wo 2013/016390 A2 I} 000000 O R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

31 January 2013 (31.01.2013)

WIPOIPCT

(10) International Publication Number

WO 2013/016390 A2

(51

eay)

(22)

(25)
(26)
(30)

1

International Patent Classification:
G11C 11/56 (2006.01) GO6F 11/10 (2006.01)

International Application Number:
PCT/US2012/048074

International Filing Date:
25 July 2012 (25.07.2012)

Filing Language: English
Publication Language: English
Priority Data:

13/193,083 28 July 2011 (28.07.2011) US
Applicant (for all designated States except US):

SANDISK TECHNOLOGIES INC. [US/US]; Two Leg-

)
(75)

(74

(8D

acy Town Center, 6900 North Dallas Parkway, Plano,
Texas 75024 (US).

Inventor; and

Inventor/Applicant (for US only): SHARON, Eran
[IL/IL]; 6 Arthur Rubenstein Street, 75412 Rishon Lezion
(IL).

Agents: CLEVELAND, Michael G. et al.; Davis Wright
Tremaine LLP, 505 Montgomery Street, Suite 800, San
Francisco, California 94111 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

[Continued on next page]

(54) Title: NON-VOLATILE MEMORY AND METHOD WITH ACCELERATED POST-WRITE READ USING COMBINED
VERIFICATION OF MULTIPLE PAGES

(57) Abstract: A post-write read operation, using a combined verification of multiple

1001
V|~
l Receive Data from Host |
T
| 1003
v -

Generate ECC, Form
Data Into Pages

l 1005

Transfer Pages o
Memaory Device

l 1007

l Write in Data l

1009
|~
| Read Back Pages l

l 1011

Form Composite
Data Structure

l U

I Transfer to Controller]

number of dies is large.

1015

| Determine Data Integrity .

l 1017

It Error, Determine
Specific Bad Pages

l 1019

Take Corrective Actions
as Needed

!
FIG. 31

pages of data, is presented. In a simultaneous veritication of multiple pages in a block, the
controller evaluates a combined function of the multiple pages, instead of evaluating each
page separately. In one exemplary embodiment, the combined function is formed by XOR -
ing the pages together. Such a combined veritication of multiple pages based on the read
data can significantly reduce the controller involvement, lowering the required bus and
ECC bandwidth for a post-write read and hence allow efficient post-write reads when the

WO 2013/016390 A2 WK 00TV VAT TR A AR A

84)

HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF, S, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2013/016390 PCT/US2012/048074

NON-VOLATILE MEMORY AND METHOD WITH ACCELERATED POST-
WRITE READ USING COMBINED VERIFICATION OF MULTIPLE PAGES

BACKGROUND OF THE INVENTION

[0001] This application relates to the operation of re-programmable non-volatile
memory systems such as semiconductor flash memory, and, more specifically, to

handling and efficient managing of errors in memory operations.

[0002] Solid-state memory capable of nonvolatile storage of charge, particularly in
the form of EEPROM and flash EEPROM packaged as a small form factor card, has
recently become the storage of choice in a variety of mobile and handheld devices,
notably information appliances and consumer eclectronics products. Unlike RAM
(random access memory) that is also solid-state memory, flash memory is non-
volatile, and retaining its stored data even after power is turned off. Also, unlike
ROM (read only memory), flash memory is rewritable similar to a disk storage
device. In spite of the higher cost, flash memory is increasingly being used in mass
storage applications. Conventional mass storage, based on rotating magnetic medium
such as hard drives and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky, are prone to mechanical
failure and have high latency and high power requirements. These undesirable
attributes make disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, both embedded and in the form of a
removable card are ideally suited in the mobile and handheld environment because of

its small size, low power consumption, high speed and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold
voltage characteristic of the transistor is controlled by the amount of charge that is

retained on the floating gate. That is, for a given level of charge on the floating gate,

WO 2013/016390 PCT/US2012/048074

there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] It is common in current commercial products for each storage eclement of a
flash EEPROM array to store a single bit of data by operating in a binary mode,
where two ranges of threshold levels of the storage element transistors are defined as
storage levels. The threshold levels of transistors correspond to ranges of charge
levels stored on their storage elements. In addition to shrinking the size of the
memory arrays, the trend is to further increase the density of data storage of such
memory arrays by storing more than one bit of data in each storage element transistor.
This is accomplished by defining more than two threshold levels as storage states for
cach storage element transistor, four such states (2 bits of data per storage element)
now being included in commercial products. More storage states, such as 16 states per
storage element, are also being implemented. Each storage element memory transistor
has a certain total range (window) of threshold voltages in which it may practically be
operated, and that range is divided into the number of states defined for it plus
margins between the states to allow for them to be clearly differentiated from one
another. Obviously, the more bits a memory cell is configured to store, the smaller is

the margin of error it has to operate in.

[0006] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.

At the same time a high voltage applied to the control gate pulls the hot electrons
-2

WO 2013/016390 PCT/US2012/048074

through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0007] The memory device may be erased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim
tunneling.) Typically, the EEPROM is erasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum
crasable blocks at a time, where a minimum erasable block may consist of one or

more sectors and each sector may store 512 bytes or more of data.

[0008] The memory device typically comprises one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs

intelligent and higher level memory operations and interfacing.

[0009] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory
devices are also manufactured from memory cells with a dielectric layer for storing
charge. Instead of the conductive floating gate elements described earlier, a dielectric
layer is used. Such memory devices utilizing dielectric storage element have been
described by FEitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile

Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp.
-3-

WO 2013/016390 PCT/US2012/048074

543-545. An ONO dielectric layer extends across the channel between source and
drain diffusions. The charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is localized in the dielectric
layer adjacent to the source. For example, United States patents nos. 5,768,192 and
6,011,725 disclose a nonvolatile memory cell having a trapping diclectric sandwiched
between two silicon dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated charge storage regions

within the dielectric.

[0010] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute

one page. All memory elements of a page will be read or programmed together.

Errors in Written Data

[0011] In the types of memory systems described herein, as well as in others,
including magnetic disc storage systems, the integrity of the data being stored is
maintained by use of an error correction technique. Most commonly, an error
correction code (ECC) is calculated for each sector or other unit of data that is being
stored at one time, and that ECC is stored along with the data. The ECC is most
commonly stored together with a unit group of user data from which the ECC has
been calculated. The unit group of user data may be a sector or a multi-sector page.
When this data is read from the memory, the ECC is used to determine the integrity of
the user data being read. Erroneous bits of data within the unit group of data can often

be corrected by use of the ECC.

[0012] The trend is to reduce the size of the memory systems in order to be able to
put more memory cells in the system and to make the system as small as possible to
fit in smaller host devices. Memory capacity is increased by a combination of higher
integration of circuits and configuring each memory cell to store more bits of data.
Both techniques require the memory to operate with increasing tighter margin of

error. This in turn places more demand on the ECC to correct errors.

[0013] The ECC can be designed to correct a predetermined number of error bits.
-4 -

WO 2013/016390 PCT/US2012/048074

The more bits it has to correct, the more complex and computationally intensive will
the ECC be. For quality assurance, conventional ECC is designed based on the
expected worst-case cell error rate at the end of life of the memory device. Thus, they
have to correct a maximum number of error bits up to the far tail end of a statistical

population of error rate.

[0014] As the flash memory ages, its error rate increases rapidly near the end of life
of the device. Thus a powerful ECC designed for the worst-case will only be called to

apply its full capacity at the end of life of the memory device.

[0015] Using ECC to correct a worst-case number of error bits will consume a great
amount processing time. The more bits it has to correct, the more computational time
is required. The memory performance will be degraded. Additional dedicated
hardware may be implemented to perform the ECC in a reasonable amount of time.
Such dedicated hardware can take up a considerable amount of space on the controller
ASIC chip. Moreover, for most of the life time of the device, the ECC is only
marginally utilized, resulting in its large overheads being wasted and realizing no real

benefits.

[0016] Thus, there is a need to provide a nonvolatile memory of high storage capacity

without the need for a resource-intensive ECC over designed for the worse-case.
SUMMARY OF THE INVENTION

[0017] According to a principle set of aspects, a method of operating a memory
system is presented. The memory system includes an array of non-volatile cells
formed along a plurality of word lines each capable of storing one or more pages of
data. The method includes writing multiple pages of data into the array and
subsequently reading a plurality of the written pages of data from the array and an
evaluation is performed of at least a portion of the composite data structure to

determine the presence of high error rate in the plurality of pages of data as written.

[0018] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
which description should be taken in conjunction with the accompanying drawings.

All patents, patent applications, articles, other publications, documents and things

-5-

WO 2013/016390 PCT/US2012/048074

referenced herein are hereby incorporated herein by this reference in their entirety for
all purposes. To the extent of any inconsistency or conflict in the definition or use of
terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.
BRIEF DESCRIPTION OF THE DRAWINGS

[0019] FIG. 1 illustrates a host in communication with a memory device in which the

features of the present invention are embodied.
[0020] FIG. 2 illustrates schematically a non-volatile memory cell.
[0021] FIG. 3 illustrates an example of an NOR array of memory cells.

[0022] FIG. 4 illustrates a page of memory cells, organized for example in the

NAND configuration, being sensed or programmed in parallel.

[0023] FIG. SA illustrates in more detail the sense modules shown in FIG. 1 to

contain a bank of p sense modules across an array of memory cells.
[0024] FIG. 5B illustrates a sense module including a sense amplifier.

[0025] FIG. 6 illustrates schematically an example of a memory array organized in

erasable blocks.

[0026] FIG. 7 illustrates a binary memory having a population of cells with each cell

being in one of two possible states.

[0027] FIG. 8 illustrates a multi-state memory having a population of cells with each

cell being in one of eight possible states.
[0028] FIG. 9 illustrates schematically a data page containing an ECC field.

[0029] FIG. 10A shows a normal distribution of error rate, with the percentage of the

population in various ranges of standard deviations G.
[0030] FIG. 10B illustrate the distribution of FIG. 10A in a table format.

[0031] FIG. 11 is a table listing the main sources of errors for a flash memory.

-6 -

WO 2013/016390 PCT/US2012/048074

[0032] FIG. 12 is a table showing estimated total errors for an example memory

device at the beginning and end of its life.

[0033] FIG. 13 is a table illustrating that a conventional ECC must be designed to

correct the worst-case total error Etor.

[0034] FIG. 14A illustrates a memory array being partitioned into two portions

according to a preferred embodiment of the invention.

[0035] FIG. 14B illustrates a rewrite of a second copy of the data page into the first
portion of the memory array of FIG. 14A.

[0036] FIG. 15 is a flow diagram illustrating the process of post-write read and
adaptive rewrite according to the embodiment described in FIG. 14A and FIG. 14B.

[0037] FIG. 16A illustrates a memory array being partitioned into two portions and
the first portion further provided with a cache section and rewrite section, according

to a preferred embodiment of the invention.

[0038] FIG. 16B illustrates a page compare technique according a preferred
embodiment of the post-write read. FIG. 16C illustrates a rewrite to the first portion
after a post-write read has determined an excessive amount of error in the data page in

the second portion.

[0039] FIG. 17 is a flow diagram illustrating the process of post-write read and
adaptive rewrite according to the embodiment described in FIG. 16A to FIG. 16C.

[0040] FIG. 18 illustrates a memory organized into erase blocks.

[0041] FIG. 19 is a flow diagram illustrating the error management being enabled
when the memory device has aged to a predetermined degree as determined by a hot

count.

[0042] FIG. 20A illustrates a memory array being partitioned into two portions

according to a preferred embodiment of the invention.

[0043] FIG. 20B illustrates another example in which the D3 block of FIG. 20A fails

a post-write-read test.

WO 2013/016390 PCT/US2012/048074

[0044] FIG. 20C illustrates another example in which the new D3 block of FIG. 20B

fails the post-write read test again.

[0045] FIG. 21 is a table illustrating example parameters associated with the
enhanced post-write-read error management. The table is preferably maintained in

the file system configuration file stored in memory.

[0046] FIG. 22A is a flow diagram illustrating a preferred implementation of the
EPWR error management as applied to a memory having D1 to D3 folding.

[0047] FIG. 22B illustrates in more detail the device-age-dependent enablement

feature of the enhanced post-write-read error management.

[0048] FIG. 22C illustrates in more detail a preferred implementation of the

enhanced post-write-read error management.

[0049] FIGs. 23(0)-23(3) illustrate a logical page by page programming of a 4-state
memory encoded with a preferred 2-bit logical code (“LM” code).

[0050] FIG. 24A illustrates the read operation that is required to discern the lower bit
of the 4-state memory encoded with the 2-bit LM code.

[0051] FIG. 24B illustrates the read operation that is required to discern the upper bit
of the 4-state memory encoded with the 2-bit LM code.

[0052] FIGs. 25(0)-25(4) illustrate the programming of an 8-state memory encoded
with a preferred 3-bit logical code (“LM” code).

[0053] FIG. 26A illustrates schematically an ECC page containing an ECC field

similar to that shown in FIG. 9.
[0054] FIG. 26B illustrates a plurality of ECC pages constituting a data page.

[0055] FIG. 27 is a flow chart illustrating the general embodiment of accelerated
PWR.

[0056] FIG. 28 is a flow chart illustrating a preferred embodiment of accelerated
PWR illustrated in FIG. 27.

WO 2013/016390 PCT/US2012/048074

[0057] FIG. 29 illustrates a sample selected for post-write read after a group of 3-bit

memory cells on a word line has been written.
[0058] FIG. 30 illustrates an assignment of data states to a 3-bit memory.

[0059] FIG. 31 is an exemplary flow illustrating aspects of the enhanced post write

read using a combined verification of multiple pages.

[0060] FIG. 32 shows the result of XORing the top and bottom pages of the data
states shown in FIG. 30.

DETAILED DESCRIPTION

MEMORY SYSTEM

[0061] FIG. 1 illustrates a host in communication with a memory device in which the
features of the present invention are embodied. The host 80 typically sends data to be
stored at the memory device 90 or retrieves data by reading the memory device 90.
The memory device 90 includes one or more memory chip 100 managed by a
controller 102. The memory chip 100 includes a memory array 200 of memory cells
with each cell capable of being configured as a multi-level cell (“MLC”) for storing
multiple bits of data. The memory chip also includes peripheral circuits such as sense
modules 480, data latches 430 and /O circuits 440. An on-chip control circuitry 110
controls low-level memory operations of each chip. The control circuitry 110 is an
on-chip controller that cooperates with the peripheral circuits to perform memory
operations on the memory array 200. The control circuitry 110 typically includes a

state machine 112 to provide chip level control of memory operations.

[0062] In many implementations, the host 80 communicates and interacts with the
memory chip 100 via the controller 102. The controller 102 co-operates with the
memory chip and controls and manages higher level memory operations. For
example, in a host write, the host 10 sends data to be written to the memory array 100
in logical sectors allocated from a file system of the host’s operating system. A
memory block management system implemented in the controller stages the sectors

and maps and stores them to the physical structure of the memory array.

[0063] A preferred block management system is disclosed in United States Patent
-9.

WO 2013/016390 PCT/US2012/048074

Application Publication No. 2010/0172180 A1, published on July &, 2010, the entire

disclosure of which is incorporated herein by reference.

[0064] A firmware 60 provides codes to implement the functions of the controller
102. An error correction code (“ECC”) processor 62 processes ECC during
operations of the memory device. In another embodiment, the controller 102 is

implemented within the host.

Physical Memory Structure

[0065] FIG. 2 illustrates schematically a non-volatile memory cell. The memory cell
10 can be implemented by a field-effect transistor having a charge storage unit 20,
such as a floating gate or a diclectric layer. The memory cell 10 also includes a

source 14, a drain 16, and a control gate 30.

[0066] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may employ different types of
memory cells, each type having one or more charge storage element. Typical non-
volatile memory cells include EEPROM and flash EEPROM. Examples of EEPROM
cells and methods of manufacturing them are given in United States patent no.
5,595,924. Examples of flash EEPROM cells, their uses in memory systems and
methods of manufacturing them are given in United States patents nos. 5,070,032,
5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In particular,
examples of memory devices with NAND cell structures are described in United
States patent nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of memory
devices utilizing dielectric storage element have been described by Fitan et al.,
“NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in United
States patents nos. 5,768,192 and 6,011,725.

[0067] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate
of a cell, a corresponding conduction current with respect to a fixed reference control
gate voltage may be detected. Conversely, a threshold voltage is defined as the

voltage on the control gate that will just turn on the cell with the given charge.
-10 -

WO 2013/016390 PCT/US2012/048074

Similarly, the range of charge programmable onto the floating gate defines a
corresponding threshold voltage window or a corresponding conduction current

window.

[0068] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current. In one implementation the detection of the conduction
current relative to a threshold current is accomplished by examining the rate the
conduction current is discharging through the capacitance of the bit line or a known

capacitor.

[0069] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. For example, a
memory device may have memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store
16 states, each state may occupy from 200mV to 300mV in the threshold window.
This will require higher precision in programming and reading operations in order to

be able to achieve the required resolution.

[0070] The memory array 200 is typically organized as a two-dimensional array of
memory cells arranged in rows and columns and addressable by word lines and bit
lines. The array can be formed according to an NOR type or an NAND type

architecture.

[0071] FIG. 3 illustrates an example of an NOR array of memory cells. In the
memory array 200, each row of memory cells are connected by their sources 14 and
drains 16 in a daisy-chain manner. This design is sometimes referred to as a virtual
ground design. The cells 10 in a row have their control gates 30 connected to a word
line, such as word line 42. The cells in a column have their sources and drains

respectively connected to selected bit lines, such as bit lines 34 and 36.

[0072] FIG. 4 illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. 4 essentially
shows a bank of NAND strings 50 in the memory array 200. A NAND string 50

comprises of a series of memory transistors (e.g., 4, 8, 16 or higher) daisy-chained by
-11 -

WO 2013/016390 PCT/US2012/048074

their sources and drains. A pair of select transistors S1, S2 controls the memory
transistors chain’s connection to the external via the NAND string’s source terminal
and drain terminal respectively. In a memory array, when the source select transistor
S1 is turned on, the source terminal is coupled to a source line 34. Similarly, when
the drain select transistor S2 is turned on, the drain terminal of the NAND string is
coupled to a bit line 36 of the memory array. Each memory transistor 10 in the chain
acts as a memory cell. It has a charge storage element 20 to store a given amount of
charge so as to represent an intended memory state. A control gate of each memory
transistor allows control over read and write operations. The control gates of
corresponding memory transistors of a row of NAND string are all connected to the
same word line (such as WLO, WLI1, ...) Similarly, a control gate of each of the
select transistors S1, S2 (accessed via select lines SGS and SGD respectively)
provides control access to the NAND string via its source terminal and drain terminal

respectively.

[0073] When an addressed memory transistor 10 within an NAND string is read or is
verified during programming, its control gate is supplied with an appropriate voltage
via a common word line. At the same time, the rest of the non-addressed memory
transistors in the NAND string 50 are fully turned on by application of sufficient
voltage on their control gates. In this way, a conductive path is effective created from
the source of the individual memory transistor to the source terminal of the NAND
string and likewise for the drain of the individual memory transistor to the drain
terminal of the cell. Memory devices with such NAND string structures are described

in United States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0074] A “page” such as the page 70, is a group of memory cells enabled to be sensed
or programmed in parallel. This is accomplished by a corresponding page of sense
amplifiers. For example, the page 70 is along a row and is sensed by a sensing
voltage applied to the control gates of the cells of the page connected in common to
the word line WL3. Along each column, each cell such as cell 10 is accessible by a
sense amplifier via a bit line 36. The page referred to above is a physical page
memory cells or sense amplifiers. Depending on context, in the case where each cell

is storing.

Sensing Circuits and Technigues
12 -

WO 2013/016390 PCT/US2012/048074

[0075] FIG. SA illustrates in more detail the sense modules shown in FIG. 1 to
contain a bank of p sense modules across an array of memory cells. The entire bank
of p sense modules 480 operating in parallel allows a group (or physical page) of p
cells 10 along a row to be read or programmed in parallel. Essentially, sense module
1 will sense a current I; in cell 1, sense module 2 will sense a current I, in cell 2, ...,
sense module p will sense a current I, in cell p, etc. The total cell current izor for the
page flowing out of the source line 34 into an aggregate node CLSRC and from there

to ground will be a summation of all the currents in the p cells.

[0076] In conventional memory architecture, a row of memory cells with a common
word line forms two or more pages, where the memory cells in a page are read and
programmed in parallel. In the case of a row with two pages, one page is accessed by
even bit lines and the other page is accessed by odd bit lines. A physical page of
sensing circuits is coupled to either the even bit lines or to the odd bit lines at any one

time.

[0077] In currently produced chips, the physical page may be 64k or larger. In the
preferred embodiment, the group is a run of the entire row of cells. This is the so-
called “all bit-line” architecture in which the page is constituted from a row of

contiguous memory cells coupled respectively to contiguous bit lines.

[0078] FIG. SB illustrates a sense module including a sense amplifier. The sense
amplifier 490 detects the conduction current of a cell is above or below a reference

level. The sensed results are latches in a corresponding set of latches 430 (see FIG.

1).
FErase Blocks

[0079] One important difference between flash memory and other type of memory is
that a cell must be programmed from the erased state. That is the floating gate must
first be emptied of charge. Programming then adds a desired amount of charge back
to the floating gate. It does not support removing a portion of the charge from the
floating to go from a more programmed state to a lesser one. This means that update
data cannot overwrite existing one and must be written to a previous unwritten

location.

-13 -

WO 2013/016390 PCT/US2012/048074

[0080] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells
is divided into a large number of blocks of memory cells. As is common for flash
EEPROM systems, the block is the unit of erase. That is, each block contains the

minimum number of memory cells that are erased together.

[0081] FIG. 6 illustrates schematically an example of a memory array organized in
erasable blocks. Programming of charge storage memory devices can only result in
adding more charge to its charge storage eclements. Therefore, prior to a program
operation, existing charge in charge storage eclement of a memory cell must be
removed (or erased). A non-volatile memory such as EEPROM is referred to as a
“Flash” EEPROM when an entire array of cells 200, or significant groups of cells of
the array, is electrically erased together (i.e., in a flash). Once erased, the group of
cells can then be reprogrammed. The group of cells erasable together may consist of
one or more addressable erase unit 300. The erase unit or block 300 typically stores
one or more pages of data, the page being a minimum unit of programming and
reading, although more than one page may be programmed or read in a single
operation. Each page typically stores one or more sectors of data, the size of the
sector being defined by the host system. An example is a sector of 512 bytes of user
data, following a standard established with magnetic disk drives, plus some number of

bytes of overhead information about the user data and/or the block in with it is stored.

[0082] In the example shown in FIG. 6, individual memory cells in the memory array
200 are accessible by word lines 42 such as WL0O-WLy and bit lines 36 such as BLO —
BLx. The memory is organized into erase blocks, such as erase blocks 0, 1, ... m.
Referring also to FIGs. SA and 5B, if the NAND string 50 contains 16 memory cells,
then the first bank of NAND strings in the array will be accessible by select lines 44
and word lines 42 such as WLO to WL15. The erase block 0 is organized to have all
the memory cells of the first bank of NAND strings erased together. In another

memory architecture, more than one bank of NAND strings may be erased together.

Examples of Binary (SLC) and Multi-state (MLC) Memory Partitioning

[0083] As described earlier, an example of nonvolatile memory is formed from an

-14 -

WO 2013/016390 PCT/US2012/048074

array of ficld-effect transistors, each having a charge storage layer between its
channel region and its control gate. The charge storage layer or unit can store a range
of charges, giving rise to a range of threshold voltages for each field-effect transistor.
The range of possible threshold voltages spans a threshold window. When the
threshold window is partitioned into multiple sub-ranges or zones of threshold
voltages, each resolvable zone is used to represent a different memory states for a

memory cell. The multiple memory states can be coded by one or more binary bits.

[0084] FIG. 7 illustrates a binary memory having a population of cells with each cell
being in one of two possible states. Each memory cell has its threshold window
partitioned by a single demarcation level into two distinct zones. As shown in FIG.
7(0), during read, a read demarcation level rV;, between a lower zone and an upper
zone, 1S used to determine to which zone the threshold level of the cell lies. The cell
is in an “erased” state if its threshold is located in the lower zone and is in a
“programmed” state if its threshold is located in the upper zone. FIG. 7(1) illustrates
the memory initially has all its cells in the “erased” state. FIG. 7(2) illustrates some
of cells being programmed to the “programmed” state. A 1-bit or binary code is used
to code the memory states. For example, the bit value “1” represents the “erased”
state and “0” represents the “programmed” state. Typically programming is
performed by application of one or more programming voltage pulse. After each
pulse, the cell is sensed to verify if the threshold has moved beyond a verify
demarcation level vV;. A memory with such memory cell partitioning is referred to
as “binary” memory or Single-level Cell (“SLC”) memory. It will be seen that a
binary or SLC memory operates with a wide margin of error as the entire threshold

window is only occupied by two zones.

[0085] FIG. 8 illustrates a multi-state memory having a population of cells with each
cell being in one of eight possible states. Each memory cell has its threshold window
partitioned by at least seven demarcation levels into eight distinct zones. As shown in
FIG. 8(0), during read, read demarcation levels rV; to rV; are used to determine to
which zone the threshold level of the cell lies. The cell is in an “erased” state if its
threshold is located in the lowest zone and is in one of multiple “programmed” states
if its threshold is located in the upper zones. FIG. 8(1) illustrates the memory

initially has all its cells in the “erased” state. FIG. 8(2) illustrates some of cells being

-15 -

WO 2013/016390 PCT/US2012/048074

programmed to the “programmed” state. A 3-bit code having lower, middle and
upper bits can be used to represent each of the eight memory states. For example, the
“07, <17, 427, “37, <47, “5” “6” and “7” states are respectively represented by “1117,
“0117, <0017, “101°, “100”, “000”, “010” and ‘110”. Typically programming is
performed by application of one or more programming voltage pulses. After each
pulse, the cell is sensed to verify if the threshold has moved beyond a reference which
is one of verify demarcation levels vV .to vV;7. A memory with such memory cell
partitioning is referred to as “multi-state” memory or Multi-level Cell (“MLC”)

memory.

[0086] Similarly, a memory storing 4-bit code will have lower, first middle, second
middle and upper bits, representing each of the sixteen states. The threshold window

will be demarcated by at least 15 demarcation levels into sixteen distinct zones.

[0087] As the memory’s finite threshold window is partitioned into more regions, the
resolution for programming and reading will necessarily become finer. Thus, a multi-
state or MLC memory necessarily operates with a narrower margin of error compared
to that of a memory with less partitioned zones. In other words, the error rate
increases with the number of bits stored in each cell. In general, error rate increases

with the number of partitioned zones in the threshold window.

Correction by Error Correction Code (“ECC”)

[0088] Flash memory is prone to errors. To ensure error-free data, an error correction

code (“ECC”) is implemented to correct errors.

[0089] FIG. 9 illustrates schematically a data page containing an ECC field. As
described in connection with FIG. 4 and FIG. 6A, a physical page of memory cells is
programmed and read in parallel by virtue of a corresponding page of sense modules
operating in parallel. When each memory cell stores multiple bits of data, there will
be multiple data pages associated with each physical page. The data page 70’
comprises a user portion 72’ and a system portion 74’. The user portion 72’ is for
storage of user data. The system portion 74’ is generally used by the memory system
for storage of system data. Included in the system data is an ECC. The ECC is
computed for the data page. Typically, the ECC is computed by the ECC processor

62 in the controller 102 (see FIG. 1.)
-16 -

WO 2013/016390 PCT/US2012/048074

[0090] As data is received from a host, a page of data is staged in the controller 102
and its ECC 76’ is computed by the ECC processor 62. The data page incorporating
the ECC is then written to the memory array 200. Typically, when the data page is
read, the data page is latched in the data latches 430 and shifted out of the 1/O circuits
440 to the controller 102. At the controller 102, the data page’s existing ECC is
compared to a second version of the ECC computed on the read data. The ECC
typically includes an error detection code (“EDC”) for rapid detection of any error in
the data page. If the EDC indicates the existence of any error in the read data page,

the ECC is invoked to correct erroneous bits in the read data page.

[0091] The ECC can be designed to correct any number of error bits. The more bits it
has to correct, the more complex and computationally intensive will the ECC be. For
quality assurance, conventional ECC is designed based on the expected worst case
cell error rate (“CER”) at the end of life (“EOL”) of the memory device. Thus, they
have to correct a maximum number of error bits up to the far tail end of a statistical

error population.

[0092] FIG. 10A shows a normal distribution of error rate with the percentage of the
population in various ranges of standard deviations 6. For example, only 2.1% of the
population lies within the range from 26 to 36. Only 0.1% of the population lies

within the range from 36 to 46.

[0093] FIG. 10B illustrate the distribution of FIG. 10A in a table format. It can be
seen that only E-09 or one in one billion of the population lies beyond 66. The last
column in the table shows the estimated error rates for an example memory device in
the worst case. For example, 5% of the population will have 1 error bit, 0.135% of
the population will have 4 error bits and 1 in 1 billion of the population will have 42

error bits.

[0094] Consider a sample of 125 memory cards. Each card has a capacity of 16 GB
with data pages of 2KB each. This amounts to a population of one billon pages of 2
KB each. To ensure not a single page of the sample of 125 memory cards will have
an error at the end of life of the card, an ECC capable of correcting up to 42 bits will

be needed.

-17 -

WO 2013/016390 PCT/US2012/048074

Errors during the Life Time of Memory

[0095] As described above, an ECC is typically designed to correct for any errors
expected during the useful life of the memory. The errors come from a number of

sourcces.

[0096] FIG. 11 is a table listing the main sources of errors for a flash memory. FIG.
11(A) shows a first source of error from post write Epw(Ncyc) which is bit errors that
are present after the page is written. In flash memory, “programming” refers to the
process of increasing the threshold of a cell from an erased state. The term will be
used interchangeable with “writing”. The error rate increases with Neyce the number
of program-crase cycling. After data has been written to a cell, in spite of passing the

verify operation, the data could still be erronecous for two causes.

[0097] The first cause of post write error is due to over-programming not detected by
the verify operation. Over-programming that can happen when a number of the
memory cells are to be programmed at the same time. This is because the
characteristics of each memory cell are different due to minor variations in the
structure and operation of the semi-conductor devices which comprise the memory
cells; therefore, variations in the programming speed of different cells will typically
occur. This results in memory cells that become programmed faster than others and
the possibility that some memory cells will be programmed to a different state than
intended. Faster programming of multiple memory cells can result in over-shooting

desired threshold voltage level ranges, producing errors in the data being stored.

[0098] Typically, when data is being programmed, the program-verify process for the
device will check if the programmed threshold voltage of the memory cell is above
than a reference level demarcating the current state from the adjacent less
programmed state. However, the program-verify does not know how much above the
reference level is the programmed threshold voltage. Thus, devices typically do not
guarantee an upper limit on the threshold voltage. Some devices do check to see if a
soft programming process (described below) raised the threshold voltage too high;
however, these devices do not check to see if a regular programming process raised
the threshold voltage too high. Thus, over programming which raises the threshold

voltage beyond the range for the desired state can occur without being noticed. Over

- 18 -

WO 2013/016390 PCT/US2012/048074

programming can cause the memory cell to overshoot to the next programmed state
and thus storing incorrect data. This error will be detected during subsequent read
operations, in which the programmed threshold of a cell is typically checked relative
to both a lower and an upper limit demarcating a threshold range for a given memory

state. More information about over programming can be found in U.S. Pat. Nos.

5,321,699; 5,386,422; 5,469,444; 5,602,789; 6,134,140; 6,914,823; and 6,917,542.

[0100] The second cause of post write error is in the apparent shifts in the stored
charge levels due to field coupling between storage elements. The degree of this
coupling is necessarily increasing as the sizes of memory cell arrays are being
decreased, which is occurring as the result of improvements of integrated circuit
manufacturing techniques. The problem occurs most pronouncedly between two
groups of adjacent cells that have been programmed at different times. One group of
cells is programmed to add a level of charge to their storage elements that corresponds
to one set of data. After the second group of cells is programmed with a second set
of data, the charge levels read from the storage elements of the first group of cells
often appear to be different than programmed because of the effect of the charge on
the second group of storage clements being capacitively coupled with the first. In
particular, when sensed the memory cell will appear to have a higher threshold level
(or more programmed) than when it is less perturbed. This is also known as the
Yupin effect, and is described in U.S. Pat. No. 5,867,429, which patent is
incorporated herein in their entirety by this reference. This patent describes either
physically isolating the two groups of storage elements from each other, or taking into
account the effect of the charge on the second group of storage elements when reading

that of the first group.

[0101] FIG. 11(B) shows a second source of error Epr(T, Neye) which is bit errors
due to data retention at EOL. The error rate increases with temperature T and Neyc
the number of program-crase cycling. The data error is due to the history of the
device. It typically is related to a data retention problem, which depends on the
memory device exposure to the environment, e.g., temperature. Over time, the actual
stored charge levels may leak away slowly, causing the programmed thresholds to

decrease.

-19 -

WO 2013/016390 PCT/US2012/048074

[0102] As the number of states stored in each memory cell increases, the tolerance of
any shifts in the programmed charge level on the storage elements decreases. Since
the ranges of charge designated for ecach storage stat necessarily be made narrower
and placed closer together as the number of states stored on each memory cell storage
element increases, the programming must be performed with an increased degree of
precision and the extent of any post-programming shifts in the stored charge levels
that can be tolerated, either actual or apparent shifts, is reduced. Actual disturbs to the
charge stored in one cell can be created when programming and reading that cell, and
when reading, programming and erasing other cells that have some degree of
electrical coupling with the that cell, such as those in the same column or row, and

those sharing a line or node.

[0103] FIG. 11(C) shows a third source of error Exp(Ng, Neyce) which are bit errors
due to read disturb. The error rate increases with the number of reads and Ncyc the

number of program-crase cycling.

[0104] An important consideration for flash memory is that it has an endurance
problem as it ages with use. When a cell is repeatedly programmed and erased,
charges are shuttled in and out of the floating gate 20 (see FIG. 2) by tunneling across
a dielectric. Each time some charges may become trapped in the dielectric and will
modify the threshold of the cell. The number of program-erase cycles a cell has
experienced is measured by a cycle count Neye (also known as “hot count’). Though
repeated cycling, the value of Neyc increases for a given erase block, causing the
threshold window for the cells in the block to narrow progressively. Thus, the effect
program-crase cycling will significantly impact all the sources of error listed in FIG.

11.

[0105] FIG. 12 is a table showing estimated total errors for an example memory
device at the beginning and end of its life. FIG. 12(A) shows the total errors from the
three sources listed in FIG. 11(A) to FIG. 11(C) to be Eror(Ncyce, Nr) = Epw(Neye) +
Epr(T, Neve) + Ern(Nr, Nevo).

[0106] FIG. 12(B) shows an estimated Epgr when the memory is relatively fresh (low
Neye) but has been baked at 85°C for 5 years and has been read 10° times. The

-20 -

WO 2013/016390 PCT/US2012/048074

estimates for the various component errors are: Epw(1) ~ 3, Epr(85°C, 1) ~ 2, and

Erp(1M, 1) ~ 0. These yield a total estimated error Eror(1, IM)=3 +2 + 0 =5 bits.

[0107] FIG. 12(C) shows an estimated Ergr when the memory is near the end of life
of the device (“EOL”). It is characterized by a high program-erase cycling (Neyc =
10K) with other parameters similar to that of FIG. 12(B). The estimates for the
various component errors are: Epw(10K) ~ 10, Epr(85°C, 10K) ~ 10, and Erp(1M,
10K) ~ 1. These yield a total estimated error Eror(10K, 1M) =10+ 10+ 1 =21 bits.

[0108] Of the three sources of error described in FIG. 11 and FIG. 12, generally the
error due to read disturb Egrp is not as significant as error due to write Epw and error
due to data retention Epr. Data retention errors can be alleviated by periodically

refreshing the threshold levels of the cells in a “read scrub” operation.

[0109] To correct for the various errors that may arise in the memory, especially the
error arising after write, an EEC (described earlier in connection FIG. 9) is employed.
However, using ECC to correct errors will consume processing time and, the more
bits it has to correct, the more computational time is required. The memory
performance will be degraded by employing a strong ECC able to correct a large
number of error bit. Additional dedicated hardware may be implemented to perform
the ECC in a reasonable amount of time. Such dedicated hardware can take up a

considerable amount of space on the controller ASIC chip.

[0110] FIG. 13 is a table illustrating that a conventional ECC must be designed to
correct the worst-case total error Ergr. That will be a device at the end of life with
high program-erase cycle count and data retention specification. For the example

given in FIG. 12(C), the ECC must be capable of correcting at least 21 error bits.

Adaptively Rewrite Data from a Higher Density Memory Portion to a Lower Error

Rate Memory Portion to Control Error Rate

[0111] According to a general aspect of the invention, a flash memory having an
array of memory cells is configured with a first portion and a second portion. The
second portion stores data at higher density but operates with a smaller margin of
errors compared to the first portion. Data is written to the second portion for efficient

storage. Afterwards, the data is read back to check for excessive error bits. If the

221 -

WO 2013/016390 PCT/US2012/048074

error bits exceeded a predetermined amount, the data is rewritten to the less error-
prone first portion. This places a limit on the maximum number of error bits arising
from writing data to the memory. In a statistical distribution of error rates, the limit
represents a limit on the number standard derivations of the distribution so that the far
tail-end of the distribution (with higher error rates) can be ignored. This allows a
smaller and more efficient error correction code (“ECC”) to be designed for
correcting a smaller number of errors bits, thereby improving the performance and

reducing the cost of the memory.

[0112] FIG. 14A illustrates a memory array being partitioned into two portions
according to a preferred embodiment of the invention. The array of memory cells 200
is partitioned into a first portion 410 and a second portion 420. The second portion
420 has the memory cells configured as high density storage with each cell storing
multiple bits of data. The first portion 410 has the memory cells configured as lower
density storage with each cell storing less number of bits than that of the second
portion. For example, a memory cell in the first portion is configured to store 1 bit of
data as compared to 3 bits of data in the second portion. In view of the discussion
carlier, the first portion will operate with a much wider margin of error compared to
that of the second portion. Thus, memory operations in the first portion will have less

error than that in the second portion.

[0113] United States Patent No. 6,456,528, entitled "Selective Operation of a Multi-
state Non-volatile Memory System in a Binary Mode", discloses a flash non-volatile
memory having memory cells normally operating in more than two states but with
selected memory cells operating in only two-states in order to provide an increased
margin during two-state operation. This allows faster programming and a longer
operational life of the memory cells being operated in two states when it is more
desirable to have these advantages than the increased density of data storage that
multi-state operation provides. The entire disclosure of US 6,456,528 is incorporated

herein by reference.

[0114] When a page of incoming data is to be written to the memory array 200, it is
preferably stored in the high density second portion for the sake of efficiency and high

capacity. Thus a first copy of the data page is written to the second portion.

-0

WO 2013/016390 PCT/US2012/048074

[0115] Later, the first copy of the data page is read back in a “post write read” to
determine if there are any errors. This is accomplished either by comparison with the

original copy which may be cached or by checking the EDC portion of the ECC.

[0116] Determination is made whether the number of error bits in the read copy
exceeded a predetermined amount. If the number of error bits does not exceed the
predetermined amount, the first copy is regarded stored in the second portion is
deemed valid. Subsequent read of the data page will be from the first copy in second

portion and any errors will be corrected by ECC at the controller.

[0117] As explained earlier in connection with FIG. 11, the verify process during
programming only checks for under-programming and not over-programming. Thus,
error may still exist after the data page has been program-verified. It will take a read
operation relative to all the demarcation levels (see FIG. 7 and FIG. 8) to detect any
error in the data page. Furthermore, the Yupin effect of subsequent programming of
neighboring cells could perturb the data page in question and shift the apparent sensed
results. Thus, the read back should at least be after the programming of all
neighboring cells that could have significant Yupin effect on the current data page. In
another embodiment, the read back is after all the cells in the block containing the

data page in question are done programming.

[0118] “Post write read” is also disclosed in United States Patent Nos. 6,914,823,

6,917,542 and 7,009,889, their entire disclosures are incorporated herein by reference.

[0119] FIG. 14B illustrates a rewrite of a second copy of the data page into the first
portion of the memory array of FIG. 14A. After the post-write read detects the
number of error bits in the data page has exceeded the predetermined amount, a
second copy of the data page is rewritten to the first portion. The second copy is of
the original data which may be cached or in another embodiment, by retrieving the

first copy and correcting the error bits with the ECC.

[0120] After the second copy has been written to the first portion, it will replace the
first copy in the second portion as the valid copy. The first copy will become obsolete
and a directory in a block management system embodied in the firmware of the

controller (see FIG. 1) will be updated to direct subsequent access to the second copy.

-23 -

WO 2013/016390 PCT/US2012/048074

[0121] In one preferred embodiment, the first portion has each memory cell storing
one bit of data and the second portion has each memory cell storing more than one bit

of data.

[0122] FIG. 15 is a flow diagram illustrating the process of post-write read and
adaptive rewrite according to the embodiment described in FIG. 14A and FIG. 14B.

[0123] STEP 500: Configuring the memory into first and second portions, the first
portion having memory cells operating with a margin of error larger than that of the

second portion.

[0124] STEP 510: Programming a first copy of a group of input data in the second

portion.

[0125] STEP 520: Reading the first copy from the second portion to check for error

after a predefined time.

[0126] STEP 530: Does the error exceed a predetermined number of error bits? If
so0, proceed to STEP 540. Otherwise proceed to STEP 550.

[0127] STEP 540: Programming a second copy of the group of input data in the first

portion.
[0128] STEP 550: Identifying the last written copy as valid data for subsequent read.

[0129] STEP 560: The group of input data is done storing in the nonvolatile

memory.

[0130] In an alternative embodiment, the first portion serves as a cache for incoming
data, so a cache copy of the input data is programmed into the cache. Then a first

copy of data is programmed into the second portion.

[0131] If the post-write read has not detected an excessive amount of error in the first
copy, the first copy will be deemed valid and subsequent read will be directed to

access the first copy.

[0132] On the other hand, if the post-write read has detected an excessive amount of

error in the first copy, the cached copy in the first portion will replace the first copy in

-4 -

WO 2013/016390 PCT/US2012/048074

the second portion as valid data. The first copy will become obsolete and a directory
in a block management system embodied in the firmware of the controller (see FIG.

1) will be update to direct subsequent access to the cached copy.

[0133] United States Patent No. 5,930,167, entitled "Multi-state Non-volatile Flash
Memory Capable of Being its Own Two State Write Cache", discloses a flash
memory array having two portions. A first portion is configured to store one bit per
cell and a second portion is configured to store more than one bit per cell. The first
portion acts as a low-density write cache. In-coming data is initially cached in the
first portion. At a later time, in the background, the cached data is transferred to the
second portion with higher storage density. The entire disclosure of US 5,930,167 is

incorporated herein by reference.

[0134] In the preferred embodiment, the first portion is further provided with a first
section and a second section. The incoming data is cached in the first section of the
first portion and a first copy of the data is written to the second portion. Afterwards,
the first copy in the second portion is read back to check for excessive error bits. If
the error bits exceeded a predetermined amount, a second copy of the in coming data

is written to the second section of the first portion.

[0135] FIG. 16A illustrates a memory array being partitioned into two portions and
the first portion further provided with a cache section and rewrite section, according
to a preferred embodiment of the invention. As in FIG. 14A, the array of memory
cells 200 is partitioned into a first portion 410 and a second portion 420. The second
portion 420 has the memory cells configured as high density storage with each cell
storing multiple bits of data. The first portion 410 has the memory cells configured as
lower density storage with each cell storing less number of bits than that of the second
portion. The first portion therefore operates with a wider margin of error than that of

the second portion.

[0136] The first portion 410 is further provided with a first section 411 for caching

incoming data and a second section 412 for storing rewrites from the second portion.

[0137] When a page of incoming data is to be written to the memory array 200, a
cached copy is cached in the first section 411 of the first portion 410. A first copy is

_25.-

WO 2013/016390 PCT/US2012/048074

preferably stored in the high density second portion for the sake of efficiency and high

capacity. Thus a first copy of the data page is written to the second portion.

[0138] According to another preferred embodiment, the memory array is provided
with a set of data latches on an integrated circuit chip, the checking of the error bits in
the first copy is accomplished by loading the first copy and the cached copy into the

set of data latches and making a comparison at the set of data latches.

[0139] By not making the comparison at the controller, the data does not have to be
toggled out to the controller, much time can be saved. FIG. 1 shows the data latches

430, which is on-chip, for the data comparison to take place.

[0140] FIG. 16B illustrates a page compare technique according a preferred
embodiment of the post-write read. The first copy of the data page in the second
portion is read back in a “post write read” to determine if there are any errors. This is

accomplished by comparison with the cached copy.

[0141] If the number of error bits does not exceed the predetermined amount, the first
copy stored in the second portion is deemed to be valid. The cached copy will
become obsolete and a directory in a block management system embodied in the
firmware of the controller (see FIG. 1) will be updated to direct subsequent access to
the first copy. Subsequent read of the data page will be from the first copy in the

second portion and any errors will be corrected by ECC at the controller.

[0142] FIG. 16C illustrates a rewrite to the first portion after a post-write read has
determined an excessive amount of error in the data page in the second portion. After
the post-write read detects the number of error bits in the data page of the first copy
has exceeded the predetermined amount, a second copy of the data page is rewritten
to the second section 412 of the first portion 410. The second copy is taken from the
cached copy.

[0143] After the second copy has been written to the second section 412 of the first
portion, it will replace the first copy in the second portion. The first copy and the
cached copy will become obsolete and a directory in a block management system
embodied in the firmware of the controller (see FIG. 1) will be updated to direct

subsequent access to the second copy.

-26 -

WO 2013/016390 PCT/US2012/048074

[0144] FIG. 17 is a flow diagram illustrating the process of post-write read and
adaptive rewrite according to the embodiment described in FIG. 16A to FIG. 16C.

[0145] STEP 600: Configuring the memory into first and second portions, the first
portion having memory cells operating with a margin of error larger than that of the

second portion.

[0146] STEP 602: Programming a cached copy of a group of input data in a first

section of the first portion.

[0147] STEP 610: Programming a first copy of the group of input data in the second

portion.

[0148] STEP 620: Reading the first copy from the second portion to check for error

after a predefined time.

[0149] STEP 630: Doecs the error exceed a predetermined number of error bits? If
so0, proceed to STEP 632. Otherwise proceed to STEP 650.

[0150] STEP 632: Reading the cached copy of the group of input data from the first

section of the first portion.

[0151] STEP 642: Programming the cached copy as a second copy of the group of

input data in a second section of the first portion.
[0152] STEP 650: Identifying the last written copy as valid data for subsequent read.

[0153] STEP 660: The group of input data is done storing in the nonvolatile

memory.

[0154] The foregoing detailed description of the invention has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in
order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the invention in various

embodiments and with various modifications as are suited to the particular use

_27 -

WO 2013/016390 PCT/US2012/048074

contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.

Enhanced Post-Write-Read Error Management

[0155] In another aspect of the invention, an enhanced post-write read error
management is implemented. The post-write read is not enabled at the beginning of
life of a memory device. The error rate of the memory device at the beginning of life
is very low and there is no need to operate the post-write read. This avoids wasting
time to do post-write read. As the memory device ages through use, the enhanced
post-write read and error management of the invention is enabled at a predetermined

age of the device.

[0156] In a preferred embodiment, the age of the memory device is determined by a
hot count maintained with each erase block of memory cells. The hot count tracks the
endurance or the number of times the erase block has been cycled through erase and
program operations. Whenever a hot count of an erase block passes a predetermined
hot count threshold, the enhanced post-write-read error management will commence

and operate until the end of life of the memory device.

[0157] FIG. 18 illustrates a memory organized into erase blocks. As described in
connection with FIG. 6 carlier, each erase block is a group of memory cells that are
erased together. Also described earlier is when a cell is repeatedly programmed and
erased, charges are shuttled in and out of the floating gate 20 (see FIG. 2) by
tunneling across a dielectric. Each time some charges may become trapped in the
dielectric and will modify the threshold of the cell. The number of program-erase
cycles a cell has experienced is measured by a cycle count Neye (also known as “hot
count’). Though repeated cycling, the value of N¢yc increases for a given erase
block, and the threshold window for the cells in the block narrows progressively.
FIG. 18 illustrates a preferred embodiment in which a hot count Neyc(m) 302 is
maintained in each erase block (m). Since the programmable unit is a page, the hot
count for each block can be store in the system data arca of the data page 70’
illustrated in FIG. 9. Alternatively, the hot counts may be stored in a master list in

the memory. Every time a block is erased, its hot count is incremented by one.

-28 -

WO 2013/016390 PCT/US2012/048074

[0158] FIG. 19 is a flow diagram illustrating the error management being enabled
when the memory device has aged to a predetermined degree as determined by a hot

count.

[0159] STEP 700: Providing a non-volatile memory organized into erase blocks of
memory cells, wherein the memory cells of each erase block are erased together and

age with the number of erase/program cycling of each block.

[0160] STEP 710: Providing an error management for correcting errors associated
with an aging memory device. In the preferred embodiment, the error management is

the post-write-read error management described earlier.

[0161] STEP 720: Tracking the age of each block by maintaining a hot count that

records the number of erase/program cycling each block has undergone.

[0162] STEP 730: Is the Hot Count of a memory block > a predetermined hot count
threshold? In the preferred embodiment, the predetermined hot count threshold is
given by a parameter Hot_count threshold EPWR in a file system configuration file
stored in the memory (see FIG. 21.) If greater than, go to STEP 740, otherwise go to
STEP 750.

[0163] STEP 740: Enable the error management for the rest of the life of the

memory.
[0164] STEP 750: Do not enable the error management yet.

[0165] In a preferred embodiment of yet another aspect of the invention, the high
density storage portion of the memory (D3) has each memory storing 3 bits of data.
The less error-prone, low density storage portion of the memory (D1) has each
memory cell storing 1 bit of data. Input data is first staged in D1 and subsequently
folded into D3. When the enhanced post-write-read error management is enabled, a
current, filled block in D3 is read back; and if the error rate exceeds a predetermined
threshold, the current D3 block is rejected and a retry takes place with data being
refolded into a new D3 block. The new D3 block is again read back and checked for
excessive error rate. If the new D3 block passes, then it has good data and the

original data in D1 is made obsolete. If the new D3 block again shows excessive

-29.

WO 2013/016390 PCT/US2012/048074

error rate, the new D3 block is again discarded. If the excessive error rate persists
after a predetermined number of retries, no further retry is attempted and the D1 to D3
folding operation is abandoned with the original data kept at D1. At this point the
memory device is deemed too old for further programming operations and is made

read-only to preserve the integrity of the existing data stored in the memory device.

[0166] FIGs. 20A — 20C illustrate various examples of implementing the post-write-
read error management in a memory configured with D1 and D3 portions. A memory
configured with D1 and D3 portion is also disclosed in United States Application No.
12/642,584, entitled “MAINTAINING UPDATES OF MULTI-LEVEL NON-
VOLATILE MEMORY IN BINARY NON-VOLATILE MEMORY” by Gorobets et
al, filed on December 18, 2009; the entire disclosure of which is incorporated herein

by reference.

[0167] FIG. 20A illustrates a memory array being partitioned into two portions
according to a preferred embodiment of the invention. The array of memory cells 200
(see FIG. 1) is partitioned into a first portion 410 and a second portion 420. The
second portion 420 has the memory cells configured as high density storage with each
cell storing multiple bits of data. The first portion 410 has the memory cells
configured as lower density storage with each cell storing less number of bits than that
of the second portion. For example, a memory cell in the first portion is configured to
store 1 bit of data as compared to 3 bits of data in the second portion. The first
portion storing 1 bit of data per cell will also be referred as D1 and the second portion
storing 3 bit of data per cell as D3. In view of the discussion earlier, the first portion
will operate with a much wider margin of error compared to that of the second
portion. Thus, memory operations in the first portion will have less error than that in

the second portion.

[0168] In one embodiment, the first portion 410 or DI is further partitioned into a

first section 411 and a second section 412.

[0169] In Step (1), during a host write, input data is either first cached in the first
section 411 or written directly to the second section 412. If the input data is
fragmented, it is first cached in the first section. If the input data is a substantial run

of sequential data, it is written page by page directly into the second section 412.

-30 -

WO 2013/016390 PCT/US2012/048074

[0170] In Step (2), in any case, the input data eventually ends up in the second section
412 where the written pages are staged into virtual D1 blocks, such as blocks m.1,
m.2 and m.3. In a scheme where each block contains data from a well defined group
of logical addresses, a virtual block may not correspond to a physical block but still

have the group of logical addresses distributed over several physical D1 blocks.

[0171] In Step (3), as data is being written page by page into D1, when a triplet of
binary pages is in D1, it can be copied to a single 3-bit page in D3 in what is also

referred to as folding from D1 to D3.

[0172] By implementing the enhanced post-write-read error management (“EPWR?”),
at some point which the lifetime of the memory the post-write-read error management

will commence.

[0173] In Step (4), a D3 block m is complete after the entire pages of the virtual D1
blocks m.1, m.2 and m.3 have been folded into it. Thereafter it can be processed by
the EPWR where the data in the D3 block is read back and checked for ECC errors.
If the number of ECC errors is less than a predetermined threshold as such given by a
parameter E pw_check set in the File system configuration file, then the data in the
D3 block is deemed valid. The corresponding D1 pages can then be safely replaced

and retired.

[0174] FIG. 20B illustrates another example in which the D3 block of FIG. 20A fails
a post-write-read test. Step (1) to Step (3) are the same as that of FIG. 20A.

[0175] In Step (4°), when the data in the D3 block is read back, the number of ECC
error is found to be greater than E_pw_check. This means the data in D3 is marginal

at best and can not be used.

[0176] In Step (5), in the event of the existing D3 block failing the post-write-read
test, the EPWR prescribes a retry by folding the data into a new D3 block.

[0177] In Step (6), the data in the new D3 block is subjected to another post-write-
read test. If it passes the test, the data in the new D3 block is deemed valid. The

corresponding D1 pages can then be safely replaced and retired.

231 -

WO 2013/016390 PCT/US2012/048074

[0178] FIG. 20C illustrates another example in which the new D3 block of FIG. 20B
fails the post-write read test again. Step (1) to Step (5) are the same as that of FIG.
20B.

[0179] In Step (6°), when the data in the new D3 block is read back, the number of
ECC errors is found to be greater than E pw_check. This means the data in the

retried D3 block is still not good and can not be used.

[0180] The EPWR process can prescribe further retry to another D3 block. The
number of retries is set by a parameter, EPWR retries in the file system configuration
file. For example, if EPWR _retries is 1, then the process will end after the new block

fails the test.

[0181] In that event, in Step (7), the new D3 block can not be used and the file system

will direct access to corresponding data that reside in D1 instead.

[0182] FIG. 21 is a table illustrating example parameters associated with the
enhanced post-write-read error management. The table is preferably maintained in

the file system configuration file stored in memory.

[0183] E pw_check - a variable set in File System Configuration File to specify at
what # of ECC bits level, a D3 block is consider high risk and restart of D1 to D3

folding to a new D3 block is required.

[0184] ECC_threshold_ SLC - a variable is needed in File System Configuration
File for maintaining SLC threshold to compare against in order to make a decision to

continue with EPWR or not.

[0185] EPWR enable flag - controlled in File System Configuration File. 0 = not
set (Default); 1 = set when EPWR is enabled.

[0186] Hot_count_enable flag - 0 = not enabled; 1 = enabled.

[0187] Hot _count_ threshold EPWR - a variable sct in File System Configuration
File to specify at what hot count level, EPWR is needed. If hot count of all D3 blocks
is < hot count threshold, even EPWR enable flag is on, EPWR process is not
triggered.

-32 -

WO 2013/016390 PCT/US2012/048074

[0188] EPWR verify page budget - a variable set in File System Configuration
File to specify how many pages can be read during 1 phase of EPWR.

[0189] EPWR retries - a variable in File System Configuration File to limit number
of retry attempts.

[0190] D3_Block_max_retries - a variable in File System Configuration File to limit

the total number of retry attempts on a D3 block over lifetime.

[0191] FIG. 22A is a flow diagram illustrating a preferred implementation of the
EPWR error management as applied to a memory having D1 to D3 folding.

[0192] STEP 800: Start.

[0193] STEP 810: DI to D3 Folding in which data from three binary data pages of
D1 is programmed into one tertiary page of D3 as described in connection with FIG.

20A.

[0194] STEP 812: Is a D3 block completely filled? If completely filled, proceed to
STEP 820, otherwise return to STEP 810.

[0195] STEP 820: Is enhanced post-write-read error management (“EPWR”)
enabled? More details of a device-age-dependent enablement is given in FIG. 22B.
If EPWR is enabled, process EPWR in STEP 830. If not, the integrity of the D3
block written is unknown, but optimistically assumed to be good. Proceed to STEP

850.

[0196] STEP 830: Process EPWR. A more detailed implementation of EPWR is
given in FI1G.22C.

[0197] STEP 840: At a higher level, essentially, the EPWR performs a post-write-
read of the D3 block and test of the rate of ECC errors. If the errors does not exceed
E pw_check (see FIG. 21), the D3 block is good. Proceed to STEP 850. Otherwise,
the data in the D3 block cannot be used and a retry of folding the D1 data to a new D3
block is considered. Proceed to STEP 860.

[0198] STEP 850: The D3 block is deemed good so the original copy of data in D1

can be made obsolete and retired.
-33 -

WO 2013/016390 PCT/US2012/048074

[0199] STEP 860: Decide whether to retry on a new D3 block based on a number
considerations detailed in FIG. 22C. If not permitted to retry, proceed to STEP 870.
Otherwise proceed to STEP 862 (shown in FIG. 22C).

[0200] STEP 862: The DI to D3 folding is repeated on a new D3 block. Return to

process another block.

[0201] STEP 870: The data in the D3 block is deemed bad, so data must be accessed

from original copy in D1.

[0202] STEP 872: Since this step is reached after a number of unsuccessful retries in
attempting to rewrite the D3 block, the memory is deemed near end of it its life. It is
put into a read-only state to prevent any data corruption due to programming

operations. Proceed to STEP 890.
[0203] STEP 890: Done.

[0204] FIG. 22B illustrates in more detail the device-age-dependent enablement
feature of the enhanced post-write-read error management. The STEP 820 in FIG.

22A is shown in FIG. 22B to further include the following:

[0205] STEP 822: Check if the EPWR enable flag (see FIG. 21) is enabled. If not
enabled, EPWR is not been implemented at all. Proceed by default to STEP 850
where the D3 block is deemed good. If enabled, proceed to STEP 824 to control if

EPWR should commence after some aging of the memory device.

[0206] STEP 824: Check if the Hot count enable flag (see FIG. 21) is enabled. If
not enabled, EPWR is implemented from the beginning of life of the memory device.
Proceed directly to STEP 830 to process EPWR. If the flag is enabled, proceed to
STEP 826 which controls when EPWR should commence.

[0207] STEP 826: Check if any one of the D3 blocks has a hot count that exceeds the
value in Hot count-threshold EPWR. If not exceeded the memory device is still
young and not prone to excessive errors, proceed to STEP 850 and EPWR is
essentially on hold. If the hot count has exceeded the threshold, the memory device
has attained an age when errors becomes significant and will benefit from the EPWR
process. Proceed to STEP 830 to process EPWR.

-34 -

WO 2013/016390 PCT/US2012/048074

[0208] FIG. 22C illustrates in more detail a preferred implementation of the
enhanced post-write-read error management. The STEP 830 in FIG. 22A is shown in

FIG. 22C to further include the following:

[0209] STEP 832: Check if there is process time available for doing post-write-read
of the D3 block and possible retriecs. The available time is preferably taken from
unused time during the execution of a host command in the foreground. If necessary
the process can be broken down to smaller chunks so as to better utilize the spare time
during each host command. If there is available time to start the process, proceed to

STEP 834, otherwise, proceed to STEP 838.

[0210] STEP 834: Start the process or if the process has already been started but

interrupted in the interim, continue the process.

[0211] STEP 836: Read and transfer a page of data from D3 out to the controller for
checking EDC (error detection code). Proceed to STEP 838.

[0212] STEP 840: The EPWR performs a post-write-read of the D3 block and test of
the rate of ECC errors. If the errors does not exceed E pw_check (see FIG. 21), the
page being tested is in D3 is good. Proceed to STEP 842. If a page is tested to be
bad, the data in the D3 block cannot be used and a retry of folding the D1 data to a
new D3 block is considered. Proceed to STEP 864.

[0213] STEP 842: Has all the pages in the D3 block been tested? If not, proceed to
STEP 844 to process the next page. If the whole block is tested to be good, proceed
to STEP 850.

[0214] STEP 844: Sclect the next page in the D3 block. Return to STEP 836.

[0215] STEP 862: Before a retry is attempted, check if the number of retries has
already exceeded a set limit, EPWR retries (see FIG. 21.) If not, a retry is attempted
by proceeding to STEP 866. If the number of retries has exceeded the set limit, the

memory device is deemed to be at its end of life and control proceeds to STEP 870.

[0216] STEP 866: Another consideration before attempting a retry is to check if the

excessive errors are intrinsic to the data in D1 and not due to programming errors

from D1 to D3. The D1 data is first checked for excessive ECC errors. If the number
-35-

WO 2013/016390 PCT/US2012/048074

of error exceeded a predetermined threshold, such as, ECC_threshold SLC (see FIG.
21), there is no point in a retry. Return to STEP 834 to process another D3 block.

[0217] However, if an optional feature as described below is implemented, proceed to
an optional STEP 868 instead. On the other hand if the D1 data is good, proceed to
attempt retry of another D3 block in STEP 869. In another embodiment, STEP 866
is performed before STEP 862.

[0218] FIG. 22C also illustrates optional features as indicated by boxes with broken
lines. One option is illustrated by STEPs 864 and 865 to check if a block has been
subjected too many retries over its lifetime. If so, the physical integrity of the block
may be in question and it is best to retire the block so that it is not used again. When
this option is implemented, the flow from a NO in STEP 862 will be routed to STEP
864.

[0219] STEP 864: Has the D3 block experience retries more than a threshold as
defined by the parameter Block max-retires (see FIG. 21). If so, proceed to STEP
865 to retire the block, otherwise proceed to STEP 866 for further rewrite decision.

[0220] STEP 865: The D3 block has be subjected to too many retries over its
lifetime to be deemed robust. It is retired and taken out of circulation. Control then

proceed directly to STEP 869 to rewrite the D3 block.

[0221] The other option is that in the event the D1 data is not very good, it is first
corrected by ECC and restaged in D1 before being folded to D3. When this option is
implemented, the flow from a YES in STEP 866 will be routed to STEP 868 instead
of STEP 834.

[0222] STEP 868: The problematic D1 data is corrected by ECC and restaged in D1.
Proceed to STEP 869.

Accelerated Post-Write Read

[0223] Previous sections have described the techniques of actually reading the data

back after they have been written (also referred to as “programmed”). This technique

is called “PWR” (Post Write Read). According to one aspect of the invention

described earlier, the PWR technique is enhanced and is referred to as “EPWR”
-36 -

WO 2013/016390 PCT/US2012/048074

(Enhanced Post Write Read). In this case, the PWR operation is only turned on when
needed. For example, PWR is initiated only after the memory begins to develop
more errors through use. This will alleviate some of the overheads associate with

PWR.

[0224] According to another aspect of the invention, instead of post-write reading
every memory cells to check what have been written, which could consume a lot of
time and system resources, the post-write read is only performed on a small sample of
memory cells representing a population of memory cells with a similar error rate.
When the post-write read of the sample yields an error rate within a predetermined
value, the population is assumed to pass the check. Otherwise, the data previously
written on the population of cells are deemed to have too much error and are either
rewritten again to a different location in the same area or to another area of the

memory with intrinsic lower error rate.

[0225] As explained earlier, post-write read checking is different from the usual
program verify that is part of programming operation. In programming a cell, it is
subjected to pulse by pulse programming voltages. In between each pulse the cell’s
programmed threshold is compared to a reference read threshold. Once the cell’s
threshold is detected to be programmed passed the reference read threshold, the cell is
locked out from further programming by a program inhibiting voltage applied to its
bit line. Thus, program-verify only guarantee if the cell has been programmed pass a
reference threshold but gives no indication of any over programming that may have
occurred. A read operation for MLC memory actually checks if the programmed

threshold is between a pair of reference thresholds.

[0226] In MLC memory each cell stores more than one bit of data. For example in
D2 memory, each cell stores two bits of data. The threshold window supported by the
cells is partitioned by a reference threshold into two halves. When the programmed
threshold of a cell lies in a first half, it has one bit value, e.g., ‘1’ and when in a
second half, it has the other bit value, e.g., ‘0’. Similarly, in D3 memory, each cell
stores three bits of data and in D4 memory, each cell stores four bits of data. In
general, for a Dm memory, each cell stores m bits and the threshold window is
partitioned into 2™ voltage bands by 2™-1 reference thresholds. A coding scheme is

used to assign each of the voltage bands with an m-bit code word.
-37-

WO 2013/016390 PCT/US2012/048074

Exemplary Preferred “ILM” Coding for a 2-bit or 4-state Memory

[0227] FIGs. 23(0)-23(3) illustrate a logical page by page programming of a 4-state
memory encoded with a preferred 2-bit logical code (“LM” code). The 2 code bits
from each memory cell of a page form two logical pages with each page formed from
one code bits contributed from every memory cells of the page. Programming can be
performed logical-page by logical page with the lower page followed by the upper
page. This code provides fault-tolerance and alleviates the BL-BL floating-gate
coupling (Yupin) Effect.

[0228] FIG. 23(0) illustrates the threshold voltage distributions of a 4-state memory
array. The possible threshold voltages of each memory cell span a threshold window
which is partitioned into four regions to demarcate four possible memory states, “Gr”,
“A”, “B” and “C”. “Gr” is a ground state, which is an erased state within a tightened
distribution and “A”, “B” and “C” are three progressively programmed states. During
read, the four states are demarcated by three demarcation reference thresholds, Da, Dy

and Dc¢.

[0229] FIG 23(3) illustrates a preferred, 2-bit LM coding to represent the four
possible memory states. Each of the memory states (viz., “Gr”, “A”, “B” and “C”) is
represented by a pair of “upper, lower” code bits, namely “117, “01”, “00” and “10”
respectively. The LM coding differs from the conventional Gray code in that the
upper and lower bits are reversed for states “A” and “C”. The “LM” code has been
disclosed in U.S. Patent No. 6,657,891 and is advantageous in reducing the field-
effect coupling between adjacent floating gates by avoiding program operations that
require a large change in charges. As will be seen in FIG. 23(2) and 23(3), cach
programming operation results in moderate change of the charges in the charge

storage unit as evident from the moderate change in the threshold voltages Vr.

[0230] The coding is designed such that the 2 code bits, “lower” and “upper” bits,
may be programmed and read separately. When programming the lower bit, the
threshold level of the cell either remains in the “erased” region or is moved to a
“lower middle” region of the threshold window. When programming the upper bit,
the threshold level of a cell in either of these two regions is further advanced to a

slightly higher level in a “lower intermediate” region of the threshold window.

- 38 -

WO 2013/016390 PCT/US2012/048074

[0231] FIGs. 23(1) and 23(2) illustrate the lower page programming using the 2-bit
LM code. The fault-tolerant LM code is designed to avoid any subsequent upper page
programming to transit through any intermediate states. Thus, the first round, lower
page programming has a cell remain in the “erased” or “Gr” state if the lower bit is
“1” or programmed to a “lower intermediate” state if the lower bit is “0”. Basically,
the “Gr” or “ground” state is the “erased” state with a tightened distribution by having
the deeply erased states programmed to within a well-defined range of threshold
values. The “lower intermediate” states may have a broad distribution of threshold
voltages that straddle between memory states “A” and “B”. During programming, the

“lower intermediate” state is verified relative to a coarse demarcation such as Da.

[0232] FIGs. 23(2) and 23(3) illustrate the upper page programming using the 2-bit
LM code. The upper page programming is performed on the basis of the first round,
lower page programming. A given upper bit can represent different memory states
depending on the value of the lower bit. In the second round of programming, if a
cell is to have the upper bit as “1” while the lower bit is at “1”, i.e. (1,1), there is no
programming for that cell and it remains in “Gr”. If the upper bit is “0” while the
lower bit is at “1”, i.e., (0,1), the cell is programmed from the “Gr” state to the “A”
state. During programming to “A”, the verifying is relative to the demarcation DV 4.
On the other hand, if the cell is to have the upper bit as “0” while the lower bit is at
“0”, 1.e., (0,0), the cell is programmed from the “lower intermediate” state to “B”.
The program verifying is relative to a demarcation DVy. Similarly, if the cell is to
have the upper bit as “1” while the lower page is at “0”, i.e., (1,0), the cell will be
programmed from the “lower intermediate” state to “C”. The program verifying is
relative to a demarcation DV¢. Since the upper page programming only involves
programming to the next adjacent memory state from either the “Gr” state or the
“lower intermediate” state, no large amount of charges is altered from one round to
another. Also, the lower page programming from “Gr” to a rough “lower

intermediate” state is designed to save time.

[0233] FIG. 24A illustrates the read operation that is required to discern the lower bit
of the 4-state memory encoded with the 2-bit LM code. The decoding will depend on
whether the upper page has been programmed or not. If the upper page has been

programmed, reading the lower page will require one read pass of readB relative to

-39-

WO 2013/016390 PCT/US2012/048074

the demarcation threshold voltage Dg. On the other hand, if the upper page has not
yet been programmed, the lower page would be programmed to the “intermediate”
state (see FIG. 23(2)), and readB would cause error. Rather, reading the lower page
will require one read pass of readA relative to the demarcation threshold voltage Da.
In order to distinguish the two cases, a flag (“LM” flag) is written in the upper page
(usually in an overhead or system area) when the upper page is being programmed.
During a read, it will first assume that the upper page has been programmed and
therefore a readB operation will be performed. If the LM flag is read, then the
assumption is correct and the read operation is done. On the other hand, if the first
read did not yield a flag, it will indicate that the upper page has not been programmed

and therefore the lower page would have to be read by a readA operation.

[0234] FIG. 24B illustrates the read operation that is required to discern the upper bit
of the 4-state memory encoded with the 2-bit LM code. As is clear from the figure,
the upper page read will require a 2-pass read of readA and readC, respectively
relative to the demarcation threshold voltages D and D¢. Similarly, the decoding of
upper page can also be confused by the “intermediate” state if the upper page is not
yet programmed. Once again the LM flag will indicate whether the upper page has
been programmed or not. If the upper page is not programmed, the read data will be

reset to ““1” indicating the upper page data is not programmed.

[0235] If the read is to scan through all sequence of the demarcated states as in a
“full-sequence” read or “all-bit” read, the read is performed relative to the memory
states “Gr”, “A”, “B” and “C” demarcated respectively by reference threshold
voltages Da, Dp and Dc. As all possible states are differentiated by the full-sequence
read, there is no need to check for any LM flag. In this mode of read, all bits are

determined together.

Exemplary Preferred “LM” Coding for a 3-bit or §-state Memory

[0236] The example for the 2-bit LM code can be similarly extended to 3-bit or high

number of bits.

[0237] FIGs. 25(0)-25(4) illustrate the programming of an 8-state memory encoded
with a preferred 3-bit logical code (“LM” code). The 3 bits from each memory cell of

a page forms three logical pages and programming can be performed logical-page by
- 40 -

WO 2013/016390 PCT/US2012/048074

logical page. This code is similar to the 2-bit LM coding described earlier and is an
extension into 3 bits to encode eight possible memory states. FIG. 25(0) illustrates
the threshold voltage distributions of an 8-state memory array. The possible threshold
voltages of each memory cell spans a threshold window which is partitioned into
cight regions to demarcate eight possible memory states, “Gr”, “A”, “B”, “C”, “D”,
“E”, “F” and “G”. “Gr” is a ground state, which is an erased state within a tightened
distribution and “A” - “G” are seven progressively programmed states. During read,

the eight states are demarcated by seven demarcation reference thresholds, D4 - Dg.

[0238] FIG 25(4) illustrates a preferred, 3-bit LM coding to represent the eight
possible memory states. Each of the eight memory states is represented by a triplet of
“upper, middle, lower” bits, namely “111”, “011”, “001”, “101”, “100”, “000”, “010”
and “110” respectively. As will be seen in FIG. 25(1) and 25(4), each programming
operation results in moderate change in the charges in the charge storage unit as

evident from the moderate change in the threshold voltages Vr.

[0239] The coding is designed such that the 3 code bits, “lower”, “middle” and
“upper” bits, may be programmed and read separately. Thus, the first round, lower
page programming has a cell remain in the “erased” or “Gr” state if the lower bit is
“1” or programmed to a “lower intermediate” state if the lower bit is “0”. Basically,
the “Gr” or “ground” state is the “erased” state with a tightened distribution by having
the deeply erased states programmed to within a narrow range of threshold values.
The “lower intermediate” states may have a broad distribution of threshold voltages
that straddling between memory states “B” and “D”. During programming, the
“lower intermediate” state can be verified relative to a coarse demarcation reference
threshold level such as Dg. When programming the middle bit, the threshold level of
a cell will start from one of the two regions resulted from the lower page
programming and move to one of four possible regions. When programming the
upper bit, the threshold level of a cell will start from one of the four possible regions
resulted from the middle page programming and move to one of eight possible

memory states.

[0240] In general a page of memory cells is being programmed in parallel, with each
memory cell having 3 bits. Thus, the page of memory cells may be regarded as

having 3 logical data pages with each logical data page contributed from one code bit
-41 -

WO 2013/016390 PCT/US2012/048074

of every cells of the page. Thus, a “lower bit” page is formed from the lower bit of
every memory cells of the page, a “middle bit” page is formed from the middle bit of
every cell and an “upper bit” page is formed from the upper bit of every cell of the

page.

[0241] FIGs. 25(1) and 25(2) illustrate the lower page programming using the 3-bit
LM code. The fault-tolerant LM code is designed to avoid any subsequent higher
page programming to transit through any intermediate states. Thus, the first round,
lower page programming has a cell remain in the “erased” or “Gr” state if the lower
bit is “17, i.e. (x,x,1) or programmed to a “lower intermediate” state if the lower bit is
“0”, 1.e., (x,x,0). Basically, the “Gr” or “ground” state is the “erased” state with a
tightened distribution by having the deeply erased states programmed to within a
well-defined range of threshold values. The “lower intermediate” states may have a
broad distribution of threshold voltages that straddling between memory states “B”
and “D”. During programming, the “lower intermediate” state is verified relative to a

demarcation such as Dg.

[0242] FIGs. 25(2) and 25(3) illustrate the middle page programming using the 3-bit
LM code. The middle page programming is performed on the basis of the first round,
lower page programming. A given middle bit can represent different memory states
depending on the lower bit. In the second round of programming, if a cell is to have
the middle bit as “1”” while the lower bit is at “1”, i.e. (x,1,1), there is no programming
for that cell and it remains in “Gr”. If the middle bit is “0” while the lower bit is at
“17, ie., (x,0,1), the cell is programmed from the “Gr” state to a first “middle
intermediate” state straddling between “A” and “B”. During programming to the first
“middle intermediate” state, the verifying is relative to the demarcation DV4. On the
other hand, if the cell is to have the middle bit as “0” while the lower bit is at “0”, i.e.,
(x,0,0), the cell is programmed from the “lower intermediate” state to a second middle
intermediate” state straddling between “C” and “D”. The program verifying is
relative to a demarcation DVe. Similarly, if the cell is to have the middle bit as “1”
while the lower page is at “0”, i.e., (x,1,0), the cell will be programmed from the
“lower intermediate” state to a third “middle intermediate” state straddling between

“E” and “F”. The program verifying is relative to a demarcation DVg.

-4

WO 2013/016390 PCT/US2012/048074

[0243] FIGs. 25(3) and 25(4) illustrate the upper page programming using the 3-bit
LM code. The upper page programming is performed on the basis of the first and
second rounds, namely the lower and middle page programming. A given upper bit
can represent different memory states depending on the lower and middle bits. In the
third round of programming, if a cell is to have the upper bit as “1” while the lower
and middle bits are at “1”, i.e. (1,1,1), there is no programming for that cell and it
remains in “Gr”. On the other hand, if the upper bit is “0” while the lower and middle
bits are at “1”, i.e. (0,1,1), the cell is programmed from the “Gr” state to the “A” state.

During programming to “A”, the verifying is relative to the demarcation DVa.

[0244] Similarly, if the cell is to have the upper bit as “0” while the lower bit and
middle bits are at “0” and “1” respectively, i.e. (0,0,1), the cell is programmed from
the first “middle intermediate” state to “B”. The program verifying is relative to a
demarcation DVy. If the cell is to have the upper bit as “1” while the lower bit and
middle bits are at “0” and “1” respectively, i.e. (1,0,1), the cell is programmed from
the first “middle intermediate” state to “C”. The program verifying is relative to a

demarcation DV.

[0245] Similarly, if the cell is to have the upper bit as “1” while the lower bit and
middle bits are at “0” and “0” respectively, i.e. (1,0,0), the cell is programmed from
the second “middle intermediate” state to “D”. The program verifying is relative to a
demarcation DVp. If the cell is to have the upper bit as “0” while the lower bit and
middle bits are at “0” and “0” respectively, i.e. (0,0,0), the cell is programmed from
the second “middle intermediate” state to “E”. The program verifying is relative to a

demarcation DVE.

[0246] Similarly, if the cell is to have the upper bit as “0” while the lower bit and
middle bits are at “1” and “0” respectively, i.e. (0,1,0), the cell is programmed from
the third “middle intermediate” state to “F”. The program verifying is relative to a
demarcation DVy. If the cell is to have the upper bit as “1” while the lower bit and
middle bits are at “0” and “0” respectively, i.e. (1,1,0), the cell is programmed from
the third “middle intermediate” state to “G”. The program verifying is relative to a

demarcation DVg.

- 43 -

WO 2013/016390 PCT/US2012/048074

[0247] Since the upper page programming only involves programming to the next
adjacent memory state from either the “Gr” state or one of the “middle intermediate”
states, no large amount of charges is altered from one round to another. This helps to

alleviates BL-BL Yupin effect.

[0248] Thus, it will be seen that a Dm (m=1, 2, 3, ...) memory can be programmed a
bit at a time and also read a bit at a time. When a group of memory cells on a word
line WLn are programmed or read in parallel, there will be m data pages associated
with the group, with each data page corresponding to one bit from each cells of the
group. In a progressive reading mode, the sensing is relative to a subset of the
reference thresholds and at each sensing only one of the m data pages are read from
WLn and transferred out to the controller. In a full sequence reading mode, the
sensing is relative to all the reference thresholds and all m data pages are read from

WLn before being transferred out page by page.

[0249] For example, in the case of a memory with the NAND architecture shown in
FIG. 4, cach NAND string has a daisy chain of n memory cell. In one embodiment, a
row of such NAND chains forms an erase block 300 shown in FIG.6. In FIG. 4, a

page of memory cells, such as page 70 on WL3, is operated on in parallel.

[0250] FIG. 9 shows a data page 70’ being one of the m data pages for an m-bit
memory on word line WLn. As described earlier, in another preferred embodiment,
when with higher and higher device integration, there are larger than optimal number
of memory cells in a page sharing an ECC field, the page 70 is partitioned into

smaller units, consisting of “ECC pages”.

[0251] FIG. 26A illustrates schematically an ECC page containing an ECC field
similar to that shown in FIG. 9. The ECC page 80 comprises a user portion 82 and a
system portion 84. The user portion 82 is for storage of user data. The system
portion 84 is generally used by the memory system for storage of system data.
Included in the system data is an ECC. The ECC is computed for the ECC page.
Typically, the ECC is computed by the ECC processor 62 in the controller 102 (see
FIG. 1.) The difference between FIG. 26A and FIG. 9 is that instead of the ECC

page 80 of occupying the entire data page 70°, it is one of several constituting the data
page.
- 44 -

WO 2013/016390 PCT/US2012/048074

[0252] FIG. 26B illustrates a plurality of ECC pages constituting a data page. A data
page such as the data page 70’ shown in FIG. 4 is the set of data constituted from a
logical bit from each cell of a page of cells on a WL. In general there are N EEC
pages making up a data page. For example, N=4, where there are 4 EEC pages 80
making up one data page 70°.

[0253] As data is received from a host, an ECC page of data is staged in the controller
102 and its ECC 86 is computed by the ECC processor 62 (see FIG. 1). A number of
ECC pages 80 incorporating their own ECC is then staged and written to the memory
array 200 as a data page 70°. Typically, when the data page 70’ is read, the data page
is latched in the data latches 430 and shifted out of the 1/O circuits 440 to the
controller 102. At the controller 102, each ECC pages of the data page’s has its ECC
86 compared to a second version of the ECC computed on the read data. The ECC
typically includes an error detection code (“EDC”) for rapid detection of any error in
the data page. If the EDC indicates the existence of any error in the read data page,
the ECC is invoked to correct erroncous bits in the read data page. The ECC is
designed to correct up to a predetermined maximum number of errors. In practice, at
any given time in the life of a memory, the ECC may have budget to correct a

predetermined number of errors less than the predetermined maximum.

[0254] For a 2-bit memory, each cell stores 2 bits of data and there will be 2 data
pages associated with each WL in the example in FIG. 4. If each data page has 4
ECC pages, then there will be a total of 8 ECC pages programmed into a WL and to
be read out for PWR checking.

[0255] Similarly for a 3-bit memory, each cell stores 3 bits of data and there will be 3
data pages associated with each WL in the example in FIG. 4. If each data page has 4
ECC pages, then there will be a total of 12 ECC pages programmed into a WL and to
be read out for PWR (post-write read) checking.

[0256] Thus, it will be seen for a 3-bit memory that performing a PWR check after
writing every WL can involve sensing the 12 ECC pages and then shipping out to the
controller for ECC checking. If the ECC decoder finds any one of the 12 ECC pages
has exceeded a predetermined error budget, the write to that WL is deemed

unacceptable and is retried at a different WL. For example, the write is rewritten to

- 45 -

WO 2013/016390 PCT/US2012/048074

another WL in the same block or in a portion of memory, such as with one-bit cells,

having a higher tolerance for errors.

[0257] In the 3-bit memory example, there are 3 data page to be sensed. As seen
from the description in connection with FIG. 25 , this will incur 3 read cycles, one for
cach data page. Each read cycle will be sensing relative to one or more reference
thresholds and therefore reading the WL will take time. Furthermore, each data page
has 4 ECC pages and a total of 12 ECC pages will need to be serially transferred out
to the controller. The transfer operations will also take time, if not more time than the

sensing operations.

PWR Checking on a Sample Instead of the Whole Population

[0258] In a general embodiment of the invention, the post-write read (PWR) checking
on what has been written is accelerated by checking only a subset of what has been
written. The post-write read checking is performed on only a sample of what was

written.

[0259] FIG. 27 is a flow chart illustrating the general embodiment of accelerated
PWR.

[0260] STEP 900: Providing multiple groups of memory cells, the memory cells in

each group for operating in parallel.

[0261] STEP 902: Programming multiple subsets of data into a first group of

memory cells, each subset of data being provided with an ECC.

[0262] STEP 910: Sclecting a sample of the data programmed in the first group of
memory cells, the sample being selected from a subset of data said multiple subsets of

data programmed into the first group.
[0263] STEP 920: Reading said sample.
[0264] STEP 922: Checking said sample for errors.

[0265] STEP 930: Reprogramming said multiple subsets of data into a second group
of memory cells whenever the errors checked from the sample is more than a

predetermined number of error bits.
- 46 -

WO 2013/016390 PCT/US2012/048074

[0266] In one embodiment, the sample to be check is a subset of all the ECC pages
written to a group of cell on a word line. In particular, the subset is one among all the

ECC pages that is estimated to have a highest error rate.

[0267] FIG. 28 is a flow chart illustrating a preferred embodiment of accelerated
PWR illustrated in FIG. 27. The process is similar to that of FIG. 27, except STEP
910 is replaced by STEP 910°.

[0268] STEP 910°: Selecting a sample of the data programmed in the first group of
memory cells, the sample being selected from a subset of data said multiple subsets of
data programmed into the first group and the sample is a subset of data estimated to
have a highest error rate among said multiple subsets of data programmed into the

first group.

[0269] FIG. 29 illustrates a sample selected for post-write read after a group of 3-bit
memory cells on a word line has been written. In the 3-bit memory, there will be 3
data pages, namely, lower, middle and upper pages, written to a word line WL 42.
Depending on the designed placement of the reference thresholds that demarcate the
various voltage bands in the threshold window of the memory, one of the data pages
may have a slightly higher error rate than the other. For example, if the upper data
page has an estimated highest data rate among the three data pages, it will be selected.
If all the ECC pages in the selected data page are estimated to have the same error
rate, then it suffices to select an ECC page with a location that is the first to be shifted
out to the controller. Also, the choice of coding scheme can also have a bearing on
the error rate. For example, a grey code offers a minimum bit error when the
programmed threshold is shifted. Depending on the choice of coding, the various data
pages being stored in the same group of memory cells can have similar or different

crror rates.

[0270] In practice, the error on a word line could be due to a physical defect like a
crack resulting in an open circuit or one with an unusually high resistance. If the
defect occurs between the cell in question and the WL decoder, the check will show
an error. If the defect occurs on the other side of the cell away from the WL decoder,

then, the check may not show an error. Thus, among all the ECC pages along the WL

-47 -

WO 2013/016390 PCT/US2012/048074

42, the sample ECC page 82 at the end of the WL furthest from the WL decoder 40 is
likely to be impacted by the defect irrespective of the defect location on the WL.

[0271] Thus, in a preferred embodiment where there are multiple data pages written
to a word line (WL), a sample used for checking the data written to the WL is first
selected from a data page with highest estimated error rate. Furthermore, if there are
multiple ECC pages in the sclected data page, the ECC page located furthest away

from a word line decoder is selected for the sample.

[0272] In another embodiment, the sample to be check is a subset of all the ECC
pages written to a group of cells in a block. The block has all cells in it erasable
together. In particular, the subset is one among all the ECC pages that is estimated to

have a highest error rate.

[0273] For example, in the NAND memory shown in FIG. 4, an erase block is
constituted from a row of NAND chains. Each NAND chain is 16 memory cells
daisy-chained by their sources and drains, terminating on one end in a source terminal
and the other end in a drain terminal. It is well-known that the cells in closest to the
source terminal and the drain terminal are more error prone. Thus, for such a block,
the word lines WL1 or WL16 should be selected. In this case, preferably, the sample
is the ECC page at the end of WL1 furthest from the word line decoder.

[0274] In yet another embodiment, where a block of memory cell having a set of
word lines is erasable as a erase unit, and there is a requirement that data written to
cach word line of the set must check out, or else the entire block is rewritten, the WL
of the set estimated to have the highest error rate is preferentially checked first. In
this way, any error that may occur will be detected carly and the rewriting of the

block can begin without delay.

[0275] Thus, for the NAND memory shown in FIG. 4, the word lines WL1 and
WL16 should be selected first for checking.

[0276] Although an example is given for a memory being partitioned into a first
portion having memory cells each storing 1-bit data and a second portion having

memory cells each storing 3-bit data, the invention is not limited by the example.

- 48 -

WO 2013/016390 PCT/US2012/048074

EPWR with Simultaneous Multi-Page Verification

[0277] As discussed above, the memory system can use the Enhanced Post Write
Read (EPWR) process in order to ensure user data integrity and to increase memory
reliability in the presence of unscreenable memory failures, such as broken word-
lines, control gate short circuits, word-line to word-line shorts, and so on. In general
terms, EPWR is accomplished by reading each block and verifying that it is stored
reliably prior to erasing the source of the copy. In the exemplary embodiments, this
would be to verify a multi-state write before erasing a source copy from binary
memory. As such EPWR methods require a lot of time and, hence, may degrade the
programming throughput significantly, especially in a multi-die product, where a
single controller is involved in performing EPWR for multiple dies becomes a
bottleneck. This section presents techniques where multi-pages are simultaneously

verified for faster methods of performing EPWR.

[0278] Reconsidering the problem further for a basic post write read implementation,
using a 3-bit per cell MLC (or D3) embodiment for a concrete example, the controller
reads an entire D3 block after its programming, transferring all of the pages to the
controller and decoding them. This incurs a very high programming throughput
penalty. For example, assume a 70MB/sec ECC engine, the EPWR time for a 4MB
block may take ~60ms per block for a single die (assuming ECC is the bottleneck).
As the number of dies increases, the penalty correspondingly becomes larger, as all
the data originating from the multiple blocks of the multiple dies needs to be
transferred to a single controller and be decoded by a single ECC engine. Hence for 4
dies, the EPWR process may take ~240ms, which will degrade the programming
throughput significantly. This sort of very long EPWR operation after each block
programming operation may significantly slow down the overall programming
throughput (e.g. ~25% degradation in a 4 die configuration, assuming raw

programming throughput of 6MB/sec).

[0279] The previous sections have presented various methods for a faster EPWR.
This section considers a simultaneous verification of multiple pages in a block, where
the controller evaluates a combined function of the multiple pages, instead of
evaluating each page separately. Such a combined verification of multiple pages

based on the read data can significantly reduce the controller involvement, lowering
-49 -

WO 2013/016390 PCT/US2012/048074

the required bus and ECC bandwidth for EPWR and hence allow efficient EPWR
when the number of dies is large. Before considering this particular aspect further,
several complementary approaches for fast EPWR are discussed, as these will be

combined in some embodiments.

[0280] One way to speed up the EPWR process is to reduce the amount of data that is
read and evaluated to the minimal, or least a lesser, amount that is required for
identifying the unscreenable problems, such as broken word lines, control gate short
circuits, word line to word line shorts, and so on. (More information on broken or
leady word lines is given in the following US patent applications: US 12/833,167
filed on July 9, 2010; 12/833,146 filed on July 9, 2010; 13/016,732 filed on January
28,2011; and 13/101,765 filed on May 5, 2011.)

[0281] The amount of data read and transferred can be reduced by reading only
certain pages. For example, in a 3-bit per cell D3 NAND embodiment, with a
mapping as illustrated in FIG. 30 it may be sufficient to read only Lower and Upper
pages in each word line, or only the Middle page of the wordlines. The reason is that
the sort of unscreenable NAND issues mentioned above can be identified by
observing one or two pages, so that there is no need to read all 3 pages of the word
line. For example, reading the Lower and Upper pages is sufficient for identifying
program disturb issues (due to reading between the erased state and lowest non-erased
state), Source Induced Leakage Voltage issues (or SILC, which results in a lower tail
from the highest states) or any other colossal NAND problem that would disturb the
cell voltage distributions. This can be illustrated by referring to FIG. 30, which
shows the state distributions with the upper, middle and lower page values shown in
the distributions and the Erase (Er), A, ..., G state labeling across the bottom. As
there is a lower page read threshold between the Er and A states, this can be used to
check for program disturb issues that would show up in this read; and as there is an
upper page read threshold between the F and G states, this read could pick up the
lower tail from the G state indicating the SILC related error. As will be discussed
below, an exemplary embodiment of this section will use only the uppermost and

lowermost pages on a word line where performing a multi-page verification.

[0282] The amount of data read and transferred can also be reduced by checking the

validity of only part of the page. Examples of this are memories where bit lines are
-50 -

WO 2013/016390 PCT/US2012/048074

split into even and odd sets or where the columns can otherwise be split into groups
across the array, so that a read of only a portion of the bit lines can give a good picture
of the word line as a whole. Another example, which will be used in some
embodiments below, is the reading of an ECC block (or “Eblock™), which is the unit
of data that is encoded with ECC. Such an Eblock is often only a portion of a page;
however it may be sufficient in order to indentify a problem in any part of the word

line.

[0283] Several methods may be used for identifying a problem in a block (or word
line) based on the read data. One way is just to decode the data and count the number
of errors, an approach that takes a relatively long time, has a relatively high power
consumption and can also take a variable amount of time to complete (especially

when using an ECC system using iterative decoding, but also in a BCH system).

[0284] Another approach is to estimate the Bit Error Rate (BER) based on the
syndrome weight (i.e. based on the number of unsatisfied parity checks). This option
is applicable for an ECC having a low-density parity-check matrix. The BER of an
ECC block (Eblock) can be estimated as:

1-(1-2-w/Mm)"
2

BER =

2

where W is the number of unsatisfied parity-checks, M is the total number of parity-
checks and d is the number of bits involved in each parity-check (assuming it is
fixed). In practice, such computations can done offline and a Look-Up-Table (LUT)
is used for translating the number of unsatisfied parity-checks W to the estimated
BER. The advantage of this over a full decoding is that it is fast and completes in a

deterministic time. It also has small power consumption.

[0285] A further approach is to measure statistics of the read data and compare it to
an expected value; for example, by counting the number of cells in each state (or in
selected states) and comparing it to the expected value. Assuming the system uses
data scrambling, 1/8 of the cells in a 3-bit per cell embodiment are expected to be
programmed to each state. Although this approach may be less robust than the two

methods just discussed (which measure/estimate BER), assuming the same amount of

-51 -

WO 2013/016390 PCT/US2012/048074

data, can still allow capturing colossal memory problems which will significantly

affect the Cell Voltage Distribution (CVD).

[0286] In an approach developed in the provisional U.S. Patent Application No.
61/512,749, entitled “Post-Write Read in Non-Volatile Memories Using Comparison
of Data As Written in Binary and Multi-State Formats” by Eran Sharon and Idan
Alrod, filed currently with the present application, BER is measured by comparing the
source SLC page and the destination MLC page. This may be done internally in the
Flash.

[0287] These various approaches, as well as the others mentioned in the preceding
sections, can variously be combined with the sort of simultaneous verification of
multiple pages in a block that is the primary focus of this section. The combined
verification of multiple pages based on the read data can significantly reduce the
controller involvement (i.e. the required bus and ECC bandwidth for EPWR) and

hence allow efficient EPWR when the number of dies is large.

[0288] The memory system evaluates a combined function of multiple pages in order
to indentify a problem in one or more of the pages. The motivation for this is that a
much smaller amount of data needs to be examined and this may significantly reduce
the bandwidth requirement from the controller bus and the ECC engine involved in

such evaluation. This in turn allows for efficient operation on a large number of dies.

[0289] One approach is to use the sum modulo 2 (i.e. XOR) of multiple read Eblocks.
For linear ECC (as is the case for LDPC, BCH and most ECC methods used in
practice), then the XOR of Eblocks is also a valid Eblock. Hence, if the system XORs
n read Eblocks then the result is also an Eblock with a BER that is given by:

1-[J(1-2-BER)

BER, = —*=! : = > BER,,
i=1

where BER, is the BER of the XOR Eblock and BER, is the BER of the i-th Eblock.

[0290] Thus, if the system evaluates the BER of the XOR Eblock (such as by the
ways described above), then the system evaluates the sum of BERs on its constituent

Eblocks. From this, the system can identify a problem in one of the Eblocks. For
-52-

WO 2013/016390 PCT/US2012/048074

example, consider XORing » = 16 Eblocks, one Eblock from each page. (A page may
have one or multiple Eblocks.) Further assume that the expected BER after

programming is 0.1% with standard deviation ¢ =0.01%. Then, the expected value
of BER, 18 n-0.1% =1.6% with standard deviation o, = Jn-o® =0.04%; and hence if
BER, 1s higher than 1.6%+3-0, =1.72%, this would serve as an indication that
there may be a problem in one of the pages (3- 0, margin is taken in order to ensure
that in normal behavior the probability to cross the threshold is ~1/1000). In this case,
further actions can be taken, such as specific evaluation of each of the pages or re-

programming of the block. After scrutiny, it may be decided to mark the block as bad

or some of the other actions described in preceding sections.

[0291] In case the BER statistics are not known after programming (i.c. expected

BER and its variance), then a possible concern when using the BER, estimation is that

there will be a single problematic page, while other pages would have very low BER,
such that the BER, threshold set for indicating a problem will not be crossed and we
will not “catch” the problem. E.g. for an estimated BER, =1.6%, it would not be
known if there were n = 16 pages, each with BER of 0.1%; or that we have 15 pages
with BER of 0.01% and one page with BER of 1.45% (in both cases sum of BERs is
1.6%). In order to overcome this problem, the system should make sure that the

variance between the pages is small. This can be done by tracking the BER,
parameters of several groups. For example, if the BER, parameter of the current
group is 15-0.01%+1.45% =1.6%, but the BER, parameter of the previous group
was 16-0.01% =0.16%, this would indicate that the current group has a problematic
page.

[0292] Concerning the number of Eblocks (#) that the system XORs together for the

composite function BER, , several factors enter in. One limitation is that as n

® >
becomes larger, the “averaging” effect over the BERs of the n Eblocks becomes more
significant and it increases the probability to miss capturing a problematic Eblock,
although the solution described in the previous paragraph can be used to significantly
reduce this risk. Another limitation depends on the method that is used for

evaluating BER, . If the system is estimating BER, using decoding, then it needs to
-53-

WO 2013/016390 PCT/US2012/048074

limit BER, based on the error correction capability of the ECC; e.g. if the system uses

BCH ECC that can correct 60 bits and if the maximal number of expected bit errors
after programming is 10 bits, then the system should limit # to 6. If the system uses
BER estimation based on syndrome weight, then this estimation is effective up to a
certain error rate; for example, a certain LDPC code may provide good BER
estimation up to a BER of ~3% and above this error rate, the estimation error may
become too large. In this case if the maximal BER expected after programming is
0.3%, then the maximal number of pages » that may be verified together should be

limited to 10.

[0293] Finally, if the system uses a comparison between the XOR of SLC pages and
the XOR of D3 pages in order to evaluate BER;, then on the one hand it is not

limited by a maximal BER, that can be evaluated. (This approach is discussed in

provisional U.S. Patent Application No. , [Docket 0084567-721US0],
entitled “Post-Write Read in Non-Volatile Memories Using Comparison of Data As
Written in Binary and Multi-State Formats” by Eran Sharon and Idan Alrod, filed
currently with the present application,.) On the other hand, the system accumulates
errors of both the SLC and MLC pages, increasing the risk of miss-capturing a
problematic page. Moreover, this method requires reading both the 3 source SLC
blocks and the destination D3 block, which be a disadvantage in reading time and

hence 1n overall EPWR time.

[0294] In the approach of this section, the controller involvement can be significantly
reduced, since the XORing of Eblocks is performed internally in the memory latches
and hence a much smaller amount of data is sent to the controller and evaluated by the
ECC core. This means that EPWR time for a single die or two dies or four dies or
more is basically the same, as the reading part of the EPWR is done simultancously in
all dies and is basically dictated by the time it takes to read a block. For example,
assume that we would like to perform EPWR by reading the lower and upper pages in
cach word line and by XORing » = 16 pages and then sending the first Eblock in the
XORed page to the controller BER estimation (based on syndrome weight, for
example). Then, the EPWR process will be done as follows, where ADL is a (binary)

latch to which the data is initially read from a word line WLi and XDL is a transfer

-54 -

WO 2013/016390 PCT/US2012/048074

data latch from which data is transferred off of the memory WL, and NXOR is
shorthand for NOT XOR:

Read lower page of WLO into ADL (ADL = Lower0)

Read upper page of WL0O and NXOR it with ADL (ADL = ADL NXOR Upper0)
Read lower page of WL1 and NXOR it with ADL (ADL = ADL NXOR Lowerl)
Read upper page of WL1 and NXOR it with ADL (ADL = ADL NXOR Upperl)

Read lower page of WL7 and NXOR it with ADL (ADL = ADL NXOR Lower7)
Read upper page of WL7 and NXOR it with ADL (ADL = ADL NXOR Upper7)
Transfer ADL to XDL (XDL = ADL)
Transfer first Eblock of XDL to the controller
Perform BER estimation of the transferred Eblock
Read lower page of WL8 into ADL (ADL = Lower8) (may be

parallelized with two previous stages)
Read upper page of WL8 and NXOR it with ADL (ADL = ADL NXOR Upper0)
Read lower page of WL9 and NXOR it with ADL (ADL = ADL NXOR Lowerl)
Read upper page of WL9 and NXOR it with ADL (ADL = ADL NXOR Upperl)

Read lower page of WL15 and NXOR it with ADL (ADL = ADL NXOR Lower7)
Read upper page of WL15 and NXOR it with ADL (ADL = ADL NXOR Uppet7)
Transfer ADL to XDL (XDL = ADL)

Transfer first Eblock of XDL to the controller

Perform BER estimation of the transferred Eblock

[0295] More detail on an exemplary embodiment for a latch structure (including
ADL, XDL) that can suitably applied here can be found in US patents 7,158,421 and
7,206,230, for example.

[0296] The EPWR process described above is significantly faster than the methods in
the prior art. Assuming a pipelined operation, where the transfer to the controller and
BER estimation operation (which are done only once every n page read operations),
are done in parallel to reading of the next page group, then the overall EPWR time for

a block is equal to the read time, which is in the order of a few milliseconds.

-55 -

WO 2013/016390 PCT/US2012/048074

Moreover, the EPWR time will remain the same for one die, two dies and four dies, as
the reading and XORing of the upper and lowers pages can be done in parallel in all
dies and the transfer and BER estimation operations (done once every n page reads)

require low bandwidth from the controller and the bus.

[0297] In some cases there may be way to further accelerate the process. The
embodiment just discussed uses the XOR of the lower and upper pages. Referring to
FIG. 30, the assignment of states for the 3-bits of data to the 8 distributions
corresponds to a particular Grey mapping (a “2-3-2” mapping). Using this mapping
and performing a page by page read, the lower page may be read by performing a first
sensing between states Er and A, and then performing a second sensing between states
D and E. The upper page may be read by performing a first sensing between states B
and C, and then performing a second sensing between states F and G. It is common in
flash memory systems that a plurality of sensing operations begins with an initial
sense between 2 states and continues with a sequence of sensing at increasing
voltages. In such a setting the initial sense operation takes more time than each of the
following sense operations. This means that reading the lower and upper pages
according to the mapping shown in FIG. 30, will require overall 4 sense operations,
out of which 2 sense operations (the first sense in each page) will be longer. However,
since the EPWR process uses only the XOR of the 2 pages it is possible to reduce the
reading time of the 2 pages. This may be done by performing the following sequence
of sense operations: between Er and A, followed by a sense between B and C,
followed by a sense between D and E, followed by a sense between F and G. These 4
sense operations may be done faster than reading the two pages separately by
applying a read of the upper page according to an alternate “1-2-4” Grey mappings,
where an upper page of a 1-2-4 Grey mapping is exactly the XOR of the lower and
upper pages of the 2-3-2 Grey mapping. Consequently, a read command for the upper
page in a 1-2-4 Grey mapping can be used to produce the desired XOR of the lower
and upper pages of the 2-3-2 Grey mapping with which the data was written in a
single command. If this is possible, the read time per word line and the overall
EPWR read time would be reduced. Further, if it is sufficient to read only the (or,
more generally, a) middle page in each word line then the EPWR time will be reduced

further (by ~33%).

- 56 -

WO 2013/016390 PCT/US2012/048074

[0298] FIG. 31 is a flowchart illustrating aspects of the process as these can be
integrated into a programming process. At 1001, the memory system’s controller
receives data from the host. The controller uses its ECC engine to generate the
corresponding ECC for each Eblock of data and forms these in pages at 1003, which
are then transferred across the bus structure to the memory device at 1005. Although
shown as a set of distinct processes that would be followed by a particular set of data,
but in an actually device the steps will typically be going on in parallel, as noted in the
carlier section or as described further in US provisional patent application number
61/495,053, filed June 9, 2011. Once the data is latched on the memory, it is written
into the array at 1007. In the exemplary write process, data is first written into a
binary cache, after which it is folded into multistate memory. The following parts of
the flow are described as occurring after this folding process, but in other cases they
could be executed on the data in the binary memory, on data written directly into a

multistate format, or on binary memory.

[0299] The EPWR portion starts at 1009 by reading back pages, or portions of pages
(e.g., an Eblock) as stored on the memory and forming the composite data structure
1011. Although shown as two sequentially operations here, as discussed above, in the
exemplary embodiment this actually is performed in a loop as the selected pages are
sequentially read and XORed in the latches on the memory device. In the exemplary
embodiment, the composite data structure is then transferred to the controller at 1013,
where it is evaluated at 1015 for the integrity of the data from which the composite
data structure was formed. In other embodiments, the determination could also be

performed on the memory device itself.

[0300] The determination of 1015 can be done according to any of the various
embodiments described here, whether by determining the amount of error or
estimating the amount of error, using the ECC or without ECC based on statistics for
the data. If the data is degraded, the system can then determine the specific bad pages

at 1017, if desired, and also take any of the sort of correction actions described above.

[0301] This process will now be considered further in the context of a particular
embodiment. This embodiment has a number of features, including: reading only the
lowermost and uppermost pages on each word line; examine only the first Eblock per

page; use BER estimation feature for evaluating the accumulated BER of » Eblocks,
-57-

WO 2013/016390 PCT/US2012/048074

originating from »n pages; form groups of pages into a composite spread the block to
account for variation in the error rate; and selection of an appropriate criterion. It will
be understood that these features would differ in different embodiments, such as using

different pages, Eblocks, groups, criteria and so on.

[0302] With respect to the first of these features, the system reads only the upper and
lower page in each word line. (The embodiment here again stores 3-bits per cell, but
more generally, as in a 4-bit arrangement, the uppermost and lowermost can be used.)
As discussed above, the lower and upper pages are sufficient for identifying many of
the issues (program disturb, SILC, and so on) that would mess up the cell voltage
distributions. This is illustrated in FIG. 32, that is largely the same as FIG. 30, but

now with top and bottom pages’ XORed value now across the bottom.

[0303] In an exemplary system, separate reading of lower and upper pages of the WL
may be performed. Alternatively, as the system only actually needs the XOR of the
lower and upper pages (and not each page separately), in a variation the read time can
be reduces further by using a sequential type of read, with 4 sense operations (Er&A,

B&C, D&E, F&G), to produce the Lower@®@Upper page using a single read command

and in shorter time. Such a read can be done using a page by page read of the upper

page in a 1-2-4 Grey mapping, as referred to above.

[0304] As also discussed above, if there is good interleaving between the memory
latches and the array, using only one Eblock (here the first) per page is used as the cell
of the Eblock originate from cells that are spread over the entire word line. In an
exemplary embodiment for the memory device, the latch structure (the ADL and XDL
latches above) is arranged so that an Eblock is stored in a continuous segment of the

latch structure.

[0305] This particular embodiment uses a bit error rate (BER) estimation (e.g. based
on syndrome weight or based on decoding) for evaluating the accumulated BER of »
Eblocks, originating from » pages, the first Eblock in each of the pages. All the read
pages can be XORed internally in the memory circuit, with the first Eblock in the
XORed page transferred to the controller and the ECC engine is used to estimate its

BER.

-58 -

WO 2013/016390 PCT/US2012/048074

[0306] Due to possible variation in the error rate of word lines along the block, in
order to have error rate uniformity among the different page groups, then it is
preferable that each group will be composed of 7 pages that are equally spread along
the block. This improves the detection of a problematic group, if such a group exists,
as the problematic group would have significantly different accumulated BER
compared to all other groups that are expected to have roughly the same accumulated

BER due to the spreading.

[0307] Consider for example a block comprising 256 logical pages, in an X3 flash
memory system where each cell stores 3 bits. In this case the first lower page will be
page 0 and the first upper page will be page 2, both pages stored in the same word line
(say WLO0). The second lower page will be page 3 and the second upper page will be
page 5 both stored in WLI, etc. In order to generate page groups which are spread
along all the word lines, the plurality of lower and upper pages may be interleaved
into the page groups. For example if each page group will comprise of 9 logical

pages, 19 groups will be required and the interleaving may be chosen as follows:

Page group0: 0 29 57 86 114 143 171 200 228
Pagegroup I: 2 30 59 87 116 144 173 201 230
Page group2: 3 32 60 &9 117 146 174 203 231
Page group3: 5 33 62 90 119 147 176 204 233
Page group4: 6 35 63 92 120 149 177 206 234
Page group5: & 36 65 93 122 150 179 207 236
Page group6: 9 38 66 95 123 152 180 209 237
Page group7: 11 39 68 96 125 153 182 210 239
Page group 8: 12 41 69 98 126 155 183 212 240
Page group 9: 14 42 71 99 128 156 185 213 242
Page group 10: 15 44 72 101 129 158 186 215 243
Page group 11: 17 45 74 102 131 159 188 216 245
Page group 12: 18 47 75 104 132 161 189 218 246
Page group 13: 20 48 77 105 134 162 191 219 248
Page group 14: 21 50 78 107 135 164 192 221 249
Page group 15: 23 51 80 108 137 165 194 222 251
Page group 16: 24 53 &1 110 138 167 195 224 252

-59 -

WO 2013/016390 PCT/US2012/048074

Page group 17: 26 54 83 111 140 168 197 225 254
Page group 18: 27 56 84 113 141 170 198 227 255
[0308] A systematic way to generate the page groups is provided in the EPWR

procedure “pseudo code” of Table 1.

[0309] As a criterion for a suspicious block, one example is to consider a block
having one or more pages with BER > 0.2% immediately after programming. Hence,
the BER threshold per page can be defined as BERy = 0.2%. The EPWR procedure

of a block will generate 19 BER estimates: wy, wy,..., w;g (one syndrome weight

number for each page group). Let BER = max {w} and BER, = min {w}. A

ief0,L,..,18} ief0,L,..,18}

suspicious block will be detected based on BER_ ,BER , if:

BER. —"“1BER _ >BER.,
n

— BER,, +8-(BER,, —BER,,)>9-BER,,

[0310] In case the above condition is met, then close examination of the page group

corresponding to w__ 1s done by reading the first Eblock in each of the 9 pages of the

group and performing BER estimation on it to produce an estimate w. If

w>BER ,, for one or more of the pages in the group then the block is marked as

suspicious. Such examination of the worst group would take less than 10% of the

EPWR time for the block. Hence, the penalty of a “false alarm” is relatively small.

[0311] When a suspicious block is detected, various of the operations similar to those
discussed in the preceding sections. For example, the block’s data can be re-
programmed into a different block (as the data is at risk). Additionally, if the block
was previously marked as suspicious (i.e. this is the second time a problem is detected

in the block), then the block may be marked as bad.

[0312] In this example, the condition for a suspicious block was chosen to be
conservative in order to avoid miss-detections, at the expense of higher number of
false alarms, that will be screened by close examination of the worst page group
(corresponding to BER;,,x). Note that the penalty for a false alarm is relatively small-

--in case of a false alarm, the 9 pages in the worst group need to be read and have

- 60 -

WO 2013/016390 PCT/US2012/048074

their BER estimated based on their first Eblock. This takes less than 10% of the
EPWR time for the block.

[0313] The reasoning behind the suspicious block condition is as follows: the most
risky case for miss-detection is that the worst group includes one “bad” page, while
all the other n-1 pages are very good. In order to capture this, it is assumed that the

very good pages in this worst group have BER which is equal to the average BER of

) BER .
the best group — i.e. BER of a good page = 2 Then the BER of the “bad” page
n
in the worst group is given by:

BERmin

n

BER . —(n—1)-BER(good page) =BER __ —(n—1)-

[0314] In case the false alarm rate is high, then the above condition may be slightly

altered. An alternative condition, which is slightly less conservative, may be:
BER . -l BER,,, >BER;;, where BER,y, is the average of the BER estimates of the
n

best k& groups, where & may be optimized. This way, the representative BER of the
good page is determined as the average BER of groups that are expected to have only
good pages. Due to the spreading of the adjacent pages among different page groups,
it is expected that there are at most 4 page groups with a bad page. A broken word
line will contribute 2 bad pages (lower and upper) that will be in two different page
groups. A word line to word line short may contribute 4 bad pages (two lower and
two upper pages from adjacent wordlines), which will be in 4 different page groups.
Hence, if BER,,, 1s computed as the average BER of the best & groups, where £ is
smaller than 16, then it should be the average over groups that do not include a bad
page. Choosing & = 10, for example, would mean averaging over the better half of the

block.

-61 -

WO 2013/016390 PCT/US2012/048074

Pseudo code for EPWR procedure:

m = 0;

fori=0to 18
% EPWR for group i:
k=m;

Read page # k into ADL (ADL = page #k);

k=k+29-0.5*mod(k,3) ;

forj=1:8
Read page # k and NXOR it with ADL (ADL =ADL NXOR page #k);

k=k+29-0.5%mod(k,3);

end

Transfer NOT ADL into XDL (XDL = NOT ADL);

Transfer first 4484B of XDL to the controller (i.e. transfer first Eblock without
its parity2 bits).

Perform BER estimation of the transferred Eblock using RSECC to generate a
BER estimate wy;

Update W, and w_, ;
m=m+ 2—mod(i2),
end

If BER, +8-(BER,, —BER_;)>9-BER, then block is suspicious and close

examination of the page group corresponding to BER .« is required.

TABLE 1

Conclusion

[0315] The preceding section can provide a number of advantages, including
significantly faster EPWR operation. They can also require less bandwidth of the bus
between the controller and the memory. They can further require less bandwidth from
the controller hardware. The various embodiments allow for efficient multi-die

EPWR operation in the memory system.

[0316] The foregoing detailed description of the invention has been presented for

purposes of illustration and description. It is not intended to be exhaustive or to limit
-62 -

WO 2013/016390 PCT/US2012/048074

the invention to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in
order to best explain the principles of the invention and its practical application, to
thereby enable others skilled in the art to best utilize the invention in various
embodiments and with various modifications as are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the claims

appended hereto.

-63 -

WO 2013/016390 PCT/US2012/048074
IT IS CLAIMED:

1. A method of operating a memory system including an array of non-volatile
cells formed along a plurality of word lines each capable of storing one or more pages
of data, the method comprising;:

writing multiple pages of data into the array;

subsequently reading a plurality of the written pages of data from the array;

forming a composite data structure of the plurality of read pages; and

performing an evaluation of at least a portion of the composite data structure

to determine the presence of high error rate in the plurality of pages of data as written.

2. The method of claim 1, wherein performing an evaluation of at least a
portion of the composite data structure to determine the presence of high error rate

includes determining where the error rate is above a threshold.

3. The method of claim 1, wherein the memory system includes a memory
circuit, including the array, and a controller circuit, where the composite data

structure is formed on the memory circuit.

4. The method of claim 3, wherein the method further includes:
transferring the composite data structure over a bus structure from the memory
circuit to the controller circuit, wherein the evaluation is performed using logic

circuitry on the controller circuit.

5. The method of claim 3, wherein the evaluation is performed on the memory

circuit.

6. The method of claim 1, wherein the plurality of the read pages of data

includes data read from multiple word lines.

7. The method of claim 6, wherein the plurality of the read pages of data are
spread along the block.

- 64 -

WO 2013/016390 PCT/US2012/048074

8. The method of claim 6, wherein the memory system writes the multiple
pages of data in a multi-state format, storing more than one page of data on a word
line, and wherein the plurality of the read pages of data includes multiple pages of

data read from each of said multiple word lines.

9. The method of claim 1, wherein the memory system writes the multiple
pages of data in a multi-state format, storing more than one page of data on a word
line, and wherein the plurality of the read pages of data include multiple pages of data

read from a single word line.

10. The method of claim 9, wherein the plurality of the read pages of data are

the uppermost and lowermost pages of data from one or more word lines.

11. The method of claim 9, wherein the memory system stores data in the

array in a 3-bit per cell format.

12. The method of claim 1, wherein performing the evaluation including:
forming statistics of said at least a portion of the composite data structure; and
comparing the statistics to one or more expected values for the statistics to

determine the presence of high error rate in the plurality of pages of data as written

13. The method of claim 12, wherein the memory system includes a memory
circuit, including the array, and a controller circuit, where the composite data
structure is formed on the memory circuit and the method further includes:

transferring the composite data structure over a bus structure from the memory
circuit to the controller circuit, wherein the evaluation is performed using logic

circuitry on the controller circuit.
14. The method of claim 1, wherein each of the pages of data comprises a first

portion, including user data, and a second portion, including corresponding error

correction code (ECC) for the first potion of the page of data.

- 65 -

WO 2013/016390 PCT/US2012/048074

15. The method of claim 14, wherein the memory system includes a memory
circuit, including the array, and a controller circuit, including ECC circuitry, where
the composite data structure is formed on the memory circuit and the method further
includes:

transferring the composite data structure over a bus structure from the memory
circuit to the controller circuit, wherein the evaluation is performed on the controller

circuit using the ECC circuitry.

16. The method of claim 15, wherein performing the evaluation including:
decoding the composite data structure and determining the amount of error

therein based upon the ECC corresponding to the composite data structure.

17. The method of claim 15, wherein performing the evaluation including:
estimating the amount of error in the composite data structure based upon the

ECC corresponding to the composite data structure.

18. The method of claim 17, wherein said estimating is based on the number

of unsatisfied parity checks in the ECC corresponding to the composite data structure.

19. The method of claim 14, wherein the memory system includes a memory
circuit, including the array, and a controller circuit, including ECC circuitry, where
the composite data structure is formed on the memory circuit and the method further
includes:

prior to writing the multiple pages of data including corresponding error
correction code, receiving data at the controller from a host device;

generating the corresponding ECC for the multiple pages of data using the
ECC circuitry; and

transferring the multiple pages of data including corresponding ECC over a

bus structure from the controller circuit to the memory circuit.

20 The method of claim 1, further comprising;:

subsequently determining whether the amount of error is acceptable.

- 66 -

WO 2013/016390 PCT/US2012/048074

21. The method of claim 20, wherein determining whether the amount of error
is acceptable is based on comparing an estimated error rate of the composite data

structure to an estimated error rates of composite data structures of other pluralities of

pages.

22. The method of claim 20, further comprising:

in response to determining that the amount of error is not acceptable, reading
cach of the pages from which the composite data structure was formed, separately
estimating the error rate of each page, and, if one of the pages has unacceptable error

rate then taking further actions.

23. The method of claim 20, further comprising;:
in response to determining that the amount of error is not acceptable,
determining which of the read pages from which the composite data structure is

formed contribute an unacceptable amount of error to the composite data structure.

24. The method of claim 1, wherein the array is formed of a plurality of erase
blocks each having a plurality of word lines, and said writing includes writing one or

more erase blocks.

25. The method of claim 24, wherein the plurality of read pages from which
the composite data structure is formed are from a single block, the method further
comprising:

subsequently determining whether the amount of error is acceptable; and

in response to determining that the amount of error is not acceptable, rewriting

the data content of said single block.

-67 -

WO 2013/016390 PCT/US2012/048074

26. The method of claim 1, wherein forming a composite data structure of the
plurality of read pages includes performing an exclusive OR operation of the plurality

of read pages.

27. The method of claim 1, wherein said reading and forming a composite
data structure comprise:

reading a first of the plurality of the written pages of data including
corresponding ECC from the array;

storing the read first page of data including corresponding ECC in a register
structure associated with the memory array; and

for cach additional page of the plurality of the written pages of data,
sequentially reading the page of data including corresponding ECC, performing an
exclusive OR operation therewith of the content of the register structure, and
replacing the content of the register structure with the result of the exclusive OR

operation.

28. The method of claim 1, wherein said at least a portion of the composite

data structure is all of the composite data structure.

29. The method of claim 1, wherein said at least a portion of the composite

data structure is less than all of the composite data structure.
30. The method of claim 29, where said portion of the composite data

structure corresponds to the portion of the composite data structure stored in a

continuous segment data latches associated with the array.

- 68 -

WO 2013/016390 PCT/US2012/048074

1/33

HOST 80

FLASH MEMORY DEVICE 90
Memory Chip 100
Controlier
102 On-Chip
Control
Circuit
110 Memory Array
< > 200
112
State 1%
Mach-
ine
A SENSE MODULES
480 —
430 — Data Latches
> 1O
440
FIRM-
WARE [60
ECC Ll 62 :
Processor
e »

FIG. 1

WO 2013/016390 PCT/US2012/048074

2/33

Control 10

gate -
/
30
Zo\—k FIG. 2

NI o

Word lines

Bit lines

FiG. 3

WO 2013/016390 PCT/US2012/048074

3/33

_— 200

BLO BL1 BL2 BL3 BL4 BLS BLm-1 BLm

SGS4§6F;?2§ /'J H_| !‘l H‘i ,,,,, H’] H"l
WL42/;*EH

|

|
i
i
.

|

|

'L" FRERERR MRS
WL3 o ‘ "
WL2 f ; i
wL1
WLO
SGS =t I T

44

3 \
S1 Source Line \ 34

FIG. 4

WO 2013/016390 PCT/US2012/048074
4 /33
READ/WRITE CIRCUITS 270A. 270B
480
Sense) Sense Sense
Module Module | -s--eeeemeees Module
1 2 p
36 Bit line
drain
10
| Cell Cel Cell
1 2 p
source | i iz fp
34
— ¥ CLSRC)4 Source/
Line
Itor
GND

FIG. 5A

Sense Module 480

Sense Amp

FIG. 5B

—— 490

WO 2013/016390

5/33

PCT/US2012/048074

200
P
Wiy =t 300
ERASE BLOCK m L/
WL3T e
ERASE BLOCK 1
WLIE e
44l 300
WL1S >
42 ERASE BLOCK 0
WLO =
447

BLO BL1

FIG. 6

Blx

-WO0 2013/016390 PCT/US2012/048074

6 /33

——— Threshoid Window ——————
Erased I

(1) “Erased”

(2)

1

Binary Bit/

Programming into two states represented by a 1-bit code

FIG. 7

PCT/US2012/048074

WO 2013/016390

7/33

8 "Old

apoo 1ig-¢ e Aq pejuasaidal sele)s anoy ojul Hujwweiboid

| i { 1
| | [|
| |
HIA # i [! Hg SippIiN
_ | w " lug Jemon H 1g teddn
| i | | / \
Py T N N A N S B AA. 4
L o1r] | wor] {roo] |10 | 111]
1\ A ; j _ _ ~ (@
AN 14 >“ EAA L ZAAN FAA
i
(1)

I
m>._“

- MODUIAA Ploysasy] -

WO 2013/016390

PCT/US2012/048074
8/33
<t Data Page 70’ -
User Data System ECC
Data]
720 74 760

FIG. 9

FIG. 10A
Sigma Value Cumulative value Cumulative % Eéz:;p;f ggﬁr
1o 1.59E-01 15.86500000%
1.645¢ 5.00E-02 5.00000000% 1 bits
1.960¢ 2.50E-02 2.50000000%
26 2.28E-02 2.27500000% 2 bits
2.5760 5.00E-03 0.50000000%
3c 1.35E-03 0.13500000% 4 bits
3.290606 5.00E-04 0.05000000%
4o 3.17E-05 0.00316700% 8 bits
5¢ 2.87E-07 0.00028670% 30 bits
s1s; 9.86E-10 0.00000010% 42 bits
7o 1.28E-12 0.00000000%

FIG. 10B

WO 2013/016390

(A)

(B)

(€)

(A)

()

PCT/US2012/048074
9/33
ERROR
SOURCE DESCRIPTION
Bit errors that are present soon after the page is
written. They increase with Neye, the number of
Epw(Neve)

program-erase cycling, which is a measure of the
endurance of a block.

Epr(T, Ncve)

Bit errors due to data retention at EOL (“end of life”)
T = Temperature

ERD(NR, NCYC)

Bit errors due {o read disturb which increase with the
number of reads Nr and endurance

FIG. 11

Eror(Ncve, Nr)

= Epw{Nevc} + Eor(T, Neve) * Ero{Nr, Ncyc)

Eror(1, 1M)

(ffeSh after 1 year) Epw(Ncyc) + EDR(SSDC, 1) + ERD(1M, '1)

=3+ 2+0=5bits

(memory at EOL)
Eror(10K, 1M)

Epw('lOK) ~ 10, EDR(SSOC, 'iOK) ~ 10, and ERD(1M,
10K) ~ 1
= 10+10+1 = 21 bits

Examples of Total Errors at the beginning and end of life

FIG. 12

ECCpesian

Must be designed to correct for worst case
Eror(after EOL cycling, Data Retention specification)

FIG. 13

WO 2013/016390 | PCT/US2012/048074

10733

MEMORY ARRAY 200

Second Portion 420
(less robust but higher density storage)

WRITE

Input data

age
Mw——b |ezz=z=z first copy of data page z=z=zzrzzz

First Portion 410
{more robust but lower density storage)

FIG. 14A

WO 2013/016390 PCT/US2012/048074

11733

MEMORY ARRAY 200

Second Portion 420
(less robust but higher density storage)

Input data
page

— — — e ez et copy of dola page mzewan

if Post-Write
Read
FAILED
First Portion 410
{more robust but lower density storage)

REWRITE

P orrrer second copy of data page z====

FIG. 14B

WO 2013/016390 PCT/US2012/048074

12733

Configuring the memory into first and second portions, the first 200
portion having memory cells operating with a margin of error e
larger than that of the second portion

Write to Second Portion l
Programming a first copy of a group of input data in the second 510
) /
portion
Post-Write Read l
Reading the first copy from the second portion to check for error 520
after a predefined time |
. : 530
Does the error exceed a predetermined number of error bits? |
YES NO
Rewrite to Robust First Portion
540

Programming a second copy of the
group of input data in the first portion

l Y 550

Identifying the last written copy as valid data for subsequentread |__

560
The group of input data is done storing in the nonvolatile memory |—~

FIG. 15

WO 2013/016390 PCT/US2012/048074

13133

MEMORY ARRAY 200

Second Portion 420
(less robust but higher density storage)

first copy of data page

First Portion 410
(more robust but fower density storage)
WRITE Second Section 412 (for rewrites)
Input data First Section 411 (for caching)
page
=z cached copy of data page =====]

FIG. 16A

WO 2013/016390 PCT/US2012/048074

14733

MEMORY ARRAY 200
Second Portion 420

v = first copy of data page =z=zzrza

/
/
|
: First Portion 410
Write |
Po§e¥Ete I Second Section 412 (for rewrites)
PASSED i
\
\
\ First Section 411 (for caching)
\ .
\ eormrs anched cony of dols page THEREE

FIG. 16B

WO 2013/016390 PCT/US2012/048074

15733

MEMORY ARRAY 200
Second Portion 420

rrrrarzrz st copy of data page

. 4
/
[

First Portion 41

Post-Write
Read
FAILED

/
|
!
|
| Second Section 412 (for rewrites)
i

! rrrrrz gecond copy of data page zmzz===]

\
\

\ First Section 411 (for caching) REWRITE
\

o e 5 . - "4 . " —— L
L [cached copy of dala page Tomms

b
it

FIG. 16C

WO 2013/016390 PCT/US2012/048074

16733

Configuring the memory into first and second portions, the first 600
portion having memory cells operating with a margin of error .,
larger than that of the second portion

Caching in Robust First Portion ,l,

Programming a cached copy of a group of inpuf data in a first 602
section of the first portion 7
Write to Second Portion v
Programming a first copy of the group of input data in the second 610
portion |/

Post Write Read \

Reading the first copy from the second portion to check for error 620
after a predefined time |

Y

630
Does the error exceed a predetermined number of error bits? |

YES NO
Rewrite to Robust First Portion |

y

Reading the cached copy of the group of 632
input data from the first section of the first
portion

Programming the cached copy as a 642
second copy of the group of input data in ;
a second section of the first portion

Y A 4

650
Identifying the last written copy as valid data for subsequentread |
660

The group of input data is done storing in the nonvolatile memory |—

FIG. 17

WO 2013/016390 PCT/US2012/048074

17 1 33
200
,
302
] Neve (m) -1~
cYC
WLy — 300
ERASE BLOCK m Y
302
T Nevo (1) 1
WL3_1 — . cYyC
ERASE BLOCK 7
WL1E e
— ~
44 300
DY -
Neve () ~
42 ERASE BLOCK 0
WLO e
447
S—
BLO BL1 BLx

FIG. 18

WO 2013/016390 PCT/US2012/048074

18133

Providing a non-volatile memaory organized into
. 700
erase blocks of memory cells, wherein the memory
cells of each erase block are erased together and
age with the number of erase/program cycling of
each block

Providing an error management for correcting errors 710
associated with an aging memory device

'

Tracking the age of each block by maintairiing a hot — 790
count that records the number of erase/program
cycling each block has undergone

'

Is the Hot Count of a memory block > -
a predetermined hot count threshold? 730
Y 740 N l 750
l pall fall

Enable the error
management for the
rest of the life of the

memory

Do not enabie the
error management
yet

FIG. 19

WO 2013/016390 PCT/US2012/048074

19733

MEMORY ARRAY 200
Second Portion 420 (D3)

(4) 1% Post-
Write Read on

D3 Block m '
PASSED D3 Block m
- |
{ peerzzzzz st copy of D3 page n m=mzzzz
/
]
f
(3) 19 D3 | First Portion 410 (D1}
Pagen |
Write (Folding} Second Section 412 (D1 for staging)
\
Vol
v
D1 A |
Pagen | PP
STAGING P Jinual Bl
ol | 2 /‘Q’”J hethase o
| PEAELEREE datn nages 1.1, s H

C First Section 411

(D1 for caching small fragments)

-
(1)From HOST

Example of successful D1 to D3 Folding

FIG. 20A

WO 2013/016390

(6) 2™ Post-
Write Read on
D3 Block m

PASSED |

(4" 1% Post-
Write Read on
D3 Block m

EAILED
4

!

PCT/US2012/048074

20/33

MEMORY ARRAY 200

Second Portion 420 (D3)

Block m’
zzzzz 2nd copy of D3 data page z==zzz7
Hlock m

fal copy of D3 data page mereeyy

!
|
f
(3)1%D3 |
Page n |
Write (Folding)
\

Vo
(2)D1 \ ;
Pagen ¢
STAGING

kY

First Portion 410

Second Section 412 (D1 for staging)

al
5o o gy M
Sbasl (oG DRYRS 11,

-
-

(1)From HOST

First Section 411
(D1 for caching small fragments)

Example of Read Error after 1 D1 to D3 Folding

FIG. 20B

(5) 2nd D3
Block m
Write

WO 2013/016390 PCT/US2012/048074
21733
MEMORY ARRAY 200
Second Portion 420 (D3)
(6" 2" Post-
Write Read on
D3 Block m : (5) 2nd D3
FQLED | 'z Block f Block /'
t zrezm Znd copy of D3 datas page Write
(4"} 1* Post- '
Write Read on
D3 Biock m
EAILED ; Elook /
& |z istoopy of D3 data page oz
l :
/
!
: First Portion 410
st
(Btl-’)a;ea:a | Second Section 412 (D1 for staging)
Write (Folding}
| | m.3
(2) D1 \\ / | m.2
Pagen '\ D1 Virtual Block m.1
STAGING \‘-.‘ - Staged D1 copy of (Y)B{lg)sci?1

v/_\v_,v

A AT |
Z data pages n.7, n.2, n.3 .

First Section 411
(D1 for caching small fragments)

(1YFrom HOST

Example of Read Error after 2nd D1 to D3 Folding

FIG. 20C

WO 2013/016390

PCT/US2012/048074
22133
File System Configuration File
PARAMETER DESCRIPTION
a variable set in File System Configuration File to specify at
what # of ECC bits level, a D3 block is consider high risk
E_pw_check

and restart of D1 to D3 folding to a new D3 biock is
required

ECC_threshold_

a variable is needed in File System Configuration File for
maintaining SL.C threshold to compare against in order to

SLC make a decision to continue with EPWR or not
EPWR enable co_ntrol!ed in File Syétem Configuration File.
i 0 = not set (Default);
ag = set when EPWR is enabled
Hot_count_ 0 = not enabled;
enable_flag 1 = enabled
a variable set in File System Configuration File to specify at

Hot_count_ what hot count level, EPWR is needed. If hot count of all

threshold_EPWR

D3 blocks is < hot count threshold, even EPWR enable flag
is on, EPWR process is not triggered

EPWR _verify_
page_budget

a variable set in File System Configuration File to specify
how many pages can be read during 1 phase of EPWR

EPWR _retries

a variable in File System Configuration File to limit number
of retry attempts

D3_Block_max
_retries

a variable in File System Configuration File to limit the total
number of retry attempts on a D3 block over lifetime

FIG. 21

WO 2013/016390 PCT/US2012/048074
23/ 33
800
D1 to D3 Folding — 810
isaD3block | . g12
N completed?
Y
— 820
N
EPWR enabled?
Y
~ 830
4
. Process EPWR , — 850
(“Enhanced Post Write Read") _
840 Retain D3 block;
J— Retire D1 copies of
Error Rate > N - D3 block
Threshold?
Y Process more blocks? v
|
v ~ 860 - 870 N
Retire D3 block;
N s
Re;iz fﬁﬁﬁffﬂ p Retain D1 copies of
) D3 block
v PutCardinRead | | g7
Only Mode
869
Y -
Redo D110 D3
folding on a new
block
Y Y
8
[DONE }—/ %0

FIG. 22A

WO 2013/016390

Do EPWR? 820

24133

EPWR_enable_f

lag = enabled?

lY ~— 822

Hot_count enable_flag = enabled?

i

Y “— 824

D3 Block’s Hot Count > \

PCT/US2012/048074

N

Hot_count_threshold_EPWR? N

=

Y ~— 826

\/

Process

Y

EPWR

GOTO 830

FIG.

22B

.

No EPWR
Processing
D3 Block

assumed good
GOTO 850

WO 2013/016390 PCT/US2012/048074

25/ 33
FROM 820
Process EPWR 830 i
Process ime | N »| Remember the
available? last EPWR
¢Y — 832 step
Start/Conti 83
art/Continue on
a D3 block
¢ S— 834
Transfer page with
ECC to Controller |«e—— Seleact gext
for EDC checking pag
N
#ECCerrors > | N Reach end of
E pw check? the D3 block?
Y S—840 Y 842
Redo D3 biock?860
mmmmmmmm | 868 *
| (Optional) | _)
| Correct D1 data | Is this retry > EPWR_retries?
| with ECC and I N Y (
| restaged in D1 |
. —— -~ — — i ——— v w—— »-'

{866 ~ e Y D3block | |
i | Check D1 data; | N total retries >
Is ECC errors > [Block_max_retries?

ECC_threshold I "é;g;‘é‘"g‘ég&“ —t 865

| (Optional) | 802
!
|

. 864

_SLC? e
N :
............. .’.4......-..-........---.----------.
¥ No redo y /
Redo D3 Block MEMORY OLD D3 BLOCK GOOD
GOTO 869 GOTO 870 GOTO 850

FIG. 22C

WO 2013/016390 PCT/US2012/048074

26 /33

4 Threshold Window -t

“Erased or

l | |
0 Ground” l Da | Da . Dc I
(©0) “Gr . “A 1 “B” | “c”

| o L i
| | | |
I
| ; | |
| | 3 |
|
(1) : | |
113 tH '
Gr i : [
i 1 |
1 i |
Lower P gJ Prog ih | :
i g |
(2) diate’[:
s
‘ f
| i
' |
I
“Erased or l
Ground’, DV 1
(3)

1) o
i i i l I ‘ i
UpperBit/\ Lower Bit | i |
| 1

Vih

Logical-Page-by-L.ogical-Page Programming
(2-bit LM Gray Code)

FIG. 23

WO 2013/016390 PCT/US2012/048074

27133

Upper Bit ~ ¥ Lower Bit

“11° 01 00 “10”
A AT A
- » \r
Lower Bit = “0” "
Lower Page Read (LM Gray Code)
Da De

< Upper Bit = “0” >
EI1 1 »

01 oo
A LA A A
»
Upper Page Read (LM Gray Code)

FIG. 24B

T

PCT/US2012/048074

WO 2013/016390

28/ 33

G¢ Olid

<« "A (3pog Keio W ng-¢) BunuwesBbold ebed-jesibo-Ag-abed-jesibo
g 2ipPiN

ng emo 7 e v\zm leddn

BuiwweiBoid phed 1amo _
H

i 1o paseig,

g

MOPUIAA PlOYSaIY]

(€)

(2)

(1)

(0)

WO 2013/016390 PCT/US2012/048074

29/33
- ECC Page 80 -
User Data System ECC
Data]
g2 - g4~ 86~
- * Data Page 70’ >
ECC Page 1 | ECC Page 2 | ECC Page 3 ECC Page N
80/ 80/

FIG. 26B

WO 2013/016390

30/33

PCT/US2012/048074

Providing multiple groups of memory cells, the memory cells in
each group for operating in paraliel

800

l

Programming multiple subsets of data into a first group of memory
cells, each subset of data being provided with an ECC

902

l

Selecting a sample of the data programmed in the first group of
memory cells, the sample being selected from a subset of data
said multiple subsets of data programmed into the first group

910

l

Reading said sampie

920

l

Checking said sample for errors

922

'

Reprogramming said multiple subsets of data into a second group
of memory celis whenever the errors checked from the sample is
more than a predetermined number of error bits

930

Accelerated PWR

FIG. 27

WO 2013/016390 PCT/US2012/048074

31733

Selecting a sample of the data programmed in the first group of > 970’
memory cells, the sample being selected from a subset of data
said mulfiple subsets of data programmed into the first group and
the sample is a subset of data estimated to have a highest error
rate among said multiple subsets of data programmed into the
first group

FIG. 28

WL 2w
Decoder

Upper ECCPage 8 | ECC Page 10 | ECC Page 11

Middie ECC Page 5 ECC Page 6 ECC Page 7 ECC Page 8

Lower ECC Page 1 ECC Page 2 ECC Page 3 ECC Page 4
80

3 Data Pages stored on WL

FIG. 29

WO 2013/016390 PCT/US2012/048074

32133
lL.ower page Upper page
read thresholds read thresholds
1 1 1 0 0 0 0 1
1 1 0 0 1 1 0 0
1 0 0 0 0 1 1 1
Er A B C D E F G
Lower page Upper page
read thresholds read thresholds

1 1 1 0 0 0 0 1
1 1 0 0 1 1 4] 0
1 0 0 0 0 1 1 1
Lower @ Upper: 0 1 0 1 0

FIG. 32

WO 2013/016390 PCT/US2012/048074

33733
1001
| -~
Receive Data from Host
71003
, 100

Generate ECC, Form
Data Into Pages

1005
2 -

Transfer Pages to
Memory Device

1007

v -
Write in Data

1009

4 -
Read Back Pages

1011

\ 10

Form Composite
Data Structure

'L 1013

Transfer to Controller

1015
A 4

Determine Data Integrity

1017
v -

If Error, Determine
Specific Bad Pages

19
i / 10
Take Corrective Actions

as Needed

}
FIG. 31

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings

