wo 2007/023136 A1 |0 OO0 0T AR 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization | [I

International Bureau

(43) International Publication Date
1 March 2007 (01.03.2007)

) IO O T 00 O

(10) International Publication Number

WO 2007/023136 Al

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:

PCT/EP2006/065449
(22) International Filing Date: 18 August 2006 (18.08.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/209,997 22 August 2005 (22.08.2005) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; Po Box 41, Portsmouth Hampshire
PO6 3AU (GB).

(71) Applicant and
(72) Inventor: CHEN, Yao- Ching Stephen [US/US]; 13056
Via Escuela Court, Saratoga, California 95070 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HUANG, Yue
[CN/US]; 459 Casselino Drive, San Jose, California 95136
(US). LIN, Fen-Ling [US/US]; 1357 Mansion Court, San
Jose, California 95120 (US). TRAN, Brian Thinh-Vinh
[US/US]; 754 Carrywood Way, San Jose, California 95120
(US). ZHANG, Guogen [CN/US]; 6670 Tradition Court,
San Jose, California 95120 (US).

Agent: ROBERTS, Scott; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester,
Hampshire SO21 2IN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(74)

(81)

[Continued on next page]

(54) Title: PACKING NODES INTO RECORDS TO STORE
CALLY STRUCTURED DATA

201

[Initially, there is no node,
i whuf is empty, and parent

XML XQUERY DATA MODEL AND OTHER HIERARCHI-

(57) Abstract: A storage of nodes of
hierarchically structured data uses logical
node identifiers to reference the nodes stored
within and across record data structures. A

§ stack empty. g . > .
02 node identifier index is used to map each
P f — logical node identifier t(') a record identifier
5] (RETURN J oo for the record that contains the node. When
| 203 T j a sub-tree is stored in a separate record, a
Fore nods {"i?,, Store nodesi ” wbuffnto proxy node is used to represent the sub-tree
<\'unformati% "1 one of more records. in the parent record. The mapping in the
204 ~ ;(es 2ot node identifier index' reflects the storage of
[Firstnode New vode Endof Ch“dl j the sub-tree nodes in the separate record.
e ey nodes Since the references between the records

Put node in beginning

- o
- of wbuf and advance nough space-., No

Pop off parentnode |
pointer from parent stack.

are through logical node identifiers, there is
no limitation to the moving of records across

i wa
205\ Yes

parent node

Store largest sub-tree (or
sequence of sub-trees) of

record, and replace with
proxy node until enough
space for new node?

pages, as long as the indices are updated
or rebuilt to maintain synchronization with
the resulting data pages. This approach
is highly scalable and has a much smaller
storage consumption than approaches that

into one

Sibling node _Rélationship
rrent node
//\%

Child node 08

jZOQ

- l - 210
Put node into wbuf at warking ;

pointer location, increment
parent’s child count, and
advance working pointer.

'

Push parent node pointer
onto parent stack.

use explicit references between nodes.

S

WO 2007/023136 A1 |0 000000 0T 000 0000 0 0 00

(84) Designated States (unless otherwise indicated, for every For two-letter codes and other abbreviations, refer to the "Guid-
kind of regional protection available): ARIPO (BW, GH, ance Notes on Codes and Abbreviations” appearing at the begin-
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ning of each regular issue of the PCT Gazette.
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— with international search report

WO 2007/023136 PCT/EP2006/065449

PACKING NODES INTO RECORDS TO STORE XML XQUERY
DATA MODEL AND OTHER HIERARCHICALLY
STRUCTURED DATA

FIELD OF THE INVENTION

The present invention relates to hierarchically structured data, and
more particularly to the storage of hierarchically structured data in a

database.

BACKGROUND OF THE INVENTION

As hierarchically structured data, such as eXtensible Mark-up
Language (XML), become widely used as a data format, it also becomes a
native data type for database systems. The storage of hierarchically
structured data in relational databases, however, poses particular

challenges.

One conventional approach is to store XML as text. This approach
preserves the original documents and retrieves the entire document.
However, it is inefficient in supporting queries and document updates,

especially when the document is large.

Another conventional approach is to decompose and store the XML as
tables in the relational database. This requires either a special
relational schema for each XML schema or a generic relational
representation for the XML data model. However, the result data is

relatively large, and the queries are usually slow to execute.

Another conventional approach uses an object data model to store XML
tree data, where many direct references or pointers are stored in the
records for the parent-child relationships. However, this approach lacks
scalability, has a larger data volume due to the references, and is less

flexible in the re-organization of records.

Another conventional approach decomposes the XML data at a high
level into relational data. However, this approach is inefficient in that
it places lower levels and long text into a Character Large Object (CLOB),
or it stores the original textual XML redundantly along with the object

model.

WO 2007/023136 PCT/EP2006/065449

Accordingly, there exists a need for an improved method and system
for storing hierarchically structured data in record data structures. The
improved method and system should combine the advantages of relational
scalability and flexibility for the re-organization of records and the

object efficiency for traversal and update.

SUMMARY OF THE INVENTION

An improved method and system for storing hierarchically structured
data in record data structures uses logical node identifiers to reference
the nodes of a hierarchically structured data stored within and across
relational data structures, such as records or pages of records. A node
identifier index is used to map each logical node identifier to a record
identifier for the record that contains the node. When a sub-tree is
stored in a separate record, a proxy node is used to represent the
sub-tree in the parent record. The mapping in the node identifier index
reflects the storage of the sub-tree nodes in the separate record. This
storage scheme supports document order clustering and sub-document update
with the record as the unit. Since the references between the records are
through logical node identifiers, there is no limitation to the moving of
records across pages, as long as the indices are updated or rebuilt to
maintain synchronization with the resulting data pages. The method and
system in accordance with the present invention thus is significantly more
scalable than conventional approaches. It has a much smaller storage
consumption than conventional object approaches that uses explicit

references between nodes.

BRIEF DESCRIPTION OF THE FIGURES

Embodiments of the present invention shall now be described, by way

of example, with reference to the following drawings:

Figure 1 illustrates an example hierarchically structured data tree

containing a plurality of nodes;

Figure 2 is a flowchart illustrating an embodiment of a method for
storing hierarchically structured data in a record data structure in

accordance with a preferred embodiment of the present invention;

Figure 3 illustrates an example record storing a hierarchically
structured data tree in accordance with a preferred embodiment of the

present invention;

WO 2007/023136 PCT/EP2006/065449

Figure 4 illustrates the local and absolute node identifiers for the

example tree in Figure 1;

Figure 5 is a flowchart illustrating a search for a node of the
hierarchically structured data in accordance with a preferred embodiment

of the present invention;

Figure 6 illustrates example records for storing a tree across
multiple records in accordance with a preferred embodiment of the present

invention;

Figure 7 is a flowchart illustrating a method for generating the
node identifier indexes for records with proxy nodes in accordance with a

preferred embodiment of the present invention;

Figure 8 illustrates example entries of the node identifier index in

accordance with a preferred embodiment of the present invention;

Figures 9A and 9B illustrate in more detail the tree traversal
process used by the method in accordance with a preferred embodiment of

the present invention; and

Figures 10A and 10B illustrate range proxy nodes in accordance with

a preferred embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention provide improved methods and
systems for storing hierarchically structured data in record data
structures. Various modifications to the preferred embodiment will be
readily apparent to those skilled in the art and the generic principles
herein may be applied to other embodiments. Thus, the present invention
is not intended to be limited to the embodiment shown but is to be
accorded the widest scope consistent with the principles and features

described herein.

The method and system in accordance with a preferred embodiment of
the present invention uses logical node identifiers to reference the nodes
of a hierarchically structured data stored within and across relational
data structures, such as records or pages of records. A node identifier
index is then used to map each logical node identifier to a record

identifier for the record that contains the node. When a sub-tree is

WO 2007/023136 PCT/EP2006/065449

stored in a separate record, a proxy node is used to represent the
sub-tree in the parent record. The mapping in the node identifier index
is then updated to reflect the storage of the sub-tree nodes in the
separate record. In this manner, when re-organization of records are
desired or needed, only the node identifier index needs to be updated.

The logical node identifiers in the records need not be changed.

To more particularly describe the features of the preferred
embodiment of the present invention, please refer to Figures 1 through 10B

in conjunction with the discussion below.

Figure 1 illustrates an example hierarchically structured data tree
containing a plurality of nodes. The tree 101 can represent any type of
hierarchically structured data, such as XML. Although the preferred
embodiment of the present invention may be described below in the context
of XML, one of ordinary skill in the art will understand that the method

and system can be applied to other types of hierarchically structure data.

The tree 101 has a root node (Node 0) with one child node (Node 1). Node
1 has three child nodes (Nodes 2, 6, and 7). Nodes 2, 6, and 7 are thus
sibling nodes. Node 6 is a leaf node (it has no child nodes). Node 2 has
three child nodes (Nodes 3, 4, and 5). Node 7 has one child node (Node
8).

Figure 2 is a flowchart illustrating an embodiment of a method for
storing hierarchically structured data in a record data structure in
accordance with the preferred embodiment of the present invention. Assume
that the hierarchically structure data comprises a plurality of nodes.
Initially, there is no node, a working buffer (wbuf) is empty, and a
parent stack is also empty, via step 201. The next node information is
then obtained, via step 202. It is then determined if there is more node
information, via step 203, i.e., if the traversal of the hierarchically
structured data or its equivalent token information has ended. If not,
and if the node is the first node, then the node is put in the beginning

of the wbuf, via step 204, and the working pointer is advanced.

If the node is a new node, then it is determined if there is enough
space in the wbuf for the new node, via step 205. If not, then the
largest sub-tree (or a sequence of sub-trees) of the parent node is stored
into one record, via step 207. The taken-out sub-tree (or a sequence of
sub-trees) is replaced with a proxy node until there is enough space for
the new node. If there is enough space, then the relationship between the

node and a current node is determined, via step 208. If the node is the

WO 2007/023136 PCT/EP2006/065449

child node of the current node, then the parent node pointer is pushed
onto the parent stack, via step 209. If the node is a sibling node of the
current node, then step 209 is skipped. Next, the node is put into the
wbuf at the location pointed to by the working pointer, the parent’s child
count is incremented, and the working pointer is advanced, via step 210.
If the node is an end of a set of child nodes, then the parent node

pointer is popped from the parent stack, via step 206.

Eventually, there is no more node information, via step 203. At
that time, the nodes stored in the wbuf is stored into one or more

records, via step 211.

Figure 3 illustrates an example record storing a hierarchically
structured data tree in accordance with the preferred embodiment of the
present invention. In this embodiment, nodes are stored within records.

A plurality of records is stored within a page. A plurality of pages is
stored for a document. This type of record data structure is known in the
art and will not be described in detail here. Each document is assigned a
document identifier (DocID). Assume that all nodes of the tree 101 is
part of the same document and can be stored within one record. The record
contains a record header 301 and nodes 302. The record is assigned a
record identifier (RID), which references a physical address of the
record. And each node is assigned a logical node identifier (node ID). A
logical node ID identifies a node based upon its relationship with the
other nodes in the tree. It does not identify the physical location where
the node is stored. There are two types of logical node ID’s, an absolute
node ID and a local or relative node ID. The local node ID of a node is
assigned to the node according to its sequence under that particular
parent node. Child nodes of different parent nodes are assigned local
node ID’s independently at each level in the tree. The absolute node ID
is a concatenation of the local node ID’s from the root node to the node.
For example, the local node ID for Node 5 is ‘06’ to indicate that it is
the third sibling node at its level, while its absolute node ID is
‘020206’ . The absolute node ID indicates that Node 5 is the third child
node of its parent node (Node 2), where its parent node is a first child
node of its grandparent node (Node 1), where its grandparent is a first
child node of the root node (Node 0). The root node is assigned a local

node ID of ‘00’ and is ignored.

Returning to Figure 3, the record header 301 contains an absolute
node ID of the rooted node. Each node 302 within the record contains a

node kind, node length, number of children, and the nodes for the

WO 2007/023136 PCT/EP2006/065449

children. It also stores its local node ID. Figure 4 illustrates the
local and absolute node IDs for the example tree 101 in Figure 1. Logical
node ID’s are further described in co-pending U.S. patent application
serial no. 10/709,415 published with publication number 20060004858 titled
“Self-Adaptive Prefix Encoding for Stable Node identifiers”, filed on May
4, 2004, and assigned to the assignee of the present application.
Applicant hereby incorporates this patent application by reference. The
logical node ID provides stable node encodings that allow for arbitrary
insertion, deletion or replacement of nodes. Existing node ID’s need not
be modified when a node is inserted, deleted, or replaced to keep node
ID’s in document order. This holds true because a logical node ID is not
modeled as a fixed string of decimal numbers, but rather as a

variable-length binary string.

In this embodiment, the storage of the tree 101 into records is
based on a preorder traversal process, known in the art. However, other
types of traversal processes can be used. With the preorder traversal
processing, as the nodes are constructed, a grouping logic keeps track of
the sub-tree being constructed for the length of the sub-tree rooted at
the current node. For example, assume that the maximum record size, R, is
known. A working buffer of 2xR or more in size is used in the
construction. If the entire tree is smaller than R, then the entire tree
is stored into one record. Otherwise, the tree is split into multiple
records. The storage of a tree in multiple records is described further

below.

For example, referring to both Figures 1 and 3, the root node (Node
0) is first stored with an indication that it has one child node. 1Its
child node (Node 1) is then stored with an indication that it has three
child nodes. Next, the first child node (Node 2) is stored with an
indication that it has three child nodes. These child nodes (Nodes 3, 4,
and 5) are then stored. The traversal process returns to Node 2 and
continues with the next sibling node (Node 6). Nodes 6 and 7 are then
stored, with an indication that Node 7 has one child. Node 8 is then
stored after Node 7. Thus, with the preferred embodiment of the present
invention, the relationships among the nodes of the tree 101 are captured

by the nesting structure. No explicit links are used.

Referring now to Figure 5, to obtain a node with a given logical
node ID, such as in response to a query, the node identifier index is
searched, via step 501, to obtain the RID corresponding to a logical node

ID. The record corresponding to the RID is then traversed to obtain the

WO 2007/023136 PCT/EP2006/065449

node corresponding to the logical node ID, via step 502. To locate the
node inside the record, the same traversal process used when storing the
tree is used to locate the node with the local node ID at each level.
[032] A hierarchically structured data tree is stored within a single
record whenever possible. Occasionally, multiple records are required to
store the hierarchically structured data tree. When more than one record
is required, the method in accordance with the preferred embodiment of the
present invention stores sub-trees in a separate record, and represents
this sub-tree in the parent record with a “proxy node”, which itself does
not contain a logical node ID. Assume for example, that the tree 101 in
Figure 1 cannot be stored within one record. The sub-tree of Node 2,
containing Nodes 2, 3, 4, and 5, is then stored in a separate record.

Here, each record stores one sub-tree.

Assuming again that the maximum record size, R, is known, as the
nodes are constructed node by node in the preorder traversal process, if
the entire tree is larger than R, then the tree is split into multiple
records. The largest sub-tree is searched and copied into a separate
record. The copied sub-tree is replaced with a proxy node, and the length
of the nodes in the separate record is excluded from the calculation of
the sub-tree length. Only the length of the proxy node is included. All
the length information is updated accordingly. Figure 6 illustrates
example records for storing a tree across multiple records in accordance
with the preferred embodiment of the present invention. Here, the parent
record 601 contains a proxy node 603 that represents the sub-tree rooted

in Node 2.

In order to find the sub-tree nodes represented by a proxy node, a
node identifier (node ID) index is created. This index is to map a node ID
to the RID of a record that contain the node with the given node ID. All
the node IDs in document order can be viewed as points in a line. The
records break this line into a plurality of intervals. The node ID index
contains the upper end point of each interval. Figure 7 is a flowchart
illustrating a method for generating the node identifier indexes for
records with proxy nodes in accordance with the preferred embodiment of
the present invention. First, the record is traversed to find the proxy
node, via step 701. An entry is then created for the largest logical node
ID before the proxy node, via step 702, with a mapping to the record’s
RID. Another entry is created for the largest node ID in the record, via
step 703, with a mapping to the record’s RID. These entries represent

the range of logical node ID’s that encompass the tree. For a logical

WO 2007/023136 PCT/EP2006/065449

node ID that falls within any two of entries, the greater RID is used to

locate the node.

For example, referring to Figure 8, assume that node identifier
index entries are being created for the records 601 and 602 (Figure 6).
First, the record 601 is traversed to find the proxy node 603, via step
701. ©Node 1 has the largest logical node ID before the proxy node 603, so
an entry 801 is created for Node 1 with a mapping to the RID for the
record 601 (rid2), via step 702. Node 8 has the maximum logical node ID
in the record 601, so an entry 803 is also created for Node 8 with a
mapping to the RID (rid2) of the record, 601, via step 703. For record
602, there are no proxy nodes, so steps 701 and 702 are skipped. ©Node 5
has the largest logical node ID for the record 602, so entry 802 is
created for Node 5 with a mapping to the RID (ridl) for the record 602,
via step 703.

Thus, to locate Node 4 with logical node ID '020204’, for example, a
search of the node identifier index finds the three entries 801-803. The
identifier ‘020204’ is greater than ‘02’ of entry 801, but less than
Y020206" of entry 802. Node 4 is thus mapped to the RID (ridl) for the
sub-tree record 602. If Node 8 with logical node ID ‘020602’ is to be
located, ‘020602’ is greater than ‘020206’ of entry 802 and equal to
‘020602’ of entry 803. Node 8 is thus mapped to the RID (rid2) for the

parent record 601.

By using proxy nodes to reference sub-tree nodes stored outside of a
parent record, the storage of hierarchically structured data is
significantly more scalable than conventional methods. This is especially
true since the nodes of the tree are stored as a few records, and the
nodes of sub-trees can be moved together more efficiently. When nodes are
updated, the records may require reorganization once it is discovered that
not all nodes of the tree can be stored in one record. Upon this
discovery, a sub-tree that can be stored in a separate record is
identified. The nodes of the sub-tree are then replaced with the proxy
node. If the records are less clustered, reorganization can be performed
to make records in document order again. Because references between
records are accomplished through logical node ID’s rather than explicit
references, this reorganization is significantly more easily accomplished,

allowing greater scalability.

Figures 9A and 9B illustrate in more detail the tree traversal

process used by the method in accordance with the preferred embodiment of

WO 2007/023136 PCT/EP2006/065449

the present invention. Figure 9A illustrates the traversal process with
one record, while Figure 9B illustrates the traversal process with two
records. A stack is used to track each level of nodes. In Figures 9A and
9B, the node ID’s 901-902 are absolute node ID’s in a variable-length
binary string (2-byte length, followed by the node ID encoding). The
length of each local node ID is kept in a separate array. Both node ID and
length of node IDs are used as a stack when the tree nodes are traversed.
The level is used as the stack top pointer. This way, the (absolute) node
ID can be maintained easily, and is always available as a variable-length
binary string format.In-scope namespaces in the XQuery data model can be

similarly maintained for each node.

Here, a sub-tree starts at a current node and ends at the current
node start position plus the sub-tree length. A tree can be traversed
using two primitives: getFirstChild and getNextSibling. The primitive
‘getFirstChild’ starts from the current node, and if the number of
children is ‘0’, then ‘not found’ is returned. Otherwise, the next node
is the first child. The primitive ‘getNextSibling’ starts from the
current node, and if it is the root node, then ‘not found’ is returned.
Otherwise, the total sub-tree length rooted at the current node is added
to the start position of the node to get the next node position. If it is
beyond the sub-tree rooted at the parent node, then ‘not found’ is

returned. Otherwise, that next node is the next sibling.

If a proxy node is encountered, the search key for the node ID index
is set to ‘(DocID, node ID)’. The index will return the RID of the record
that contains the node. This record is then fetched and the traversal
continues. To find a node with a given node ID, a node with the local

node ID at each level is found using the above two primitives.

To further improve efficiency, a proxy node, called a range proxy
node, can represent a sequence of sub-trees contained in a record, and
multiple proxy nodes next to each other within a record can be collapsed
into a single “range proxy node”. For example, as illustrated in Figure
10A, a range proxy node 1001 can represent two proxy nodes that are
collapsed, each of which represents a sequence of sibling nodes (or
sub-trees) 1002-1003 stored in a separate record. For another example, as
illustrated in Figure 10B, a range proxy node 1004 can represent multiple
proxy nodes 1005-1007, each corresponding to a record that may contain a

sub-tree or multiple sub-trees.

WO 2007/023136 PCT/EP2006/065449
10

An improved method and system for storing hierarchically structured
data in relational data structures are disclosed. The method and system
uses logical node identifiers to reference the nodes of a hierarchically
structured data stored within and across relational data structures, such
as records or pages of records. A node identifier index is used to map
each logical node ID to a RID for the record that contains the node. When
a sub-tree is stored in a separate record, a proxy node is used to
represent the sub-tree in the parent record. The mapping in the node
identifier index is then updated to reflect the storage of the sub-tree
nodes in the separate record. This storage scheme supports the following:

Clustering. To support document order clustering, the DocID and
node ID for the sub-tree root are used. To improve the efficiency of the
clustering, the DocID and the minimum node ID of the nodes, which is also
the absolute node ID of the sub-tree root, can be put into separate fields
within the record of nodes.

Update. A sub-document update can be performed with the record as
the unit. 1Insert, delete, or replace of a sub-tree can be performed
easily.

Re-organization of records. Since the references between the
records are through logical node ID’s, then there is no limitation to the
moving of records across pages, as long as the indices are updated or
rebuilt to maintain synchronization with the resulting data pages.

Partitioning. Even a document can be partitioned based on node ID

ranges.

The method and system in accordance with the preferred embodiment of
the present invention thus is significantly more scalable than
conventional approaches. It has a much smaller storage consumption than
conventional object approaches that uses explicit references between
nodes. They can also leverage existing indexing approaches and reuse some

of its utilities.

Although the present invention has been described in accordance with
the embodiments shown, one of ordinary skill in the art will readily
recognize that there could be variations to the embodiments. Accordingly,
many modifications may be made by one of ordinary skill in the art without

departing from the spirit and scope of the appended claims.

WO 2007/023136 PCT/EP2006/065449
11

CLAIMS

1. A method for storing hierarchically structured data in record data
structures, the hierarchically structured data containing a plurality of
nodes, comprising:

storing each node of the hierarchically structured data in at least
one record of a relational data structure; and

referencing each node of the hierarchically structured data using a

logical node identifier.

2. The method of claim 1, wherein the logical node identifier
identifies its corresponding node based upon the corresponding node’s

relationship with others of the plurality of nodes.

3. The method of claim 1, wherein the storing comprises:
storing with each node of the hierarchically structured data a
corresponding local node identifier, wherein the local node identifier is

assigned according to its sequence under its parent node.

4. The method of claim 3, wherein the hierarchically structured data is

traversed using getFirstChild and getNextSibling primitives.

5. The method of claim 1, wherein the storing comprises:

storing an absolute node identifier of a context node in a header of
the record, wherein the absolute node identifier comprises a concatenation
of local node identifiers from a root node to a current node, wherein the
context node comprises a parent node of a root node of a sub-tree or root

nodes of sub-trees that share a same parent.

6. The method of claim 1, wherein a construction for storing nodes is

performed based on a preorder traversal sequence.

7. The method of claim 1, further comprising:

constructing a node identifier index ;

searching the node identifier index for a record identifier
corresponding to a given logical node identifier; and

traversing a record corresponding to the record identifier to obtain

a node corresponding to the given logical node identifier.

8. The method of claim 1, wherein the storing comprises:

WO 2007/023136 PCT/EP2006/065449
12

determining that not all of the plurality of nodes can be stored
within one record;

finding a sub-tree of the plurality of nodes that can be stored
within a separate record;

storing nodes of the sub-tree in the separate record; and

replacing the nodes of the sub-tree in a parent record with a proxy

node.

9. The method of claim 8, further comprising:
changing a node identifier index to update a record identifier that
corresponds to the nodes of the sub-tree, wherein the logical node

identifiers for the nodes of the sub-tree need not be changed.

10. The method of claim 8, further comprising:

traversing the record and finding the proxy node;

creating an entry in a node identifier index for a largest logical
node identifier before the proxy node with a mapping to a record
identifier for the record; and

creating another entry in the node identifier index for a maximum
logical node identifier for the plurality of nodes with a mapping to the

record identifier for the record.

11. The method of claim 8, further comprising:
collapsing a plurality of proxy nodes in the parent record into a

single range proxy node.

12. The method of claim 11, wherein the range proxy node represents a

sequence of sibling proxy nodes stored in the separate record.

13. The method of claim 11, wherein the range proxy node represents the
plurality of proxy nodes, wherein each proxy node corresponds to a record

that contains a sub-tree or multiple sub-trees.

14. A computer readable medium with program instructions for storing
hierarchically structured data in record data structures, the
hierarchically structured data containing a plurality of nodes, comprising
instructions for:

storing each node of the hierarchically structured data in at least
one record of a relational data structure; and

referencing each node of the hierarchically structured data using a

logical node identifier.

WO 2007/023136 PCT/EP2006/065449
13

15. The medium of claim 14, wherein the logical node identifier
identifies its corresponding node based upon the corresponding node’s

relationship with others of the plurality of nodes.

16. The medium of claim 14, wherein the storing comprises:
storing with each node of the hierarchically structured data a
corresponding local node identifier, wherein the local node identifier is

assigned according to its sequence under its parent node.

17. The medium of claim 16, wherein the hierarchically structured data

is traversed using getFirstChild and getNextSibling primitives.

18. The medium of claim 14, wherein the storing comprises:

storing an absolute node identifier of a context node in a header of
the record, wherein the absolute node identifier comprises a concatenation
of local node identifiers from a root node to a current node, wherein the
context node comprises a parent node of a root node of a sub-tree or root

nodes of sub-trees that share a same parent.

19. The medium of claim 14, wherein a construction for the storing nodes

is performed based on a preorder traversal process.

20. The medium of claim 14, further comprising:

constructing a node identifier index;

searching the node identifier index for a record identifier
corresponding to a given logical node identifier; and

traversing a record corresponding to the record identifier to obtain

a node corresponding to the given logical node identifier.

21. The medium of claim 14, wherein the storing comprises:
determining that not all of the plurality of nodes can be stored
within one record;
finding a sub-tree of the plurality of nodes that can be stored
within a separate record;
storing nodes of the sub-tree in the separate record; and
replacing the nodes of the sub-tree in a parent node with a proxy

node.

22. The medium of claim 21, further comprising:
changing a node identifier index to update a record identifier that
corresponds to the nodes of the sub-tree, wherein the logical node

identifiers for the nodes of the sub-tree need not be changed.

WO 2007/023136 PCT/EP2006/065449
14

23. The medium of claim 21, further comprising:

traversing the record and finding the proxy node;

creating an entry in a node identifier index for a largest logical
node identifier before the proxy node with a mapping to a record
identifier for the record; and

creating another entry in the node identifier index for a maximum
logical node identifier for the plurality of nodes with a mapping to the

record identifier for the record.

24, The medium of claim 21, further comprising:
collapsing a plurality of proxy nodes in the parent node into a

single range proxy node.

25. The medium of claim 24, wherein the range proxy node represents a

sequence of sibling proxy nodes stored in the separate record.

26. The medium of claim 24, wherein the range proxy node represents the
plurality of proxy nodes, wherein each proxy node corresponds to a record

that contains a sub-tree or multiple sub-trees.

27. A system, comprising:

a relational data structure comprising at least one record, wherein
a plurality of nodes of a hierarchically structured data is stored within
the at least one record, wherein each node of the hierarchically
structured data is referenced using a logical node identifier; and

a node identifier index for mapping each logical node identifier for
each node to a record identifier corresponding to a record containing the

node.

28. The system of claim 27, wherein the at least one record comprises:
the plurality of nodes, where each node comprises its corresponding
local node identifier, wherein the local node identifier is assigned
according to its sequence under its parent node; and
a header comprising an absolute node identifier comprising a
concatenation of the local node identifiers from a root node to a current

node.

29. The system of claim 27, wherein the at least one record comprises a
proxy node, wherein the proxy node represents node of a sub-tree of the
plurality of nodes that cannot be stored within one record, wherein the

nodes of the sub-tree are stored in a separate record.

WO 2007/023136 PCT/EP2006/065449

1/8

Node 0 | oo
Node 1 | 55
/ \
Node 2 | 5 Node 6 | g4 Node 7 | o5
/ \
Node 3 Node 4 Node 5 Node 8 | 45
02 04 06

FIG. 1

WO 2007/023136

204

¥

First node

S

Put node in beginning
«— of wbuf and advance
working pointer.

PCT/EP2006/065449
201
Initially, there is no node,
wbuf is empty, and parent
stack empty.
jﬂz
3
Obtain next node information. l/ UF;ETURN \;
N oS 2
203 i)/
“More node No__“’_ Store nodes in wbuf into
information? one or more records.
S B //
Yes 206
New node End Of Ch“d
nodes

~Efough space~. No

< inwbuf?
~ //
20 T Yes

.

Pop off parent node
pointer from parent stack.

Store largest sub-tree (or
sequence of sub-trees) of
parent node into one

Sibling node_-Rélationship Wi
urrent node?
o
Child nodel 08

record, and replace with
proxy node until enough
space for new node?

Push parent node pointer
onto parent stack.

P

k

Put node into wbuf at working
pointer location, increment
parent's child count, and
advance working pointer.

K

;

FIG. 2

WO 2007/023136 PCT/EP2006/065449

8

‘§§01 ‘5902 :3/

Rec Hdr | Node 0 (1) | Node 1(3) | Node 2(3) | Node 3
Node4 | Node5 | Node6 | Node7(1) | Node8

FIG. 3

Node No. Local Node ID | Absolute Node ID

0 00 00

1 02 D2

2 02 0202
3 02 020202
4 04 020204
5 06 020206
6 04 0204
7 06 0206
8 02 020602

FIG. 4

WO 2007/023136 PCT/EP2006/065449

4/8

01
Search node identifier index j
for the RID corresponding to

a logical node 1D.

Traverse the record 02
corresponding to the RID to
obtain the node

corresponding to the logical
node ID.

¥

{ RETURN |
Nt

FIG. 5

601
/(603
Rec Hdr| Node 0 (1) Node 1(3) | Node2 (p)
Node 6 | Node7(1) | Node 8
Rec Hdr| Node 2 (3) Node3 | Noded4
] Node 5

R

FIG. 6

WO 2007/023136

PCT/EP2006/065449

5/8

01
Traverse the record and find
proxy node.

02
Create entry for largest
logical node 1D before proxy

node with mapping to
record’'s RID.

703

Create entry for largest
logical node ID in record with
mapping to record’s RID.

L B
{ RETUR@

R —

FIG. 7

01

Doc ID

docid

docid

020206 rid1 03

docid

Node ID RID /(a 02
02 rid2)/?

020602 rid2

FIG. 8

WO 2007/023136

PCT/EP2006/065449

6/8
Current Level: | 4 # of Records: States:
Length of node ID: 1 2 1 1 01
Node ID: 5] 02 |o0128] 40 | 36 Jj
Node Offset/Pointer: \\ \\ f 11

R, B W S
-
/

FIG. 9A

WO 2007/023136 PCT/EP2006/065449

718

Current Level: @ # of Records: States: D
1

Length of node ID: 1 2 1 1 902
Node ID: 51 02 0128 40 36 24 ;
Node Offset/Pointer: \ \ | J
kY \ / [Ji
Base ¥ \ / / /
Pointers: ¥ / / /
= i
[]
v/
//
2

FIG. 9B

WO 2007/023136 PCT/EP2006/065449

8/8

10Q%\\

AN

\3002 \3003

FIG. 10A

FIG. 10B

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/065449

A.
INV.

CLASSIFICATION OF SUBJECT MATTER
GO6F17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of dala base and, where practical, search terms used)

EPO-Internal, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

THORSTEN FIEBIG, SVEN HELMER,
CARL-CHRISTIAN KANNE, JULIA MILDENBERGER,
GUIDO MOERKOTTE, ROBERT SCHIELE, TILL
WESTMANN: "Anatomy of a Native XML Base
Management System"”

TECHNICAL REPORT 01, UNIVERSITY OF
MANNHEIM, [Online] 2002, pages 1-52,
XP002404139

Retrieved from the Internet:
URL:http://citeseer.ist.psu.edu/fiebig02an
atomy.htm1> [retrieved on 2006-11-23]
page 10, Tine 6 - page 12, last 1line
figures 9,11

page 20, Tine 14 - page 21, T1ine 15

_____ o

1-4,
6-17,
19-27,29

5,18,28

Further documents are listed in the continuation of Box C.

See patent family annex.

*A" document defining the general siate of the art which is not
considered to be of particular relevance

“E" earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited 1o establish the publication date of another "y
citation or other special reason (as specified)

*O" document referring to an oral disclosu re, use, exhibition or
other means

P document published prior to the international filing date but in the art.
later than the priority date claimed

* Special categories of cited documents :

'T* later documenti published after the international filing date

"invention

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

'X* document of particular relevance; the claimed invention

cannot be considered novel or cannot be considered to

involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
ments, such combination being obvious to a person skilled

*& document member of the same patent family

Date of the actual completion of the international search

23 October 2006

Date of mailing of the international search report

09/11/2006

Name and mailing address of the 1SA/

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Authorized officer

Fax: (+31-70) 340-3016 . Bykowski, Artur

Form PCTASA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006,/065449

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

KANNE C-C ET AL: "Efficient Storage of
XML Data"

TECHNICAL REPORT UNIVERSITY OF MANNHEIM,
1999, pages 1-20, XP010378712

page 2, 1ine 1 - page 6, line 10

page 8, lines 27,28

figures 8,156

FIEBIG T ET AL: "Anatomy of a native XML
base management system"

VLDB JOURNAL, SPRINGER VERLAG, BERLIN, DE,
vol. 11, 2002, pages 292-314, XP002325045
ISSN: 1066~8888

page 295, right-hand column, lines 5-7
page 296, right-hand column, lines 23,24
page 301, left-hand column, Tines 40-47
AMER-YAHIA S ET AL: "Logical and physical
support for heterogeneous data"
PROCEEDINGS OF THE ELEVENTH INTERNATIONAL
CONFERENCE ON INFORMATION AND KNOWLEDGE
MANAGEMENT. CIKM 2002 ACM NEW YORK, NY,
USA, 4 November 2002 (2002-11-04), - 9
November 2002 (2002-11-09) pages 270-281,
XP002404140

ISBN: 1-58113-492-4

page 277, left-hand column, 1ine 22 - last
Tine

figure 8

WO 01/42881 A2 (B BOP ASSOCIATES INC [US])
14 June 2001 (2001-06-14)

page 10, line 3 - page 14, l1ine 6

1-4,6-9,
11-17,
19-22,
24-27,29

1-4,6-9,
11-17,
19-22,
24-27,29

1-6,
14-19,
27,28

5,18,28

Form PCT/ISA/210 (continuation of second sheat) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/065449
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 0142881 A2 14-06-2001 AU 4521101 A 18-06~2001

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - claims
	Page 14 - claims
	Page 15 - claims
	Page 16 - claims
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - wo-search-report
	Page 26 - wo-search-report
	Page 27 - wo-search-report

