proxy server for the browser.

Specifically, in step 701, the install program uncompresses the file
built by the supplier of the injection system and downloads the interceptor code
module to local storage. In step 702, the install program uncompresses and
downloads a copy of the code that implements the injectable component to local
storage. One skilled in the art will recognize that this step may be eliminated if
the code supporting the injectable component can be downloaded later when an
instance of the component is generated. In step 703, the installation program
installs the injectable component code into an object class registry, such as the
object class registry 511 shown in Figure 5. The object class registry provides a
mechanism, given a CLASSID (class identifier) of an object, to locate the
appropriate code to load and execute in order to implement the object. For the
purposes of the present invention, the object class registry provides a global data
storage mechanism for storing information needed by the browser or by the
interceptor code. One skilled in the art will recognize that other mechanisms that
provide similar global storage functions could be substituted, for example, a
standard database. In step 704, the installation code resets a browser property
that indicates the current proxy server of the browser to indicate the newly
downloéded interceptor code module. The steps for resetting the proxy server
property are described in detail with reference to Figure 8. In step 703, the
installation program clears out any local copies of HTML documents. This step
is performed to ensure that any HTML documents read by the browser after the

injection system has been installed properly contain an instance of the injectable



10

15

20

25

WO 98/45793 PCT/US98/07096

16

component. In step 706, the installation program changes the start-up procedure
of the computer system to automatically begin executing the interceptor code
module when the operating system is started, for example, at boot time. In step
707, the installation program displays a message to the user to restart the
operating system to enable the newly designated proxy server (the interceptor
code) to operate. The installation program then returns.

Figure 8 is a flow diagram of the steps performed by an installation
program to install interceptor code as a new proxy server. Each browser
implementation preferably provides a property for indicating the proxy server to
be used to connect to the network, although any globally accessible indicator
would be operable. Further, each such proxy server property is preferably stored
in the class registry, although any storage mechanism accessible to the browser,
the operating system, and the interceptor code would be operable. The
installation code determines which proxy server property to modify based upon
either the existence of a common proxy server designation or based upon a user
designation. In particular, in step 801, the installation code determines whether
any proxy servers have been specified for any browser and, if so, continues in
step 802, else continues in step 806. In step 802, the installation code determines
whether the proxy server properties for all of the available browsers designate the
same proxy server and, if so, continues in step 804, else continues in step 803. In
step 803, if different proxy servers have been designated by different browsers,
then the installation code determines, preferably by prompting the user, which is
the user’s preferred (or default) browser, retrieves the proxy server property
designation for that browser, and then continues in step 805. If, instead, a
common proxy server has been specified for all of the available browsers, then in
step 804, the installation code verifies that the user desires to use this proxy
server and continues in step 805. In step 805, the installation code saves in the

registry an indication of the proxy server designated by the determined proxy



10

15

20

25

WO 98/45793 PCT/US98/07096

17

server property for later use by the interceptor code. In step 806, the installation
code determines an available network port for the interceptor code to use to send
and receive HTTP messages. One mechanism for perfonhing this step is for the
installation code to attempt to bind to a socket defined by the underlying
communications protocol. When the installation code locates an available
socket, then in step 807, the installation code records this socket address as a
network port in the registry, so that the interceptor code can later retrieve this
port from the registry. In step 808, the installation code changes the value
indicated by the determined proxy server property to indicate the interceptor
code, and then returns.

Once installed, the interceptor code acting as a proxy server injects
code that causes the conditional generation of an injectable component in each
HTML document received by the interceptor code. Figure 9 is a flow diagram of
the steps performed by the interceptor code to process HTTP messages. These
steps perform HTTP message forwarding for both HTTP-responses and HTTP-
requests. When an HTTP-response is detected, code is injected into the HTML
document and the response is forwarded to the browser. When an HTTP-request
(from the browser) is detected, the interceptor code optionally determines
whether to update the code that implements the injectable component and
forwards the request to the appropriate server.

Specifically, in step 901, the interceptor code gets the next HTTP
message from the network. In step 902, the interceptor code determines whether
the message specifies an HTTP-request and, if so, continues in step 903, else
continues in step 905. In step 903, the interceptor code determines whether to
update the injectable component code that was previously downloaded to the
local client machine. This step is discussed in detail with respect to Figure 15.
One skilled in the art will recognize that this step inay be eliminated if the

injectable component code is always downloaded by a browser at the time the



10

15

20

25

WO 98/45793 PCT/US98/07096

18

code is needed. One skilled in the art will also recognize that this step can be
performed at other times. In step 904, the interceptor code determines the
previously saved proxy server designation from the registry. In step 905, the
routine forwards the HTTP-request to the determined proxy server and returns to
the beginning of the loop in step 901 to process additional HTTP messages. Note
that the saved proxy server designation may indicate that no proxy server was in
use. In that case, the HTTP-request is forwarded to the target server designated
in the HTTP-request, whose location is specified by a URI contained in the
request. In step 906, the interceptor code determines whether the packet is an
HTTP-response and, if so, continues in step 907, else continues in step 904 to
simply forward the request to the appropriate proxy server (if one exists). In step
907, the interceptor code determines whether the HTTP-response contains an
HTML document and, if so, continues in step 908, else continues in step 910. In
step 908, the interceptor code performs error checking and potentially determines
various parameters needed to inject the code, for example, the type of browser
that originated the corresponding HTTP-request. In step 909, the interceptor
code injects code into the HTML document, the exact code being based upon the
contents of the HTML document and the type of browser being used. In step 910,
the interceptor code forwards the HTTP-response, with the injected code if
injected, and returns to the beginning of the HTTP message processing loop in
step 901.

The interceptor code acting as the proxy server injects different
code into each received HTML document based upon several parameters. In
particular, certain code is inserted when the HTML document contains a
<FRAMESET> tag and other code is inserted when the HTML document
contains a <BODY> tag. Also, different code is generated based upon the
default scripting language specified in the HTML document and the type of
dynamic objects that the target browser supports. The type of the target browser



10

15

20

25

WO 98/45793 PCT/US98/07096

19

is indicated in the original HTTP-request to which the current HTTP-response
being processed corresponds. The exact procedures for injecting HTML code
based upon these parameters is discussed in greater detail with respect to Figure
10. Further, examples of the injected code are discussed below in detail with
reference to Tables 1-8.

Figure 10 is a flow diagram of the steps performed by the
interceptor code to inject code into an HTML document. As mentioned above,
the interceptor determines the type of browser that has requested the HTML
document and certain other features regarding the HTML document before it
determines what code to inject into the HTML document. In particular, if the
browser supports Active-X components, then the interceptor injects code that
conditionally writes an Active-X component HTML statement into the HTML
document when the browser parses and interprets the HTML document.
Alternatively, if the browser supports embedded plug-ins, then the interceptor
injects code that conditionally writes an embedded plug-in HTML statement into
the HTML document. Also, if the HTML document includes a designation of a
script language, then the injection routine retrieves the first such designation and
injects code in the designated language. The first script language tag is
preferably used because, according to convention, it determines the default script
language for the rest of the document. If instead the interceptor code were to
inject code written in a different script language than that specified by the first
script language tag and were to insert this code (with a new script language tag)
at the beginning of the HTML document, then potentially scripts originally
present in the HTML document would not work properly because they may be
parsed according to a different language. Also, certain code is inserted when a
<FRAMESET> tag is present in the HTML document and other code is inserted
when a <BODY> tag is present in the HTML document. One skilled in the art

will recognize that other parameters may be accounted for by the code and that



10

15

20

WO 98/45793 PCT/US98/07096

20

the code could contain statements other than those reflected in the examples
below. ‘

Specifically, in step 1001, the interceptor code parses the HTML
document to determine the first (if any) script language specified and whether
there are any <FRAMESET> tags present. In step 1002, the interceptor code
determines whether the first script language tag indicates that Javascript is the
default script language and, if so, continues in step 1004, else continues in step
1003. In step 1003, if the default script language is VBscript, then the interceptor
continues in step 1010 to insert a script in the VBscript language, else continues
in step 1004 to insert a script written in the Javascript language. One skilled in
the art will recognize that any scripting language can be detected and code
accordingly provided as long as the interceptor code is written to inject the
appropriate code into the HTML document. In step 1004, the interceptor
determines whether the browser supports Active-X components, such as the
MICROSOFT INTERNET EXPLORER, and, if so, continues in step 1005, else
continues in step 1006. In step 1005, the interceptor injects code written in
Javascript which conditionally inserts an HTML tag that specifies an Active-X
component, after the first <BODY> tag found in the HTML document, and
continues in step 1008.

Table 1 provides example code for the code injected at step 1005.



10

15

20

25

WO 98/45793 PCT/US98/07096

21

<SCRIPT LANGUAGE="JavaScript">
<l—
if (top.frames.length <2)

{
document.write("<OBJECT ID=\"CaptureX1\" WIDTH=\"100%\"

HEIGHT=23 ")

document.write("CODEBASE=\"http-//www.techwave.com/WebCapture/
CaptureX.cab#Version=1,0,0,2\" ")

document writeln("CLASSID=\"CLSID:DF4ED563-7875-1140-8DA7-
004005221 L ID\"™")

document.write("<PARAM NAME=\"DocumentURL\"VALUE=\"http://
server/path\"></OBJECT>")

[=>
</SCRIPT>
Table 1

This code in essence tests to see whether there is only one frame present and, if
so, generates an <OBJECT> tag. This code is discussed in further detail in
Figure 14, which describes how a browser interprets this injected code.

Alternatively, in step 1006 the interceptor code determines whether
the browser supports embedded plug-in modules and, if so, continues in step
1007, else returns. In step 1007, the interceptor code injects code written in
Javascript, which conditionally inserts an HTML tag that specifies an embedded
plug-in, after the first <BODY> tag found in the HTML document, and continues
in step 1008.

Table 2 provides example code for the code injected into the

HTML document in step 1007.



10

15

20

25

WO 98/45793 PCT/US98/07096

22

<SCRIPT LANGUAGE="JavaScript">
<le
if (top.frames.length <2)
{
document.write("<EMBED TYPE=\"application/x-webcapture\" )
document.write("WIDTH=\"100%\" HEIGHT=23")
document writeln("PLUGINSPAGE=\"http://www.techwave.com/
, WebCapture\'"™")
document.write("<PARAM NAME=\"DocumentURL\"
VALUE=\"http://server/path\"></EMBED>")

H=>
</SCRIPT>
Table 2

This code in essence tests to see whether there is only one frame present and, if
so, generates an <EMBED> tag. This code is discussed in further detail with
respect to Figure 13, which describes how a browser interprets this code.

Table 3 provides an overall example of what an HTML document
that includes a <BODY> tag definition looks like after code written in Javascript
is injected when the default language specified is Javascript and the target
browser supports Active-X components. In Table 3, the injected code beginning
with the <SCRIPT LANGUAGE...> tag and ending with the </SCRIPT> tag is

inserted after the first <BODY> tag statement located in the HTML document.



10

15

20

25

30

35

w
0O 98/45793 PCT/US98/07096

23

<htmP>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
-
if (top.frames.length <2)
{
document.write("<OBJECT ID=\"CaptureX1\" WIDTH=\"100%\"
HEIGHT=23 ")
document.write("CODEBASE%"hnp://www.wchwave.conVWebCapnme/
CaptureX.cab#Version=1,0,0,2\" ")
document writeln("CLASSID=\"CLSID:DF4ED563-7875-1 140-8DA7-
004005221 11D\"™>")
document.write("<PARAM NAME=\"DocumentURL\"
" VALUE=\"http//server/path\"></OBJECT>")

}
i=>
</SCRIPT>
<SCRIPT...>
....Script already on page...
</SCRIPT>

<BODY..>
</htmb>

Table 3

In step 1008, the interceptor code determines whether there is 2
<FRAMESET> tag present in the HTML document and, if so, continues in step
1009, else returns. In step 1009, the interceptor code injects code written in
Javascript, which conditionally inserts a new <FRAMESET> tag definition
around the first located <FRAMESET> tag definition, and then returns. For
convenience, a closing </FRAMESET> tag is preferably always injected into the
HTML document. This ending tag is typically ignored by a browser if
<FRAMESET> tags are not present in the document. Otherwise, the appropriate
closing </FRAMESET> tag is inserted in an appropriate location in the HTML
document.

Table 4 provides example code for the code injected into the

HTML document in step 1009.



10

15

20

25

WO 98/45793
24 PCT/US98/07096

<SCRIPT LANGUAGE="JavaScript"™>
-
if (top.frames.length <2)
{
document. write("<FRAMESET rows=25,* FRAMEBODER=0
FRAMESPACING=0 BORDER=0>")
document write("<FRAME MARGINWIDTH=0 MARGINHEIGHT =)
NORESIZE SCROLLING=\"No\"
SRC=\"FramePage.htm\">")

1>
</SCRIPT>

Table 4

In essence, the code tests to see whether there is only one frame present and, if
so, generates a new frameset that points to the appropriate injectable component
tag definition. _

Table 5 provides an overall example of what an HTML document
that contains a <FRAMESET> tag definition looks like after code is injected,
when the default language specified is Javascript or no language was specified.
This table contains the same code as Table 4, except that the injected code is
shown in context. The injected code begins with the <SCRIPT LANGUAGE>
tag and ends with the </SCRIPT> tag. Each frameset defines one or more frames
and specifies a source document to be used to fill the frames. Note that the URL
that is specified for the source document of the frame in this case points to the
appropriate code, as shown in Table 1 or 2, depending upon whether the browser

supports Active-X components or embedded plug-ins.



10

15

20

25

30

WO 98/45793 PCT/US98/07096
25

<htmP>
<SCRIPT LANGUAGE="JavaScript"™>
<l

if (top.frames.length <2)

{
document.write "<FRAMESET rows=25,* FRAMEBODER=0

FRAMESPACING=0 BORDER=0>"
document write "<FRAME MARGINWIDTH=0 MARGINHEIGHT=0
NORESIZE SCROLLING=""No""SRC=""FramePage.htm"">"

<>
</SCRIPT>

<FRAMESET ...>
<FRAME...>

</FRAMESET>
</html>

Table 5

Returning to step 1003, if the interceptor code determines that the
default language specified is VBscript, then the routine continues in step 1010.
Steps 1010-1015 operate analogously to steps 1004-1009, except that they insert
code written in VBscript instead of Javascript.

Table 6 provides example code for the code injected into the
HTML document in step 1011. This code conditionally inserts an Active-X
component HTML statement into the HTML document when the browser parses

and interprets the HTML document.



WO 98/45793 PCT/US98/07096
26

<SCRIPT LANGUAGE="VBScript"™>
<=
if (top.frames.length <2) then
documentwrite "<OBJECT ID=""CaptureX1"" WIDTH=""100%""
5 HEIGHT=23 "
document.write "CODEBASE=""http//www.techwave.com/
WebCapture/CaptureX.cab#Version=1,0,0,2"" "

document.writeln "CLASSID=""CLSID:DF4ED563-7875-1140-8DA7-

00400522111D">"
10 documentwrite "<PARAM NAME=""DocumentURL""
VALUE=""http/server/path""></OBJECT>"
end if
REM —>
</SCRIPT>
15 Table 6

Table 7 provides example code for the code injected into the
HTML document in step 1013. This code conditionally inserts an embedded
plug-in HTML statement into the HTML document when the browser parses and

20 interprets the HTML document.

<SCRIPT LANGUAGE="VBScript">
<l
if (top.frames.length <2) then
25 document.write "<EMBED TYPE=""application/x-webcapture™ "
document.write "WIDTH=""100%"" HEIGHT=23"
document.writeln "PLUGINSPAGE=""http:/www.techwave.com/

WebCapture"'™"
documentwrite "<PARAM NAME=""DocumentURL""
30 VALUE=""http:/server/path""></EMBED>"
end if
REM —>
</SCRIPT>
Table 7

35

Table 8 provides example code for the code injected into the

HTML document in step 1015, when a <FRAMESET> tag is present.



10

15

20

25

30

WO 98/45793 PCT/US98/07096

27

<SCRIPT LANGUAGE="VBScript"™>
if (top.frames.length <2) then
documentwrite "<FRAMESET rows=25,* FRAMEBODER=0
FRAMESPACING=0 BORDER=(0>"
document.write "<FRAME MARGINWIDTH=0 MARGINHEIGHT=0
NORESIZE SCROLLING=""No™
SRC=""FramePage.htm"">"
end if
</SCRIPT>
Table 8

Figure 11 is an overview flow diagram of the steps performed by a
browser to parse and interpret an HTML document. These steps correspond to
step 604 in Figure 6. In step 1101, the browser parses and interprets the HTML
document. When it parses and interprets the code injected by the interceptor
code, it conditionally writes the appropriate HTML tags into the HTML
document. The details of this step are discussed further with reference to Figure
12. In step 1102, assuming that additional HTML code is written into the
document, the browser interprets this HTML code to build an instance of the
injectable component. The details of this step are disclosed further with
reference to Figures 13 and 14.

Figure 12 is a flow diagram of the steps performed by a browser to
parse and interpret the injected code inserted by the interceptor code module.
Although the specific steps illustrated in Figure 12 correspond to a browser that
supports Active-X components when the injected code is written in Javascript,
analogous steps are performed for a browser that supports plug-ins or when the
injected code is written in VBscript. Exceptions are noted below. In Figure 12,
the browser preferably determines whether an instance of the injectable
component is already being displayed and, if so, does nothing. Otherwise, if
designated by the injected code, a new <FRAMESET> tag definition is inserted
into the HTML document and a new <OBJECT> tag definition is inserted into
the HTML document.



10

15

20

25

WO 98/45793 PCT/US98/07096
28

Specifically, in step 1201, when the browser executes the injected
code placed before an existing <FRAMESET> tag (see, e.g., Table 4), then the
browser determines whether an instance of the injectable component is already
being displayed. If so, the browser ignores the injected code, otherwise
continues in step 1202. In step 1202, assuming the HTML document contains
injected code as shown in Table 5, then the “document.write” statements are
executed. These statements generate a new <FRAMESET> definition with a
frame source URL pointing to HTML code that is used to generate an instance of
the injectable component (e.g., the tags shown in either Table 1 or Table 2). In
step 1203, when the browser executes the injected code placed after the
<BODY> tag (see, e.g., Table3) then the browser determines whether an
instance of the injectable component is already being displayed. If so, then the
browser ignores the injected code, otherwise continues in step 1204. In step
1204, the browser executes the “document.write” statements shown, for example,
in Table 1, to insert a new HTML <OBJECT> tag definition into the HTML
document. The <OBJECT> tag definition includes a CLASSID, the source of
installation code for the injectable component, and various other parameters.
Note that, if the steps of Figure 12 are instead executed for a browser that
supports plug-ins, then the “document.write” statements will instead generate an
<EMBED> tag, such as shown in the “document.write” statements of Table 2. In
step 1205, the browser optionally writes out any other needed HTML code to set
parameters of the instance of the injectable component, and continues.

Figures 13 and 14 discuss the steps performed by a browser to
parse and interpret the inserted HTML tags to generate an instance of an
injectable component. These tags are inserted into the HTML document as a
result of executing the injected code, which was previously inserted by the

interceptor code module. These routines correspond to step 1102 in Figure 11 for



10

15

20

25

WO 98/45793 PCT/US98/07096
29 \

a browser that supports embedded plug-in modules and for a browser that
supports Active-X components, respectively.

Figure 13 is a flow diagram of the steps pérformed by a browser
that supports plug-ins when processing HTML tags. In step 1301, if the browser
detects a <FRAMESET> tag definition, then it continues in step 1302, else
continues to process other types of HTML tags. In step 1302, the browser loads
the HTML document specified by the source parameter URL of the
<FRAMESET> tag and continues. In this case, the source parameter specifies a
document that contains an <EMBED> tag, analogous to the <EMBED> tag
generated by the “document.write” statements shown in Table 2. In step 1303,
when the browser detects an <EMBED> HTML tag, it continues in step 1304,
else continues to process other HTML tag definitions. In step 1304, the browser
prompts the user to load in the code for the injectable component. In step 13035,
if the user indicates a desire to load the embedded object, then the browser
continues in step 1306, else continues with other processing. In step 1306, the
browser copies to local storage the code specified by the “PLUGINSPAGE”
parameter and executes the code in order to generate the embedded component.
In step 1307, the browser sets any other parameters indicated by the <EMBED>
tag definition and continues with other processing. As demonstrated in Figure
13, the HTML tags conditionally generated by the injected code are processed
just as all other HTML codes in the HTML document. Thus, the process of
inserting an injectable component into the browser using the injection system of
the present invention is transparent to the browser.

Figure 14 is a flow diagram of the steps performed by a browser
that supports Active-X components when processing HTML tags. In step 1401,
if the browser detects a <FRAMESET> tag definition, then it continues in step
1402, else continues to process other types of HTML tags. In step 1402, the
browser loads the HTML document specified by the source parameter URL of



10

15

20

25

WO 98/45793 PCT/US98/07096
30

the <FRAMESET> tag and continues. In this case, the source parameter
specifies a document that contains an <OBJECT> tag, analogous to the
<OBJECT> tags generated by the “document.write” dstatements shown in
Table 1. In step 1403, when the browser detects an <OBJECT> tag definition,
the browser continues in step 1404, else continues with the processing of other
HTML tag definitions. In step 1404, the browser uses the CLASSID specified in
the <OBJECT> tag definition as a parameter to locate the executable code for the
injectable component in the class registry. In step 1405, the browser determines
whether a local copy of the code designated in the registry is available and, if so,
continues in step 1407, else continues in step 1406. In step 1406, when the code
is unavailable the browser runs the install injection system using the document
specified by the CODEBASE parameter of the <OBJECT> tag to perform the
steps discussed with reference to Figure 7. As described earlier, step 1406 is
typically executed when a user receives an HTML document that contains
injected code but when the injection system of the present invention has not yet
been installed. Details for how downloading is performed using a cabinet file (a
file with a “.cab” extension) are provided in D. Chappell, Understanding
Active-X and OLE, Microsoft Press, Redmond, 1996, which is incorporated
herein by reference. In summary, the cabinet file is automatically deconstructed
to yield a file (a “.INF” file) that directs the installation process. In step 1407,
when a local copy of the injectable component code is available, the browser
loads and runs the injectable component code. In step 1408, the routine sets any
other parameters for the injectable component that are indicated by the
<OBJECT> tag, and continues with other processing.

As described with reference to Figure 9 in discussing the steps
performed by the interceptor code, in one embodiment, the interceptor code is
responsible for updating the code that implements the injectable component.

This procedure may be important, for example, when a local copy of the



10

15

20

25

WO 98/45793 PCT/US98/07096

31
injectable component code is stored on the client machine. Recall that the
interceptor code preferably determines whether this update is needed each time it
receives an HTTP message that contains an HTTP-request (see, e.g., step 903 in
Figure 9).

Figure 15 is a flow diagram of the steps performed by the
interceptor code to update the code that implements the injectable component. In
summary, a mechanism is provided that enables .the server that provides the
injectable component contents to provide new injectable component code on a
client-by-client basis. The interceptor code determines whether there is new
injectable component code available and, if so, prompts the user to determine
whether the user desires to install the new component. In a preferred
embodiment, the user of the client machine is able to indicate the frequency by
which the interceptor code should periodically determine whether a new
injectable component is available. In a preferred embodiment, the injectable
component itself provides a user interface that enables the user to set the
frequency of the periodic update. For example, the menu 309 shown in Figure 3
could be used for this procedure. The designated frequency value is preferably
stored as a property in global storage, such as within the class registry.

Specifically, in step 1501, the interceptor code retrieves the update
frequency from a property in the registry. In step 1502, the interceptor code
determines, based upon the retrieved update frequency, whether it is time to
update and, if so, continues in step 1503, else returns. In step 1503, the
interceptor code sends an HTTP-request for a predetermined document (page) to
a predetermined location (the server source machine for the injectable
component). Except for the first time that such a request is made, this request
includes a machine identifier (machine ID), which is specific to the client
machine. This machine ID is returned in the first response by the designated

server to an update request. In this way, a unique machine identifier is assigned



10

15

20

WO 98/45793 PCT/US98/07096
32 '

to each client machine. In step 1504, when a corresponding HTTP-response is
received from the server that provides the injectable component, the interceptor
code continues in step 1505, else continues with other pfocessing. The HTTP-
response received preferably includes the specific machine_ID of the client
machine. The server preferably generates the unique machine ID from a
mechanism specific to that server machine, which is responsible for keeping
track of each client. Any such mechanism for tracking client machine
information and generating unique identifiers is operable. In step 1505, the
interceptor code extracts version information from the HTTP message (and the
machine_ID if this is the first such request). In step 1506, the interceptor code
determines whether the indicated version is different from the version of the
injectable component code currently installed on the user’s machine and, if so,
continues in step 1507, else returns. In step 1507, the interceptor code prompts
the user to determine if the user wishes to install a new version of the injectable
component code. In step 1508, if the user indicates that installation of the new
version is desired, then the interceptor code continues in step 1509 to re-install

the injection system as per Figure 7, else returns.

Although the present invention has been described in terms of
preferred embodiments, it is not intended that the invention be limited to these
embodiments. Equivalent methods, structures, processes, steps, and other
modifications within the spirit of the invention fall within the scope of the
invention. The scope of the present invention is defined by the claims which

follow.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

WO 98/45793 PCT/US98/07096
33

CLAIMS

1. A method in a computer system for injecting code into an HTML
document to conditionally generate a user interface component when processing the
HTML document, the method comprising:

under control of browser code,

installing interceptor code as a proxy server; and
sending a request for the HTML document to the interceptor code
installed as the proxy server;

under control of the interceptor code installed as the proxy server,

receiving the request for the HTML document;

forwarding the received request to a specified server;

upon receiving a response that includes the requested HTML
document, injecting code into the received HTML document thereby creating a
modified HTML document, wherein the stored code, when executed, conditionally
generates additional code; and

forwarding to the browser code the received response that
includes the modified HTML document; and

under control of the browser code,

upon receiving the response that includes the modified HTML
document, executing the code injected in the modified HTML document such that,
when a certain condition is met, additional code is inserted into the modified HTML
document; and

when processing the modified HTML document, using the

inserted additional ccde to generate the user interface component.

2. The method of claim 1 wherein the processing of the HTML

document comprises displaying the HTML document.



8]

N

WO 98/45793 PCT/US98/07096

34

3. The method of claim 1 wherein the certain condition depends

upon whether the user interface component is already displayed.

4. The method of claim 3 wherein a determination of whether the
user interface component is already displayed is performed by determining whether

there is only one frame currently being displayed.

5. The method of claim 1 wherein the inserted additional code

comprises HTML tags that are used to create an Active-X component.

6. The method of claim 1 wherein the inserted additional code

comprises HTML tags that are used to create a plug-in component.

7. The method of claim 1 wherein the injected code is a script.
8. The method of claim 7 wherein the script is written in Javascript.
9. The method of claim 7 wherein the script is written in VBscript.

10. The method of claim 1 wherein the using of the inserted
additional code to generate the user interface component further comprises:

instantiating an object specified by the additional code;

determining from a class registry an indicator of code to implement the
behavior of the instantiated object; and

loading and executing the code indicated by the determined indicator.

11. The method of claim | wherein the user interface component is

specified as an HTML frame.



WO 98/45793 PCT/US98/07096
35

12. A method in a computer system for conditionally incorporating
an injectable component as part of an HTML document, the method comprising:
installing interceptor code; and
under control of the installed interceptor code,
receiving a response to a request for the HTML document; and
injecting code into the received response whereby, when the
HTML document is processed, the injected code causes conditional generation of the
injectable component and incorporation of the generated component as part of the

HTML document.

13.  The method of claim 12 wherein the processing of the HTML

document includes displaying the HTML document.

14. The method of claim 12 wherein the incorporation of the
generated component as part of the HIML document comprises displaying the

generated component.

15. The method of claim 12 wherein the HTML document is a WEB
page.

16.  The method of claim 12 wherein the injected code is a script.

17. The method of claim 16 wherein the script is written in the

Javascript language.

18. The method of claim 16 wherein the script is written in the

VBscript language.



WO 98/45793 PCT/US98/07096

36

19.  The method of claim 12 wherein the interceptor code is installed

as a proxy server for a browser.

20. The method of claim 12 wherein the injected code, upon a certain

condition, generates HTML tags that are used to generate the injectable component.

21. The method of claim 20 wherein the certain condition is met

when the injectable component is not already displayed.

22.  The method of claim 12, further comprising periodically updating

code that implements the injectable component.

23.  The method of claim 12, further comprising:
downloading code that implements the injectable component; and
wherein the injected code uses the downloaded code to generate and

incorporate the injectable component.

24.  The method of claim 23, further comprising periodically updating
the downloaded code.

25. A WEB page capturing system for injecting code to conditionally
generate a component on a WEB page comprising:

an injectable user interface component;

an interceptor server that is installed as a proxy server, receives and
forwards requests for WEB pages, receives and forwards responses to the requests for
WEB pages, and that, upon receiving a response to a request for a WEB page, injects
code into the WEB page; and

a browser that forwards requests for WEB pages to the interceptor server

installed as the proxy server, receives responses that contain WEB pages from the



10

11

12

13

WO 98/45793 PCT/US98/07096
37

proxy server, and displays the received WEB pages, such that, when a WEB page is
received from the proxy server that contains the injected code, the injectable user
interface component is generated and displayed transparent to the browser when a

certain condition is met, without modifying the implementation of the browser.

26. The system of claim 25 wherein the injectable user interface

component is periodically updated by the interceptor server.
27.  The system of claim 25 wherein the injected code is a script.
28.  The system of claim 27 wherein the script is written in Javascript.
29.  The system of claim 27 wherein the script is written in VBscript.

30. The system of claim 25 wherein the generation and display of the
user interface component is performed by inserting HTML tags into the WEB page
when the certain condition is met, the HTML tags being used to generate the user

interface component.

31.  The system of claim 25 wherein the certain condition is met when

it is determined that the user interface component is not already displayed on the WEB

page.

32.  The system of claim 25 wherein the generation and display of the
user interface component is performed by inserting a new frameset tag definition into

the WEB page when the certain condition is met.



10

11

12

13

WO 98/45793 PCT/US98/07096
38

33. A document injection system comprising:

a user interface component that is downloaded to a client machine;

an interceptor code module that is downloaded to the client machine and
installed as a proxy server, thereby automatically intercepting HTTP-request and
HTTP-response messages between the client machine and a specified server machine,
the interceptor code module injecting code into each document that is received in an
HTTP-response message; and

a browser code module that sends HTTP-request messages and receives
HTTP-response messages through the proxy server and that processes documents
received in HTTP-response messages, whereby, when the browser code module
executes the injected code as part of processing a received document, additional code
is conditionally inserted into the received document that, when executed, is used to

automatically generate an instance of the downloaded user interface component.

"34.  The system of claim 33 wherein the processing of the document

involves displaying the document.

35. The system of claim 33, further comprising displaying the
automatically generated user interface component instance when the additional code is

executed.

36. The system of claim 33 wherein the downloaded user interface
component is periodically updated by the interceptor code module so that an updated

user interface component is conditionally generated.

37. The system of claim 33 wherein the document is an HTML

document.



WO 98/45793 PCT/US98/07096
39 ‘

38. The system of claim 33 wherein the injected code is written in a

script language.

39. The system of claim 33 wherein the additional code is used to

generate an Active-X component.

40. The system of claim 33 wherein the additional code is used to

generate a plug-in component.

41. The system of claim 33 wherein the additional code comprises

HTML tag statements.



(9z3mt ) LAAHS ALNLILSANS

HTTP-request

_——1 header
105 /705
URL
<f704
Wi |_—101
Browser
102
Client
/fIOB
header
= |—109
107~ —

HTTP-response

Fig. 1

l F// 103

Server

SL/1

£€6LS¥/86 OM

960L0/86S0/1Dd



(9z 9t ) LIAHS ALNLILSINS

HTTP-request

header

URL

e

/‘2 05

206

(2

S

WEB
Browser

Client

’/H

///’”L///’L/__‘\\\\\HTTP—requesi
header

l F,/—204

Proxy
Server \\\\;1\

J

header

fZ/O

202

TTP-response

208’\\4 |

Fig. 2

header

HTTP-response

URL

207—’}/

el

l |“//~203

Server

S1/T

£6LSP/86 OM

960L0/86SN/LDd



(9z 3ma ) LATHS ALNLILSINS

301

W Browser Window

302\
I Browser Window control area /570 | 305
Scattered |
___‘TechWave Sday Forecast jShowers Showers & Sun:lShowers jShowers :l Mostly Cloudy |
TechWave Inc.
This frame contains text and images from some html document.
Save Current Page
Save Site ~—1">309
\v/_\
This frame contains 506
text and images
from yet another L 307
303< | himl document.
This frame contains text and images from another html document.
~ 308
v |

]

304

Fig. 3

GL/¢

€6LSP/86 OM

960L0/86S0/LDd



(9z3ma) LATHS ALNLILSINS

HTTP-request

header

——404

~.
408

WEB
Browser 401
= HTTP-response
— ¢ header
5 +—407
409~_ N
Display
—410

N

Interceptor
Code

~—402

Fig. 4

HTTP-request

header

—405

Proxy Server or

finali
Destination Server\a/,\403

HTTP-response

header

406

k‘407

SL/v

£6LSY/86 OM

960L0/86S0/1Dd



(9z 9 ) LAAHS ALNLLLSANS

COMPUTER SYSTEM

502
CPU A
503
oseay LS
OTHER 504
INPUT/OUTPUT S
DEVICES

MEMORY
Browser ~//_506
Code
HMTL doc. 510
with injected |/
code
Object 511
class ~J{A
registry
Network 512
interface -v/,‘
code

Interceptor
Code

509

(local copy)
Injectable
Component

HMTL
Injection
System

v//’\507

Fig. 5

G1/S

€6LSP/86 OM

960L,0/86SN/LDd



WO 98/45793 PCT/US98/07096

6/15

Browser

%

Install Injection
System

Send HITTP request | 802

i
|

601

Recieve HTTP response 605
Pause and Inferperafe
HTML Document 604

Fig. 6

SUBSTITUTE SHEET ( rule 26)



WO 98/45793

(lns’rall Injection System
|

Uncompress and download
intercepfor code fo local
drive

—— 701

|

Uncompress and download
infectionable component fo
local drive

702

Y

Install (register)
injectionable component in

registry

— 703

|

Reset proxy fo
intercepfor code

704

1

Clear any local caches of
HMIL documents

705

|

Change startup fo
aufomatically start
inferceptor start up ftime

/06

\

Display user message fo
restart system

— 707

!

[ Return j

Fie. 7

SUBSTITUTE SHEET ( rule 26)

PCT/US98/07096



WO 98/45793

8/15

[ Reset Proxg

Proxy Server
Specified?

801

Common Proxy
Server?

802

PCT/US98/07096

Defermine User Specified
Proxy Server

—-803

Verify Proxy Server with
User

-804

Y

Save Proxy Server in
Registry

805

!

Determine Available
Network Port for
Intercepfor

806

|

Record Interceptor’s
Network Port in Registry

807

!

Change Proxy Property fo
Interceptor Code

808

!

( Return )

Fig. 8

SUBSTITUTE SHEET ( ruile 26 )



WO 98/45793 PCT/US98/07096

901

Get Next HTTP Message

902
Yes

Message ==

Y

Determine Whether fo
Update Injectable
Component

—- 903

Message ==

|

Determine Proxy Server | —~_904
from Registry

|

Forward HITP-Request fo | —~_9gp5
Proxy Server

Set Some Paramefers and | —~_gp8
Perform Error Checking

Inject HTML Code 909

\

Forward HTTP-Response fo |—~_g10
Browser

\

Fiz. 9

SUBSTITUTE SHEET ( ruie 26)



WO 98/45793

10/15

inject Code )
!

(

Pause HMIL Doc. for
Script Language and
Frame Sfmfs.

Active X?

Plug~ins?

Browser Suppo

Browser Supports

1002

Script Language
== JAVAScript?

1003
Seript Language

Browser Suppo
Active X?

Browser Supports
| Plug~ins?

PCT/US98/07096

1001

1010

1012

Install Plug—ins JAVAScript
Code Into<BODY>

Install Plug—ins VBScript
Code Into<BODY>

Install Active-X JAVAScript
Code Info <BODY>

\ 1007

1013

J

Install Active=X VBScript
Code Info <BODY>

I
1005 /

Frameset
Present?

1009 \

1008

No No

| \
1011

1014

Frameset
Present?

Yes [ 1015

Insert New frameset Using
JAVAScript

——[ Return )—

Insert New Frameset Using
VBScript

Fig. 10

SUBSTITUTE SHEET ( rule 26)



WO 98/45793

11/15

PCT/US98/07096

Gouse and Interperate HTML DocumenD

i
|

Pause and Inferperafe
Injected Code

(JAVASript/VBScript)

1101

Interperate HTML Code
which Builds Injectable
Component

—~ 1102

i

Fig. 11

SUBSTITUTE SHEET ( rule 26 )



WO 98/45793

12/15

@ause and Interperate HTML DocumenD

i

Write <FRAMESET>
Definition with Frame
Source URL Pointing fo
HIML Code fo Define
Injectable Component

—— 1202

Write Out HMIL
<OBJECT> Definition
Including CLASSID,

Source of Installation
Code for Injectable
Component, and Other
Paramefers

1204

Y

Write HTML Code fo Set
Paramefers of Component

—~— 1205

Fie. 12

SUBSTITUTE SHEET ( rule 26)

PCT/US98/07096



WO 98/45793 PCT/US98/07096

13/15

( Interperate HTML Code )

i

1301

<FRAMESET> Tag?

Load Document
Specified by Source
Parameter

1302

Promt User fo Load in
Injectable Component | 1304
Code
1305

User Indicafes
Load?

Copy Code Specified in
PLUGINS PAGE to Local | 1306
Storage and Execufe

V

Set Any Indicated
Paramefers

— 1307

Fig. 13

SUBSTITUTE SHEET ( ruie 26 )



WO 98/45793

14/15

Interperate HTML Code

)

Load Document
Specified by Source
Parameter

Use CLASSID fo Find
Code for Injectable

Component (Object) in
Registry

1402

1404

PCT/US98/07096

Run Install Injection

—— 1406

Load and Run Injected
Component Code

!

Set Any Other
Paramefers

System Using CODEBASE
Page
~ 1407
|~ 1408
Fig. 14

SUBSTITUTE SHEET ( rule 26)



WO 98/45793

15/15

(

Interperate HTML Code

Y

Obtain Updated Increment
Time from Registry

Time fo Updafe?

1505 —

1502

Send HTTP-Request for
Predefermined Page;
Include Machine 1D

Corresponding
TTP-Responsg

PCT/US98/07096

—~— 1501

— 1503

Prompt User fo Defermine
if Install Desired
Extract Version Tag Info
from Packef; Extract 1508
Machine 1D No
Install Desired?
1506
Yes

New

No

Version?
/ 1509

Install Injection System

!

( Return )

Fig. 15

SUBSTITUTE SHEET ( ruie 26 )

1507




INTERNATIONAL SEARCH REPORT

In ational Application No

PCT/US 98/07096

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6  GO6F17/30

According to International Patent Classification(IPC) or to both national classitication and IPC

B. FIELDS SEARCHED

IPC 6  GO6F

Minimum documentation searched (classitication systam followed by classification symbols)

Documentation searched other than minimumdocumentation to the extent that such documents are inciuded 1n the fields searched

Electronic data base consuited during the international search (name ot data base and. where practical. search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication. where appropriate. of the relevant passages Relevant to claim No.
A DATABASE INSPEC 1,12,25,
INSTITUTION OF ELECTRICAL ENGINEERS, 33
STEVENAGE, GB
Inspec No. AN5907402,
XP002070943
see abstract
& NEWSOME M. ET AL.: "Hyper SQL:
web-based query interfaces for biological
databases™
PROC. 30TH. HAWAII INT. CONF. ON SYSTEM
SCIENCES,
vol. 4, 7 - 10 January 1998,
WAILEA,HI USA,
pages 329-339,
A EP 0 762 297 A (SUN MICROSYSTEMS INC) 12 1,12,25,
March 1997 33
see abstract; figure 1

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

> Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

“P" document published prior to the international filing date but
later than the priority date claimed

“T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the ant.

"&" document member of the same patent family

Date of the actual completion of theinternational search

9 July 1998

Date of mailing of the international search report

29/07/1998

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Fax: (+31-70) 340-3016

Authorized officer

Deane, E

Form PCT/ISA/210 {second sheet) (July 1992)




INTERNATIONAL SEARCH REPORT

intformation on patent family members

Inte Jional Application No

PCT/US 98/07096

EP 0762297 A

Patent document Publication Patent family Publication
cited in search report date member(s) date
12-03-1997 JP 10027143 A 27-01-1998

Fom PCT/ISA/210 (patent family annex) (July 1992)




	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

