(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 03/034239 Al

(43) International Publication Date
24 April 2003 (24.04.2003)

(51) International Patent Classification’: GOO6F 13/12 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US02/25278 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
(22) International Filing Date: 9 August 2002 (09.08.2002) LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
(25) Filing Language: English SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,

YU, ZA, ZM, ZW.

(26) Publication Language: English

L. (84) Designated States (regional): ARIPO patent (GH, GM,
(30) Priority Data: KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
09/978,349 15 October 2001 (15.10.2001) US Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
. European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
(71) Applicant: ADVANCED MICRO DEVICES, INC. ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,

[US/US]; One AMD Place, Mail Stop 68, P.O. Box 3453,

TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Sunyvale, CA 94088-3453 (US).

GW, ML, MR, NE, SN, TD, TG).

(72) Inventors: ENNIS, Stephen, C.; 2100-B Airole Way, .
Autin, TX 78704 (US). HEWITT, Larry, D.; 6103 Bend Fublished:
O’River Drive, Austin, TX 78746 (US). — with international search report

(74) Agent: DRAKE, Paul, S.; Advanced Micro Devices, Inc., ~ For two-letter codes and other abbreviations, refer to the "Guid-
5204 East Ben While Boulevard, Mail Stop 562, Austin, ance Notes on Codes and Abbreviations" appearing at the begin-
TX 78741 (US). ning of each regular issue of the PCT Gazette.

(54) Title: COMPUTER SYSTEM I/O NODE

COMMAND
RECEIVER BUS1IL TRANSMITTER
communication | RECE! CONTROL CONTROL AITTER |, COMMUNICATION
PATH mw COMMAND COMMAND g A PATH
BUS 101 BUS 101
COMMAND
BUS 112
CONTROL TRANSACTIO CONTROL UNT CONTROL
COMMAND 1o -4 COMMAND
{ BUS 101 . BUS 101 ‘l
CONTROL
COMMAND
BUS 101
COMMAND >
communication | RECEIVER BUS 121 TRANSWTTER | communicanion
pa > B - A ™ pam
120 . COMMAND 130

COMMAND BUS 151
BUS 122 j |

PERIPHERAL INTERFACE
(BRIDGE)
150

T
PERIPHERAL BUS

(57) Abstract: A computer system I/O node. An input/output (20, 30, 40) for a computer system includes a first receiver unit
(110) configured to receive a first command on a first communication path and a first transmitter unit (140) coupled to transmit a
first corresponding command that corresponds to the first command on a second communication path. The input/output node also
includes a second receiver unit (120) configured to receive a second command on a third communication path and a second transmitter
(130) unit coupled to transmit a second corresponding command that corresponds to the second command on a fourth communication
g path. Further, the input/output node includes a bridge unit (150) coupled to receive selected commands from the first receiver and
the second receiver and configured to transmit commands corresponding to the selected commands upon a peripheral bus (152).

0 03/034239 Al

WO 03/034239 o PCT/US02/25278
TITLE: COMPUTER SYSTEM I/0 NODE

BACKGROUND OF THE INVENTION

1. Technical Field
This invention relates to computer system input/output (I/O) and, more particularly, to transaction handling

in an I/O node.

2. Background Art

In a typical computer system, one or more processors may communicate with input/output (I/O) devices
over one or more buses. The I/O devices may be coupled to the processors through an I/O bridge which manages
the transfer of information between a peripheral bus connected to the /O devices and a shared bus connected to the
processors. Additionally, the I/O bridge may manage the transfer of information between a system memory and the
I/O devices or the system memory and the processors.

Unfortunately, many bus systems suffer from several drawbacks. For example, multiple devices attached to
a bus may present a relatively large electrical capacitance to devices driving signals on the bus. In addition, the
multiple attach points on a shared bus produce signal reflections at high signal frequencies which reduce signal
integrity. As a result, signal frequencies on the bus are generally kept relatively low in order to maintain signal
integrity at an acceptable level. The relatively low signal frequencies reduce signal bandwidth, limiting the
performance of devices attached to the bus.

Lack of scalability to larger numbers of devices is another disadvantage of shared bus systems. The
available bandwidth of a shared bus is substantially fixed (and may decrease if adding additional devices causes a
reduction in signal frequencies upon the bus). Once the bandwidth requirements of the devices attached to the bus
(either directly or indirectly) exceeds the available bandwidth of the bus, devices will frequently be stalled when
attempting access to the bus, and overall performance of the computer system including the shared bus will most
likely be reduced. An example of a shared bus used by I/O devices is a peripheral component interconnect (PCI)
bus.

Many I/O bridging devices use a buffering mechanism to buffer a number of pending transactions from the
PCI bus to a final destination bus. However buffering may introduce stalls on the PCI bus. Stalls may be caused
when a series of transactions are buffered in a queue and awaiting transmission to a destination bus and a stall
occurs on the destination bus, which stops forward progress. Then a transaction that will allow those waiting
transactions to complete arrives at the queue and is stored behind the other transactions. To break the stall, the
transactions in the queue must somehow be reordered to allow the newly arrived transaction to be transmitted ahead
of the pending transactions. Thus, to prevent scenarios such as this, the PCI bus specification prescribes a set of
reordering rules that govern the handling and ordering of PCI bus transactions.

To overcome some of the drawbacks of a shared bus, some computers systems may use packet-based
communications between devices or nodes. In such systems, nodes may communicate with each other by
exchanging packets of information. In general, a "node" is a device which is capable of participating in transactions
upon an interconnect. For example, the interconnect may be packet-based, and the node may be configured to

receive and transmit packets. Generally speaking, a "packet” is a communication between two nodes: an initiating

1

WO 03/034239 PCT/US02/25278

or "source" node which transmits the packet and a destination or "target" node which receives the packet. When a
packet reaches the target node, the target node accepts the information conveyed by the packet and processes the
information internally. A node located on a communication path between the source and target nodes may relay or
forward the packet from the source node to the target node.

Additionally, there are systems that use a combination of packet-based communications and bus-based
communications. For example, a system may connect to a PCI bus and a graphics bus such as AGP. The PCI bus
may be connected to a packet bus interface that may then translate PCI bus transactions into packet transactions for
transmission on a packet bus. Likewise the graphics bus may be connected to an AGP interface that may translate
AGP transactions into packet transactions. Each interface may communicate with a host bridge associated with one
of the processors or in some cases to another peripheral device.

When PCI devices initiate the transactions, the packet-based transactions may be constrained by the same
ordering rules as set forth in the PCI Local Bus specification. The same may be true for packet transactions destined
for the PCI bus. These ordering rules are still observed in the packet-based transactions since transaction stalls that
may occur at a packet bus interface may cause a deadlock at that packet bus interface. This deadlock may cause
further stalls back into the packet bus fabric. In addition, AGP transactions may follow a set of transaction ordering
rules to ensure proper delivery of data.

Depending on the configuration of the /O nodes, transactions may be forwarded through a node to another
node either in a direction to the host bridge or away from the host bridge. Alternatively, transactions may be
injected into packet traffic at a particular node. In either scenario, an I/O node architecture that may control the

transactions as the transactions are sent along the communication path may be desirable.

DISCLOSURE OF INVENTION

Various embodiments of a computer system input/output node are disclosed. In one embodiment, an
input/output node for a computer system includes a first receiver unit that is configured to receive a first command
on a first communication path and a first transmitter unit which is coupled to transmit a first corresponding
command that corresponds to the first command on a second communication path. The input/output node also
includes a second receiver unit which is configured to receive a second command on a third communication path
and a second transmitter unit which is coupled to transmit a second corresponding command that corresponds to the
second command on a fourth communication path. In one particular implementation, the communication paths may
be a point-to-point communication links such as HyperTransport™ links for example. Further, the input/output node
may include a bridge unit coupled to receive selected commands from the first receiver and the second receiver and
is configured to transmit commands corresponding to the selected commands upon a peripheral bus.

In one particular implementation, the input/output node includes a control unit coupled to control the
conveyance of commands from the first communication path to the second communication path and to the peripheral
bus. Additionally, the control unit is coupled to control the conveyance of commands and from the third
communication path to the fourth communication path and to the peripheral bus. The control unit is also configured
to control the conveyance of commands from the peripheral bus to the second communication path and said fourth
communication path. The control unit is further configured to selectively control the conveyance of the commands

based upon a plurality of control commands received from the first receiver, the second receiver and the bridge unit.

WO 03/034239 . PCT/US02/25278

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of one embodiment of a computer system.

FIG. 2 is a block diagram of one embodiment of an I/O node.

FIG. 3 is a block diagram of one embodiment of a transaction control unit.

FIG. 4 is a block diagram of one embodiment of a scheduler.

FIG. 5 is a block diagram of one embodiment of a scheduler including tagging logic.

FIG. 6 is a block diagram of one embodiment of a transaction scheduler including starvation avoidance
logic.

FIG. 7 is a block diagram of one embodiment of a fairness circuit.

While the invention is susceptible to various modifications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and will herein be described in detail. It should be
understood, however, that the drawings and detailed description thereto are not intended to limit the invention to the
particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives

falling within the spirit and scope of the present invention as defined by the appended claims.

MODE(S) FOR CARRYING OUT THE INVENTION

Turning now to FIG. 1, a block diagram of one embodiment of a computer system is shown. The computer
system includes processors 10A-10D each interconnected by a coherent packet bus 15. Each section of coherent
packet bus 15 may form a point-to-point link between each of processors 10A-D. While four processors are shown
using point-to point links it is noted that other numbers of processors may be used and other types of buses may
interconnect them. The computer system also includes three I/O nodes numbered 20, 30 and 40 each connected
together in a chain by /O packet buses S0B and 50C respectively. IO packet bus 50A is coupled between host
node/processor 10A and I/O node 20. Processor 10A is illustrated as a host node which may include a host bridge
for communicating with I/O packet bus 50A. Processors 10B-D may also include host bridges for communication
with other I/O packet buses (not shown). The communication links formed by I/O packet bus 50A-C may also be
referred to as a point-to-point links. /O node 20 is connected to a pair of peripheral buses 25A-B. /O node 30 is
connected to a graphics bus 35, while I/O node 40 is connected to an additional peripheral bus 45.

Processors 10A-10D are each illustrative of, for example, an x86 microprocessor such as an Athlon™
microprocessor. In addition, one example of a packet bus such as /O packet bus 50A-50C may be a non-coherent
HyperTransport™. Peripheral buses 25A-B and peripheral bus 45 are illustrative of a common peripheral bus such
as a peripheral component interconnect (PCI) bus. Graphics bus 35 is illustrative of an accelerated graphics port
(AGP), for example. It is understood, however, that other types of microprocessors and other types of peripheral
buses may be used.

It is noted that while three /O nodes are shown connected to host processor 10A, other embodiments may
have other numbers of nodes and those nodes may be connected in other topologies. The chain topology illustrated
in FIG. 1 is shown for its ease of understanding.

In the illustrated embodiment, the host bridge of processor 10A may receive upstream packet transactions
from downstream nodes such as I/O node 20, 30 or 40. Alternatively, the host bridge of processor 10A may
transmit packets downstream to devices such as peripheral devices (not shown) that may be connected to peripheral

bus 25A for example.

WO 03/034239) ~ PCT/US02/25278

During operation, /O node 20 and 40 may translate PCI bus transactions into upstream packet transactions
that travel in I/O streams and additionally may translate downstream packet transactions into PCI bus transactions.
All packets originating at nodes other than the host bridge of processor 10A may flow upstream to the host bridge of
processor 10A before being forwarded to any other node. All packets originating at the host bridge of processor
10A may flow downstream to other nodes such as /O node 20, 30 or 40. As used herein, "upstream” refers to
packet traffic flow in the direction of the host bridge of processor 10A and “downstream” refers to packet traffic
flow in the direction away from the host bridge of processor 10A. Each I/O stream may be identified by an
identifier called a Unit ID. It is contemplafed that the Unit ID may be part of a packet header or it may be some
other designated number of bits in a packet or packets. As used herein, “I/O stream” refers to all packet transactions
that contain the same Unit ID and therefore originate from the same node.

To illustrate, a peripheral device on peripheral bus 45 initiates a transaction directed to a peripheral device
on peripheral bus 25. The transaction may first be translated into one or more packets with a unique Unit ID and
then transmitted upstream. It is noted that each packet may be encoded with specific information which identifies the
packet. For example the Unit ID may be encoded into the packet header. Additionally, the type of transaction may
also be encoded into the packet header. Each packet may be assigned a Unit ID that identifies the originating node.
Since I/O node 20 may not forward packets to a peripheral device on peripheral bus 25 from downstream, the
packets are transmitted upstream to the host bridge of processor 10A. The host bridge of processor 10A may then
transmit the packets back downstream with a Unit ID of the host bridge of processor 10A until /O node 20
recognizes and claims the packet for the peripheral device on peripheral bus 25. /O node 20 may then translate the
packets into peripheral bus transactions and transmit the transactions to the peripheral device on peripheral bus 25.

As the packet transactions travel upstream or downstream, the packets may pass through one or more I/O
nodes. The pass-through is sometimes referred to as a tunnel and the /O node is sometimes referred to as a tunnel
device. Packets that are sent from upstream to downstream or from downstream to upstream are referred to as
“forwarded” traffic. Additionally, packet traffic that originates at a particular /O node and is inserted into the
upstream traffic is referred to as “injected” traffic.

As will be described in greater detail below, to preserve the ordering rules of the various buses that may be
connected to an I/O node, the /O node may provide transaction reordering as well as packet buffering. The I/O
node may also include control logic which controls the flow of packets into and out of the tunnel by both forwarded
and injected traffic.

Reférring to FIG. 2, a block diagram of one embodiment of an I/O node is shown. The /O node is
representative of I/O node 20, 30 or 40 of FIG. 1 and will hereafter be referred to as /O node 20 for simplicity. I/O
node 20 of FIG. 2 includes a transaction receiver 110 which is coupled to a transmitter 140 via a command bus 111
and to peripheral interface 150 via a command bus 112. I/O node 20 also includes a transaction receiver 120 which
is coupled to a transmitter 130 via a command bus 121 and to peripheral interface 150 via a command bus 122.
Peripheral interface 150 is also coupled to transmitters 130 and 140 via a command bus 151 and to peripheral bus
152. Additionally, /O node 20 includes a transaction control unit 100 which is coupled to each receiver, each
transmitter and to peripheral interface via a control command bus 101. As used herein, a command bus is meant to
include signals for command, control and data. Therefore, when a transaction or a command is said to be sent over

a respective command bus it is meant to include command and data bits.

WO 03/034239) PCT/US02/25278

In the illustrated embodiment, receiver 110 and transmitter 140 form one communication path of the I/O
tunnel and receiver 120 and transmitter 130 form a second communication path of the I/O tunnel. Since each of the
communication paths is uni-directional, either path may be connected as the upstream or downstream path. Thus,
the injected traffic from peripheral interface 150 is provided to either of transmitters 130 and 140.

Receivers 110 and 120 each receive packet transactions into a receive buffer (not shown). As each
transaction is received, a control command is generated containing a subset of the information contained in the
received command. The control command may include the Unit Id of the originating node, destination information,
a data count and transaction type, for example. It is noted that the control command may include other information
or may not include some of the information listed here. The control command is sent to transaction control unit 100.

In response to peripheral interface 150 receiving transactions from peripheral bus 152, peripheral interface
150 may also generate control commands containing information similar to the control command described above.
Peripheral interface 150 may also store the transactions in one or more buffers and send the control commands to
transaction control unit 100.

Transaction control unit 100 may store each control command that it receives into one or more buffer
structures in the order that they were received. Based on the control commands that transaction control unit 100
stores in its buffers, transaction control unit 100 may decide the order that the corresponding commands waiting in
source buffers (i.e. receiver and/or peripheral interface) may be sent. As will be described in greater detail below in
conjunction with FIG. 3 through FIG. 6, transaction control unit 100 may arbitrate between transactions in its
buffers based on such factors as the type of transaction, whether there is free buffer space at the transmitter and
destination, whether the transaction is forwarded traffic or injected traffic. Thus the transaction control unit 100
may be responsible for the overall flow of transactions through the tunnel of an /O node.

Once transaction control unit 100 arbitrates which transaction will be processed, transaction control unit
100 may direct the respective source device to send a pending transaction to the destination device. For example,
the transaction control unit 100 selects a control command from its buffer that is representative of a transaction
being forwarded from receiver 110 to transmitter 140. Transaction control unit 100 notifies receiver 110 to send the
transaction to transmitter 140 via command bus 111. Transmitter 140 may then transmit the transaction to the next
node in the chain. The next node may be another I/O node which is either upstream or downstream, or it may be a
host node such as host processor 10A of FIG. 1. In addition, transaction control unit 100 and transmitter 140 may
include logic (not shown) which indicates to another node whether or not there is free space in the receive buffer.

Turning to FIG. 3, a block diagram of one embodiment of a transaction control unit is shown. Circuit
components that correspond to those shown in FIG. 2 are numbered identically for simplicity and clarity.
Transaction control unit 100 includes three schedulers labeled 160, 170 and 180, respectively. Each of schedulers
160,170 and 180 include a pair of virtual channel command buffers and an arbiter and buffer management unit. The
virtual channel command buffers of scheduler 160 are labeled V.C. FIFO 166 and 167 and arbiter and buffer
management unit is numbered 168. Likewise, virtual channel command buffers of scheduler 170 are labeled V.C.
FIFO 176 and 177 and arbiter and buffer management unit is numbered 178 and virtual channel command buffers of
scheduler 180 are labeled V.C. FIFO 186 and 187 and arbiter and buffer management unit is numbered 188.

Generally speaking, a "virtual channel” is a communication path for carrying packets between various
processing nodes. Each virtual channel is resource-independent of the other virtual channels (i.e. packets flowing in

one virtual channel are generally not affected, in terms of physical transmission, by the presence or absence of

5

WO 03/034239 3 L PCT/US02/25278

packets in another virtual channel). Packets are assigned to a virtual channel based upon packet type. Packets in the
same virtual channel may physically conflict with each other’s transmission (i.e. packets in the same virtual channel
may experience resource conflicts), but may not physically conflict with the transmission of packets in a different
virtual channel.

Certain packets may logically conflict with other packets (i.e. for protocol reasons, coherency reasons, or
other such reasons, one packet may logically conflict with another packet). If a first packet, for logical/protocol
reasons, must arrive at its destination node before a second packet arrives at its destination node, it is possible that a
computer system could deadlock if the second packet physically blocks the first packet’s transmission (by occupying
conflicting resources). By assigning the first and second packets to separate virtual channels, and by implementing
the transmission medium within the computer system such that packets in separate virtual channels cannot block
each other’s transmission, deadlock-free operation may be achieved. It is noted that the packets from different
virtual channels are transmitted over the same physical links. However, since a receiving buffer is available prior to
transmission, the virtual channels do not block each other even while using this shared resource.

From one viewpoint, each different packet type (e.g. each different command encoding) could be assigned
to its own virtual channel and thus in one embodiment, separate buffers are allocated to each virtual channel. Since
separate buffers may be used for each virtual channel, packets from one virtual channel may not physically conflict
with packets from another virtual channel (since such packets would be placed in the other buffers).

Each scheduler corresponds to a particular destination and to two sources. In the illustrated embodiment,
scheduler 160 controls transactions that have transmitter 130 of FIG. 2 as a destination and receiver 120 and
peripheral interface/bridge 150 as sources. Similarly, scheduler 170 of FIG. 3 controls transactions that have
transmitter 140 of FIG. 2 as a destination and receiver 110 and bridge 150 as sources. Lastly, scheduler 180 of FIG.
3 controls transactions that have bridge 150 of FIG. 2 as a destination and receiver 110 and receiver 120 as sources.

In FIG. 3, each virtual channel command buffer receives from a respective receiver or bridge control commands
corresponding to transactions received by the respective receiver or bridge. A control command may include a
destination bit designating which scheduler the control command will be sent to. Typically a control command will
have only one destination bit set. However, in the event that a transaction is a broadcast message, more than one
destination bit may be set to allow more than one scheduler to receive the control command.

To simplify the discussion, only scheduler 160 will be described in detail. As control commands are
received into V.C. FIFO 166 or 167, they are placed into a respective FIFO section depending on the type of
transaction. Since V.C. FIFO 166 and 167 are identical, only V.C. FIFO 166 will be described in detail. V.C. FIFO
166 contains three separate FIFO sections corresponding to three types of transactions: posted, non-posted and
response. The control commands are placed into the respective FIFO in the order in which they were received.
However, to maintain ordering rules associated with the various bus or type of device that may have generated the
original command, the transactions may have to be processed out of order between different types of transactions.

As will be described in greater detail below in conjunction with FIG. 4 through FIG. 6, arbiter and buffer
management logic 168 may be configured to arbitrate which transaction may be processed first, second and so on
between transactions in V.C. FIFO 166 or V.C. FIFO 167. For example, a posted command which arrives in V.C.
FIFO 166 before a response command may have to be processed after the response command due to the ordering
rules. Additionally, arbiter and buffer management logic 168 may also arbitrate from which V.C. FIFO a transaction

may be processed based on a set of fairness rules and whether or not space is available in a receive buffer of the next

6

WO 03/034239 . PCT/US02/25278

/O node or the host bridge. If the destination is bridge 150 of FIG. 2, the particular arbitration rules may be
different than the arbitration rules described above.

It is noted that the illustrated embodiment described above is a specific implementation of a transaction
control unit. It is contemplated that alternative embodiments may include different implementations which may
perform additional functions.

Referring to FIG. 4, a block diagram of one embodiment of a scheduler is shown. Circuit components that
correspond to those shown in FIG. 3 are numbered identically for simplicity and clarity. A transaction scheduler
400 includes a virtual channel FIFO buffer 410 coupled to arbitration and fairness logic 450. Transaction scheduler
400 further includes virtual channel FIFO buffer 420 which is also coupled to arbitration and fairness logic 450.
Arbitration and fairness logic 450 is connected to a FIFO buffer 460, which is connected to buffer management
logic 470. The output of buffer management logic is latched by output register 480.

As described above in conjunction with FIG. 3, each of virtual channel FIFO buffers 410 and 420 may
receive control commands from a respective source input such as, for example, receiver 110 or bridge 150 of FIG. 2.

The control commands may be placed into virtual channel FIFO buffers 410 and 420 by the type of transaction the
control commands represent. Specifically, the control commands may represent either posted, non-posted or
response commands and thus the respective posted, non-posted or response queue.

In the illustrated embodiment, arbitration and fairness logic 450 includes arbitration units 430 and 440, and
fairness unit 445. Arbitration unit 430 may be configured to select one control command that is stored in virtual
channel FIFO buffer 410. As will be described further below, the selection process may include selecting one
winner by a predetermined arbitration algorithm. Likewise arbitration unit 440 may be configured to select one
control command that is stored in virtual channel FIFO buffer 420 by using a similar algorithm as arbitration unit
430. Fairness unit 445 may then select one of the winning transactions selected by arbitration units 430 and 440.
Fairness unit 445 may use a fairness algorithm based on whether the transaction is forwarded or injected.

Depending on the destination of the scheduler, arbitration units 430 and 440 may also contain logic (not shown)
which keeps track of buffer space in the corresponding transaction’s destinatién buffer, such as a receive buffer of
the next I/O node or in the host bridge of processor 10A of FIG.1.

In the illustrated embodiment, there may be a latency of three clock cycles to propagate a control command
through scheduler 400. A bypass 415 and a bypass 425 are shown to circumvent virtual channel FIFO buffer 410
and 420, respectively. When scheduler 400 receives a control command from a source and each queue within a
given virtual channel FIFO buffer is empty, there may be an opportunity to save a clock cycle by bypassing the
virtual channel FIFO buffer. For example, a non-posted control command is received at virtual channel FIFO buffer
410, which is currently empty. Logic within arbitration unit 430 may allow the non-posted control command to .
bypass virtual channel FIFO buffer 410 and be immediately placed in FIFO buffer 460 if arbitration unit 430
indicates that there is buffer space available at the transaction’s destination buffer. In addition, fairness unit 445 may
grant the bypass depending on the fairness algorithm as described above. Thus in the above example, a latency
reduction of one clock cycle may be realized. It is noted that although the illustrated embodiment is shown to have
three-clock cycle latency, it is contemplated that other embodiments may have fewer or more clock cycles of
latency. Additionally, the actual latency reductions realized by bypass 415 and 425 may be greater or smaller.

FIFO buffer 460 of FIG. 4 may receive the winning control commands. In the illustrated embodiment,

FIFO buffer 460 is a two-deep buffer, however it is contemplated that in other embodiments, FIFO buffer 460 may

7

WO 03/034239 o PCT/US02/25278

have more or less buffer locations.

Buffer management logic 470 is configured to keep track of buffer space in transmitter 130 or 140 or in
bridge 150 of FIG. 2. As transactions are stored in FIFO buffer 460, buffer management logic 470 checks the
availability of the next buffer and will either hold the control command until buffer space is available or allow it to
proceed to output register 480. Once the control command has been latched by output register 480, the respective
transaction source is notified that the transaction corresponding to the control command may be sent to transmitter
130 or 140 or to bridge 150 of FIG. 2, respectively.

Turning to FIG. 5, a block diagram of one embodiment of a scheduler including tagging logic is shown.
Scheduler 500 includes a tagging logic 510 which is coupled to a virtual channel FIFO buffer 505. Virtual channel
FIFO buffer 505 includes three separate queues corresponding to the three types of transactions: posted, non-posted
and response. A tag comparison/arbitration logic unit 520 is coupled to virtual channel FIFO buffer 505. In
addition an exploded view of virtual channel FIFO buffer 505 is also shown. The exploded view shows that each of
the non-posted and response queues have a corresponding tag. The posted queue however, has two tags: each one
corresponding to the non-posted and response queues, respectively.

Tagging logic 510 may assign a tag to each control command prior to the control command being stored in
virtual channel FIFO buffer 505. Control commands may be assigned tags in the order they are received from a
source unit such as receiver 110 or bridge 150 of FIG. 2. The tags may be appended to the control command.

When control commands reach the top location in virtual channel FIFO buffer 505, tag comparison
/arbitration logic unit 520 may be configured to arbitrate between the three virtual channels to pick a winning
control command. A winner is picked using an algorithm based on a set of ordering rules which may correspond to
the ordering rules of maintained by the peripheral buses connected to the I/O node. In one embodiment the ordering
rules may correspond to the PCI ordering rules. In another embodiment, the ordering rules may correspond to AGP
ordering rules.

In the illustrated embodiment, the tag may be four bits since virtual channel FIFO buffer 505 may be up to
16 locations deep. It is noted however that in other embodiments, virtual channel FIFO buffer 505 may contain other
numbers of locations and thus the tag may contain a corresponding number of bits. Tagging logic 510 may include
counter logic (not shown) which keeps track of the current tags for the non-posted and response control commands
which have been stored in virtual channel FIFO buffer 505. The tags may be assigned according to an algorithm
which increments the respective non-posted or response counters upon receipt of a posted control command if at
least one blockable non-posted or response control command was received previous to the current posted control
command and after a previous posted control command. As used herein, a non-posted or response control
command is blockable if a special bit is set in the respective control command identifying that the non-posted or
response control command may pass a posted control command in virtual channel FIFO buffer 505. Inone
embodiment, the special bit is referred to as a PassPW bit.

To illustrate the use of the tagging algorithm, Table 1 illustrates the receipt order and tagging of control
commands entering the three posted, non-posted and response queues. The first column shows the order of receipt
of the nine control commands. The second column shows the type of command received. The third column shows
the tag assigned to the non-posted and response commands and the fourth and fifth commands show the non-posted
and response commands counter values after they may be incremented by a posted control command. Since the

posted control command receives two tags, it receives both the tags shown in the current counter values for the

8

WO 03/034239 . PCT/US02/25278

respective non-posted and response counters. The exploded view of virtual channel FIFO buffer 505 illustrates how

the commands of Table 1 may be stored.

Table 1
Receive Control Pass Tag Non-Posted | Response
Order Command PW Value Counter Counter
Bit

1 Posted 1 0 0 0

2 Response 1 0 0 0 0

3 Posted 2 0 0 1

4 Non-Posted 1 0 0 0 1

5 Response 2 0 1 0 1

6 Non-Posted 2 0 0 0 1

7 Posted 3 0 1 2

8 Response 3 0 2 1 2

9 Non-Posted 3 0 1 1 2

Table 2 illustrates how the PassPW bit may affect the tagging of the received control commands shown in
Table 1. If the PassPW bit is set for a non-posted or response control command, the next posted control command
will not increment the respective counter. For example, in Table 2, the PassPW bit is set for Response 1, thus when
Posted 2 control command is received, the response counter is not incremented. However, the PassPW bit is set for
Non-posted 2, and the Posted 3 control command causes both the non-posted and response counters to increment.
This is because the Non-posted 1 control command was received with the PassPW bit clear after the last posted
control command and before the current posted control command, thus satisfying the tagging rules for incrementing
the counter. It is noted that although the PassPW bit is described as set to indicate that a non-posted or response
control command may pass a posted control command, it is contemplated that in other embodiments the logic may

be reversed.

Table 2
Receive Control Pass Tag Non-Posted | Response
Order Command PW Value Counter Counter
Bit

1 Posted 1 0 0 0

2 Response 1 1 0 0 0

3 Posted 2 0 0] 0

4 Non-Posted 1 0 0 0 0

5 Response 2 0 0 0 0

6 Non-Posted 2 1 0 0 0

7 Posted 3 0 1 1

8 Response 3 0 1 1 1

9 Non-Posted 3 0 1 1 1

WO 03/034239 . ' PCT/US02/25278

Referring back to FIG. 5, during arbitration, tag comparison and arbitration logic unit 520 is configured to
pick a winning control command from virtual channel FIFO buffer 505 by comparing the tags appended to each
control command. Additionally, prior to the tag comparison, tag comparison and arbitration logic unit 520 may
identify whether or not there is buffer space available at the next I/O node for each of the virtual channels. If any
virtual channel is blocked, then that channel does not participate in the arbitration for that cycle. If all three channels
are open for arbitration, then the arbitration takes place between the non-posted and response channels in a round
robin fashion and the posted channel is compared to the non-posted and response channels individually. Lastly, tag
comparison and arbitration logic unit 520 may use a fairness algorithm in deciding a winner. The fairness algorithm
will be described in greater detail below in conjunction with the description of FIG. 6.

Referring now to FIG. 6, a block diagram of one embodiment of a transaction scheduler including
starvation avoidance logic is shown. A transaction scheduler 600 includes a virtual channel FIFO buffer 610
coupled to an arbitration circuit 650. Transaction scheduler 600 further includes virtual channel FIFO buffer 620
which is also coupled to arbitration circuit 650. Arbitration circuit 650 is connected to a FIFO buffer 670, which is
connected to buffer management logic 680. The output of buffer management logic is latched by output register 690.

Similaf to the descriptions of FIG. 3 and FIG. 4 above, each of virtual channel FIFO buffers 610 and 620
may receive control commands from a respective source input such as, for example, receiver 110 or bridge 150 of
FIG. 2. The control commands may be stored in virtual channel FIFO buffers 610 and 620 according to the type of
transaction the control commands represent. For example, the control commands may represent posted, non-posted
or response commands and thus may be stored in the respective posted, non-posted or response queue.

In the illustrated embodiment, arbitration circuit 650 includes arbitration units 630 and 640, and fairness
circuit 645. During an arbitration cycle, arbitration units 630 and 640 may be configured to select a control
command stored within virtual channel FIFO buffers 610 and 620, respectively. In addition, fairness circuit 645
may provide selection conditions which may determine which of arbitration units 630 or 640 will select the winning
transaction. As will be described in greater detail below in conjunction with the description of FIG. 7, fairness
circuit 645 may use a fairness algorithm to establish arbitration priorities to distribute bandwidth. The fairness
algorithm may depend upon starvation avoidance logic determining when any transaction has been blocked for a
predetermined number of arbitration cycles.

Turning to FIG. 7, a block diagram of one embodiment of the fairness circuit of FIG. 6 is shown. Fairness
circuit 645 includes a fairness unit 700 including thirty-two 3-bit counters 0-31 which are coupled to an 8-bit
counter 705. A latch 710 is coupled counter 705. Insertion rate logic 715 is coupled to latch 710. Fairness circuit
645 also includes a starvation unit 750 which includes three virtual channel counters 755-757 coupled to a starvation
threshold register 760 and a transaction selection unit 775 coupled to fairness unit 700 and starvation unit 750.

In one embodiment, each time a transaction is forwarded through the tunnel, the 3-bit counter 0-31
corresponding to the I/O node that sent the transaction may be incremented. Additionally, counter 705 may be
incremented each time any of the 3-bit counters 0-31 are incremented. When one of the 3-bit counters 0-31
overflows, the value in counter 705 may be captured by latch 710. The captured value may represent the
downstream node transaction request rate at that particular point in time. Insertion rate logic 715 may then calculate
the allowable insertion rate for that node using the captured value.

Transaction selection unit 775 may cause a pointer in arbitration unit 630 or 640 of FIG. 6 to point to the

virtual channel buffer being considered during an arbitration cycle. There may be times when there are transactions

10

WO 03/034239 . PCT/US02/25278

in a virtual channel of a forwarded virtual channel buffer and transactions in the same virtual channel of an inserted
buffer. In FIG. 7, transaction selection unit 775 may alternately select the two virtual channel buffers according to
the priorities established by fairness unit 700. However in the event that a virtual channel becomes blocked by such
factors as lack of available buffer space at a transaction’s destination, arbitration logic may skip the blocked channel
and go to the next virtual channel while arbitration continues. When the blocked channel becomes available, there
may only be space available for the forwarded channel and since it may have priority over the inserted channel
according to the fairness algorithm, the transaction from the forwarded channel may be sent. Then the next time the
previously blocked channel becomes available, it may again not have the priority in the current arbitration cycle and
thus would be skipped again. This condition may persist and therefore “starve” the inserted virtual channel.
Depending upon the configuration of a particular node, it is contemplated that in other embodiments, the forwarded
channel may also become starved by an injected channel by similar events.

To avoid starving a given channel, starvation unit 750 may keep track of the number of times a transaction
is blocked. Each time transaction selection unit 775 determines which transaction is eligible for arbitration but is
blocked, transaction selection unit 775 causes the corresponding virtual channel counter 755-757 to increment.
Starvation threshold register 760 holds a value corresponding to the maximum number of times a channel may be
skipped during arbitration. The value stored in starvation threshold register 760 may be dynamically changed
depending on the calculated request rate at any given time. When any of the virtual channel counters 755-757 match
the value in starvation threshold register, the priority of the corresponding virtual channel may be changed so that
transaction selection unit 775 may cause the blocked transaction to be selected during a subsequent arbitration cycle.

Thus, by dynamically changing the priority, starvation of a particular channel may be avoided. It is noted that the
logic arrangement described is but one specific implementation. It is contemplated that alternative embodiments
may use alternative logic arrangements including different numbers of counters and more or less bits in those
counters to achieve the functionality described above.

Numerous variations and modifications will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations

and modifications.

INDUSTRIAL APPLICABILITY

This invention may generally be applicable to computer system input/output (I/O) and, more particularly, to

transaction handling in an I/O node.

11

WO 03/034239 .] PCT/US02/25278
WHAT IS CLAIMED IS:

1. An input/output node (20,30,40) for a computer system comprising:

a first receiver unit (110) configured to receive a first command on a first communication path;

a first transmitter unit (140) coupled to transmit a first corresponding command that corresponds to said
first command on a second communication path;

a second receiver unit (120) configured to receive a second command on a third communication path;

a second transmitter unit (130) coupled to transmit a second corresponding command that corresponds to
said second command on a fourth communication path; and

a bridge unit (150) coupled to receive selected commands from said first receiver and said second receiver
and configured to transmit commands corresponding to said selected commands upon a peripheral

bus (152).

2. The input/output node as recited in claim 1 further comprising a control unit (100) coupled to control the
conveyance of commands from said first communication path to said second communication path and to said
peripheral bus, and from said third communication path to said fourth communication path and to said peripheral

bus.

3. The input/output node as recited in claim 2, wherein said control unit is further configured to control the
conveyance of commands from said peripheral bus to said second communication path and said fourth

communication path.

4. The input/output node as recited in claim 3, wherein said bridge unit is further configured to selectively
provide commands corresponding to commands received from said peripheral bus to said first transmitter and said

second transmitter.

5. The input/output node as recited in claim 4, wherein said control unit is further configured to selectively
control the conveyance of said commands based upon a plurality of control commands received from said first

receiver, said second receiver and said bridge unit.

6. The input/output node as recited in claim 5, wherein each of said control commands contains a subset of a

corresponding command received by said first and second receivers and said bridge unit.

7. The input/output node as recited in claim 6, wherein said control unit is further configured to receive said

control commands via a control command bus.

8. A computer system comprising:
one or more processors (10A-D);
one or more input/output nodes (20, 30, 40) connected together and to said one or more processors, each of

said input/output nodes including:

12

WO 03/034239 i PCT/US02/25278

a first receiver unit (110) configured to receive a first command on a first communication path;

a first transmitter unit (140) coupled to transmit a first corresponding command that corresponds
to said first command on a second communication path;

a second receiver unit (120) configured to receive a second command on a third communication
path;

a second transmitter unit (130) coupled to transmit a second corresponding command that
corresponds to said second command on a fourth communication path; and

a bridge unit (150) coupled to receive selected commands from said first receiver and said second
receiver and configured to transmit commands corresponding to said selected commands

upon a peripheral bus (152).

9. The computer system as recited in claim 8, wherein said input/output node further comprising a control unit
(100) coupled to control the conveyance of commands from said first communication path to said second
communication path and to said peripheral bus, and from said third communication path to said fourth

communication path and to said peripheral bus.
10. The computer system as recited in claim 9, wherein said control unit is further configured to control the

conveyance of commands from said peripheral bus to said second communication path and said fourth

communication path.

13

WO 03/034239 PCT/US02/25278

177
' | PROCESSOR [*-——~-F—-—- PROCESSOR | !
| 0C oA - 108 |
|) .' 4 E
: I COHERENT !
! ®/PACKETBUS”© |
! L P ’
E i ! * |
i | PROCESSOR [~~~ —= PRO?SESOR
| W A+ s
i :
/O PACKET BUS
50A
Y
JONODE |——PERIPHERALBUS 25A
L | orRPHERALBUS 258
/O PACKET BUS
508
VON
0 3§DE ———GRAPHICS BUS 35
/0 PACKET BUS
50C
'/O%}DE ——PERIPHERAL BUS 45

FIG. 1 T l

PCT/US02/25278

WO 03/034239

HLvd
NOILYOINNWWOD

HLYd
NOLLYOINNWIWOD

~-—1

+

-<—

5T C
SN WHIHdINId
|
051
(390148)
JOVAYALNI TYHIHdNEId
i —
»I ZZisna
S—— ANYININOD 4
0T le—d ONVAWOD (114}
v TZTsng g e
HALLINSNVYL L« : — NV ANOD——— HIAEFORY
107 SNg
aNYININOD
T04LNOD
Torsng — 701 Sng
ANVININOD)——» __ aNVWNOD
301 W
T04LNOD LINN TOHLNOD NOILOYSNY YL 104LNOD
ZTisng
ANYINNOD
o« . - L
- 107 SNd 107 SNg o
8 =N B IV
N3LLINSNYNL _ NEINESES
A ITT SNg
ANYININOD

ol

HLivd
NOILYOINNWWOD

HLYd
NOILYJINNWNOD

WO 03/034239

FROM
RECEIVER
B

FROM
BRIDGE

FROM
RECEIVER
A

FROM
BRIDGE

FROM
RECEIVER

A -

FROM
RECEIVER
B

PCT/US02/25278

TO

» TRANSMITTER
A

TO
» TRANSMITTER

B

TO

37

V.C.

FIFO

166 ARBITRATION

— UNIT AND
BUFFER LOGIC

V.C ' 168

FIFO —

28 SCHEDULER 160

V.C.

FIFO [

176 ARBITRATION

— UNIT AND
BUFFER LOGIC

V.C. 178

FIFO —

77 SCHEDULER 170

V.C.

FIFO [

186 ARBITRATION

— UNIT AND
BUFFER LOGIC

V.C. 188

FIFO —

187

SCHEDULER 180

TRANSACTION CONTROL UNIT 100

FIG. 3

> BRIDGE

PCT/US02/25278

WO 03/034239

S

-

v Ol

1901
LINIWIOVNYIA
d344n4

2'1304n0S |
NOILOVSNVYL

08%
J31S193Y
1NdLNno

0% \

_
09¥%
43448
0414

o4

<t

SSVdAG—

5%
| 91901 $53INYIV4

| GNV NOILYH1ig8y 3SNOJSIY
_ o

_ LINN Q3LSOdNON
| NOLLYLIgSV

d31sod

LINN
SSINYNVA

oz

¢ 304N0S
NOILOVSNvHL

d344N8 0414 TINNVHO TWNLYIA

LINN
NOILVHLIgHY

Sy SSVdAE—
3ISNOJS3Y
J3LSOdNON 1 304N0S
e NOILOVSNV YL
d3180d
ﬁ/ 0Ly
d344N8 0414 TINNVHO TWNLYIA

PCT/US02/25278

WO 03/034239

7

LINA 21907

NOLLYHLIEY
. INOSIIY OO
G 'Ol 100 @
¥344n8 0414 0
TANNVHO TVNLYIA
G0S —
0 by o 0 by 0 ///////: gl
o] % Can L] %y } v
/
1Rz tan 2| Oy 4 7
\\
. . . . 7/
/
. 21907
. . . : % ONIDOV.L
\\
Gh -
dN d dN L dSH ONVAIWOD
1 TOHLNOD

PCT/US02/25278

WO 03/034239

S

-

2'1309N0S |
NOILOVSNY¥L

21901
INIWIOVNYIN
¥344nd

9 Ol

069
d31S193Y
1NdLno

009

049
43448
04l

f 0c9

LINA d344Ng 0414 TINNVHI TWNLHIA

@ SSINYIVA

| = " " — — — —

V%% _
| LINDYID NOLLYYLIGYY |
_ 3SNOJSIY
_
_ Q3LSOdNON | Mwwm_mwvw
| NOILvYLIgYY

NOILOVSNYHL

_ Q3Lsod
|
_
|
|

|
_
_
| ISNOISTY
| A

HIAFOTY)
, LINN GAUSOANON L 954005
| NOILYYLIgEY | NOILOVSNV¥L
o , 3Lsod

Uoio

d344N48 Od1d TINNVHD TYNLYIA

WO 03/034239 PCT/US02/25278
/7
e 645
3BIT FAIRNESS u%g
COUNTER ==
0
_ - OVERFLOW
3BIT \/\
COUNTER "\
\
[\
1 “~e N\ 4" COUNTER
> 7 0
3BIT 7
) Rad /,’ VALUE
/ /
: : /
. V4
/
/
31
Y
3BIT INSERTION
COUNTER RATE LOGIC
715
STARVATION UNIT
750
Y
VIRTUAL’ VIRTUAL VIRTUAL TRANSACTION
CHANNEL - CHANNEL CHANNEL | SELECTION
COUNTER COUNTER COUNTER UNIT
4] 756 757 775
| l
N ! e TO
~ | 7 ARBITRATION
RN UNITS
\\I(/ ¢
STARVATION THRESHOLD REGISTER |
760

FIG. 7

IB‘ERNATIONAL SEARCH REPORT

tional Application No

PCT/US 02/25278

A. CLASSIFICATION OF SUBJECT MATTER
1PE 7 CGO0BF13/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F HOAL

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

WPI Data, EPO-Internal, PAJ

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Chation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y WO 99 16195 A (EMULEX) 1-10
1 April 1999 (1999-04-01)
page 6, line 10 -page 8, line 15; figure 3
Y R. W. KEMBEL: "In-Depth Fibre Channel 1-10
Arbitrated Loop"
1997 , SOLUTION TECHNOLOGY , BOULDER
CREEK, CA, US XP002224421
page 270, paragraph 5 -page 275, paragraph
2; figures 110-112
A US 5 751 951 A (OSBORNE ET AL) 1-10
12 May 1998 (1998-05-12)
column 14, line 21 - line 61; figure 3A
A US 5 809 328 A (NOGALES ET AL) 1-10
15 September 1998 (1998-09-15)
column 2, line 63 -column 5, line 51

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents .

*A’ document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier document but published on or afler the international
filing date

*L' document which may throw doubts on priotity claim(s) or
which Is ciled to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

"T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered 1o
involve an inventive step when the document is taken alone

"Y* document of particular relevance; the claimed invention
cannol be considered to involve an inventive step when the
document is combined with one or more other such docu-—
imett‘ns, guch combination being obvious to a person skilled
n the art.

*&" document member of the same patent family

Date of the actual completion of the international search

10 December 2002

Date of mailing of the international search report

02/01/2003

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Gil, S

Form PCT/ISA/210 (second sheet) (July 1992)

I RNATIONAL SEARCH REPORT

Information on patent famlly members

tional Application No

,T,r

PCT/US 02/25278

Patent document Publication Patent family Publication

cited in search report date member(s) date

W0 9916195 A 01-04-1999 US 6005849 A 21-12-1999
CA 2304340 Al 01-04-1999
EP 1021879 Al 26-07-2000
JP 2001517895 T 09-10-2001
Wo 9916195 Al 01-04-1999

US 5751951 A 12-05-1998 JP 2990345 B2 13-12-1999
JP 9171492 A 30-06-1997

US 5809328 A 15-09-1998 WO 9723832 Al 03-07-1997

Form PCT/ISA/210 {patent {amily annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

