

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/082288 A1

(43) International Publication Date
5 June 2014 (05.06.2014)

WIPO | PCT

(51) International Patent Classification:
G06F 17/30 (2006.01)

(74) Agent: LIU, SHEN & ASSOCIATES; A0601, Huibin Building, No.8 Beichen Dong Street, Chaoyang District, Beijing 100101 (CN).

(21) International Application Number:

PCT/CN2012/085637

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

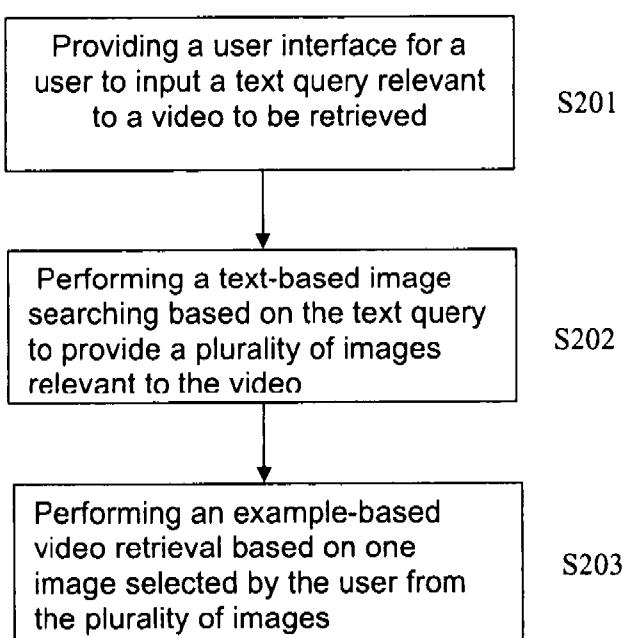
30 November 2012 (30.11.2012)

(25) Filing Language:

English

(26) Publication Language:

English


(71) Applicant: THOMSON LICENSING [FR/FR]; 1-5 rue Jeanne d'Arc, F-92130 Issy-Les-Moulineaux (FR).

(72) Inventors: ZHANG, Yanfeng; 8th Floor, Building A, Technology Fortune Center, No. 8 Xueqing Road, Haidian District, Beijing 100192 (CN). ZHANG, Zhigang; 8th Floor, Building A, Technology Fortune Center, No. 8 Xueqing Road, Haidian District, Beijing 100192 (CN). XU, Jun; 8th Floor, Building A, Technology Fortune Center, No. 8 Xueqing Road, Haidian District, Beijing 100192 (CN).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR VIDEO RETRIEVAL

(57) Abstract: The invention provides a method and apparatus for video retrieval. The method comprises: providing a user interface for a user to input a text query relevant to a video to be retrieved; carrying out a text-based image searching based on the text query to provide a plurality of images relevant to the video; and carrying out an example-based video retrieval based on one image selected by the user from the plurality of images.

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Published:
ML, MR, NE, SN, TD, TG).

— *with international search report (Art. 21(3))*

METHOD AND APPARATUS FOR VIDEO RETRIEVAL

TECHNICAL FIELD

The present invention relates to a method and apparatus for video retrieval.

5

BACKGROUND

Conventional video retrieval systems, such as Google video searching, Youtube, etc., solely rely on textual queries inputted by users. Based on a searching text (e.g. keyword) inputted by a user, a conventional video retrieval system will search 10 relevant video materials by executing text matching on title, annotation or text surrounding. Such text-based method has two disadvantages. One is that users are often reluctant to input such text information, especially to input detail description for the whole video document. The other disadvantage is that the quality of inputted 15 annotations, most of which just gives very brief description of the video document, is normally not good.

Many research activities have been done on low-level content-based video retrieval, such as Informedia Digital Video Library project of Carnegie Mellon University (<http://www.informedia.cs.cmu.edu/>). This project tries to achieve machine 20 understanding of video and film media, including all aspects of search, retrieval, visualization and summarization. The base technology developed combines speech, image and natural language understanding to automatically transcribe, segment and index linear video for intelligent search and image retrieval.

Example-based searching methods have been widely investigated for describing 25 searching intention of users in low-level content-based multimedia retrieval. For example, with an image example or a clip of melody, the similar pictures or the whole music containing the melody can be retrieved from corresponding multimedia database. However, in low-level content-based video retrieval, it is difficult for users to describe and present their video searching intention. The most convenient way for 30 people to is to use words or sentences to present it. Further, in many real world applications, it is hard to find an example to describe the user's information needs. Therefore, for low-level content based video retrieval, there exists a big semantic gap

between users' intention description and the capacity of retrieval system to understand. Users mostly prefer to input their text-style query requirement, while the content-based video retrieval methods are mainly based on inputted example query. It is difficult for users to make or find a suitable query example for video retrieval.

5 To bridge the semantic gap between low-level features and the searching intention of a user, research activities have been done to annotate multimedia using text either by annotation inputting manually or by content recognition automatically. Manual annotation presents the same shortages with the text-based retrieval. Machine automatic annotation is too difficult, which seems unlikely to be solved in a 10 near term. Abstract keywords are almost impossible to correlate to image content.

SUMMARY

According one aspect of the invention, a method for video retrieval is provided. The method comprises: providing a user interface for a user to input a text query 15 relevant to a video to be retrieved; carrying out a text-based image searching based on the text query to provide a plurality of images relevant to the video; and carrying out an example-based video retrieval based on one image selected by the user from the plurality of images.

According one aspect of the invention, an apparatus for video retrieval is 20 provided. The apparatus comprises: means for providing a user interface for a user to input a text query relevant to a video to be retrieved; means for carrying out a text-based image searching in an image database based on the text query inputted by the user to provide a plurality of images relevant to the video; and means for carrying out 25 an example-based video retrieval in a video database based on one image selected by the user from the plurality of images.

It is to be understood that more aspects and advantages of the invention will be found in the following detailed description of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide further understanding of the embodiments of the invention together with the description which serves to explain the principle of the embodiments. The invention is not limited to the embodiments.

In the drawings:

5 Figure 1 is an exemplary diagram showing a system for video retrieval according to an embodiment of the invention;

Figure 2 is a flow chart of a method for video retrieval according to an embodiment of the invention;

10 Figure 3 is an exemplary diagram showing a video query dialog for the user to input a text query;

Figure 4 is an exemplary diagram showing an example of a photo in Flickr with metadata that could be used for the text-based image searching; and

Figure 5 is a block diagram of an apparatus for video retrieval according to an embodiment of the invention;

15

DETAILED DESCRIPTION

An embodiment of the present invention will now be described in detail in conjunction with the drawings. In the following description, some detailed descriptions of known functions and configurations may be omitted for conciseness.

20 In view of the above problem in the conventional technologies, an embodiment of the invention provides a method and apparatus for video retrieval.

Figure 1 is an exemplary diagram showing a system for video retrieval according to an embodiment of the invention.

25 As shown in Figure 1, the video retrieval system according to an embodiment of the invention proposes to have text-based image searching first to provide a plurality of images relevant to the video, from which one image is selected by the user to carry out an example-based video retrieval to provide an output of the video retrieval.

Next, the embodiment of the present invention will be described in more details.

30 Figure 2 is a flow chart of a method for video retrieval according to an embodiment of the invention.

As shown in Figure 2, the method for video retrieval according to an embodiment of the invention comprises the following steps:

S201: providing a user interface for a user to input a text query relevant to a video to be retrieved;

5 S202: carrying out a text-based image searching based on the text query to provide a plurality of images relevant to the video;

S203: carrying out an example-based video retrieval based on one image selected by the user from the plurality of images.

Next, the method for video retrieval according to an embodiment of the invention
10 will be described in details.

With the above step S101, a user interface could be provided for a user of video retrieval to input a text query relevant to a video to be retrieved. As an example, the user interface could be a video query dialog for the user to input a text query relevant to the video. Figure 3 is an exemplary diagram showing a video query dialog for the
15 user to input a text query. It could be appreciated that other appropriate forms of user interface can also be applied. The text query is a description of the content of the video in the form of words or sentences. The reason for using the text query is that normally the most convenient way for a user of video retrieval to express his/her intention is to use text description, instead of preparing image examples or sketching
20 a target.

With the step S102, a text-based image searching is carried out based on the text query inputted by the user to provide a plurality of images relevant to the video. The text-based image searching can be executed on external image database, such as image sharing social networks and image searching engines, or on internal image
25 database, such as the user's own image example library. It could be appreciated that, when external image database is used, API (Application Programming Interface) requested by the database should be used. It should be noted that any appropriate technologies in this respect can be used for the text-based image searching.

Flickr is one of the image sharing social networks that could be used for the text-based image searching. When Flickr is used in step S102, the text-based image searching can be executed, for example, by the text matching on the image
30

annotation added by photo providers in Flickr. Photos in Flickr contain different types of metadata, ranging from technical details to more subjective information. At a low level, information concerns the camera, shutter speed, rotation, etc. At a higher level, a user that uploaded a photo onto Flickr can add a title and relevant description, 5 which are more likely to be used to describe the image in the photo as a whole. Figure 4 is an exemplary diagram showing an example of a photo in Flickr with metadata that could be used for the text-based image searching. A photo of swan is shown in Figure 4, with title and relevant description of the photo, added perhaps by the image provider. A text matching between the text query inputted by the user and 10 the title and relevant description of the photo is carried out to estimate whether the image in the phone is relevant to the video to be retrieved.

Known image searching engines include Google Image Searching, Yahoo Image, Bing Image, etc. When Google Image Searching is used in step S102, the text-based image searching can be executed, for example, by the surrounding text searched by 15 Google image searching. Text in a webpage which contains an image is one example of the above-mentioned surrounding text. Google Image Searching tries to find the images whose surrounding text information has relevancy with the keyword query inputted by a user.

When the text-based image searching is executed on internal image database, 20 text annotation and text tags added by the builder of internal image database can be used. The use of tags permits the builder to describe what he thinks is relevant to the image using simple keyword combinations.

One relevant image can be selected from the searching result of the step S102, which may contain a plurality of images, as an input for the following video retrieval. 25 In this respect, since some image sharing social networks and image search engines can provide ranking mechanism for the text-based image searching results according to the relevancy of the images, it is possible to automatically select the relevant image. However, preferably, the searching result of the step S102 is displayed to the user with an appropriate user interface for the user to browse and select the most 30 relevant image as an input for the following video retrieval. The reason why the embodiment of the invention recommends manual selection by the user is that it is

still very difficult for a machine (image sharing social networks and image search engines) to fully understand the query intention and select the most relevant image better than the user.

It could be appreciated that if the user is not satisfied with any images in the 5 result of the step S101, the process can go back to step S101 for the user to revise the text query or input a new text query.

Then with the step S103, an example-based video retrieval is carried out based on the image selected by the user.

Some conventional methods have been developed for the purpose of example-10 based video retrieval, including for example spoken document retrieval, VOCR (Video Optical Character Recognition) and image similarity matching.

With spoken document retrieval, a textual representation of the audio content from a video can be obtained through automatic speech recognition. But a limitation of the usage of spoken document retrieval is that a clear and recognizable voice in 15 the video materials is required.

With VOCR, a textual representation of video is obtained by reading the text that is presented in the video image. Then retrieval is carried out based on text (keyword). But in order to apply VOCR, there must exist some recognizable text information in the video. That is one limitation for the usage of VOCR.

20 The image similarity matching is an example-based image retrieval method which has been immigrated into video retrieval field. The image search engine of the image similarity matching can accept a deliberately prepared image example and then use the example to find the similar images from an image database. When the method is used in video retrieval, the image example is used to find the similar key frames which have been extracted from a video. So far there was no large-scale and 25 standardized method on how to evaluate the similarity of two images. Most of the used methods in this respect are based on features such as color, texture and shape that are extracted from the image pixels.

It could be appreciated that the above methods can be combined to form more 30 complex method for video retrieval.

In the embodiment of the invention, since the input to the video retrieval contains images selected by the user from the searching result of the step S102, it is preferably to apply the image similarity matching method for the example-based video retrieval.

5 Next, a detailed description will be given to the example-based video retrieval with the image similarity matching method.

It is known that a video, before stored into a database, will be subjected to a video structure parsing including segment and key frame detection. The segment is used to cut the video into individual scenes. Each scene consists of a series of 10 consecutive frames and those frames which are filmed in the same location or share thematic content will be grouped together. The Key frame detection is to find a typical image from an individual scene as the indexing image. Conventional video segment and key frame extraction algorithms could be used in this respect. For example, shot boundary detection algorithm is such a solution which can segment the video into 15 frames with similar visual contents depending on visual information contained in the video frames. After extraction of the key frame, metadata is added to each key frame. The metadata presents which video the key frame has been extracted and the concrete position of the key frame in a specific video.

Then the degree of similarity between the features of the search query (the 20 image selected by the user) and those of key frames of a video stored in the database can be computed by using a matching algorithm, which decides the rank of relevancy of retrieved video. There are conventional image matching algorithms known in the art. Traditional methods for content-based image retrieval are based on a vector model. In these methods, an image is represented by a set of features and 25 the difference between two images is measured through a distance, usually a Euclidean distance, between their feature vectors. The distance decides the similarity degree of the two images, and also decides the rank of the corresponding video. Most image retrieval systems are based on features such as color, texture, and shape that are extracted from image pixels.

30 After the similar key frames are found and ranked, the metadata added in video structure parsing phase, can be used to decide which videos should be retrieved, the

right first frame of each video, and the ranks of the relevancy between each video with the query of the user. Then, a list of retrieved video documents, which can be arranged according a corresponding ranking, is presented to the user.

Figure 5 is a block diagram of an apparatus for video retrieval according to an embodiment of the invention.

As shown in Figure 5, the apparatus for video retrieval 500 comprises a user interface providing unit 501 for providing a user interface for a user to input a text query relevant to a video to be retrieved; an image searching unit 502 for carrying out a text-based image searching in an image database based on the text query inputted by the user to provide a plurality of images relevant to the video; and a video retrieval unit 503 for carrying out an example-based video retrieval in a video database based on one image selected by the user from the plurality of images.

As an example, the user interface providing unit 501 can provide a video query dialog for the user to input a text query relevant to the video.

As described in the method for video retrieval, the image database could be an internal image database, such as an image example library of the user. The image database could also be an external image database, such as image sharing social networks and image searching engines. In this case the image searching unit 502 is provided with corresponding API (Application Programming Interface) requested by the external image database.

The video retrieval unit 503 carries out the example-based video retrieval with an image similarity matching algorithm. In this case, key frames of a video in the video database need to be provided with metadata that presents which video the key frame has been extracted and the concrete position of the key frame in a specific video.

The metadata can be obtained by a video structure parsing made to the video data before stored into the database.

The apparatus for video retrieval 500 can also comprise a displaying unit to display the example-based video retrieval result to the user in an appropriate form. The result of the video retrieval can be displayed to the user according to the ranking of relevancy of a video in the result.

It is to be understood that the present invention may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof.

CLAIMS

1. A method for video retrieval, comprising:

5 providing a user interface for a user to input a text query relevant to a video to be retrieved (S201);

carrying out a text-based image searching based on the text query to provide a plurality of images relevant to the video (S202);

10 carrying out an example-based video retrieval based on one image selected by the user from the plurality of images(S203).

2. The method according to claim 1, wherein the user interface is a video query dialog.

15 3. The method according to claim 1, wherein the text-based image searching is executed by a text matching between the text query and metadata of an image.

4. The method according to claim 3, wherein the metadata comprises text annotation, surrounding text and text tag of the image.

20

5. The method according to claim 1, wherein the example-based video retrieval is executed by image similarity matching between a feature of the image selected by the user and that of a key frame of a video.

25 6. The method according to claim 5, wherein the feature comprises a color, a texture and a shape which are extracted from the image pixels of the key frame.

7. The method according to claim 1, further comprising:

30 presenting the result of the example-based video retrieval to the user according to the ranking of relevancy of a video in the result.

8. An apparatus (500) for video retrieval, comprising:
means (501) for providing a user interface for a user to input a text query relevant to a video to be retrieved;
means (502) for carrying out a text-based image searching in an image database
5 based on the text query inputted by the user to provide a plurality of images relevant to the video; and
means (503) for carrying out an example-based video retrieval in a video database based on one image selected by the user from the plurality of images.

10 9. The apparatus (500) according to claim 8, wherein the user interface is a video query dialog.

10. The apparatus (500) according to claim 8, wherein the image database is an external database and means (502) for carrying out a text-based image searching
15 comprises an Application Programming Interface with the image database.

11. The apparatus (500) according to claim 8, wherein means (503) for carrying out an example-based video retrieval carries an image similarity matching between a feature of the image selected by the user and that of a key frame of a video in the
20 video database.

12. The apparatus (500) according to claim 11, wherein the example-based video retrieval is executed by image similarity matching between a feature of the image selected by the user and that of a key frame of a video.

25

13. The apparatus (500) according to claim 12, wherein the feature comprises a color, a texture and a shape which are extracted from the image pixels of the key frame.

30 14. The apparatus (500) according to claim 8, further comprising means for displaying the result of the example-based video retrieval to the user.

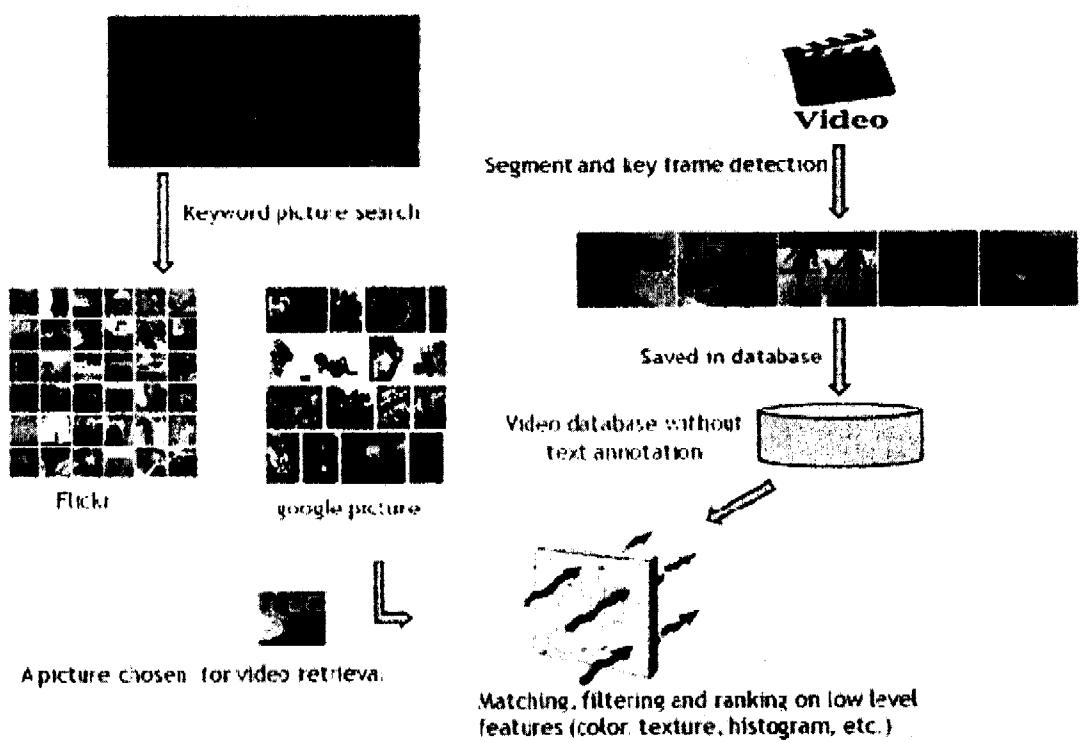


Fig.1

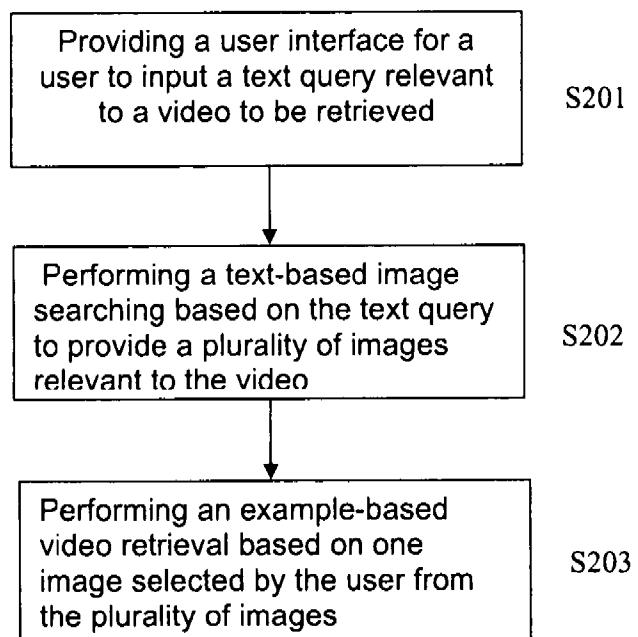


Fig.2

Please input text query to search

Fig.3

Title

Swans and their eggs

On our walk along the Oxford canal today we spotted two swans around their nest with 4 eggs. I hope

description

Fig.4

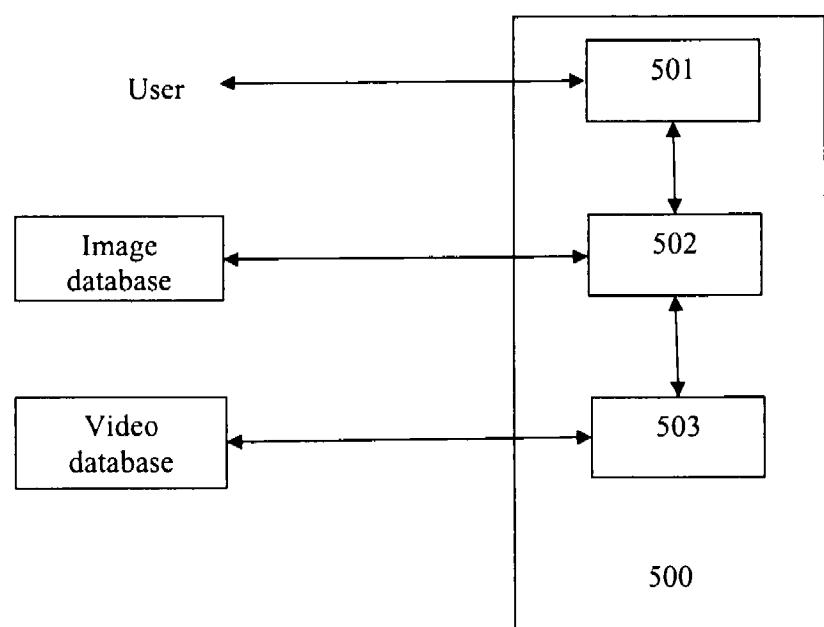


Fig.5

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2012/085637

A. CLASSIFICATION OF SUBJECT MATTER

G06F 17/30 (2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G06F 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CPRS; CNKI; WPI; EPODOC: text video retrieval query metadata image pixel match dialog input similarity search

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	CN 101021855 A (BAO D) 22 Aug. 2007(22.08.2007) Abstract, Description Page 10, the last paragraph, Page 11, paragraphs 7-9, Page 13, the last three paragraphs, Page 15, paragraph 3, claim 1, figure 3	1, 6, 8, 13-14
A		2-5, 7, 9-12
A	CN 101369281 A (HUBEI KECHUANG GAOXIN NETWORK VIDEO CO LTD) 18 Feb. 2009 (18.02.2009) the whole document	1-14

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

- “A” document defining the general state of the art which is not considered to be of particular relevance
- “E” earlier application or patent but published on or after the international filing date
- “L” document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
- “O” document referring to an oral disclosure, use, exhibition or other means
- “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search
10 Aug. 2013(10.08.2013)

Date of mailing of the international search report
12 Sep. 2013 (12.09.2013)

Name and mailing address of the ISA/CN
The State Intellectual Property Office, the P.R.China
6 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China
100088
Facsimile No. 86-10-62019451

Authorized officer
HAN, Yan
Telephone No. (86-10)62411764

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CN2012/085637

Patent Documents referred in the Report	Publication Date	Patent Family	Publication Date
CN 101021855 A	22.08.2007	CN 101021855 B	07.04.2010
CN 101369281 A	18.02.2009	none	