This invention relates to foldable coat hangers and particularly to such devices for use by travelers, and which can be easily folded to a shape and size that will be convenient to carry in a purse or pocket or to store in the glove compartment of an automobile.

The main objects of this invention are to provide an improved and simplified foldable coat hanger; to provide such a device that can be readily hung on any convenient hook or rod and yet has no hook end or sharp pointed portions which might catch or tear when the device is being carried in the pocket or purse; to provide such a device which can be folded to a flat compact form that may be carried in a pocket as readily as a pair of glasses and which when folded will be of approximately the same size; to provide an improved foldable pocket coat hanger which will open to a size suitable for substantially any type of garment; to provide an improved foldable garment hanger construction which will permit folding to pocket size and yet have sufficient strength, when opened, to support an overcoat; and to provide such a device of simple construction and low manufacturing cost.

A specific embodiment of this invention is shown in the accompanying drawings in which:

Figure 1 is a perspective view of the improved coat hanger in folded condition.

Figure 2 is a perspective view of the same in opened position for use.

Figure 3 is an enlarged fragmentary view, partly in section, showing one of the telescoping arms of the hanger and the manner of attachment to the central frame.

Figure 4 is a sectional view of a leg of the central frame as taken on line 4—4 of Figure 2, and

Figure 5 is a view showing the folded hanger in a shown, each arm is made up of a plurality of tubular sections, of progressively smaller cross sectional size or diameter, arranged to slidably telescope one into the other and the innermost section is made to have an outside diameter substantially the same as the inside diameter of the semicircular channel in the leg of the central frame member. Each arm is pivoted on a rivet or pin 6 located in the side portions or jaws 4 of the respective clevis so as to be offset laterally outward from the center of the channel of the leg sufficient to permit the arm 5, when swung upwardly parallel with the respective leg, to rest into or lie along the channel of the leg.

As shown in Figures 2 and 3, the inner end 1 of the innermost arm section extends beyond the pivot pin 6 and the central inner wall portion of the frame member leg. Thus when the arm is in its lowered or operative position the inner end 1 will engage the edge of the central leg wall portion, in the bight of the clevis, and hold the arm in laterally extended position for supporting a garment hung thereon. The location of the pivot below the bight of the clevis, will determine the angle of rest of the laterally extended position of the arm, relative to the vertical axis of the frame member, and preferably this is arranged so that the extended arm will slope downwardly from the frame member at substantially the same angle as the average slope of the shoulder portions of the coat, jacket or other garment which the hanger is intended to support.

As shown in Figures 1 and 2, the outer edge portions of each leg of the frame member are provided with a pair of outwardly projecting tongues 8 and 9, formed to extend beyond the center line, or axis, of the arm 5 when it is in folded position. These tongues are preferably located adjacent the upper end or bight portion of the frame member and are curved slightly toward each other so as to partially embrace the innermost arm section when it is folded to lie along the channel of the frame member leg. The tongues 8 and 9 are rounded to avoid sharp corners and preferably the tongues are of less length than one-half the width of the inner arm section so that they will not extend beyond the folded arm. The tongues 8 and 9 thus serve as resilient clamps which will hold the arms in folded position when the device is not in use as a hanger.

The telescopic construction of the arms 5 is illustrated in Figure 3 in which an arm having three sections of progressively smaller size or diameter is shown. The innermost arm section 10 is tubular and of the largest diameter and a bushing or bearing 11 is inserted in the outer end of the member to provide a snug sliding fit and support for the next smaller diameter arm section 12, which is also tubular. As shown the outer end of the section 10 is spun inwardly to retain the bushing and the inner end of the section 12 is flared, as at 13, to provide a limit stop for movement of this section in the outward direction. It will be understood that the bushing 11 is of sufficient length to keep the sections 10 and 12 axially aligned and to prevent relative bending when the arm is supporting the
weight of a garment. The third arm section 14 is mounted in a bushing 18 at the outer end of the section 12 in the same way that the section 12 is attached to the innermost member 16. The third or last arm section may have a solid rod 28 shown, is threaded at its outer end to receive a finishing knob 16 which not only prevents the end of the section from cutting or tearing the garment, but also tends to keep the garment from slipping.

Preferably the improved coat hanger construction is proportioned so that in its folded condition, as shown in Fig. 1, its over-all length will be approximately five inches and its width approximately two inches. Thus the device may be fitted into a pocket type of glasses case, as shown in Fig. 5, for convenience in carrying in a coat pocket or purse, or for easy storage in a traveling bag or the glove compartment of an automobile. By forming the legs of the frame member with a channel shape, in cross section, the arms 16 may be partially housed in the legs when folded, thus permitting a construction having adequate strength within a minimum space; and by forming the central frame as an inverted U the device may be readily hung on a horizontal rod or bar which does not have an open end as well as on the usual coat hook or peg.

The advantages of the invention are to be found in its simplicity of construction, which requires a minimum of material and is easy to manufacture, whereby the cost of manufacture is low enough to make its selling price attractive. Although but one specific embodiment of the invention is herein shown and described it will be understood that details of the construction shown may be altered or omitted without departing from the spirit of the invention as defined by the following claims.

1. A device of the class described comprising a central frame member having the form of an inverted U each leg of which is bifurcated at its free end to provide the jaws of a clevis lying in a plane normal to the plane of the frame member, a lateral arm mounted on each leg of said frame member and having its inner end extending between the jaws of the respective clevis, and means adjacent the inner end of each arm pivotally connecting the arm with the jaws of the respective clevis on a pivot axis normal to the plane of the frame member and offset laterally outward from the axis of the respective leg, each arm having its inner end extending beyond the respective pivot means for engagement with the bight of the respective clevis when the arm is at a laterally extending position.

2. A device of the class described comprising a central frame member having the form of an inverted U each leg of which is bifurcated at its free end to provide the jaws of a clevis lying in a plane normal to the plane of the frame member, the jaws of each clevis projecting laterally outward beyond the axis of the respective frame member leg, a lateral arm mounted on each leg of said frame member and having its inner end extending between the jaws of the respective clevis, and means adjacent the inner end of each arm pivotally connecting the arm with the jaws of the respective clevis on a pivot axis normal to the plane of the frame member and offset laterally outward from the axis of the respective leg, whereby the respective arm is swingable to a position parallel with and alongside the said leg, each arm having its inner end extending beyond the respective pivot means for engagement with the bight of the respective clevis when the arm is at a laterally extending position.

3. A device of the class described comprising an inverted U-shaped central frame member each leg of which has an outwardly opening channel shaped section substantially throughout its length, each leg of said frame member being bifurcated at its free end to provide the jaws of a clevis disposed in a plane normal to the plane of the frame member, a lateral arm mounted on each leg of the frame member and having its inner end extending between the jaws of the respective clevis, and means adjacent the inner end of each arm pivotally connecting the arm to the jaws of the respective clevis on a pivot axis normal to the plane of the frame member whereby the arm is swingable about the pivot axis to lie in and along the channel of the frame member leg, the inner end of each arm extending beyond the pivot means for engagement with the bight of the respective clevis when the arm is at a laterally extended position.

4. A device of the class described comprising an inverted U-shaped central frame member each leg of which has an outwardly opening semicircular channel shaped section substantially throughout its length, each leg of said frame member being bifurcated at its free end to provide the jaws of a clevis disposed in a plane normal to the plane of the frame member, a lateral arm of cylindrical form mounted on each leg of the frame member and having its inner end extending between the jaws of the respective clevis, and means adjacent the inner end of each arm pivotally connecting the arm to the jaws of the respective clevis on a pivot axis normal to the plane of the frame member whereby the arm is swingable about the pivot axis to nest in and along the channel of the frame member leg, the inner end of each arm extending beyond the pivot means for engagement with the bight of the respective clevis when the arm is at a laterally extended position.

5. A device of the class described comprising an inverted U-shaped central frame member each leg of which has an outwardly opening semicircular channel shaped section substantially throughout its length, each leg of said frame member being bifurcated at its free end to provide the jaws of a clevis disposed in a plane normal to the plane of the frame member, a lateral arm of cylindrical form mounted on each leg of the frame member and having its inner end extending between the jaws of the respective clevis, and means adjacent the inner end of each arm pivotally connecting the arm to the jaws of the respective clevis on a pivot axis normal to the plane of the frame member whereby the arm is swingable about the pivot axis to nest in and along the channel of the frame member leg, and resilient retaining means projecting from the longitudinal edges of each leg for partially embracing the respective arm when it is in nested position thereon, the inner end of each arm extending beyond the pivot means for engagement with the bight of the respective clevis when the arm is at a laterally extended position.

JEROME G. ALBERT.