Procédé de préparation d'un hydrolysat de protéines purifié.

On soumet à hydrolyse une solution aqueuse de protéines, on fait subir au produit de l'hydrolyse un traitement thermique permettant une dénaturation des protéines qu'il contient et enfin on élimine lesdites protéines par ultrafiltration. Le perméat d'ultrafiltration constitue l'hydrolysat de protéines purifié.

Les hydrolysats obtenus peuvent être incorporés dans de nombreuses préparations alimentaires.
REVENDICATIONS

1. Procédé de préparation d’un hydrolysat de protéines purifié, caractérisé par le fait qu’on soumet à hydrolyse une solution aqueuse de protéines, on fait subir au produit de l’hydrolyse un traitement thermique permettant une dénaturation des protéines qu’il contient et enfin on élimine lesdites protéines par ultrafiltration, le permet d’ultrafiltration constituant l’hydrolysat de protéines purifié.

2. Procédé selon la revendication 1, caractérisé par le fait que l’hydrolysat est un hydrolysat enzymatique.

3. Procédé selon la revendication 2, caractérisé par le fait que l’hydrolysat enzymatique est un hydrolysat à base de pancréatine.

4. Procédé selon la revendication 1, caractérisé par le fait que le traitement thermique est réalisé entre 100 et 140°C pendant 10 s à 4 min.

5. Procédé selon la revendication 1, caractérisé par le fait que le traitement thermique est réalisé entre 75 et 100°C pendant 2 à 60 min.

6. Procédé selon la revendication 1, caractérisé par le fait que, entre le traitement thermique et l’ultrafiltration, on fait passer le produit d’hydrolyse dans un moulon colloïdal.

7. Procédé selon la revendication 1, caractérisé par le fait que l’ultrafiltration est une ultrafiltration avec dilution ou diafiltration.

8. Procédé selon la revendication 1, caractérisé par le fait que l’ultrafiltration est réalisée à l’aide de membranes ayant une zone de coupure comprise entre 1000 et 10 000.

9. Hydrolysat purifié préparé par le procédé selon la revendication 1.

10. Utilisation dans l’alimentation de l’hydrolysat purifié préparé par le procédé selon la revendication 1.

La présente invention a trait à un procédé de préparation d’un hydrolysat de protéines purifié, c’est-à-dire exempt de protéines et de macroméptides.

Un des problèmes qui se pose dans la préparation industrielle des hydrolysats de protéines est, au moins pour certaines applications, l’élimination des protéines et des macroméptides y substitant, soit que certaines des protéines n’aient pas été atténuées ou atténuées suffisamment par l’hydrolyse, soit que les fragments obtenus aient pu se recombiner en agglomérats. En diététique notamment et en diététique infantile en particulier, il est souvent primordial de s’assurer que les hydrolysats en question ne contiennent plus de protéines et de macroméptides, car des substances à poids moléculaire élevé de ce type sont susceptibles d’être allergènes. Les procédés traditionnels, dont l’étape clé associe les techniques de flocculation et de centrifugation, ne permettent pas d’atteindre cet objectif. Des quantités non négligeables de protéines et macroméptides, résiduels ou de recombinaison, subsistent.

L’invention au contraire permet d’obtenir des hydrolysats de protéines purifiés, c’est-à-dire exempts de protéines et de macroméptides résiduels ou de recombinaison, lesquels, dans un souci de simplification, seront indistinctement qualifiés de protéines. Elle a trait à un procédé dans lequel on soumet à hydrolyse une solution aqueuse de protéines, on fait subir au produit de l’hydrolyse un traitement thermique permettant une dénaturation des protéines qu’il contient, et enfin on élimine lesdites protéines par ultrafiltration. Le permis d’ultrafiltration constitue l’hydrolysat de protéines purifié.

Par solution aqueuse, il faut entendre aussi bien les solutions vraies que les solutions colloïdales. En outre, l’expression « une dénaturation » a pour but de préciser que la dénaturation n’a pas besoin d’être totale; on peut se contenter d’une dénaturation partielle, qualitativement ou quantitativement.

Les protéines de départ peuvent être des protéines animales provenant dites telles que les protéines de viande, de poisson, etc., ou des protéines d’origine lactique, caséine, lactalbumine, etc. Ce peut être des protéines végétales de graines ou de feuilles, par exemple des protéines de soja ou de feuilles de luzerne ou encore des protéines d’origine microbienne comme les protéines de levure.

Dans la première étape du procédé selon l’invention, ces protéines subissent soit une hydrolyse chimique, en général acide, soit une hydrolyse enzymatique, par des mélanges d’enzymes ou bien par des enzymes purifiées. Dans le cas des protéines microbiennes, il peut s’agir de leurs enzymes propres et les produits obtenus sont alors appelés autolysats. Comme exemple de protéines avantagesusement traitées selon l’invention, on peut citer la lactalbumine. Comme type d’hydrolyse, on peut mentionner par exemple l’hydrolyse enzymatique à la pancréatine.

Comme indiqué plus haut, les produits d’hydrolyse obtenus contiennent des protéines, et ce d’autant plus que l’hydrolyse a été menée dans des conditions industriellement acceptables. Ils subissent alors un traitement thermique permettant une dénaturation des protéines, qui peut être accomplie de diverses façons, par exemple à haute température, vers 100 à 140°C pendant 10 s à 4 min, ou à température plus basse, vers 75 à 100°C pendant 2 à 60 min.

Il convient de mentionner que le traitement thermique peut avoir pour effet d’inacter l’enzyme en cas d’hydrolyse enzymatique, mais que cet effet secondaire n’est pas systématiquement recherché, puisque l’enzyme sera éliminée lors de l’ultrafiltration au même titre que les protéines.

L’étape d’ultrafiltration peut être réalisée directement après le traitement thermique, les protéines étant dénaturées, mais pas nécessairement floculées. Cela constitue une différence fondamentale par rapport aux procédés traditionnels par centrifugation dans lesquels un temps d’attente permettant une floculation maximale des protéines est bien sûr indispensable.

En variante, on fait passer le produit d’hydrolyse dans un moulon colloïdal entre le traitement thermique et l’ultrafiltration.

L’opération d’ultrafiltration peut être effectuée, comme cela est bien connu, en circuit fermé par l’intermédiaire d’une cuve-tampon dans laquelle le réactant est recyclé. Elle peut également être effectuée à l’aide de plusieurs membranes ou modules d’ultrafiltration disposés en série.

En variante avantageuse, on dilue le réactant en cours d’ultrafiltration. Cette technique d’ultrafiltration avec dilution simultanée est appelée diafiltration. L’agent de dilution, essentiellement de l’eau, est ajouté dans la cuve-tampon ou entre deux modules d’ultrafiltration successifs.

La température à laquelle on exécute l’ultrafiltration peut être choisie librement, et, pour des raisons de sécurité bactériologiques, on préfère ultrafiltrer à une température comprise entre 55 et 80°C.

On récupère le permis ou ultrafiltrat qui, exempt de protéines, constitue l’hydrolysat de protéines purifié. Si désiré, ce permis peut être concentré, par exemple par évaporation, et séché afin d’obtenir un hydrolysat purifié sec.

Le réactant d’ultrafiltration peut être recyclé dans une étape d’hydrolyse.

Selon une forme d’exécution préférée du procédé selon l’invention, on soumet à hydrolyse chimique, acide par exemple, ou enzymatique, à la pancréatine par exemple, une solution de protéines, préalablement traitée thermiquement pour des raisons bactériologiques; le produit d’hydrolyse a idéalement une teneur en matières sèches comprise entre 3 et 15%. En cas d’hydrolyse enzymatique, on travaille avantagésusement au pH optimal de l’enzyme et le pH de la solution de protéines est ajusté en conséquence, à l’aide de chaux ou d’acide phosphorique par exemple.

Le produit d’hydrolyse est alors traité thermiquement, par exemple à 130°C pendant 1 min, par injection de vapeur ou dans un échangeur de chaleur. On peut alors entrer directement dans le module d’ultrafiltration, soit laisser les protéines floculer, soit encore intercaler une étape de passage dans un moulon colloïdal.
Typiquement, le module d’ultrafiltration est équipé de membranes ayant une zone de coupure comprise entre 1000 et 10 000.

De par leur composition, les hydrolysats purifiés préparés par le procédé selon l’invention peuvent être incorporés dans de nombreuses préparations alimentaires à usage diététique, notamment en diététique infantile ou des convalescents, ou dans des aliments facilement résorbables à l’usage des personnes souffrant d’allergies.

Les exemples suivants illustrent la mise en œuvre du procédé selon l’invention. Dans ceux-ci, les parties et pourcentages sont, sauf indication contraire, exprimés en valeurs pondérales.

Exemples 1 à 6

(Voir tableau)

On prépare une solution de protéines dans l’eau à partir d’une poudre de petit-lait (lactalbumine isolée par ultrafiltration à 85% de protéines: exemples 1 à 5; lactalbumine précipitée à 70% de protéines: exemple 6). La température de dissolution est comprise entre 30 et 50°C.

On injecte alors de la vapeur à 115°C pendant 10 à 30 s de façon à stériliser la solution puis, après refroidissement à 55°C, on ajuste le pH à 7,2 avec Ca(OH)₂ et on ajoute de la pancréatine à raison de 8%. On laisse l’hydrolyse se dérouler pendant 5 h à 50-55°C. On réajuste alors le pH à 6,7 par H₂PO₄, puis on traite thermiquement comme indiqué sur le tableau qui suit.

L’ultrafiltration est accomplie dans un module Aboor équipé de membranes HFM 180 SG, à l’exception de l’exemple 6 où on a utilisé un module Ucarsel 2L (Union Carbide) monté en membranes NRT.

Les résultats obtenus sont présentés dans le tableau, où est aussi indiqué le taux de concentration par ultrafiltration (3 × ou 2 ×). La diafiltration a été réalisée à volume constant.

<table>
<thead>
<tr>
<th>Exemples</th>
<th>Nature de la protéine</th>
<th>% matières sèches du produit d’hydrolyse</th>
<th>Traitement thermique (°C/min)</th>
<th>Ultrafiltration (UF)</th>
<th>Taux de perméation (l/m²/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>lactalbumine</td>
<td>9</td>
<td>98/30 130/1</td>
<td>UF/65/3</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>lactalbumine</td>
<td>9</td>
<td>98/30 130/1</td>
<td>UF/65/3</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>lactalbumine</td>
<td>13</td>
<td>98/30 130/1</td>
<td>UF/65/2</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>lactalbumine</td>
<td>9</td>
<td>98/30 130/1</td>
<td>UF/65/3 + DF/65</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>lactalbumine</td>
<td>9</td>
<td>98/30 130/1</td>
<td>UF/65/3</td>
<td>125</td>
</tr>
<tr>
<td>6</td>
<td>lactalbumine</td>
<td>9</td>
<td>98/30 130/1</td>
<td>UF/65/3</td>
<td>75</td>
</tr>
</tbody>
</table>

Exemples comparatifs

a) On reproduit ce qui est décrit à l’exemple 1 (lactalbumine, 9%), mais en appliquant un traitement thermique tel (90°C/5 s) qu’en pratique aucune dénaturation n’intervient. L’ultrafiltration, dans les mêmes conditions, est possible, mais le taux de perméation n’est que de 20 l/m²/h.

b) On répète l’exemple 3 (lactalbumine, 13%), mais avec le traitement thermique non dénaturant indiqué sous a. Le taux de perméation en ultrafiltration n’est que de 15 l/m²/h.

Exemples 7 à 10

On prépare, par dissolution dans l’eau d’une poudre entre 30 et 50°C, une solution de protéines, comme indiqué ci-dessous:

- ex. 7 lactalbumine, solution à 8%
- ex. 8 caséine, solution à 10%
- ex. 9 isolat de soja, solution à 11%
- ex. 10 concentré de protéines de poisson, solution à 8%
- ex. 11 concentré de protéines de levure, solution à 12%

Dans l’exemple 7, la lactalbumine (isolée par ultrafiltration) est hydrolysée dans les conditions des exemples 1 à 6, mais avec un mélange de 3% de pancréatine et 0,8% de protéase neutre d’origine bactérienne (*Novo*).

Le concentré de protéines de poisson (morue) est un concentré à 94% de protéines.

Le concentré de protéines de levure provient de la fermentation de *Candida utilis* sur mélasse. Il contient 55% de protéines.

Les traitements thermiques appliqués et les conditions d’ultrafiltration sont comme suit:

- ex. 7 130°C/1 min, UF/65°C/2 ×
- ex. 8 130°C/1 min, UF/70°C/2 ×
- ex. 9 130°C/1 min, UF/70°C/3 ×
- ex. 10 98°C/30 min, UF/65°C/2 ×
- ex. 11 98°C/30 min, UF/65°C/2 ×