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generated by X-rays received on the detector element. This detection can be performed in current- integrating/energy -integrating
mode.
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DESCRIPTION

SPECTRAL X-RAY DETECTORS WITH DYNAMIC ELECTRONIC CONTROL AND
COMPUTATIONAL METHODS

CROSS-REFERENCE TO RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application Serial No.
62/107,036, filed January 23, 2015, and U.S. Provisional Application Serial No. 62/150,887
filed April 22, 2015, both of which are incorporated herein by reference in their entirety,

including any figures, tables, and drawings.

BACKGROUND OF INVENTION

Computed Tomography (CT) is a major tool in diagnostic imaging. X-ray detection
technology typically uses energy-integrating detectors that add electrical signals, from
interactions between an X-ray beam and a material of the detector, over the whole spectrum.
Energy-integrating detectors often lose spectral information. Spectral CT (SCT) has
advantages over conventional CT by offering detailed spectral information for material
decomposition. SCT can also reduce beam-hardening artifacts and radiation dose. However,
related art SCT is slower, less stable, and much more expensive than conventional CT.

Conventional CT is based on energy-integrating and/or current-integrating detectors
for data acquisition. With photon-counting detectors, SCT can offer additional spectral
information for diagnosis, such as discriminating tissues and differentiating calcium and
iodine. Related art commercial dual-energy CT technologies include a dual-source CT
system from Siemens, a dual-kVp system from GE, and a dual-layer-detector-based system
from Philips. These scanners are not for SCT systems because only two material basis

functions can be extracted.

BRIEF SUMMARY
The subject invention provides novel and advantageous methods and systems for
performing imaging, such as computed tomography (CT) imaging (e.g., spectral CT (SCT)
imaging or energy/current integrating CT imaging). Electrical connectors (e.g., electrodes)

can be connected to appropriate surface sites of a detector element of a CT scanner to capture
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nearby electron-hole pairs generated by X-rays received on the detector element. The
spectral information of interacting X-ray photons can be related to the site/depth of the
interaction between X-rays and the detector material. This process can be accurately
modeled, quantified, and/or inverted, according to the penetration/interaction location of the
X-rays inside the detector element (e.g., a semiconductor sensor) for direct X-ray detection.
This can be based on, for example, the radiative transport equation or its approximation. This
detection can be done in the current-/energy-integrating mode.

In an embodiment, an imaging system can include: a CT scanner including an X-ray
source; and a detector for receiving X-ray radiation from the X-ray source after it passes
through a sample to be imaged. The detector can include a first pair of electrodes and a
second pair of electrodes disposed thereon and configured to provide a first voltage and a
second voltage, respectively, to the detector. The detector can include a first layer and a
second layer, and the first and second pairs of electrodes can be disposed on and apply the
first voltage and the second voltage to the first and second layers, respectively.

In another embodiment, a method of imaging can include: providing X-ray radiation
to a sample to be imaged; collecting the X-ray radiation with a detector; providing a first
voltage to the detector using a first pair of electrodes disposed thereon; and providing a
second voltage to the detector using a second pair of electrodes disposed thereon. The
detector can include a first layer and a second layer, and the first and second pairs of
electrodes can be disposed on and apply the first voltage and the second voltage to the first

and second layers, respectively.

BRIEF DESCRITPION OF THE DRAWINGS

Figure 1A shows a detector with electrodes disposed parallel to the direction of
incoming X-rays, and such that the incoming X-rays are first incident on a side of the
detector not having any electrodes disposed thereon. The top electrodes (left and right) as
depicted in the figure are an electrode pair, and the bottom two electrodes (left and right) as
depicted in the figure are an electrode pair. The electric field lines are based on the voltages
of both electrode pairs being equal (V1=V2). The inset shows a zoomed-in view of the
electric field lines.

Figure 1B shows the detector of Figure 1A but with a close-up view of the electric

field lines.
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Figure 1C shows a detector with electrodes disposed parallel to the direction of
incoming X-rays, and such that the incoming X-rays are first incident on a side of the
detector not having any electrodes disposed thereon. The top electrodes (left and right) as
depicted in the figure are an electrode pair, and the bottom two electrodes (left and right) as
depicted in the figure are an electrode pair. The electric field lines are based on the voltage
of the bottom pair being greater than that of the top pair (V2>V1). The inset shows a
zoomed-in view of the electric field lines.

Figure 1D shows the detector of Figure 1C but with a close-up view of the electric
field lines.

Figure 1E shows a detector with electrodes disposed perpendicular to the direction of
incoming X-rays, and such that the incoming X-rays are first incident on a side of the
detector having electrodes disposed thereon. The top electrodes (left and right) as depicted in
the figure are an electrode pair, and the bottom two electrodes (left and right) as depicted in
the figure are an electrode pair. The electric field lines are based on the voltages of both
electrode pairs being equal (V1=V2). The inset shows a zoomed-in view of the electric field
lines.

Figure 1F shows the detector of Figure 1E but with a close-up view of the electric
field lines.

Figure 1G shows a detector with electrodes disposed perpendicular to the direction of
incoming X-rays, and such that the incoming X-rays are first incident on a side of the
detector having electrodes disposed thereon. The top electrodes (left and right) as depicted in
the figure are an electrode pair, and the bottom two electrodes (left and right) as depicted in
the figure are an electrode pair. The electric field lines are based on the voltage of the bottom
pair being greater than that of the top pair (V2>V1). The inset shows a zoomed-in view of
the electric field lines.

Figure 1H shows the detector of Figure 1G but with a close-up view of the electric
field lines.

Figure 2 shows a detector having four layers and with four voltages being applied
with electrodes, one voltage applied to each layer. Each current (I1, 12, I3, and 14) is that
flowing into the respective circle representing the voltage (V1, V2, V3, and V4). The four
layers have thicknesses H1, H2, H3, and H4, respectively. The incoming X-rays first go

through the first layer, then the second, and so on.
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Figure 3 shows a schematic view of direct detection of X-ray CT for third generation
geometry. The detector is shown at the bottom under the human subject being imaged.

Figure 4A shows a graphical representation of a ratio of 2:1 between number of
integrating bins and number of counting bins for a numerical simulation.

Figure 4B shows a graphical representation of a ratio of 3:1 between number of
integrating bins and number of counting bins for a numerical simulation.

Figure 4C shows a graphical representation of a ratio of 4:1 between number of
integrating bins and number of counting bins for a numerical simulation.

Figure SA shows a true image of gadolinium (Gd) contrast agent at a concentration of
0.3 mol/L.

Figure 5B shows a reconstructed image using a ratio of 1:1 between number of
integrating bins and number of counting bins for a numerical simulation.

Figure 5C shows a reconstructed image using a ratio of 2:1 between number of
integrating bins and number of counting bins for a numerical simulation.

Figure 5D shows a reconstructed image using a ratio of 3:1 between number of
integrating bins and number of counting bins for a numerical simulation.

Figure 6 shows a schematic view of an X-ray CT scanner.

Figure 7 shows a view of a scanner with an enlarged view of a dual-layer detector,
where one layer detects low-energy X-rays and the other layer detects high-energy X-rays.

Figure 8 shows a schematic view demonstrating reading of X-ray photons from a
detector.

Figure 9 shows an image obtained from a dual-energy CT scanner.

Figure 10 shows a schematic view of a conventional charge-coupled device (CCD)
camera.

Figure 11 shows a schematic view of a spectral CCD camera that can be used
according to an embodiment of the subject invention.

Figure 12 shows a schematic view of a spectral CCD camera that can be used
according to an embodiment of the subject invention, demonstrating charge generation and
collection.

Figure 13 shows a schematic view of a spectral CCD camera that can be used

according to an embodiment of the subject invention, demonstrating energy resolving.
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Figure 14 shows a table with values of a related art Medipix3 detector and a detector
according to an embodiment of the subject invention.

Figure 15 shows a schematic view of a pixelated detector demonstrating reading of
X-ray photons from a detector.

Figure 16A shows a schematic view of direct detection of X-ray CT for fourth
generation geometry. The detector is shown around the human subject being imaged.

Figure 16B shows a flow diagram demonstrating direct detection of X-ray CT for
fourth generation geometry.

Figure 17 shows a two-layer detector used as part of fourth generation geometry.
The inset shows a detection plot for the first and second layers. The y-axis of the detection
plot is photons/second. The first layer is closer to the X-ray source during detection, and has
the higher value at lower energy in the plot.

Figure 18A shows a detection plot at varying energies for fourth generation
geometry. The y-axis of the detection plot is photons/second. The first layer is closer to the
X-ray source during detection, and has the higher value at lower energy in the plot.

Figure 18B shows a detection plot at varying energies for fourth generation
geometry. The y-axis of the detection plot is photons/second. The first layer is closer to the
X-ray source during detection, and has the higher value at lower energy in the plot.

Figure 18C shows a detection plot at varying energies for fourth generation
geometry. The y-axis of the detection plot is photons/second. The first layer is closer to the
X-ray source during detection, and has the higher value at lower energy in the plot.

Figure 18D shows a detection plot at varying energies for fourth generation
geometry. The y-axis of the detection plot is photons/second. The first layer is closer to the
X-ray source during detection, and has the higher value at lower energy in the plot.

Figure 19 shows a decomposed image of a Gd contrast agent.

Figure 20 shows a detection plot at varying energies based on the inset equation. The
y-axis of the detection plot is photons/second.

Figure 21A shows an enlarged version of the water basis component of the image in
Figure 19.

Figure 21B shows an enlarged version of the bone basis component of the image in

Figure 19.
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Figure 21C shows an enlarged version of the Gd basis component of the image in
Figure 19.

Figure 22A shows an image of Gd contrast agent at a concentration of 0.06 mol/L
(top portion) and a reconstruction of that image (bottom portion).

Figure 22B shows an image of Gd contrast agent at a concentration of 0.09 mol/L
(top portion) and a reconstruction of that image (bottom portion).

Figure 22C shows an image of Gd contrast agent at a concentration of 0.12 mol/L
(top portion) and a reconstruction of that image (bottom portion).

Figure 22D shows an image of Gd contrast agent at a concentration of 0.15 mol/L
(top portion) and a reconstruction of that image (bottom portion).

Figure 23 shows a plot of the root mean square error (RMSE) versus Gd
concentration for components of an image of Gd contrast dye.

Figure 24A shows a schematic view of a radiation source providing radiation through
a human subject to a detector.

Figure 24B shows two detection plots at varying energy. The y-axis of each
detection plot is photons/second.

Figure 25 shows a detection plot at varying energy after 22 cm of water attenuation.

Figure 26A shows a detection plot for first and second layers of an attenuated
detector. The first layer is closer to the X-ray source during detection, and has the higher
value at lower energy in the plot.

Figure 26B shows a detection plot for first and second layers of an attenuated
detector. The first layer is closer to the X-ray source during detection, and has the higher
value at lower energy in the plot.

Figure 26C shows a detection plot for first and second layers of an attenuated
detector. The first layer is closer to the X-ray source during detection, and has the higher
value at lower energy in the plot.

Figure 26D shows a detection plot for first and second layers of an attenuated
detector. The first layer is closer to the X-ray source during detection, and has the higher
value at lower energy in the plot.

Figure 27A shows a detection plot for first, second, and third layers in a three-layer

detector.
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Figure 27B shows a detection plot for first, second, and third layers in a three-layer
detector.

Figure 27C shows a detection plot for first, second, and third layers in a three-layer
detector.

Figure 27D shows a detection plot for first, second, and third layers in a three-layer

detector.

DETAILED DESCRIPTION

The subject invention provides novel and advantageous methods and systems for
performing imaging, such as computed tomography (CT) imaging (e.g., spectral CT (SCT)
imaging or energy/current integrating CT imaging). Electrical connectors (e.g., electrodes)
can be connected to appropriate surface sites of a detector element of a CT scanner to capture
nearby electron-hole pairs generated by X-rays received on the detector element. The
spectral information of interacting X-ray photons can be related to the site/depth of the
interaction between X-rays and the detector material. This process can be accurately
modeled, quantified, and/or inverted, according to the penetration/interaction location of the
X-rays inside the detector element (e.g., a semiconductor sensor) for direct X-ray detection.
This can be based on, for example, the radiative transport equation or its approximation. This
detection can be done in the current-/energy-integrating mode.

Systems and methods of the subject invention can electronically control the collection
of spectral information in the current-integration mode on a detector element (e.g., during CT
scanning). This can be used with many detection schemes, including dual-layer detectors,
SCT detectors, and hybrid detectors.

The voltage(s) applied to the electrodes connected to the detector element can be
changed. By changing the voltage(s) applied to the electrodes (or metal plates), the electric
field inside the sensor (detector element) can be modified to define various current-
conducting layers. For example, two sets of electrodes can be used, and the voltage applied
across each set can be the same or different. The voltages can be modified during detection
as well. The set of electrodes across which a higher voltage is applied can detect more
charges than the same loop driven by a lower voltage. In this way, different spectral ratios
between two layers can be obtained for X-ray spectral sensing. This dynamic variation of

electrode voltage is very flexible and cost-effective in practice.
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The detector configuration having electrodes connected thereto for voltage
modification/modulation is quite different and advantageous compared to related art
scanners, such as the dual-layer detector design (e.g., that used in the Philips CT scanner). In
embodiments of the subject invention, direct X-ray detection can be used such that data
acquisition can be dynamically modulated by voltage into higher and lower bins in a
desirable ratio. Any ratio can be used, such as 2:1 (higher energy bin : lower energy bin),
3:1, 4:1, 1:2, 1:3, 1:4, 5:1, 1:5, 1.5:1, 1:1.5. These ratios are for exemplary purposes and
should not be construed as limiting. Embodiments of the subject invention can be used in a
detector having any number of layers, such as two layers (dual layer), three layers (triple
layer), four layers (quadruple layer), five layers, or more. A first layer can be made sensitive
to low-energy photons while letting most of the high-energy photons penetrate through to
subsequent layers. In certain embodiments, the multiple layers can all be the same material
(e.g., the material of the detector element sensor) and can be defined by electrode sets such
that a first electrode set defines a first layer, a second electrode set defines a second layer, etc.

The detector can include a sensor material, including at least one of cadmium zinc
telluride (CZT), silicon (e.g., p’, p’, 0, or n" silicon), and cadmium telluride (CdTe), though
embodiments are not limited thereto. In an embodiment, the detector sensor material is
silicon. In a further embodiment, the detector sensor material is p~ silicon In another
embodiment, the detector sensor material is CZT.

In an embodiment, a dual-layer detector can break the X-ray spectrum into low and
high energies at different proportions during detection. For example, the low and high
energies can be broken into proportions of 10%/90%, 20%/80%, 70%/30%, 60%/40%,
50%/50%, 40%/60%, 30%,70%, 20%/80%, and 10%/90%. These proportions are for
exemplary purposes and should not be construed as limiting. In a further embodiment, these
detector variants can be distributed in a natural sequence and repeated until a full detector
ring is covered in third generation geometry. The breaking of the X-ray spectrum can be
performed by changing the applied voltages and/or by using software to read the detected
radiation. This breaking of the X-ray spectrum can be applied to multi-layer detectors with
more than two layers as well.

Related-art dual-layer detectors use fixed layers and cannot be adapted well for many
applications, and related art photon-counting (SCT) detectors are slow and expensive.

Embodiments of the subject invention advantageously fill in a gap between these two types of



WO 2016/118960 PCT/US2016/014769

detectors, making up for disadvantages of both. Systems and methods of the subject
invention can provide significantly improved performance compared to related art dual-
energy CT scanners (approaching SCT performance) while avoiding the high cost and rate
limitations of photon-counting (SCT) detectors. Systems and methods of the subject
invention therefore have many uses in medical imaging.

Figures 6 and 7 show schematic views of X-ray CT scanners, with Figure 7 including
an enlarged view of a dual-layer detector, where one layer detects low-energy X-rays and the
other layer detects high-energy X-rays. Figure 8 demonstrates reading of X-ray photons from
a detector, and Figure 9 shows an image obtained from a dual-energy CT scanner. Figure 15
shows a schematic view of a pixelated detector demonstrating reading of X-ray photons from
a detector, and Figure 16A shows a schematic view of direct detection of X-ray CT for fourth
generation geometry. The detector is shown around the human subject being imaged. Figure
16B shows a flow diagram demonstrating direct detection of X-ray CT for fourth generation
geometry, and Figure 17 shows a two-layer detector used as part of fourth generation
geometry. The inset of Figure 17 shows a detection plot for the first and second layers. The
y-axis of the detection plot is photons/second. The first layer is closer to the X-ray source
during detection, and has the higher value at lower energy in the plot.

Systems and methods of the subject invention can electronically control multi-layer
detectors (e.g., dual layer detectors) to acquire X-ray photons in two (or more) energy bins,
which can be effectively changed under voltage control. Figures 1A-1H show detectors
according to embodiments of the subject invention. Referring to Figures 1A-1H, a detector
can include at least one electrode set for applying a voltage. The electrodes can be disposed
in various configurations. In many embodiments, at least one set of electrodes is provided for
each layer of the detector. The set of electrodes can define the layers of the detector. In a
further embodiment, at least two sets of electrodes can be provided for each layer of the
detector.

Figure 1A shows a detector including electrodes disposed parallel to the direction of
incoming X-rays, in positions such that the incoming X-rays are first incident on a side of the
detector not having any electrodes disposed thereon. The top electrodes (left and right) as
depicted in Figure 1A are an electrode pair, and the bottom two electrodes (left and right) as
depicted in Figure 1A are an electrode pair. The electric field lines are based on the voltages

of both electrode pairs being equal (V1=V2). The inset shows a zoomed-in view of the
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electric field lines. Figure 1B shows the detector of Figure 1A but with a close-up view of
the electric field lines.

Figure 1C shows a detector with electrodes disposed parallel to the direction of
incoming X-rays, in positions such that the incoming X-rays are first incident on a side of the
detector not having any electrodes disposed thereon. The top electrodes (left and right) as
depicted in Figure 1C are an electrode pair, and the bottom two electrodes (left and right) as
depicted in Figure 1C are an electrode pair. The electric field lines are based on the voltage
of the bottom pair being greater than that of the top pair (V2>V1). The inset shows a
zoomed-in view of the electric field lines. Figure 1D shows the detector of Figure 1C but
with a close-up view of the electric field lines.

Figure 1E shows a detector with electrodes disposed perpendicular to the direction of
incoming X-rays, in positions such that the incoming X-rays are first incident on a side of the
detector having electrodes disposed thereon. The top electrodes (left and right) as depicted in
Figure 1E are an electrode pair, and the bottom two electrodes (left and right) as depicted in
Figure 1E are an electrode pair. The electric field lines are based on the voltages of both
electrode pairs being equal (V1=V2). The inset shows a zoomed-in view of the electric field
lines. Figure 1F shows the detector of Figure 1E but with a close-up view of the electric field
lines.

Figure 1G shows a detector with electrodes disposed perpendicular to the direction of
incoming X-rays, in positions such that the incoming X-rays are first incident on a side of the
detector having electrodes disposed thereon. The top electrodes (left and right) as depicted in
Figure 1G are an electrode pair, and the bottom two electrodes (left and right) as depicted in
Figure 1G are an electrode pair. The electric field lines are based on the voltage of the
bottom pair being greater than that of the top pair (V2>V1). The inset shows a zoomed-in
view of the electric field lines. Figure 1H shows the detector of Figure 1G but with a close-
up view of the electric field lines.

Figure 2 shows a detector having four layers and with four voltages being applied
with electrodes, one voltage applied to each layer. Each current (I1, 12, I3, and 14) is that
flowing into the respective circle representing the voltage (V1, V2, V3, and V4). The four
layers have thicknesses H1, H2, H3, and H4, respectively. The incoming X-rays first go
through the first layer (having thickness H1), then the second, and so on. The thicknesses
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(H1, H2, H3, and H4) can be all the same, all different, or some can be the same as at least
one other while others are different from at least one other.

Referring to Figure 2, depending on the relative strengths of paired driving voltages
V1, V2, V3, and V4, the loop currents I1, 12, I3, and 14 can be solved using Kirchhoff’s
voltage law (KVL) or Kirchhoff’s current law (KCL), both of which are well-known within
the art. These data can be used to compute interaction rates in each of the four layers of
thicknesses H1, H2, H3, and H4. These interaction rates can be converted to data inside four
energy windows in the current-integrating mode of the detector. This allows electrodes to be
placed within the detector material and can be extended to other configurations as well.

In embodiments of the subject invention, electrical connectors (e.g., electrode sets or
electrode pairs) can be connected to appropriate surface sites of the detector to capture nearby
electron-hole pairs. The energy information can be related to the site/depth of the interaction
between X-rays and the detector material. In certain embodiments, this process can be
modeled, quantified, and/or inverted, according to the penetration depth of the X-ray(s) into
the detector material (e.g., semiconductor sensor material) for direct X-ray detection. This
can be based, for example, on the radiative transport equation or its approximation.

The voltages applied to the metallic plates/electrodes can be changed, thereby
modifying the electric field to define various current-conducting layers. For example, the
electrodes across which a higher voltage is applied can detect more charges than those across
which a lower is applied (i.e., a lower voltage loop). This can lead to the obtaining of
different spectral ratios (as disclosed herein) for X-ray spectral sensing. This dynamic
variation of electrode voltage is very flexible and cost-effective in practice.

X-ray detection technology includes energy-integration detection and photon-
counting detection. Related art X-ray scanners typically use energy-integrating detectors
where electrical signals, from interactions between an X-ray beam and materials, are added
up over the whole spectrum. In contrast, photon-counting detectors count photons with
energy bins. Photon-counting detectors have advantages relative to energy-integrating
detectors are also slower and more expensive. The systems and methods described herein
can be considered different from energy-integrating detectors and photon-counting detectors
by having the ability to record spectral CT data with voltage-controlled layers. These
systems and methods have many practical applications, including but not limited to

preclinical imaging, clinical imaging, security screening, and industrial evaluation.
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This application shares some aspects with International Patent Application No.
PCT/US2015/067441, filed December 22, 2015, and U.S. Provisional Application Serial No.
62/095,235, filed December 22, 2014, both of which are hereby incorporated herein by
reference in their entirety, including any figures, tables, and drawings (see also Figures 10-13
of the subject application).

The methods and processes described herein can be embodied as code and/or data.
The software code and data described herein can be stored on one or more computer-readable
media, which may include any device or medium that can store code and/or data for use by a
computer system. When a computer system reads and executes the code and/or data stored
on a computer-readable medium, the computer system performs the methods and processes
embodied as data structures and code stored within the computer-readable storage medium.

It should be appreciated by those skilled in the art that computer-readable media
include removable and non-removable structures/devices that can be used for storage of
information, such as computer-readable instructions, data structures, program modules, and
other data used by a computing system/environment. A computer-readable medium includes,
but is not limited to, volatile memory such as random access memories (RAM, DRAM,
SRAM); and non-volatile memory such as flash memory, various read-only-memories
(ROM, PROM, EPROM, EEPROM), magnetic and ferromagnetic/ferroelectric memories
(MRAM, FeRAM), and magnetic and optical storage devices (hard drives, magnetic tape,
CDs, DVDs); network devices; or other media now known or later developed that is capable
of storing computer-readable information/data. Computer-readable media should not be
construed or interpreted to include any propagating signals. A computer-readable medium of
the subject invention can be, for example, a compact disc (CD), digital video disc (DVD),
flash memory device, volatile memory, or a hard disk drive (HDD), such as an external HDD
or the HDD of a computing device, though embodiments are not limited thereto. A
computing device can be, for example, a laptop computer, desktop computer, server, cell
phone, or tablet, though embodiments are not limited thereto.

When the term “about” is used herein, in conjunction with a numerical value, it is
understood that the value can be in a range of 95% of the value to 105% of the value, i.e. the
value can be +/- 5% of the stated value. For example, “about 1 kg” means from 0.95 kg to

1.05 kg.
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The subject invention includes, but is not limited to, the following exemplified
embodiments.

Embodiment 1. An imaging system, comprising:

a computed tomography (CT) scanner including an X-ray source; and

a detector for receiving X-ray radiation from the X-ray source after it passes through a
sample to be imaged,

wherein the detector includes a first pair of electrodes and a second pair of electrodes
disposed thereon and configured to provide a first voltage and a second voltage, respectively,
to the detector.

Embodiment 2. The imaging system according to embodiment 1, wherein the
detector includes a first layer and a second layer.

Embodiment 3. The imaging system according to embodiment 2, wherein the
first pair of electrodes is disposed on the first layer and applies the first voltage to the first
layer, and

wherein the second pair of electrodes is disposed on the second layer and applies the
second voltage to the second layer.

Embodiment 4. The imaging system according to any of embodiments 2-3,
wherein the first layer and the second layer comprise the same material.

Embodiment 5. The imaging system according to any of embodiments 1-4,

wherein the detector comprises a sensor material.

Embodiment 6. The imaging system according to any of embodiments 1-5,
wherein the detector comprises at least one of cadmium zinc telluride (CZT), silicon (e.g., p,,
p’, 0, orn" silicon), and cadmium telluride (CdTe).

Embodiment 7. The imaging system according to any of embodiments 1-6,
wherein the detector comprises CZT.

Embodiment 8. The imaging system according to any of embodiments 1-6,
wherein the detector comprises CdTe.

Embodiment 9. The imaging system according to any of embodiments 1-6,
wherein the detector comprises silicon.

Embodiment 10. The imaging system according to any of embodiments 1-6,

. . - + - 4+ g
wherein the detector comprises p’, p , n’, or n' silicon.
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Embodiment 11. The imaging system according to any of embodiments 1-6,
wherein the detector comprises p” silicon.

Embodiment 12. The imaging system according to any of embodiments 1-6,
wherein the detector comprises p silicon.

Embodiment 13. The imaging system according to any of embodiments 1-6,
wherein the detector comprises n” silicon.

Embodiment 14. The imaging system according to any of embodiments 1-6,
wherein the detector comprises n” silicon.

Embodiment 15. The imaging system according to any of embodiments 1-14,

wherein the first voltage is equal to the second voltage.

Embodiment 16. The imaging system according to any of embodiments 1-14,
wherein the first voltage is greater than the second voltage.

Embodiment 17. The imaging system according to any of embodiments 1-14,
wherein the first voltage is less than the second voltage.

Embodiment 18. The imaging system according to any of embodiments 2-17,
wherein the first layer and the second layer are defined by the first and second pairs of
electrodes, respectively.

Embodiment 19. The imaging system according to any of embodiments 1-18,
wherein both electrodes of the first pair of electrodes are disposed parallel to a direction of X-
rays incoming from the X-ray source.

Embodiment 20. The imaging system according to any of embodiments 1-19,
wherein both electrodes of the first pair of electrodes are disposed such that incoming X-rays
from the X-ray source are first incident on a side of the detector not having any of the first
pair of electrodes disposed thereon.

Embodiment 21. The imaging system according to any of embodiments 1-20,
wherein both electrodes of the second pair of electrodes are disposed parallel to a direction of
X-rays incoming from the X-ray source.

Embodiment 22. The imaging system according to any of embodiments 1-21,
wherein both electrodes of the second pair of electrodes are disposed such that incoming X-
rays from the X-ray source are second incident on a side of the detector not having any of the

second pair of electrodes disposed thereon.
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Embodiment 23. The imaging system according to any of embodiments 1-18 and
20-22, wherein both electrodes of the first pair of electrodes are disposed perpendicular to a
direction of X-rays incoming from the X-ray source.

Embodiment 24. The imaging system according to any of embodiments 1-19 and
21-23, wherein both electrodes of the first pair of electrodes are disposed such that incoming
X-rays from the X-ray source are first incident on a side of the detector having both
electrodes of the first pair of electrodes disposed thereon.

Embodiment 25. The imaging system according to any of embodiments 1-20 and
22-24, wherein both electrodes of the second pair of electrodes are disposed perpendicular to
a direction of X-rays incoming from the X-ray source.

Embodiment 26. The imaging system according to any of embodiments 1-21 and
23-25, wherein both electrodes of the second pair of electrodes are disposed such that
incoming X-rays from the X-ray source are second incident on a side of the detector having
both electrodes of the second pair of electrodes disposed thereon.

Embodiment 27. The imaging system according to any of embodiments 1-26,
wherein the detector further comprises a third pair of electrodes disposed thereon and
configured to provide a third voltage to the detector.

Embodiment 28. The imaging system according to embodiment 27, wherein the
detector further comprises a fourth pair of electrodes disposed thereon and configured to
provide a fourth voltage to the detector.

Embodiment 29. The imaging system according to any of embodiments 2-28,
wherein the detector further comprises a third layer.

Embodiment 30. The imaging system according to embodiment 29, wherein the
detector further comprises a fourth layer.

Embodiment 31. The imaging system according to embodiment 27, wherein the
detector includes first to third layers, and wherein the first to third pairs of electrodes are
disposed on and configured to provide the first to third voltages to the first to third layers,
respectively.

Embodiment 32. The imaging system according to embodiment 28, wherein the
detector includes first to fourth layers, and wherein the first to fourth pairs of electrodes are
disposed on and configured to provide the first to fourth voltages to the first to fourth layers,

respectively.
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Embodiment 33. The imaging system according to embodiment 28, wherein the
first to fourth voltages are all the same.
Embodiment 34. The imaging system according to embodiment 28, wherein the

first to fourth voltages are all different from each other.

Embodiment 35. The imaging system according to any of embodiments 30 and
32, wherein the detector comprises the third and fourth pairs of electrodes, and wherein the
first, second, third, and fourth layers are defined by the first to fourth pairs of electrodes,
respectively.

Embodiment 36. The imaging system according to any of embodiments 1-35,
further comprising a controller configured to control the first and second pairs of electrodes
(and third and fourth pairs of electrodes, if present) to apply the first and second voltages
(and the third and fourth voltages, if the third and fourth pairs of electrodes are present) such
that photons in the detector are captured in a high energy bin and a low energy bin.

Embodiment 37. The imaging system according to embodiment 36, wherein the
controller is configured to control the pairs of electrodes to apply the voltages such that
photons in the detector are captured in the high energy bin and the low energy bin in a
predetermined ratio.

Embodiment 38. The imaging system according to any of embodiments 2-37,
wherein a thickness of each layer of the detector present (e.g., first layer, second layer, third
layer (if present), fourth layer (if present)) is the same as that of each other layer of the
detector present.

Embodiment 39. The imaging system according to any of embodiments 2-37,
wherein a thickness of at least one layer of the detector present (e.g., first layer, second layer,
third layer (if present), fourth layer (if present)) is different from that of at least one other
layer of the detector present.

Embodiment 40. The imaging system according to any of embodiments 2-37,
wherein a thickness of each layer of the detector present (e.g., first layer, second layer, third
layer (if present), fourth layer (if present)) is the different from that of each other layer of the
detector present.

Embodiment 41. The imaging system according to any of embodiments 1-40,
further comprising a (non-transitory) machine-readable medium (e.g., a computer-readable

medium) having machine-executable (e.g., computer-executable) instructions for performing
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an energy resolving process on the collected X-ray radiation (e.g., on collected charges of the
X-ray radiation).

Embodiment 42. The imaging system according to embodiment 41, wherein the
energy resolving process includes:

determining the generated charge density within the detector using Formula 1:

Formula 1 - v, &, ¥ ey + 08N 0 v o+ M E Nalie = 2,087,

Bl
where F; is photon energy, N; is photon density with energy Fi, ap is the attenuation
coefficient of photon with energy F; for the given material thickness, m; is an empirical
coefficient that represents the number of generated charges by photons with energy £; per
energy unit, and gi(x) is the generated charge density within the material of the detector of a
specific thickness; and

repeating the determination of the generated charge density at a different thickness
within the material of the detector.

Embodiment 43. The imaging system according to any of embodiments 41-42,
further comprising a processer, wherein the energy resolving process is performed by the
processor.

Embodiment 44. The imaging system according to any of embodiments 1-43,
configured to perform imaging on a sample that is a part of a human patient (e.g., a body
part).

Embodiment 45. The imaging system according to any of embodiments 1-44,
wherein the X-ray source is configured to provide X-ray radiation that has an energy of from
10 keV to 120 keV.

Embodiment 46. The imaging system according to any of embodiments 1-44,
wherein the X-ray source is configured to provide X-ray radiation that has an energy of less
than 20 keV.

Embodiment 47. The imaging system according to any of embodiments 1-44,
wherein the X-ray source is configured to provide X-ray radiation that has an energy of more
than 20 keV.

Embodiment 48. The imaging system according to any of embodiments 1-47,

wherein the detector includes a fixed thresholding detector.
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Embodiment 49. The imaging system according to any of embodiments 1-47,
wherein the detector includes a dynamic thresholding detector.

Embodiment 50. The imaging system according to any of embodiments 1-49,
wherein the CT scanner (potentially in combination with the detector) has third-generation
geometry.

Embodiment 51. The imaging system according to any of embodiments 1-49,
wherein the CT scanner (potentially in combination with the detector) has fourth-generation
geometry.

Embodiment 52. The imaging system according to any of embodiments 1-51,
further comprising an analog-digital converter (ADC) electrically connected to the detector
and configured to quantify collected charges from the detector.

Embodiment 53. A method of imaging, comprising:

providing the imaging system according to any of embodiments 1-52; and

using the imaging system for its intended purpose to image the sample.

Embodiment 54. A method of imaging, comprising:

providing X-ray radiation to a sample to be imaged,

collecting the X-ray radiation with a detector;

providing a first voltage to the detector using a first pair of electrodes disposed
thereon; and

providing a second voltage to the detector using a second pair of electrodes disposed
thereon.

Embodiment 55. The method according to embodiment 54, wherein the detector
includes a first layer and a second layer.

Embodiment 56. The method according to embodiment 55, wherein the first pair
of electrodes is disposed on the first layer and applies the first voltage to the first layer, and

wherein the second pair of electrodes is disposed on the second layer and applies the
second voltage to the second layer.

Embodiment 57. The method according to any of embodiments 55-56, wherein
the first layer and the second layer comprise the same material.

Embodiment 58. The method according to any of embodiments 54-57, wherein

the detector comprises a sensor material.
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Embodiment 59. The method according to any of embodiments 54-58, wherein
the detector comprises at least one of cadmium zinc telluride (CZT), silicon (e.g., p’, p’, 0, or
n" silicon), and cadmium telluride (CdTe).

Embodiment 60. The method according to any of embodiments 54-59, wherein
the detector comprises CZT.

Embodiment 61. The method according to any of embodiments 54-59, wherein
the detector comprises CdTe.

Embodiment 62. The method according to any of embodiments 54-59, wherein
the detector comprises silicon.

Embodiment 63. The method according to any of embodiments 54-59, wherein
the detector comprises p’, p’, n’, orn" silicon.

Embodiment 64. The method according to any of embodiments 54-59, wherein
the detector comprises p silicon.

Embodiment 65. The method according to any of embodiments 54-59, wherein
the detector comprises p_ silicon.

Embodiment 66. The method according to any of embodiments 54-59, wherein
the detector comprises n” silicon.

Embodiment 67. The method according to any of embodiments 54-59, wherein
the detector comprises n" silicon.

Embodiment 68. The method according to any of embodiments 54-67, wherein
the first voltage is equal to the second voltage.

Embodiment 69. The method according to any of embodiments 54-67, wherein
the first voltage is greater than the second voltage.

Embodiment 70. The method according to any of embodiments 54-67, wherein
the first voltage is less than the second voltage.

Embodiment 71. The method according to any of embodiments 54-70, further
comprising dynamically modulating at least one of the first voltage and the second voltage
such that photons in the detector are captured in a high energy bin and a low energy bin in a
predetermined ratio.

Embodiment 72. The method according to any of embodiments 54-70, further
comprising dynamically modulating both the first voltage and the second voltage (and any

other voltages that may be applied by additional electrode pairs that may be present) such that
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photons in the detector are captured in a high energy bin and a low energy bin in a
predetermined ratio.

Embodiment 73. The method according to any of embodiments 71-72, wherein
the ratio (higher energy bin : lower energy bin) is 2:1, 3:1, 4:1, 1:2, 1:3, 1:4, 5:1, 1:5, 1.5:1,
1:1.5,2.5:1,1:25,3.5:1,1:3.5,4.5:1, or 1:4.5.

Embodiment 74. The method according to any of embodiments 54-73, further
comprising dividing the X-ray spectrum into low and high energies at different proportions
during detection such that detected X-ray radiation is classified as either high energy or low
energy during detection by modulating the first and second voltages (and any other voltages
that may be applied by additional electrode pairs that may be present).

Embodiment 75. The method according to embodiment 74, wherein the low and
high energies are divided into proportions of (low/high) 10%/90%, 20%/80%, 70%/30%,
60%/40%, 50%/50%, 40%/60%, 30%,70%, 20%/80%, and 10%/90% during detection by
modulating the first and second voltages (and any other voltages that may be applied by
additional electrode pairs that may be present).

Embodiment 76. The method according to any of embodiments 74-75, further
comprising distributing these detector variants in a natural sequence, and repeating until a full
detector ring is covered in third generation geometry.

Embodiment 77. The method according to any of embodiments 74-75, further
comprising distributing these detector variants in a natural sequence, and repeating until a full
detector ring is covered in fourth generation geometry.

Embodiment 78. The method according to any of embodiments 55-77, wherein
the first layer and the second layer are defined by the first and second pairs of electrodes,
respectively.

Embodiment 79. The method according to any of embodiments 54-78, wherein
both electrodes of the first pair of electrodes are disposed parallel to a direction of X-rays
incoming from the X-ray source.

Embodiment 80. The method according to any of embodiments 54-79, wherein
both electrodes of the first pair of electrodes are disposed such that incoming X-rays from the
X-ray source are first incident on a side of the detector not having any of the first pair of

electrodes disposed thereon.
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Embodiment 81. The method according to any of embodiments 54-80, wherein
both electrodes of the second pair of electrodes are disposed parallel to a direction of X-rays
incoming from the X-ray source.

Embodiment 82. The method according to any of embodiments 54-81, wherein
both electrodes of the second pair of electrodes are disposed such that incoming X-rays from
the X-ray source are second incident on a side of the detector not having any of the second
pair of electrodes disposed thereon.

Embodiment 83. The method according to any of embodiments 54-78 and 79-82,
wherein both electrodes of the first pair of electrodes are disposed perpendicular to a
direction of X-rays incoming from the X-ray source.

Embodiment 84. The method according to any of embodiments 54-79 and 81-83,
wherein both electrodes of the first pair of electrodes are disposed such that incoming X-rays
from the X-ray source are first incident on a side of the detector having both electrodes of the
first pair of electrodes disposed thereon.

Embodiment 85. The method according to any of embodiments 54-80 and 82-84,
wherein both electrodes of the second pair of electrodes are disposed perpendicular to a
direction of X-rays incoming from the X-ray source.

Embodiment 86. The method according to any of embodiments 54-81 and 83-85,
wherein both electrodes of the second pair of electrodes are disposed such that incoming X-
rays from the X-ray source are second incident on a side of the detector having both
electrodes of the second pair of electrodes disposed thereon.

Embodiment 87. The method according to any of embodiments 54-86, wherein
the detector further comprises a third pair of electrodes disposed thereon and configured to
provide a third voltage to the detector.

Embodiment 88. The method according to embodiment 87, wherein the detector
further comprises a fourth pair of electrodes disposed thereon and configured to provide a
fourth voltage to the detector.

Embodiment 89. The method according to any of embodiments 55-88, wherein
the detector further comprises a third layer.

Embodiment 90. The method according to embodiment 89, wherein the detector

further comprises a fourth layer.
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Embodiment 91. The method according to embodiment 87, wherein the detector
includes first to third layers, and wherein the first to third pairs of electrodes are disposed on
and configured to provide the first to third voltages to the first to third layers, respectively.

Embodiment 92. The method according to embodiment 88, wherein the detector
includes first to fourth layers, and wherein the first to fourth pairs of electrodes are disposed
on and configured to provide the first to fourth voltages to the first to fourth layers,
respectively.

Embodiment 93. The method according to embodiment 88, wherein the first to
fourth voltages are all the same.

Embodiment 94. The method according to embodiment 88, wherein the first to
fourth voltages are all different from each other.

Embodiment 95. The method according to any of embodiments 90 and 92,
wherein the detector comprises the third and fourth pairs of electrodes, and wherein the first,
second, third, and fourth layers are defined by the first to fourth pairs of electrodes,
respectively.

Embodiment 96. The method according to any of embodiments 54-95, further
comprising controlling (e.g., using a controller) the first and second pairs of electrodes (and
third and fourth pairs of electrodes, if present) to apply the first and second voltages (and the
third and fourth voltages, if the third and fourth pairs of electrodes are present) such that
photons in the detector are captured in a high energy bin and a low energy bin.

Embodiment 97. The method according to embodiment 96, wherein the pairs of
electrodes are controlled to apply the voltages such that photons in the detector are captured
in the high energy bin and the low energy bin in a predetermined ratio.

Embodiment 98. The method according to any of embodiments 55-97, wherein a
thickness of each layer of the detector present (e.g., first layer, second layer, third layer (if
present), fourth layer (if present)) is the same as that of each other layer of the detector
present.

Embodiment 99. The method according to any of embodiments 55-97, wherein a
thickness of at least one layer of the detector present (e.g., first layer, second layer, third layer
(if present), fourth layer (if present)) is different from that of at least one other layer of the

detector present.
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Embodiment 100. The method according to any of embodiments 55-97, wherein a
thickness of each layer of the detector present (e.g., first layer, second layer, third layer (if
present), fourth layer (if present)) is the different from that of each other layer of the detector
present.

Embodiment 101. The method according to any of embodiments 54-100, further
comprising performing an energy resolving process on the collected X-ray radiation (e.g., on
collected charges of the X-ray radiation).

Embodiment 102. The method according to embodiment 101, wherein the energy
resolving process includes:

determining the generated charge density within the detector using Formula 1:

Formula 1 -, B, ¥, &y, + Mo Bt + o+ 0B Nz = £.087,
where F; is photon energy, N; is photon density with energy Fi, ap is the attenuation
coefficient of photon with energy F; for the given material thickness, m; is an empirical
coefficient that represents the number of generated charges by photons with energy £, per
energy unit, and gi(x) is the generated charge density within the material of the detector of a
specific thickness; and

repeating the determination of the generated charge density at a different thickness
within the material of the detector.

Embodiment 103. The method according to any of embodiments 101-102,
wherein the energy resolving process is performed by a processor.

Embodiment 104. The method according to any of embodiments 54-103, wherein
the sample to be imaged is a part of a human patient (e.g., a body part).

Embodiment 105. The method according to any of embodiments 54-104, wherein
the X-ray radiation has an energy of from 10 keV to 120 keV.

Embodiment 106. The method according to any of embodiments 54-104, wherein
the X-ray radiation has an energy of less than 20 keV.

Embodiment 107. The method according to any of embodiments 54-104, wherein
the X-ray radiation has an energy of more than 20 keV.

Embodiment 108. The method according to any of embodiments 54-107, wherein

the detector includes a fixed thresholding detector.
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Embodiment 109. The method according to any of embodiments 54-107, wherein
the detector includes a dynamic thresholding detector.

Embodiment 110. The method according to any of embodiments 101-109,
wherein the steps of the energy resolving process are stored on a (non-transitory) machine-
readable medium (e.g., a computer-readable medium).

Embodiment 111. The method according to any of embodiments 54-110, wherein
the imaging is a computed tomography (CT) scan.

Embodiment 112. The method according to any of embodiments 54-111, wherein
the X-ray radiation is provided by an X-ray source of a CT scanner.

Embodiment 113. The method according to embodiment 112, wherein the CT
scanner (potentially in combination with the detector) has third-generation geometry.

Embodiment 114. The method according to embodiment 112, wherein the CT
scanner (potentially in combination with the detector) has fourth-generation geometry.

Embodiment 115. The method according to any of embodiments 54-114, wherein
the detector is placed in an edge-on fashion during imaging, such that the X-ray irradiation
enters a side of a substrate of the detector.

Embodiment 116. The imaging system according to any of embodiments 1-52 or
the method according to any of embodiments 53-115, wherein each electrode present is a

metal electrode.

A greater understanding of the present invention and of its many advantages may be
had from the following examples, given by way of illustration. The following examples are
illustrative of some of the methods, applications, embodiments and variants of the present
invention. They are, of course, not to be considered as limiting the invention. Numerous

changes and modifications can be made with respect to the invention.

EXAMPLE 1

A numerical simulation was performed using an algorithm as described by De Man et
al. (An Iterative Maximum-Likelihood Polychromatic Algorithm for CT, IEEE Transactions
on Medical Imaging, Vol. 20, No. 10, October 2001, which is hereby incorporated herein by
reference in its entirety). The simulation was performed on a detector utilizing voltage-

controlled layers as described herein. The source-to-center distance was 50 c¢cm, the detector-
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to-center distance was 50 c¢cm, the detector array width was 60 cm, the sample size was 38 by
38 cm’, and the a hybrid ratio between number of integrating bins and number of counting
bins was utilized, and Figures 4A, 4B, and 4C show graphical representations of ratios of 3:1,
4:1, and 5:1, respectively, between number of integrating bins and number of counting bins.
The detection geometry was that as shown in Figure 3.

Figure SA shows a true image of the gadolinium (Gd) contrast agent at a
concentration of 0.3 mol/L used for the simulation. Figure 5B shows a reconstructed image
using a ratio of 1:1 between number of integrating bins and number of counting bins, Figure
5C shows a reconstructed image using a ratio of 2:1 between number of integrating bins and
number of counting bins, and Figure 5D shows a reconstructed image using a ratio of 3:1

between number of integrating bins and number of counting bins.

EXAMPLE 2

A detector utilizing voltage-controlled layers as described herein was constructed, and
a numerical simulation was performed to compare the detector to the Medipix 3 related art
detector. The results are shown in Figure 14. Referring to Figure 14, the detector of the
subject invention has many advantages, including shorter acquisition time, greater frame rate,

and multiple working modes.

EXAMPLE 3

Different configurations of dual-layer detectors according to embodiments of the
subject invention were tested for performance of photon counting at varying energies of the
X-ray radiation.

Figure 18A shows a detection plot for a control with channel 4n+0, a first layer of 20
mm silicon, a second layer of 20 mm silicon, and no electrodes. Figure 18B shows a
detection plot for a first variant with channel 4n+1, a first layer of 15 mm silicon, a second
layer of 20 mm silicon, a first electrode pair (“Filter1”) of 0.1 mm copper, and no second
electrode pair (“Filter2”). Figure 18C shows a detection plot for a second variant with
channel 4n+2, a first layer of 30 mm silicon, a second layer of 20 mm silicon, a first electrode
pair (“Filter1”) of 0.1 mm copper, and no second electrode pair (“Filter2”). Figure 18D
shows a detection plot for a third variant with channel 4n+3, a first layer of 25 mm silicon, a

second layer of 50 mm silicon, a first electrode pair (“Filter1”) of 0.2 mm copper, and a
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second electrode pair (“Filter2”) of 0.2 mm copper. In each plot, the y-axis is photons/second
and the x-axis is energy (keV). In each, the first layer is closer to the X-ray source during
detection, and has the higher value at lower energy in the plot. Referring to Figures 18A-

18D, it can be seen that providing the electrodes leads to improved detection.

EXAMPLE 4

A detector utilizing voltage-controlled layers as described herein was constructed and
used to detect a Gd contrast agent in comparison with detection using a photon-counting
detector with 10 keV spectrum resolution, four energy bins, and 1440 projections per turn.

Figure 19 shows a decomposed image of a Gd contrast agent. Figure 20 shows a
detection plot at varying energies based on the inset equation. The y-axis of the detection
plot is photons/second. Figures 21A, 21B, and 21C show enlarged versions of the water basis
component, the bone basis component, and the Gd basis component, respectively, of the
image in Figure 19. The image can be decomposed based on: p = (a;)(Uwater) + (@2)(Ubone) T
(a3)(ugg). The image can be reconstructed using iterative maximum-likelihood and prior

image constraint based on:

eeeret
A

max ’}* { I -in ( . } ~ 1, } {\ o
Dual-material Deonrrgrosition

Figures 22A, 22B, 22C, and 22D show images of Gd contrast agent (top portion in
each figure) at a concentration of 0.06 mol/L, 0.09 mol/L, 0.12 mol/L, and 0.15 mol/L,
respectively, and a reconstruction of that image (bottom portion).

Figure 23 shows a detection plot at varying Gd concentration for components of an
image of Gd contrast dye for both the system of the subject invention (circle data points, the
line that is higher in the plot) and the photon-counting detector (square data points, the line
that is lower in the plot). Referring to Figure 23, the system of the subject invention displays

good detection performance.
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EXAMPLE 5

A ray model was investigated for spectral sampling. Figure 24A shows a schematic
view of a radiation source providing radiation through a human subject to a detector,
according to the ray model. Figure 24B shows two detection plots at varying energy for the
ray model. The y-axis of each detection plot is photons/second. Figure 25 shows a detection
plot of the source character at varying energy after 22 c¢cm of water attenuation. The ray
model after linearization can be summarized as follows (the lower the condition number, the

better the reconstruction):
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Figures 26A, 26B, 26C, and 26D show detection plots for first and second layers of an
attenuated detector at varying percentages of first layer/entire detector substrate and second
layer/entire detector substrate. In each plot, the first layer is closer to the X-ray source during
detection, and has the higher value at lower energy in the plot. Figure 26A is for a detector
substrate of 30 mm silicon with percentages (first layer/entire detector substrate, second
layer/entire detector substrate) of 25%, 75% and shows a correlation of 0.9576. Figure 26B
is for a detector substrate of 30 mm silicon with percentages (first layer/entire detector
substrate, second layer/entire detector substrate) of 35%, 65% and shows a correlation of
0.9585. Figure 26C is for a detector substrate of 30 mm silicon with percentages (first
layer/entire detector substrate, second layer/entire detector substrate) of 45%, 55% and shows

a correlation of 0.9593. Figure 26D is for a detector substrate of 30 mm silicon with
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percentages (first layer/entire detector substrate, second layer/entire detector substrate) of

55%, 45% and shows a correlation of 0.9598.

EXAMPLE 6

A detector utilizing three voltage-controlled layers (triple-layer detector) as described
herein was modeled using the ray model discussed in Example 5. The detector was 0.15 cm
CdTe, with layer depths of 0.019 c¢cm, 0.170 c¢cm, and 0.052 cm. The condition number was
8.19. Figure 27A shows a detection plot for the first, second, and third layers in this three-

layer detector. This detector showed good detection performance.

EXAMPLE 7

A detector utilizing three voltage-controlled layers (triple-layer detector) as described
herein was modeled using the ray model discussed in Example 5, with attenuation. The
detector was 0.15 cm CdTe. The range was up to 140 keV after 30 cm of water attenuation.
The best voltages were 83 kVp, 114 kVp, and 140 kVp, and the condition number was 19.72.
Figure 27B shows a detection plot for the first, second, and third layers in this three-layer

detector. This detector showed good detection performance.

EXAMPLE 8
A detector utilizing three voltage-controlled layers (triple-layer detector) as described
herein was modeled using a ray model by basis materials. The detector was 0.15 cm CdTe.

The ray model by basis materials can be summarized as follows:
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The layer depths of the detector were 0.0067 ¢m, 0.072 cm, and 0.011 ¢cm. The condition
number was 61871. Figure 27C shows a detection plot for the first, second, and third layers

in this three-layer detector. This detector showed good detection performance.

EXAMPLE 9

A detector utilizing three voltage-controlled layers (triple-layer detector) as described
herein was modeled using the ray model discussed in Example 8, with attenuation. The
detector was 0.15 cm CdTe. The range was up to 140 keV after 30 cm of water attenuation.
The best voltages were 70 kVp, 108 kVp, and 140 kVp, and the condition number was 76794.
Figure 27D shows a detection plot for the first, second, and third layers in this three-layer

detector. This detector showed good detection performance.

It should be understood that the examples and embodiments described herein are for
illustrative purposes only and that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included within the spirit and purview of
this application.

All patents, patent applications, provisional applications, and publications referred to

or cited herein (including those in the “References” section) are incorporated by reference in
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their entirety, including all figures and tables, to the extent they are not inconsistent with the

explicit teachings of this specification.
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CLAIMS
What is claimed is:
1. An imaging system, comprising:

a computed tomography (CT) scanner including an X-ray source; and

a detector for receiving X-ray radiation from the X-ray source after it passes through a
sample to be imaged,

wherein the detector includes a first pair of electrodes and a second pair of electrodes
disposed thereon and configured to provide a first voltage and a second voltage, respectively,

to the detector.

2. The imaging system according to claim 1, wherein the detector includes a first
layer and a second layer,

wherein the first pair of electrodes is disposed on the first layer and applies the first
voltage to the first layer, and

wherein the second pair of electrodes is disposed on the second layer and applies the

second voltage to the second layer.

3. The imaging system according to any of claims 1-2, wherein the detector
comprises at least one of material selected from cadmium zinc telluride (CZT), silicon, and

cadmium telluride (CdTe).

4. The imaging system according to any of claims 1-3, wherein the first voltage

is different from the second voltage.

5. The imaging system according to any of claims 2-4, wherein the first layer and

the second layer are defined by the first and second pairs of electrodes, respectively.

6. The imaging system according to any of claims 1-5, wherein both electrodes
of the first pair of electrodes are disposed parallel to a direction of X-rays incoming from the

X-ray source.
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7. The imaging system according to any of claims 1-6, wherein both electrodes
of the first pair of electrodes are disposed such that incoming X-rays from the X-ray source
are first incident on a side of the detector not having any of the first pair of electrodes

disposed thereon.

8. The imaging system according to any of claims 1-7, wherein both electrodes
of the second pair of electrodes are disposed parallel to a direction of X-rays incoming from

the X-ray source.

0. The imaging system according to any of claims 1-8, wherein both electrodes
of the second pair of electrodes are disposed such that incoming X-rays from the X-ray
source are second incident on a side of the detector not having any of the second pair of

electrodes disposed thereon.

10.  The imaging system according to any of claims 1-5 and 7-9, wherein both
electrodes of the first pair of electrodes are disposed perpendicular to a direction of X-rays

incoming from the X-ray source.

11. The imaging system according to any of claims 1-6 and 8-10, wherein both
electrodes of the first pair of electrodes are disposed such that incoming X-rays from the X-
ray source are first incident on a side of the detector having both electrodes of the first pair of

electrodes disposed thereon.

12. The imaging system according to any of claims 1-7 and 9-11, wherein both
electrodes of the second pair of electrodes are disposed perpendicular to a direction of X-rays

incoming from the X-ray source.

13. The imaging system according to any of claims 1-8 and 9-12, wherein both
electrodes of the second pair of electrodes are disposed such that incoming X-rays from the
X-ray source are second incident on a side of the detector having both electrodes of the

second pair of electrodes disposed thereon.
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14.  The imaging system according to any of claims 2-13, wherein the detector
further comprises:

a third pair of electrodes disposed thereon and configured to provide a third voltage to
the detector;

a fourth pair of electrodes disposed thereon and configured to provide a fourth voltage
to the detector;

a third layer; and

a fourth layer,

wherein the first to fourth pairs of electrodes are disposed on and configured to

provide the first to fourth voltages to the first to fourth layers, respectively.

15.  The imaging system according to claim 14, wherein at least one of the first to
fourth voltages is different from at least one of the other voltages of the first to fourth

voltages.

16. The imaging system according to any of claims 14-15, wherein the first,
second, third, and fourth layers are defined by the first to fourth pairs of electrodes,

respectively.

17. The imaging system according to any of claims 1-16, further comprising a
controller configured to control the pairs of electrodes (and third and fourth pairs of
electrodes, if present) to apply the first and second voltages (and the third and fourth
voltages, if the third and fourth pairs of electrodes are present) such that photons in the

detector are captured in a high energy bin and a low energy bin.

18.  The imaging system according to claim 17, wherein the controller is
configured to control the pairs of electrodes to apply the voltages such that photons in the

detector are captured in the high energy bin and the low energy bin in a predetermined ratio.

19.  The imaging system according to any of claims 2-18, wherein a thickness of
each layer of the detector present is the same as that of each other layer of the detector

present.
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20.  The imaging system according to any of claims 2-18, wherein a thickness of at
least one layer of the detector present is different from that of at least one other layer of the

detector present.

21.  The imaging system according to any of claims 2-18, wherein a thickness of
each layer of the detector present is the different from that of each other layer of the detector

present.

22. The imaging system according to any of claims 1-21, further comprising a
machine-readable medium having machine-executable instructions for performing an energy

resolving process on the collected X-ray radiation.

23.  The imaging system according to claim 22, wherein the energy resolving
process includes:

determining the generated charge density within the detector using Formula 1:

Formula 1 - g4 8, ¥ @y + o Bo¥ate ¥+ 0,8 Ny = &405),

where F; is photon energy, N; is photon density with energy Fi, ap is the attenuation
coefficient of photon with energy F; for the given material thickness, m; is an empirical
coefficient that represents the number of generated charges by photons with energy £; per
energy unit, and gi(x) is the generated charge density within the material of the detector of a
specific thickness; and

repeating the determination of the generated charge density at a different thickness

within the material of the detector.

24. The imaging system according to any of claims 22-23, further comprising a

processer, wherein the energy resolving process is performed by the processor.

25.  The imaging system according to any of claims 1-24, configured to perform

imaging on a sample that is a part of a human patient.
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26. The imaging system according to any of claims 1-25, wherein the X-ray
source is configured to provide X-ray radiation that has an energy of from 10 keV to 120

keV.

27. The imaging system according to any of claims 1-25, wherein the X-ray

source 1s configured to provide X-ray radiation that has an energy of less than 20 keV.

28. The imaging system according to any of claims 1-25, wherein the X-ray

source is configured to provide X-ray radiation that has an energy of more than 20 keV.

29.  The imaging system according to any of claims 1-28, wherein the CT scanner

has third-generation geometry.

30.  The imaging system according to any of claims 1-28, wherein the CT scanner

has fourth-generation geometry.

31 A method of imaging, comprising:
providing the imaging system according to any of claims 1-30; and

using the imaging system for its intended purpose to image the sample.

32. A method of imaging, comprising:

providing X-ray radiation to a sample to be imaged,

collecting the X-ray radiation with a detector;

providing a first voltage to the detector using a first pair of electrodes disposed
thereon; and

providing a second voltage to the detector using a second pair of electrodes disposed

thereon.

33.  The method according to claim 32, wherein the detector includes a first layer

and a second layer.

34.  The method according to claim 33, wherein the first pair of electrodes is

disposed on the first layer and applies the first voltage to the first layer, and
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wherein the second pair of electrodes is disposed on the second layer and applies the

second voltage to the second layer.

35. The method according to any of claims 32-34, wherein the detector comprises
at least one of material selected from cadmium zinc telluride (CZT), silicon, and cadmium

telluride (CdTe).

36. The method according to any of claims 32-35, wherein the first voltage is

different from the second voltage.

37.  The method according to any of claims 32-36, further comprising dynamically
modulating at least one of the first voltage and the second voltage such that photons in the

detector are captured in a high energy bin and a low energy bin in a predetermined ratio.

38.  The method according to any of claims 32-37, further comprising dynamically
modulating both the first voltage and the second voltage such that photons in the detector are

captured in a high energy bin and a low energy bin in a predetermined ratio.

39.  The method according to any of claims 37-38, wherein the ratio (higher
energy bin : lower energy bin) is 2:1, 3:1, 4:1, 1:2, 1:3, 1:4, 5:1, 1.5, 1.5:1, 1:1.5, 2.5:1, 1:2.5,
3.5:1,1:3.5,45:1, or 1:4.5.

40. The method according to any of claims 32-39, further comprising dividing the
X-ray spectrum into low and high energies at different proportions during detection such that
detected X-ray radiation is classified as either high energy or low energy during detection by

modulating the first and second voltages.

41. The method according to claim 40, wherein the low and high energies are
divided into proportions of (low/high) 10%/90%, 20%/80%, 70%/30%, 60%/40%, 50%/50%,
40%/60%, 30%,70%, 20%/80%, and 10%/90% during detection by modulating the first and

second voltages.
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42, The method according to any of claims 40-41, further comprising distributing
these detector variants in a natural sequence, and repeating until a full detector ring is covered

in third generation geometry.

43.  The method according to any of claims 40-41, further comprising distributing
these detector variants in a natural sequence, and repeating until a full detector ring is covered

in fourth generation geometry.

44, The method according to any of claims 33-43, wherein the first layer and the

second layer are defined by the first and second pairs of electrodes, respectively.

45. The method according to any of claims 32-44, wherein both electrodes of the
first pair of electrodes are disposed parallel to a direction of X-rays incoming from the X-ray

source.

46. The method according to any of claims 32-45, wherein both electrodes of the
first pair of electrodes are disposed such that incoming X-rays from the X-ray source are first
incident on a side of the detector not having any of the first pair of electrodes disposed

thereon.

47. The method according to any of claims 32-46, wherein both electrodes of the
second pair of electrodes are disposed parallel to a direction of X-rays incoming from the X-

ray source.

48.  The method according to any of claims 32-48, wherein both electrodes of the
second pair of electrodes are disposed such that incoming X-rays from the X-ray source are
second incident on a side of the detector not having any of the second pair of electrodes

disposed thereon.

49.  The method according to any of claims 32-44 and 46-48, wherein both
electrodes of the first pair of electrodes are disposed perpendicular to a direction of X-rays

incoming from the X-ray source.
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50. The method according to any of claims 32-45 and 47-49, wherein both
electrodes of the first pair of electrodes are disposed such that incoming X-rays from the X-
ray source are first incident on a side of the detector having both electrodes of the first pair of

electrodes disposed thereon.

51. The method according to any of claims 32-46 and 48-50, wherein both
electrodes of the second pair of electrodes are disposed perpendicular to a direction of X-rays

incoming from the X-ray source.

52. The method according to any of claims 32-47 and 49-51, wherein both
electrodes of the second pair of electrodes are disposed such that incoming X-rays from the
X-ray source are second incident on a side of the detector having both electrodes of the

second pair of electrodes disposed thereon.

53.  The method according to any of claims 32-52, wherein the detector further
comprises:

a third pair of electrodes disposed thereon and configured to provide a third voltage to
the detector;

a fourth pair of electrodes disposed thereon and configured to provide a fourth voltage
to the detector;

a third layer; and

a fourth layer,

wherein the first to fourth pairs of electrodes are disposed on and configured to

provide the first to fourth voltages to the first to fourth layers, respectively.

54.  The method according to claim 53, wherein at least one of the first to fourth

voltages is different from at least one of the other voltages of the first to fourth voltages.

55. The method according to any of claims 53-54, wherein the first, second, third,

and fourth layers are defined by the first to fourth pairs of electrodes, respectively.

56.  The method according to any of claims 32-55, further comprising controlling

the first and second pairs of electrodes (and third and fourth pairs of electrodes, if present) to
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apply the first and second voltages (and the third and fourth voltages, if the third and fourth
pairs of electrodes are present) such that photons in the detector are captured in a high energy

bin and a low energy bin.

57.  The method according to claim 56, wherein the pairs of electrodes are
controlled to apply the voltages such that photons in the detector are captured in the high

energy bin and the low energy bin in a predetermined ratio.

58.  The method according to any of claims 32-57, wherein a thickness of each

layer of the detector present is the same as that of each other layer of the detector present.

59. The method according to any of claims 32-57, wherein a thickness of at least
one layer of the detector present is different from that of at least one other layer of the

detector present.

60.  The method according to any of claims 32-57, wherein a thickness of each
layer of the detector present is the different from that of each other layer of the detector

present.

61.  The method according to any of claims 32-60, further comprising performing

an energy resolving process on the collected X-ray radiation.

62. The method according to claim 101, wherein the energy resolving process
includes:

determining the generated charge density within the detector using Formula 1:

Formula 1 - vy B &; ey + wipEalipage 0009

where F; is photon energy, N; is photon density with energy Fi, ap is the attenuation
coefficient of photon with energy F; for the given material thickness, m; is an empirical
coefficient that represents the number of generated charges by photons with energy £; per
energy unit, and gi(x) is the generated charge density within the material of the detector of a

specific thickness; and



WO 2016/118960 PCT/US2016/014769
42

repeating the determination of the generated charge density at a different thickness

within the material of the detector.

63.  The method according to any of claims 61-62, wherein the energy resolving

process is performed by a processor.

64.  The method according to any of claims 32-63, wherein the sample to be

imaged is a part of a human patient.

65.  The method according to any of claims 32-64, wherein the X-ray radiation has

an energy of from 10 keV to 120 keV.

66.  The method according to any of claims 32-64, wherein the X-ray radiation has

an energy of less than 20 keV.

67.  The method according to any of claims 32-64, wherein the X-ray radiation has

an energy of more than 20 keV.

68.  The method according to any of claims 61-67, wherein the steps of the energy

resolving process are stored on a machine-readable medium.

69.  The method according to any of claims 32-68, wherein the imaging is a

computed tomography (CT) scan.

70.  The method according to any of claims 32-69, wherein the X-ray radiation is

provided by an X-ray source of a CT scanner.

71.  The method according to claim 70, wherein the CT scanner has third-

generation geometry.

72.  The method according to claim 70, wherein the CT scanner has fourth-

generation geometry.
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73. The method according to any of claims 32-72, wherein the detector is placed
in an edge-on fashion during imaging, such that the X-ray irradiation enters a side of a

substrate of the detector.
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