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Predictive test for aggressiveness or indolence of prostate cancer from mass
spectrometry of blood-based sample

Related Application

This application claims priority benefits to U.S. provisional application serial no.

62/058,792 filed October 2, 2014, the content of which is incorporated by reference herein.

This application is related to U.S. application serial no. 14/486,442 filed September
15, 2014, of H. Réder et al., U.S. patent application publication no. 2015/0102216, assigned
to the assignee of the present invention. The content of the ‘442 application is incorporated

by reference herein. The ‘442 application is not admitted to depict prior art.

Background

Prostate cancer is a cancer that forms in tissues of the prostate, a gland in the male
reproductive system. Prostate cancer usually occurs in older men. More than one million
prostate biopsies are performed each year in the United States, leading to over 200,000
prostate cancer diagnoses. Managing the care of these patients is challenging, as the tumors

can range from quite indolent to highly aggressive.

Current practice is to stratify patients according to risk based on serum prostate
specific antigen (PSA) measurements, TNM staging, and Gleason score. High baseline PSA
(PSA>20 ng/ml) is taken as a signal of increased risk of aggressive disease and indicates
immediate therapeutic intervention. TNM staging of T3a or worse, including metastatic
disease, places the patient in the high risk category, whereas a staging of T1 to T2a is

required for the patient to be classified as low or very low risk.

In order to have the Gleason score evaluated, a set of biopsies are taken from different
regions of the prostate, using hollow needles. When seen through a microscope, the biopsies
may exhibit five different patterns (numbered from 1 to 5), according to the
distribution/shape/lack of cells and glands. A pathologist decides what the dominant pattern
is (Primary Gleason Score) and the next-most frequent pattern (Secondary Gleason Score).
The Primary and Secondary scores are then summed up and a Total Gleason Score (TGS) is
obtained, ranging from 2 to 10. As the TGS increases the prognosis worsens. Patients with

Gleason score of 8 or higher are classified as high risk and are typically scheduled for
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immediate treatment, such as radical prostatectomy, radiation therapy and/or systemic
androgen therapy. Patients with Gleason score of 7 are placed in an intermediate risk
category, while patients with Gleason score of 6 or lower are classified as low or very low

risk.

Patients diagnosed with very low, low, and intermediate risk prostate cancer are
assigned to watchful waiting, an active surveillance protocol. For these patients, levels of
serum PSA are monitored and repeat biopsies maybe ordered every 1-4 years. However,
despite low baseline PSA and favorable biopsy results, some patients defined as low risk do
experience rapid progression. These patients, especially in the younger age group, would
benefit from early intervention. Bill-Axelson, A. et al. Radical prostatectomy versus
watchful waiting in early prostate cancer. N Engl ] Med 364, 1708-17 (2011). Improved
identification of prostate cancer patients who in fact have poor prognosis and need to be

actively treated is of significant clinical importance.

Investigations into various biomarkers which may help in this indication are ongoing.
While measurement of total PSA remains one of the most widely accepted tests for prostate
cancer diagnostics, a lot of research is focused on finding additional circulating biomarkers of
prognosis of the course of the disease. Several alternative types of PSA measurements, such
as percentage of free PSA (% fPSA) and PSA kinetics have been evaluated most extensively.
Observed % fPSA seems to be a significant predictor of time to treatment in patients in active
surveillance, while PSA velocity and PSA doubling time results are often inconsistent.
Trock, B.J. Circulating biomarkers for discriminating indolent from aggressive disease in
prostate cancer active surveillance. Curr Opin Urol 24, 293-302 (2014); Cary, K.C. &
Cooperberg, M.R. Biomarkers in prostate cancer surveillance and screening: past, present,
and future. Ther Adv Urol 5, 318-29 (2013). Another test based on calculating the Prostate
Health Index using measurements of [-2]proPSA (a truncated PSA isoform), fPSA and total
PSA, has shown promising results. See the Trock paper, supra. Several studies evaluated
potential biomarkers in urine, such as prostate cancer antigen3 (PCA3) and fusion gene
TMPRSS2-EGR, though the results were contradictory. Id. In addition, there are several
recent tissue based tests employing gene expression profiles, such as Oncotype DX Prostate
Cancer Assay (Genomic health) see Klein, A.E., et al. A4 /7-gene Assay to Predict Prostate
Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality,
and Biopsy Undersampling, Euro Urol 66, 550-560 (2014) and the Prolaris assay (Myriad
Genetics), see Cooperberg, M.R., et al. Validation of a Cell-Cycle Progression Gene Panel to

2
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Improve Risk Stratification in a Contemporary Prostatectomy Cohort, J Clin Oncol 31, 1428-
1434 (2013), which are associated with the risk of disease progression (see Sartori, D.A. &
Chan, D.W. Biomarkers in prostate cancer: what's new? Curr Opin Oncol 26, 259-64 (2014))

however they require an invasive procedure.

Though the results on a number of biomarkers are promising, most are in early stages
of validation and none of them has yet been shown to reliably predict the course of the
disease. Thus, there is an unmet need for non-invasive clinical tests that would improve risk
discrimination of prostate cancer in order to help select appropriate candidates for watchful
waiting and identify men who need an immediate active treatment. The methods and

systems of this invention meet that need.

Other prior art of interest includes US patents 8,440,409 and 7,811,772, and U.S.
patent application publication 2009/0208921. The assignee of the present invention has
several patents disclosing classifiers for predictive tests using mass spectrometry data

including, among others, U.S. 7,736,905; 8,718,996 and 7,906,342.

Summary

In a first aspect, a method for predicting the aggressiveness or indolence of prostate

" cancer in a patient previously diagnosed with prostate cancer is disclosed. The method

includes the steps of: obtaining a blood-based sample from the prostate cancer patient;
conducting mass spectrometry of the blood-based sample with a mass spectrometer and
thereby obtaining mass spectral data including intensity values at a multitude of m/z features
in a spectrum produced by the mass spectrometer, and performing pre-processing operations
on the mass spectral data, such as for example background subtraction, normalization and
alignment. The method continues with a step of classifying the sample with a programmed

computer implementing a classifier.

In preferred embodiments the classifier is defined from one or more master classifiers
generated as combination of filtered mini-classifiers with regularization. The classifier
operates on the intensity values of the spectra obtained from the sample after the pre-
processing operations have been performed and a set of stored values of m/z features from a

constitutive set of mass spectra.
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In this document we use the term “constitutive set of mass spectra” to mean a set of
feature values of mass spectral data which are used in the construction and application of a
classifier. The final classifier produces a class label for the blood based sample of High,
Early, or the equivalent, signifying the patient is at high risk of early progression of the
prostate cancer indicating aggressiveness of the prostate cancer, or Low, Late or the
equivalent, signifying that the patient is at low risk of early progression of the prostate cancer

indicating indolence of the cancer.

In one embodiment, in which the classifier is defined from one or more master
classifiers generated as a combination of filtered mini-classifiers with regularization, the
mini-classifiers execute a K-nearest neighbor classification (k-NN) algorithm on features
selected from a list of features set forth in Example 1 Appendix A, Example 2 Appendix A,
or Example 3 Appendix A. The mini-classifiers could alternatively execute another
supervised classification algorithm, such as decision tree, support vector machine or other.
In one embodiment, the master classifiers are generated by conducting logistic regression

with extreme drop-out on mini-classifiers which meet predefined filtering criteria.

In another aspect, a system for prostate cancer aggressiveness or indolence prediction
is disclosed. The system includes a computer system including a memory storing a final
classifier defined as a majority vote of a plurality of master classifiers, a set of mass
spectrometry feature values, subsets of which serve as reference sets for the mini-classifiers,
a classification algorithm (e.g., k-NN), and a set of logistic regression weighting coefficients
defining one or more master classifiers generated from mini-classifiers with regularization.
The computer system includes program code for executing the master classifier on a set of
mass spectrometry feature values obtained from mass spectrometry of a blood-based sample

of a human with prostate cancer.

In still another example, a laboratory test system for conducting a test on a blood-
based sample from a prostate cancer patient to predict aggressiveness or indolence of the
prostate cancer is disclosed. The system includes, in combination, a mass spectrometer
conducting mass spectrometry of the blood-based sample thereby obtaining mass spectral
data including intensity values at a multitude of m/z features in a spectrum produced by the
mass spectrometer, and a programmed computer including code for performing pre-
processing operations on the mass spectral data and classifying the sample with a final

classifier defined by one or more master classifiers generated as a combination of filtered
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mini-classifiers with regularization. The final classifier operates on the intensity values of the
spectra from a sample after the pre-processing operations have been performed and a set of
stored values of m/z features from a constitutive set of mass spectra. The programmed
computer produces a class label for the blood-based sample of High, Early or the equivalent,
signifying the patient is at high risk of early progression of the prostate cancer indicating
aggressiveness of the prostate cancer, or Low, Late or the equivalent, signifying that the
patient is at low risk of early progression of the prostate cancer indicating indolence of the

cancer.

In yet another aspect, a programmed computer operating as a classifier for predicting
prostate cancer aggressiveness or indolence is described. The programmed computer includes
a processing unit and a memory storing a final classifier in the form of a set of feature values
for a set of mass spectrometry features forming a constitutive set of mass spectra obtained
from blood-based samples of prostate cancer patients, and a final classifier defined as a
majority vote or average probability cutoff, of a multitude of master classifiers constructed

from a combination of mini-classifiers with dropout regularization.

In one possible embodiment, the mass spectrum of the blood-based sample is obtained
from at least 100,000 laser shots in MALDI-TOF mass spectrometry, e.g., using the
techniques described in the patent application of H. Réder et al., U.S. Serial No. 13/836,436

filed March 15, 2013, the content of which is incorporated by reference herein.

Brief Description of the Drawings

Figure 1 is a flow chart showing a classifier generation process referred to herein as
combination of mini-classifiers with drop-out (CMC/D) which was used in generation of the

classifiers of Examples 1, 2 and 3.

Figures 2A-2C are plots of the distribution of the performance metrics among the

master classifiers (MCs) for Approach 1 of Example 1.

Figures 3A-3C are plots of the distribution of the performance metrics among the

MCs for Approach 2 of Example 1.

Figures 4A-4L are plots of the distribution of the performance metrics among the

obtained MCs for approach 2 of Example 1 when flipping labels. Each row of plots

5



10

15

20

25

WO 2016/054031 PCT/US2015/052927

corresponds to a sequential iteration of loop 1142 in the classification development process of

Figure 1.

Figures 5A-5C are t-Distributed Stochastic Neighbor Embedding (t-SNE) 2D maps of
the development sample set labeled according to the initial assignment of group labels for the
development sample set in Approach 1 of Example (Figure 5A); an initial assignment for
Approach 2 of Example (Figure 5B); and final classification labels after 3 iterations of label
flips (Approach 3 of Example 1)(Figure 5C). “1” (triangles) corresponds to “High” and “0”

(circles) to “Low” group label assignments.

Figure 6 is a plot of the distribution of the times on study for patients in Example 2

leaving the study early without a progression event.

Figure 7 is a plot of Kaplan-Meier curves for time to progression (TTP) using the
modified majority vote (MMYV) classification labels obtained by a final classifier in Approach

1 of Example 2.

Figure 8 is a plot of the Kaplan-Meier curves for TTP for the classifications obtained
in Approach 1 of Example 2, including half (46) of the patients who dropped out of the study.
For the patients who were used in the test/training splits, the MMV label is taken. For those
patients who dropped out of the study the normal Majority Vote of all the 301 MCs is used.
Log-rank test p-value = 0.42, log-rank HR = 1.42 with a 95% CI = [0.61 — 3.33].

Figure 9 is a plot of the Kaplan-Meier curves for TTP using the MMV classification
labels obtained in Approach 2 of Example 2.

Figure 10 is a plot of the distribution of Cox Hazard Ratios of the individual 301
master classifiers (MCs) created in Approach 2 of Example 2.

Figures 11A-11C are plots of the distribution of the performance metrics among the

MCs in Approach 2 of Example 2.

Figure 12 are Kaplan-Meier curves for TTP obtained using the MMV classification
labels after each iteration of label flips (using Approach 2 of Example 2 as the starting point)
in the classifier development process of Figure 1. The log-rank p-value and the log-rank

Hazard Ratio (together with its 95% Confidence Interval) are also shown for each iteration.



10

15

20

25

30

WO 2016/054031 PCT/US2015/052927

Figure 13 are t-Distributed Stochastic Neighbor Embedding (t-SNE) two dimensional
maps of the classifier development data set, labeled according to (left) the initial assignment
for the group labels in the training set and (right) the final classification labels, for each of

three approaches to classifier development used in Example 2.

Figure 14 isa plot of Kaplan-Meier curves for TTP using classification labels
obtained in approach 2 of Example 2 and including the patients of the “validation set” cohort.
For the patients that were used in the test/training splits the MMV label is taken. For the
“validation set” patients, the normal majority vote of all the 301 MCs is used. The log-rank p-
value is 0.025 and the log-rank Hazard Ratio 2.95 with a 95% CI of [1.13,5.83]. A table
showing the percent progression free for each classified risk group at 3, 4 and 5 years on

study is also shown.

Figure 15 are Box and Whisker plots of the distribution of the PSA baseline levels
(taken at the beginning of the study) of the two classification groups in Approach 2 of
Example 2. For the patients that were used in the test/training splits the MMV label is taken.
For the “validation set” patients, the normal majority vote of all the 301 MCs is used. The
plot takes into account only the 119 patients (from the development and “validation” sample

sets), for whom baseline PSA levels were available.

Figure 16 is a plot of the distribution of the Total Gleason Score (TGS) values of the
two classification groups (using Approach 2 of Example 2). For the patients that were used
in the test/training splits the MMV label is taken. For the “validation set” patients, the
normal majority vote of all the 301 MCs is used. Only the 133 patients (from the

development and validation sets) for whom TGSs were available are considered in this plot.

Figure 17 is a box and whisker plot showing normalization scalars for spectra for

Relapse and No Relapse patient groups in Example 3.

Figure 18 is a plot of a multitude of mass spectra showing example feature
definitions; i.e., m/z ranges over which integrated intensity values are calculated to give

feature values for use in classification.

Figure 19 is a box and whisker plot showing normalization scalars found by partial
ion current normalization analysis comparison between clinical groups Relapse and No

Relapse.
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Figures 20A and 20B are Kaplan-Meier plots for time to relapse (TTR) by Early and
Late classification groups, showing the performance of the classifiers generated in Example
3. Figure 20A shows the classifier performance for Approach (1) of Example 3, which uses
only mass spectral data for classification, whereas Figure 20B shows classifier performance
for Approach (2) of Example 3, which uses non-mass spectral information, including

patient’s age, PSA and % fPSA, in addition to the mass spectral data.

Figure 21 is an illustration of a testing process and system for conducting a test on a
blood-based sample of a prostate cancer patient to predict indolence or aggressiveness of the

cancer.

Detailed Description

Introduction

A programmed computer is described below which implements a classifier for
predicting from mass spectrometry data obtained from a blood-based sample from a prostate
cancer patient whether the cancer is aggressive or indolent. The method for development of
this classifier will be explained in three separate Examples using three different sets of
prostate cancer blood-based samples. The classifier development process, referred to herein
as “CMC/D” (combination of mini-classifiers with dropout) incorporates the techniques
which are disclosed in US application serial no. 14/486,442 filed September 15, 2014, the
content of which is incorporated by reference herein. The pertinent details of the classifier
development process are described in this document in conjunction with Figure 1. A testing
system, which may be implemented in a laboratory test center including a mass spectrometer

and the programmed computer, is also described later on in conjunction with Figure 21.

Example 1: Classifier Development from Oregon Data Set

In this Example, we will describe the generation of a classifier to predict prostate
cancer aggressiveness or indolence from a set of prostate cancer patient data in the form of
blood-based samples obtained from prostate cancer patients and associated clinical data.
This Example will describe the process we used for generating mass spectrometry data, pre-
processing steps which were performed on the mass spectra, and the specific steps we used in
development of a classifier from the set of data. This set of data is referred to as the

“development set” 1100 of Figure 1.
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The patients included in this data set all had prostate biopsies and an evaluation of
their Gleason Scores made (distributed according to Table 1). 18 of them were classified as

low risk, 28 as intermediate risk and 29 as high risk, according to existing guidelines.
Available Samples
Serum samples were available from 79 patients diagnosed with prostate cancer.
Mass Spectral Data Acquisition
A. Sample Preparation

Samples were thawed on ice and spun at 1500g for 5 minutes at 4°C. Each sample
was diluted 1:10 with water and then mixed 1:1 with sinapinic acid (25 mg/ml in
50%ACN/0.1% TFA). The samples were spotted in triplicate.

B. Acquisition of mass spectra

Spectra of nominal 2,000 shots were collected on a MALDI-TOF mass spectrometer
using acquisition settings we used in the commercially available VeriStrat test of the assignee
Biodesix, Inc., see U.S. Patent 7,736,905, the details of which are not particularly important.

Spectra could not be acquired from two samples.
C. Spectral Pre-Processing

The data set consists originally of 237 spectra corresponding to 79 patients (3

replicates per patient). The spectra of 4 patients were not used for the study:
e Patient 28 did not have any clinical data available
e Patients 30 and 31 had clinical data available but spectra were not available for them

e Patient N--37—1 had the Total Gleason Score (TGS) available but neither of the

Primary or Secondary Scores

In total 75 patients were used in the study, distributed through the following Primary

/Secondary Gleason Score combinations:

Table 1: Distribution of the patients included in this analysis according to their primary and

secondary Gleason Score combinations
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Progression | Primary Secondary | Total
Risk GS GS GS #Patients
“Low” 3 3 6 18
3 4 7 20
“Int”
4 3 7 8
4 4 8 13
3 5 8 1
5 3 8 2
‘GHigh’S
4 5 9 11
5 4 9 1
5 5 10 1
D. Averaging of spectra to produce one spectrum per sample

For each of the 3 replicate spectra available for each patient, the background was
estimated and then subtracted. Peaks passing a SNR threshold of 6 were identified. The raw
spectra (no background subtraction) were aligned using a subset of 15 peaks (Table 2) to
correct for slight differences in mass divided by charge (m/z) scale between replicate spectra.
The aligned spectra were averaged resulting in a single average spectrum for each patient.
With the exception of alignment, no other preprocessing was performed on the spectra prior

to averaging.

Table 2: Calibration points used to align the raw spectra prior to averaging

Calibration point m/z [Da]

4153

10
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6432

6631

8917

9433

9723

12864

13764

13877

14046

15127

15869

18630

21066

28100

Feature Definitions for New Classifier Development

Using a subset of 20 of the averaged spectra, background was subtracted using the
same parameters as in the previous step. They were then normalized using Partial Ion
Current (PIC) normalization and the normalization windows shown in Table 3. A total of 84
features were identified by overlaying the spectral sample averages and assessing the spread
of the band from the overlay to define the left and right boundaries. When identified,
oxidation states were combined into single features. The feature definitions are given in

Example 1, Appendix A at the end of this document.

Table 3: Windows used in the initial PIC normalization, before feature definition

11
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Min m/z Max m/z

3000 4138

4205 11320
12010 15010
16320 23000

Normalization of the averaged spectra

PCT/US2015/052927

Using all pre-processed, averaged spectra, a set of features, stable across patient

spectra, was determined that was suitable for a refined Partial Ion Current (PIC)

normalization. These features are listed in Table 4.

Table 4: Features used in the final PIC normalization. For further details on the feature

ranges see Example 1 Appendix A.
Feature (m/z position)
3330
5071
5109
5293
6591
6653
6797
6860
6891
6836

6947

12
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13706
13758
13798
13877

13970

Using this optimized PIC normalization, a new feature table, containing all feature values for
all samples, was constructed for all the patients and used during the subsequent classifier

development steps of Figure 1.
CMC/D Process for New Classifier Development

The new classifier development process using the method of combination of mini-
classifiers (mCs) with dropout (CMC/D) is shown schematically in Figure 1. The steps in this
process are explained in detail below. The methodology, and its various advantages are
explained in great detail in US patent application serial no. 14/486,442 filed September 15,
2014. See U.S. patent application publication no. 2015/0102216, H. Roder et al. inventors,

which is incorporated by reference herein.
Division of Samples into Development and Validation Sets

Given the low number of patients (75), all of them were used as a development set

1100 (Figure 1) for classifier development and no separate validation set was available.
Step 1102 Definition of Initial Groups

The only available clinical data for each patient was the Primary, Secondary and Total
Gleason Scores. Generally, the higher the Total Gleason Score (TGS) the poorer is the
prognosis for the patient (although the same TGS, obtained from two different combinations
of Primary and Secondary Gleason Scores might be considered of different risk). Because
there is no well-defined boundary between High and Low risk based in this grading system
and because the evaluation of a score is somewhat subjective, we considered two different

arrangements of the patients in terms of group labels:

13
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Approach 1. The patients were arranged according to the prognostic risk depicted in Table
1. The “Low” (18 patients) and “High” (29 patients) were used to construct a binary CMC/D
classifier (considering as “positive” outcome the “High” group). The patients with
intermediate cancer risk (labeled as “Int”) were left aside and later evaluated with the

resulting CMC/D classifier.

Approach 2. In this approach, the “Low” training/test group 1104 consisted of the patients
with both low and intermediate prognostic risks, comprising a total of 46 patients. The
“High” group 1106 was the same as in Approach 1, comprising the 29 patients with high
prognostic risk in Table 1.  Thus, in this approach all the samples were used in the

test/training splits when creating the CMC/D classifiers.
Step 1108 Select training and test sets

Once the initial definition of the class groupings has been established and assignment
of group labels to the members of the development set is made, the development set 1100 is
split in step 1108 into test and training sets, shown in Figure 1 as 1110 and 1112. The
training set group 1112 was then subject to the CMC/D classifier development process shown
in steps 1120, 1126 and 1130 and the master classifier generated at step 1130 was evaluated
by classifying those samples which were assigned to the test set group 1110 and comparing

the resulting labels with the initial ones.
Step 1120 Creation of Mini-Classifiers

Many k-nearest neighbor (kNN) mini-classifiers (mCs) that use the training set as
their reference set are constructed using single features or pairs of features from the 84 mass
spectral features identified (1124), and listed in Example 1 Appendix A. Basically, as
explained in this example, samples are spotted in triplicate on a MALDI-TOF sample plate
and a 2,000 shot spectrum is acquired from each spot. The three replicate spectra are aligned
and averaged to yield one average spectrum per sample. Features for use in classification are
defined as mass/charge (m/z) regions in MALDI spectra (shown as the distinct regions in the
inset of 1124) and feature values are the integrated area under the curve for these regions
(integrated intensity values).  For 84 features, this amounts to considering 3,570 possible

mCs. The parameters used to traverse the space of mCs for this project are listed in Table 5.

Table 5: Parameters used to create mCs

14
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kNN parameters: k=5
mC traversal parameters: Max number of features = 2

Each mini-classifier is created using the known k-NN algorithm and either a single

feature or a pair of features from feature space 1122.
Step 1126 Filtering of mini-classifiers

To target a final classifier that has optimal performance characteristics, these mCs
were filtered. Each mC was applied to its training set and performance metrics were
calculated from the resulting classifications. Only mCs that satisfied thresholds on these
performance metrics (shown as + in step 1128) passed filtering to be used further in the
process. For this project filtering was based on classification accuracy, overall and within

each reference class (“High” and “Low”) separately.

Step 1130 and 1132 Generation of Master Classifier (MC) by combination of mini-

classifiers using logistic regression with dropout (CMC/D)

Once the filtering of the mCs is complete, a master classifier (MC) is generated in
step 1130. In this step, the mCs are combined in one master classifier (MC) using a logistic
regression trained using the training set labels as indicated at 1132. To help avoid over-
fitting, the lregression is regularized using extreme drop out. A total of 5 randomly selected
mCs are included in each logistic regression iteration and the weights for the mCs averaged

over 6,000 dropout iterations.

While similar in spirit to standard classifier combination methods (see e.g. S.
Tulyakov et al, Review of Classifier Combination Methods, Studies in Computational
Intelligence, Volume 90, 2008, pp. 361-386), we have the particular problem (with many
more mCs than instances (samples in training set) that some “mini-classifiers” could be
artificially perfect just by random chance, and hence would dominate the combinations. To
avoid this overfitting to particular dominating “mini-classifiers”, we generate many logistic
training steps by randomly selecting only a small fraction of the “mini-classifiers” for each of
these logistic training steps. This is a regularization of the problem in the spirit of dropout as
used in deep learning theory. In this case, where we have many mini-classifiers and a small
training set we use extreme dropout, where in excess of 99% of pre-filtered mini-classifiers

are dropped out in each iteration.
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Other methods for performing the regularized combination of the mini-classifiers that

could be used include:

. Logistic regression with a penalty function like ridge regression (based on Tikhonov
regularization, Tikhonov, Andrey Nikolayevich (1943). "O6 YCTONYHBOCTH OGPATHBIX 3aau”
[On the stability of inverse problems). Doklady Akademii Nauk SSSR 39 (5): 195-198.)

. The Lasso method (Tibshirani, R. (1996). Regression shrinkage and selection via the
lasso. J. Royal. Statist. Soc B., Vol. 58, No. 1, pagel138s 267-288).

. Neural networks regularized by drop-out (Nitish Shrivastava, “Improving Neural
Networks with Dropout’, Master’s Thesis, Graduate Department of Computer Science,
University of Toronto; available at online from the Computer Science department of the

University of Toronto).

. General regularized neural networks (Girosi F. et al, Neural computation, (7), 219

(1995)). The above-cited publications are incorporated by reference herein.

In more detail, in step 1132, the result of each mini-classifier is one of two values,
either “Low” or “High”. We can then use logistic regression to combine the results of the
mini-classifiers in the spirit of a logistic regression by defining the probability of obtaining a
“Low” via standard logistic regression (see €.g.

http://en.wikipedia.org/wiki/Logistic_regression)

Eq. (1)

exp Z Wme I (mc(feature values))
(

P (“Low”|feature for a spectrum) = mini classifiers

Normalization

where I(mc(feature values)) = 1, if the mini-classifier mc applied to the feature values of a
sample returns “Low”, and 0 if the mini-classifier returns “High”.  The weights w,. are
unknown and need to be determined from a regression fit of the above formula for all
samples in the training set using 1 for the left hand side of the formula for the Low-labeled
samples in the training set, and O for the High-labeled samples, respectively. As we have
many more mini-classifiers, and therefore weights, than samples, typically thousands of mini-

classifiers and only tens of samples, such a fit will always lead to nearly perfect
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classification, and can easily be dominated by a mini-classifier that, possibly by random
chance, fits the particular problem very well. We do not want our final test to be dominated
by a single special mini-classifier which only performs well on this particular set and is
unable to generalize well. Hence we designed a method to regularize such behavior: Instead
of one overall regression to fit all the weights for all mini-classifiers to the training data at the
same time, we use only a few of the mini-classifiers for a regression, but repeat this process
many times.  For example we randomly pick three of the mini-classifiers, perform a
regression for their three weights, pick another set of three mini-classifiers, and determine
their weights, and repeat this process many times, generating many random picks, i.e.
realizations of three mini-classifiers. The final weights defining the CMC/D master classifier
are then the averages of the weights over all such realizations. The number of realizations
should be large enough that each mini-classifier is very likely to be picked at least once
during the entire process. This approach is similar in spirit to “drop-out” regularization, a
method used in the deep learning community to add noise to neural network training to avoid

being trapped in local minima of the objective function.
Step 1134 Evaluate Master Classifier performance

At step 1134, the MC created at step 1130 is then evaluated by performing
classification on the test set 1110 and evaluating the results. Methods of evaluating classifier
performance are described in US Serial no. 14/486,442 filed September 15, 2014 and include,

among others, the distribution of Hazard Ratios, overall accuracy, sensitivity and specificity.
Step 1136 Loop over many Training/Test set splits

At step 1136, the process loops back to step 1108 and a new separation of the
development set 1100 into training and test sets is performed and the steps 1120, 1126, 1130
and 1132 are performed on a new random realization of the training set and test set split.
The use of multiple training/test splits avoids selection of a single, particularly advantageous
or difficult, training set for classifier creation and avoids bias in performance assessment

from testing on a test set that could be especially easy or difficult to classify.

We tried two different approaches to splitting over the sample set into training and
test sets and repetition of the classifier development steps, depending on the approach used to

define the initial groups.
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Approach 1. In this approach, the training/test sets split is performed 301 times. A total of
10 samples of each group are randomly assigned, in each realization, to the training set while
the remaining samples are used in the test set (8 for the “Low” group and 19 for the “High”
group). Each training/test split produces a MC which is applied to the split test set to assess

performance.

Approach 2. In this approach, the training/test splits are performed randomly 301 times. A
total of 15 samples of each group are assigned, in each realization, to the training set while
the remaining samples are used in the test set (31 for the “Low” group and 19 for the “High”
group). The performance of each MC is evaluated considering the classification output of the

test set.

Step 1137 analyze data from the training/test set splits

At step 1137, the MC performance over all the training and test set splits is
performed. This can be done by obtaining performance characteristics of the MCs and their

classification results, for example as indicated in block 1138.

Step 1140 Redefine training labels

One other advantage of these multiple training/test splits (and reiteration of steps
1120, 1126 and 1130 many times) is that it allows for the refinement of the initial assignment
for the “Hi‘gh”/”Low” groups, particularly for those samples which are persistently
misclassified. For the training/test splits where a particular sample from the reference group
is in the test set, the resulting classifications for the sample can be obtained by the majority
vote of the MCs (or by a Modified Majority Vote, MMV, explained below). If the sample
persistently misclassifies relative to the initial guess as to the risk group, the sample can be
moved from the “High” into the “Low” group, or vice versa, as indicated in loop 1142,
Carrying out this procedure for all samples in the development set produces a new, refined
version of the risk groups (1102) which is the starting point for a second iteration of the
CMC/D classifier development process as indicated by the loop 1142.  This refinement
process can be iterated so that the risk groups are determined at the same time as a classifier

is constructed, in an iterative way.
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Approach 3. We performed three successive iterations of the loop 1142:

Iteration 1: The labels of the patients for which the classification MMV Label (from
approach 2) was mismatching the initial classification group assignment (for 9 patients from
the “High” group and 18 patients from the “Low” group) were flipped and a new CMC/D
iteration was run. After label flipping, 37 patients were defined as belonging to the “Low”
group and 38 to the “High” group. The 301 test/training splits took randomly 15 patients
from each group and assigned them to the training set, while leaving the remaining patients in

the test set.

Iteration 2: The labels of the patients for which the classification MMV Label was

“mismatching the classification from Iteration 1 (3 patients from the “High” group and 4

patients from the “Low” group) were flipped and a new CMC/D iteration was run. After label
flipping, 36 patients were defined as belonging to the “Low” group and 39 to the “High”
group. The 301 test/training splits took randomly 15 patients from each group and assigned

them to the training set, while leaving the remaining patients in the test set.

Iteration 3: The labels of the patients for which the classification MMV Label was
mismatching the classification from Iteration 2 (1 patient from the “High” group and 2
patients from the “Low” group) were flipped and a new CMC/D iteration was run. After label
flipping, 35 patients were defined as belonging to the “Low” group and 40 to the “High”
group. The 301 test/training splits took randomly 15 patients from each group and assigned

them to the training set, while leaving the remaining patients in the test set.
Step 1144 Define final test/classifier

At step 1144, a final classifier is defined from one or more of the master classifiers
(MCs) generated in the previous iterations of the process. There are several possibilities for
defining the final classifier, including by selection of one master classifier which has typical
performance, by majority vote of all master classifier from each realization of the sample set
into training and test sets, by modified majority vote, or other. In this example, the final
classifier is created from 301 MCs (301 different realizations of the training/test set split) by

taking a majority vote over the MCs.

Modified Majority Vote (MMV)
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Within the CMC/D process, each training/test split realization produces one master
classifier (MC) generated from the combination of mini-classifiers (mCs) through logistic
regression with dropout regularization. The output of this logistic regression is, in the first
instance, not a binary label but a continuous probability taking values between 0 and 1.
Applying a cutoff (e.g. 0.5, but any choice is possible) to these MC probabilities, we can turn
them from a continuous variable into a binary label. So, each MC produces a classification
label for a given sample. However, this step is not essential, and one can choose not to apply

a cutoff here, but instead to retain the information in the continuous probability variable.

Having obtained the outputs from the MCs (either in terms of binary labels via use of
a cutoff or in terms of probabilities), these need to be combined (“bagged” in learning theory
language) across the MCs to produce a single binary classification for a particular sample.
The way the CMC/D process is implemented means that when a sample is used in the
training set of the MC for a realization, the sample almost always classifies correctly (in
terms of binary labels after implementation of a cutoff or in terms of probabilities close to
target of O for one class and | for the other class). Hence, use of a simple majority vote over
all MCs can produce an artificially good assessment of classifier performance for samples
that are used in the training set for some of the MCs. To avoid this, we can use a modified
majority vote (MMV) to obtain a classification for samples used directly in the development
of the classifier. This procedure is a majority vote over the MC outputs only when the sample
is not included in the training set of the MC. (For samples never used in training the MCs, the
majority vote and MMV are the same.) This MMV can be used after implementation of a
cutoff by taking a majority vote of the classifications produced by all MCs for which the
sample is not included in the training set. If, instead, we want to avoid the use of a cutoff at
this point and work with the MC probability outputs, the average of the probabilities across
the MCs for which the sample is not included in the training set can be calculated. Taking
the latter approach, the MMV produces another, averaged, continuous variable that can take
values between 0 and 1, an average probability of being in a particular class. This can be
converted into a binary classification label via implementation of a cutoff after averaging

over MCs.

Direct averaging of the probabilities provides some advantages. If we obtain an
average probability for each sample, it is possible to assess simultaneously the performance
of the whole family of classifiers that can be produced by imposing different cutoffs on the

average probability. This can be done by using the standard receiver operating characteristic
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(ROC) curve approach, a well-known method. For a particular choice of cutoff on the
average probabilities, classification labels are generated for all samples and these labels can
be compared with the known or initially defined class labels to calculate the sensitivity and
specificity of the classifier defined by this cutoff. This can be carried out for many values of
the cutoff and the results plotted in terms of sensitivity versus 1-specificity (the ROC curve).
Overall performance of the family of classifiers can be characterized by the area under the
curve (AUC). The ROC curve can be inspected and a particular cutoff selected that best suits

the target performance desired for the classifier, in terms of sensitivity and specificity.

Results for Example 1
Approach 1 (no label flips). The resulting CMC/D classifier obtained using the group
definitions of this approach achieves a performance described by the following
metrics, obtained by comparing the classification label with the defined label only

when a given sample is in the test set (Modified Majority Vote, MMV).

Accuracy Sensitivity (Positive = Specificity (Negative =
6‘High,7) “Low)
0.65 0.69 0.61

The distribution of each of these metrics across the 301 MCs created is shown in Figure 2.
All the metrics are centered between 60 and 70 %, indicating some performance of the
classifiers and some hint that, with better MALDI spectra or a new sample set incorporating

more detailed clinical data, a reasonable test might be created.

Regarding the patients assigned to the “Int” group, 10 of them (36 %) are classified as
belonging to the “High” group and 18 of them (64 %) to group “Low”. This shows a
tendency for the intermediate risk patients to be classified as low risk, which justifies the

reference set arrangement chosen in approach 2.

Approach 2 (no label flips). The resulting CMC/D classifier obtained achieves a
performance described by the following metrics, obtained through MMV.

Accuracy

Sensitivity (Positive =

G‘High9,)

Specificity (Negative =
“Low)
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0.64 0.68 0.61

The distributions of each of these metrics across the created 301 MCs are shown in
Figure 3. The average performance is similar to that of approach 1 although the accuracy
and specificity distributions seem to be narrower. One hypothesis for this behavior might be

the larger training sets (15 patients for each group instead of 10).

Approach 3 (with label flips). The resulting CMC/D classifiers, created in each

iteration of the labels flips are described by the following average metrics (obtained through

MMV):

Iteration | Accuracy | Sensitivity (Positive = Specificity (Negative =
“High™) “Low”™)

0 0.64 0.68 0.61

1 0.91 0.92 0.89

2 0.96 0.97 0.94

3 0.99 0.98 1

It should be noted that the metrics, after iteration 0, do not correspond to accuracy
relative to the initial group definitions, due to the label flips. The distributions of these
metrics for all the 301 MCs are shown in Figure 4.

After 3 iterations of labels flips, we tried to correlate the final classification labels
with the only available clinical data: the Gleason Score. Table 6 summarizes the distribution
of the final labels among the different Primary + Secondary Gleason Scores combinations
and Table 7 shows the frequency distributions of the final labels versus the initial guess based
on TGS. The individual MMV classification labels, obtained after 3 iterations, are shown in
the table of Example 1 Appendix C for all the patients.

Table 6: Distribution of the classification labels, obtained after 3 iterations of
label flips, according to the different Primary + Secondary Gleason Scores

combinations

Risk

Primary + Secondary GS

Total GS

#Patients

#HighClassifications

#LowClassifications

Low

343

6

18

8

10
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Int 3+4 7 20 8 12
443 7 8 4

3+5 8 1 1 0

4+4 8 13 10 3

High 5+3 8 2 1 1
445 9 11 7 4

5+4 9 0 1

5+5 10 1 0 1

Totals 75 39 36

Table 7: Contingency table showing the frequency distribution according to the initial

assignment and the final classification labels achieved after 3 iterations of label flipping.

Final Label

High Low
Initial group High 19 10
definition Low/Int | 20 26

By applying a Fisher’s exact statistical test to the numbers of Table 7, we get a 9.6 %
probability of getting these results or results with stronger correlation between classification
labels and those based on TGS assuming that the final classification labels “High” and
“Low” are not correlated with TGS risk groups. This p-value is small enough to believe that
the final labels may be meaningful and still are somehow related to the TGS distribution and
our initial guess for the indolence or aggressiveness (Low, High) labels.

t-SNE visualization

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a tool that allows the
visualization of high-dimensional data in a 2D or 3D-map, capturing much of the local
structure of the data while also revealing global structure (e.g., the presence of clusters at
several scales). The method converts high-dimensional Euclidean distances between data
points into Gaussian similarities. In the low-dimensional (2D or 3D) space, the same process
is applied using a Student-t distribution instead of a Gaussian distribution to compute the
similarity between pairs of points. Then, iteratively, the method searches for a low-
dimensional representation of the original data set that minimizes the mismatch between the
similarities computed in the high- and low-dimensional spaces. In this way, a 2D or a 3D
point map is constructed that allows the visualization and identification of structure in a given

dataset and may possibly guide research. The method is introduced by the paper of L.J.P. van
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der Maaten and G.E. Hinton, Visualizing High-Dimensional Data Using (-SNE, Journal of
Machine Learning Research 9 (Nov): 2579-2605 (2008), the content of which is incorporated
by reference herein.

In Figure 5A-5C, the 2D maps of the data obtained through t-SNE are shown for 3
different situations: the initial group definitions for approaches 1 and 2 (no label flips), and
the final classification labels after 3 iterations of label flips (approach 2 with label flips).
Each point is represented with a marker that identifies to which risk label it was assigned (“1”
corresponds to “High” and “0” to “Low”).  In Figure 5A-5C, the data points are labeled
according to the initial group assignments based on TGS for approach 1 (Figure 5A); initial
assignment for approach 2 (Figure 5B); final classification labels after 3 iterations of label
flips (approach 3) (Figure 5C). “1” (triangles) corresponds to “High” and “0” (circles) to

“LOW”_
Example 1 conclusions

By using MALDI-TOF mass spectra obtained from serum samples from 75 patients
for whom Gleason Scores were available, it was possible to create CMC/D binary classifiers
that assigned a “High” or a “Low” risk label to each patient and were described by
accuracies, sensitivities and specificities of 60-70%, when using Modified Majority Votes
taken from 301 Master Classifiers. Two different approaches, differing in the initial group
definitions were tried achieving very similar performances. The distributions of the
performance metrics of the 301 Master Classifiers are, for both approaches, peaked at the
previously mentioned averages, not showing unreasonable shapes. Although the accuracies
do not seem to be great, the only available clinical variable (the TGS) is also not a perfect
method of risk assessment, and it might be that a study including more clinical data that
allows the assessment of outcomes might reveal better performances. Better quality mass
spectra, from which more features may be extracted, would also represent a good addition to

any new data set.

Starting with the output of approach 2, we have also tried to iteratively flip the initial
classification group assignment in order to achieve better performance based on the accuracy
metrics (>95 %). The final labels seem to be statistically significantly correlated with risk as
assessed by Gleason score (at the 10 % confidence level), deserving further investigation, in

which additional clinical data would help. Hence, we obtained a second set of data (Arizona

24



10

15

20

25

30

WO 2016/054031 PCT/US2015/052927

data set) and applied the process of generating a classifier to this new data set which will be

described below in Example 2.

Note that in the procedure of Figure 1 there is step 1146 of validation of the test
defined at step 1144 on an internal validation set if available, and a step 1148 of validation of
the test on an independent sample set.  In the work described in Example 1 we had no
internal validation set since the sample size was small and step 1146 was not performed.
We could have used the samples described below in Example 2 as a validation set to perform
step 1148, however they were plasma and not serum samples, and it was not known whether
the classifier would transfer across sample type. So, instead we decided in Example 2 to

repeat the classifier generation process of Figure 1.

Example 2: Arizona Data Set

This example involves the analysis of MALDI-TOF mass spectra obtained from
plasma samples from patients diagnosed with prostate cancer. All the patients that comprise
the data set had their Total Gleason Score (TGS) evaluated as being lower than 8. This range
of TGS is considered to be associated with low progression risk and thus these patients are

not treated immediately, but instead put in watchful waiting.

The aim of the work described in this Example was to develop a classifier capable of
evaluating the aggressiveness or indolence of the prostate cancer of a patient put in watchful
waiting (TGS<8). During the clinical study the patients had periodic physician visits
(quarterly), having blood samples drawn and their disease status assessed. Evidence‘of
progression could be based on the rate of rise in PSA, Chromogramin A or alkaline
phosphatase.  Progression could also be detected based on a degradation of patient’s
symptoms. In case of progression, the patient followed a treatment plan and was dropped
from the study. A classifier that could be run at the moment of the cancer diagnosis and
could give a good prognostic indication would be a valuable addition to the monitoring of
PSA level or other biomarkers as an aid to more refined treatment guidance for this group of

patients following diagnosis.

Although the clinical data does not include a precise record of the Time to
Progression (TTP) of the patients, we have records of the dates when the patients had their

physician visits and their PSA levels assessed. This allows us to make a crude estimation of
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the TTP by considering it to be the time difference between the last recorded patient visit and

the date of entry into the study.

Available Samples

The dataset used in this classifier feasibility assessment was obtained from another
study that investigated the ability of Selenium (Se) to delay the progression of prostate cancer
after diagnosis. Patients were randomized into three groups which received placebo or two
different doses of Se supplementation. It turned out that Se did not show a protective effect,
and thus we assume that the dataset can be used without taking into consideration the

supplementation doses given to each patient.

A total of 441 mass spectra acquired from plasma samples of prostate cancer patients
were available, corresponding to 147 patients (3 replicates per patient). The spectra of 10
patients (Patient IDs: WW000059, WW000062, WW000068, WW000070, WW000073,
WW000074, WW000076, WW000079, WWO001835 and WW040568) were not used in the

study because there was no clinical/outcome data available for them.

The remaining 137 patients, with valid data for the study, were distributed according

to the progression outcome and TGS presented in Table 8.

Table 8: Distribution of the patients according to their outcome and TGS

Outcome TGS #Patients | Sub totals
Unknown 2
' 3 2
Left the study 4 3
after > 14
randomization 6 58
(code = 8) 7 13 92
Unknown 0
Completed the 3 0
study (5 years) 4 5
without > 5
progressing 6 12
(code = 90) 7 0] 22
Unknown 1
3 2
Progressed 4 0
(code =99) 5 1 23
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Total 137

Note: Patients WW001545, WW001636 and WW040733 did not have their TGS available,
but were still included in study, because the construction of the classifier is based on the

progression outcome data and not on TGS.
Spectral Acquisition

Sample Preparation
Samples were thawed on ice and spun at 1500g for 5 minutes at 4°C. Each sample
was diluted 1:10 with water and then mixed 1:1 with sinapinic acid (25 mg/ml in

50%ACN/0.1% TFA). The samples were spotted in triplicate.

Acquisition of mass spectra

Spectra of nominal 2,000 shots were collected on a MALDI-TOF mass spectrometer.

Spectral Pre-Processing

Averaging of spectra to produce one spectrum per sample

For each of the 3 replicate spectra available for each patient, the background was
estimated and subtracted. Peaks passing a SNR threshold of 6 were identified. The raw
spectra (no background subtraction) were aligned using a subset of 15 peaks (Table 2 above)
to correct for slight differences in m/z scale between replicate spectra. The aligned spectra
were averaged resulting in a single average spectrum for each patient. With the exception of

alignment, no other preprocessing was performed on the spectra prior to averaging.

Feature Definitions for New Classifier Development using all valid samples

The averaged spectra from the patients that either progressed during the study or
completed the study without progression were background subtracted using the same
parameters as in the previous step. They were then initially normalized using PIC with the
normalization windows shown in Table 3. Such windows were defined to avoid the peaks
due to the known contaminant at m/z ~ 4138 — 4205 Da, the hemoglobin peaks, the peaks
used in applicants’ VeriStrat test noted in US patent 7,736,905, and everything with poor
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reproducibility above m/z = 23000 Da. A total of 104 features were identified by overlaying
the spectral sample averages and assessing the spread of the band from the overlay to define
the left and right boundaries. Oxidation states were combined into single features when seen.
The feature definitions are given in Example 2 Appendix A. Further details on partial ion
current normalization of mass spectral data are known in the art and therefore omitted for the

sake of brevity, see U.S. patent 7,736,905 for further details.

Normalization of the averaged spectra

Using these specified feature definitions, a feature table for non-normalized spectra
(just background subtracted) was constructed for all the 137 patients. The feature values were
normalized using partial ion current (PIC) based on the ranges of the features listed in Table
9.

Table 9: Features used in the final PIC normalization. For further details on the feature ranges see
Example 2 Appendix A.

Feature

6838

6859

6882

6941

13795

13840

13878

13915

13979

14157

Using this optimized PIC normalization, a new feature table was constructed for all the

patients and used downstream in the classifier development process (Figure 1).

Classifier development process
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Basically, the classifier development process of Figure 1 and described in detail above

was used for generation of a new CMC/D classifier using the Arizona data set.

Division of Samples into Development and Validation Sets

After randomization, patients could leave the study by withdrawal of consent. In
addition, Se levels in the blood were monitored regularly during the study and, if three (not
necessarily consecutive) Se blood levels above 1,000 ng/ml were measured for a given
patient, he was dropped from the study.  Although dropped from the study without
progression, these patients give us additional information, as we do know that they did not
progress while on the study. The distribution of the time on study of this subset of patients is
shown in Figure 6. We split this set of samples (from patients leaving the study without
progression) into two halves, one of which was added to the other samples (from patients
completing the study or progressing during the study) to make the development set (1100,
Figure 1) and the second half was used as a partial “validation set” (step 1146 of Figure 1).
Note that this “validation” set does not contain any patients with progression during the
study, so it will be of limited utility in classifier validation. The splitting of these patients
leaving the study without progression into two subsets was made randomly, but stratified to

ensure a nearly balanced number of patients with similar TGS and time on study in both sets.
Definition of Initial Classifier Reference Set Groups (step 1102)

We tried to develop a classifier for assessing the aggressiveness or indolence of a
patient’s cancer and used the inferred progression outcome data for its performance
assessment. With this in mind we tried a few different approaches. For each approach, a plot
of the 2D mapped space, obtained using t-SNE, is shown in Figure 13 together with the labels

shown for the initial development set assignments and for the final classification labels.

Approach 1. We used the samples from patients completing the study without
progression (22 patients) and the samples from patients progressing during the study (23
patients) to construct a final (binary) CMC/D classifier that would distinguish between
“High” and “Low” risk of cancer progression within 5 years. Patients without progression
during the 5 years of the trial were assigned to the “Low” risk reference group and patients
who progressed on the study to the “High” risk. The patients who dropped out of the study
without progression were left aside and later evaluated with the CMC/D classifier resulting

from this approach. This arrangement would presumably give the clearest separation in terms
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of progression risk, because we leave aside the patients that dropped out of the study (and for

whom we do not really know what happened).

Approach 2. We included half of the patients who dropped out of the study without
progression in the test/training splits, by considering the label assigned by the classifier

developed in Approach 1 as the initial guess for their risk group.

Approach 3.  We tried an iterative label flip process (loop 1142), starting with the
group definitions of Approach 2 in order to verify if such method would lead to improved
discrimination in terms of outcome data (i.e., better Hazard Ratio for time to progression

between High and Low risk groups).

Once the initial definition of the groups for the mini-classifiers has been established,

the development set 1100 is split into training (1112) and test sets (1110).
Creation and Filtering of Mini-Classifiers (steps 1120 and 1126)

Many k-nearest neighbor (kNN) mini-classifiers (mCs) that use the training set as
their reference set are constructed using single features or pairs of features from the 104 mass
spectral features identified. This corresponds to a total of 5,460 possible mCs. The parameters

used to traverse the space of mCs for this project are listed in Table 12.

Table 12: Parameters used to create mCs

kNN parameters

k S5
mC traversal parameters

Max number of features 2

To target a final classifier that has optimal performance characteristics, these mCs
were filtered. Each mC was applied to its training set and the Hazard Ratio (HR) was
calculated using the resulting classifications. Only mCs that satisfied thresholds in terms of

HR (Table 11) passed filtering and were used further in the process.

Table 11: Summary of mC filtering options used

Filtering Criteria Filtering Parameters

Hazard Ratio 3.0 <HR <10.0
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Generation of MC by combination of mini-classifiers using logistic regression with

dropout (CMC/D) (steps 1130, 1132)

Once the filtering of the mCs is complete, the mCs are combined in one master
classifier (MC) using a logistic regression trained with the training set labels. To help avoid
over-fitting, the regression is regularized using extreme drop out. A total of 5 randomly
selected mCs are included in each logistic regression iteration and the weights for the mCs

averaged over 10,000 dropout iterations.
Training/Test splits and analysis of master classifier performance (step 1136)

The use of multiple training/test splits in loop 1136 avoids selection of a single,
particularly advantageous or difficult, training set for classifier creation and avoids bias in
performance assessment from testing on a test set that could be especially easy or difficult to
classify. Accordingly, loop 1136 was taken 301 times in Example 2, resulting in 301
different master classifiers (MCs), one per loop. A final classifier is defined at step 1144
from the 301 MCs by taking a majority vote over the MCs. For each approach above this

process is described in more detail:

Approach 1. A total of 12 samples from the “High” group and 11 samples from the
“Low” group are randomly assigned, in each realization, to the training set while the
remaining samples are used in the test set (11 for each of the groups). Each training/test split
produces a MC which is applied to the test set at step 1134. At step 1134, the Hazard Ratio is
assessed taking into consideration the risk groups defined by the Modified Majority Vote
(MMYV) classifications.

Approach 2. When the process loops back to step 1108, and samples from patients
leaving the study without progression are fed into the development set with risk labels
guessed from the results of approach 1, a total of 21 samples from the “High” group and 20
samples from the “Low” group are randomly assigned, in each realization, to the training set
1112 while 30 from the “High” group and 20 for the “Low” are designated as members of the
test set 1110 and used for testing at step 1134. The Hazard Ratio is then assessed
considering the MMV labels.
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Approach 3. At step 1140, one other advantage of these multiple training/test splits
is that it might allow for the refinement of the initial assignment of High and Low group
labels for the development set at step 1102. In particular, for the training/test splits where a
particular sample from the development set is in the test set, the MMV label is obtained. If
the sample persistently misclassifies relative to the initial guess as to the risk group, the
sample can be moved from the “High” into the “Low” group, or vice versa. Carrying out this
procedure for all samples in the development set produces a new, possibly refined version of
the group label definitions (1102) which are the starting point for a second iteration of the
CMC/D process. This refinement process can be iterated so that the risk groups are

determined at the same time as a classifier is constructed, in an iterative way.

In our development of the CMC/D classifier, we performed three different iterations

of loop 1142 after the initial iteration (iteration 0):

Iteration 1: The labels of the patients for which the classification MMV Label (from approach
2) was mismatching the initial guess (9 patients from the “High” group and 11 patients from
the “Low” group) were flipped and a new CMC/D iteration (steps 1102, 1108, 1120, 1126,
1130, 1134, 1136) was run. After this label flipping, 53 patients were classified as belonging
to the “High” group and 38 to the “Low” group. The 301 test/training splits randomly took 18
patients from the “High” group and 19 from the “Low” group to the training set, while

leaving the remaining patients in the test set.

Iteration 2: The labels of 6 patients from the “High” group and 1 patient from the “Low”
group, whose MMV label didn’t match the initial guess were flipped and a new CMC/D
iteration was run. After label flipping, 48 patients were classified as belonging to the “High”
group and 43 to the “Low” group. The 301 test/training splits randomly took 24 patients
from the “High” group and 22 from the “Low” to the training set, while leaving the

remaining patients in the test set.

Iteration 3: The labels of 5 patients from the “High” group and 1 patient from the “Low”
group were flipped and a new CMC/D iteration was run. After label flipping, 44 patients
were classified as belonging to the “High” group and 47 to the “Low” group. The 301
test/training splits randomly took 22 patients from the “High” group and 24 from the “Low”

group to the training set, while leaving the remaining patients in the test set.
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Results (Example 2)

Approach 1. The final CMC/D classifier, defined at step 1144 as a MMV over all
the 301 master classifiers using “Approach 1” above, is characterized in terms of patient
outcome by the Kaplan-Meier survival curve shown in Figure 7. The curve is obtained by
comparing the groups defined by the samples that were classified with “High” or “Low”
MMV labels and the associated time to progression (TTP) from the clinical data associated
with the development sample set 1100. The final CMC/D classifier does not seem to be able
to distinguish between patients who progressed early and those who progressed later, with the
Kaplan-Meier curves for TTP being similar for both groups. The log-rank test gives a p-value
of 0.51 and the log-rank Hazard Ratio (HR) is 1.34 with a 95% Confidence Interval (CI) of

0.56 — 3.14. The accuracy metrics of this classifier do not show any particularly interesting

performance.
Accuracy Sensitivity (Positive = “High”) | Specificity (Negative =
HLOWII)
0.56 0.68 0.41

While the CMC/D classifier seems to give a sensitivity better than a coin-flip, it
seems to do poorly with the “Low” risk patients, misidentifying more than half of them as

“High” risk (low specificity).

Regarding the patients left out of the training / test sets (those who left the study
without progression), 25 were classified with the label “High” and 21 with the label “Low”.
Figure 8 is a plot of the Kaplan-Meier curves for TTP for the classifications obtained in
Approach 1, including half (46) of the patients who dropped out of the study. For the patients
who were used in the test/training splits, the MMV label is taken. For those patients who
dropped out of the study (code “8”), the normal Majority Vote of all the 301 MCs is used.
Log-rank test p-value = 0.42, log-rank HR = 1.42 with a 95% CI =[0.61 — 3.33].

Approach 2. The final CMC/D classifier obtained for “approach 2” is characterized
by the Kaplan-Meier curves shown in Figure 9. The log-rank test gives a p-value of 0.037 and
the log-rank Hazard Ratio (HR) is 2.74 with a 95% Confidence Interval (CI) of 1.05 — 5.49.
The distribution of the HRs of the 301 MCs is shown in Figure 10 and shows a “well
behaved” shape, with a very small fraction of the MCs having a HR ratio lower than 1. The
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percent progression free for each classified risk group at 3, 4 and § years after study entry is

shown in the following table 12:

Table 12
Time on Percent Progression
study Free [%]
[years] High Low
3 63.9 87.3
4 58.8 82.9
5 58.8 82.9

The accuracy metrics (using the MMV labels) are also quite promising in this

approach:
Accuracy Sensitivity (Positive = “High”) | Specificity (Negative =
IILOWII)
0.78 0.82 0.73

The distributions of each of these metrics across the created 301 MCs is shown in Figures
11A-11C. The performance of this classifier is fairly good in terms of overall accuracy as
well as accuracy within each risk group (“High” and “Low”). In addition, the distributions

of the metrics for the 301 MCs are well behaved and centered on the average values.

One hypothesis for this significantly better performance relative to Approach 1 has to
do with the bigger training set (24 samples for “High” and 22 for “Low”) used in Approach 2

while only 11 of each group were used in Approach 1.

The statistically significant difference between the two Kaplan-Meier curves (“High”
and “Low), as demonstrated in Figure 9, supported by the accuracy performances, points to a
good discrimination power of the classifier. Taking the development set, those patients
classified (by MMV) as “Low” have 87.3 % probability of not progressing in a period of 3
years or 82.9 % in a period of 4 years. This compares to a probability of not progressing of
63.9 % and 58.8 % in a period of 3 and 4 years, respectively, for the patients classified as
“High” risk.
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Approach 3. The label flip process explained above in Approach 3 did not
significantly improve the overall discrimination power of the classifier as compared to
Approach 2, as assessed on the associated test sets. However, based on our experience with
other projects, we expect the generalization power of a test derived from a convergence of
label flips to be better than one derived without label flips. The Kaplan-Meier curves
constructed using the MMV labels after each iteration are shown in the Figure 12, along with
the outcome statistical metrics. Like the Kaplan-Meier plot of Figure 9, the plots of Figure

12 show a clear separation of the TTP curves between those samples testing Low and High.
t-SNE Visualization

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a tool that allows the
visualization of high-dimensional data in a 2D or 3D-map, and is introduced previously in
Example 1. Figure 13 shows the 2D maps of the data obtained through t-SNE for the initial
assignment of group labels for the development set and for the final classification labels, for
each of approaches 1, 2 and 3 described above. Each point is represented with a marker that
identifies to which risk label it was assigned (“High” or “Low”). Note that the t-SNE map for
the final classification in each of the approaches is more ordered with clustering of the high

and low classification labels as compared to the maps of the initial assignments.

Assessment of the final classifier on the 46 patients reserved in the “validation set”
cohort did not prove to be informative on the accuracy.of the above classifier performance
estimates, as analysis was limited by the lack of any progression events in this subgroup.
Hence, the 46 patients not included in classifier development were simply combined with the
development set to assess the performance of the classifier on the full study population. The
results are shown in Figure 14. In particular, Figure 14 shows the Kaplan-Meier curves for
TTP using classification labels obtained in Approach 2 and including the classification of the
patients of the “validation set”. For the patients that were used in the test/training splits the
MMYV label is taken. For the “validation set” patients, the normal majority vote of all the
301 MCs is used. The log-rank p-value is 0.025 and the log-rank Hazard Ratio 2.95 with a
95% CI of [1.13,5.83]. A table showing the percent progression free for each classified risk
group at 3, 4 and 5 years on study is also shown in Figure 14.  Again, like Figure 9 and 12,
the Kaplan-Meier plot of TTP in Figure 14 shows clear separation of the High and Low

groups.

Assessment of correlation of the classification groups with TGS and PSA
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It is interesting to assess if the classification groups (“High” and “Low”) resulting
from the classifier developed in Approach 2 (the one with best performance) are correlated
with the Total Gleason Score (TGS) values and PSA baseline levels determined at the
beginning of the study. Note that baseline PSA level was available for only 119 of the 137
patients and TGS only for 133 patients.

The distribution of the baseline PSA levels (taken at the beginning of the study) of
both the “High” and the “Low” groups as classified in approach 2 are shown in Figure 15.
Figure 15 are Box and Whisker plots of the distribution of the PSA baseline levels (taken at
the beginning of the study) of the two classification groups (approach 2). For the patients
that were used in the test/training splits the MMV label is taken. For the “validation set”
patients, the normal majority vote of all the 301 MCs is'used. The median PSA of the
“High” group is 6.15 ng/ml and that of the “Low” group is 7.42 ng/ml. An unpaired Mann-
Whitney test, which compares the ranks of the two groups, gives a p-value of 0.19, which
indicates that the PSA distributions of the two groups are not significantly different. Thus,
no correlation between the baseline PSA level and the cancer progression risk as given by the
classifier is evident. This indicates that the classifier of this Example 2 is, in some sense, an

orthogonal measurement to PSA as a predictor of risk of prostate cancer progression.

The distribution of the TGS values of both the “High” and the “Low” groups after
classification in Approach 2 is shown in Figure 16. In particular, in Figure 16 for the
patients that were used in the test/training splits the MMV label is taken. For the “validation
set” patients, the normal majority vote of all the 301 MCs is used. Only the 133 patients
(from the development and validations sets) for whom TGS was available are considered in
this plot. A Fisher’s exact test applied to the table shown in Figure 16 gives a p-value of 0.61
for getting the observed correlation or stronger, assuming that there is no correlation between
the TGS values and the classification labels. Thus, the null-hypothesis cannot be rejected and
there is no evidence for a correlation between TGS and progression risk category, as given by
the developed classifier. Again, this indicates that the classifier of this Example 2 is, in some
sense, an orthogonal measurement to TGS as a predictor of risk of prostate cancer

progression.

The classifier developed in Approach 2 discriminates fairly well between “High” and
“Low” prostate cancer progression risk as evaluated considering the outcome data of the

patients. However, neither the TG scores nor the PSA baseline values, which constitute the
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only available additional clinical data in the studied data set, seem to be correlated with such
risk, as labeled by the classifier. It is possible that other clinical data could show some
significant correlation, but this could only be assessed with a more complete data set

containing other relevant baseline prognostic factors.
Conclusions for Example 2

Three different approaches were tried in order to develop a CMC/D classifier capable
of assessing the aggressiveness or indolence of a patient’s cancer in a population with low
Total Gleason Score (TGS<8) and in watchful waiting. A development set of MALDI mass
spectra obtained from plasma samples from 137 patients was used. Two of the approaches
were different in terms of the chosen initial risk group definitions, while the third one
consisted of a sequence of label flip iterations. The performance of the CMC/D classifiers
was evaluated in terms of the hazard ratio between the two classification groups (“High” risk
and “Low” risk) using the outcome data (inferred Time to Progression) available in the data
set, as well as in terms of overall accuracy, sensitivity and specificity in terms of predicting a

progression within the time of the study.

The best classifier (from Approach 2) is characterized by a hazard ratio of 2.74 with a
95% CI of 1.05 — 5.49, indicating a significantly better prognosis for patients assigned to the
“Low” risk group. Our data hint at a better effect size than two commercially available sets:
1. Genomic Health, see Klein, A.E., et al. A 17-gene Assay to Predict Prostate Cancer
Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and
Biopsy Undersampling Euro Urol 66, 550-560 (2014), Odds Ratio ~ 2.1 — 2.3 , in the correct
population, but might be because they only have TGS <=6; and 2. Myriad (Cooperberg,
M.R,, et al. Validation of a Cell-Cycle Progression Gene Panel to Improve Risk Stratification
in a Contemporary Prostatectomy Cohort, J Clin Oncol 31, 1428-1434 (2013) in a radical
prostatectomy population, Odds Ratio 2.1 -2.3). When considering the whole population of
the sample set, the percent progression free in the “High” risk group is 73 % and 69 % at 3
and 4 years, respectively, while in the “Low” group the percent of patients progression free is
92 % and 88 % for the same times after study entry. Although this remains to be validated on
an internal validation set (step 1146, Figure 1, which was not available due to the small
number of samples available) or, better, an independent validation set from a separate study
(step 1148 of Figure 1), these classifier performance estimates are promising: they could

possibly lead to a test that would guide actions to take regarding prostate cancer patients with
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low TGS. Further investigation of CMC/D classification within this prostate cancer

indication is definitely worthwhile.

Example 3: Tyrol Prostate Cancer Screening Demonstration Project Data Set and

Deep-MALDI Spectra

A third example of a method for generating a classifier for predicting aggressiveness
or indolence of prostate cancer from a multitude of blood-based samples obtained from
prostate cancer patients will be described in this section. The methodology of classifier
generation is similar to that described above in Examples 1 and 2, see Figure 1. However, in
this example we obtained mass spectral data from the samples using a method we refer to as
“Deep MALDI”, see US patent application publication 2013/0320203 of H. Roder et al.,
inventors. The description of mass spectral acquisition and spectral data processing set forth
in the ‘203 application publication is incorporated by reference. ~Additionally, there were
some differences in the patient population and course of treatment in this data set as
compared to the sets of Examples 1 and 2. Nevertheless, in this section we describe several
classifiers that we developed which can be used to predict aggressiveness or indolence of

prostate cancer.

The samples analyzed in this study were collected as part of the Tyrol Prostate Cancer
Screening Demonstration Project. See Bartsch G, Horninger W, Klocker H, Pelzer A, Bektic
J, Oberaigner W et al., Tyrol Prostate Cancer Demonstration Project: early detection,
treatment, outcome, incidence and mortality. BJU Int 2008: 101(7):809-816. doi:
10.1111/j.1464-410x.2008.07502.x. This is an exemplary study of the use of PSA
measurement for prostate cancer screening. The Tyrol region of Austria, with a population of
around 7.8 million, is geographically compact, with most of the population within 100 km of
the main health care center of Innsbruck. This geographical situation and the willingness of
the well-educated population to participate in preventative screening programs make this an
ideal location for a population-wide screening study. PSA testing is freely available and
encouraged for all men in Tyrol aged between 45 and 75 (and to men over 40 years old with a
family history of prostate cancer) at the University Hospital of Innsbruck. Patients taking
part in screening could volunteer to participate in the Tyrol Prostate Cancer Screening
Demonstration Project (TPCSDP), which implemented an early detection algorithm, which

was updated to keep pace with advances in clinical practice during the course of more than 20
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years. In addition to collecting samples in the screening setting, the study continued to
collect samples from patients once a diagnosis of prostate cancer was made and through
various stages of treatment. In addition, clinical, treatment and outcome data were collected.
The biobank created as part of the TPCSDP and the associated well-curated clinical data is an
invaluable resource for studies aimed at understanding all stages of prostate cancer and its
treatment, including investigations directed at the development of test and biomarkers that

could improve patient care.

The aim of the study of Example 3 was to develop a blood-based test for prognosis in
patients with detected prostate cancer classified as low risk based on Gleason scores obtained
from diagnostic biopsy. Here, the term “test for prognosis” is used to interchangeably with a
test for whether the patient’s prostate cancer is indolent or aggressive, as explained
previously in this document. Previous work on plasma samples obtained from a cohort of
patients in a “watchful waiting” protocol (Example 2, “low risk” patients with Gleason scores
of 7 or lower assigned to a protocol of monitoring rather than immediate radical
prostatectomy (RPE)) had shown the potential for such a blood test with clinical relevant
performance, as explained in Examples 1 and 2 above. While the group of patients with a
Gleason score of six or lower is at relatively low risk of aggressive prostate cancer with quick
disease progression and associated impact on survival, the cancer of some patients within this
group is aggressive and does progress quickly. Itis of clinical relevance to be able to identify
which patients within this general low risk category are indeed at higher risk of quick
progression of aggressive disease so that these patients can be directed to immediate
intervention with appropriate therapies, which patients at genuine low risk can still be
assigned to a watchful waiting or active surveillance protocol and avoid possibilities of side
effects of unnecessary treatment. Hence, the test described in this Example is of clinical

significance.

The option of active surveillance was not commonly offered in Tyrol during the
period for which the TPCSDP has adequate follow up for collected samples to be of use for
this study. Hence, this project involves analysis of samples collected from patients at time
points close to their diagnosis with prostate cancer (diagnosis was always confirmed by
biopsy) with Gleason scores of 6 or lower, who went on to undergo radical prostatectomy
(RPE). The relative level of aggression of disease could then be assessed by the time to

relapse of prostate cancer following RPE.
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Samyres

Sertyn samples from prostate cancer patients eprolled 1 the TPUSDP study were
provided and nsed m this project. For classifier development, only patients were considered
who underwent iopsy and BPE within a vear of the sample collection. Thus, at the fime the
patients’ blood saniples were taken the patients had been diagnosed with prostate cancer but
had not vet undergone RPE. I addition, generated mass spectra of the seruny samples had to
pass quality confrols, and clinical data {oufcome as well as PSA, %{PSA and age) had to be
available. This left a total of 124 samples for classifier development. The climical
characteristics of the development set of sapiples are sumpianized in fable 13 Al the
samples were obtamed from prostate cancer pattents who, at the time the sample was

obtamed, had a total Gleason score of 6 or lower,

Table 13: Cinical characteristics of patients with samples used in the development set

Median {Range)
PSA 3.85{1.30-8.72}
%fPSA 158 {5.7-47.1}
Age at diagnosis 60,5 {42.9-74.3}
n {%}
Total Gleason Score {biopsy} 2 1{3}
3 {0}
4 1{1
5 3{2}
& 119 {36}
Gleason Seore 1 {biopsy} 1 1{3}
2 3{2}
3 120 {87)
Gieason Score 2 {biopsy) 1 1{1}
2 242
3 121 {98}
40
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Total Gleason Score (RPE) 4 1(1)
5 24 (19)
6 40 (32)
7 51 (41)
8 6 (5)
9 1(1)
NA 1(1)
Gleason Score 1 (RPE) 2 7 (6)
3 108 (87)
4 8 (6)
NA 1(1)
Gleason Score 2 (RPE) 2 20 (16)
3 48 (39)
4 49 (40)
5 5 (4)
NA 2(2)
pT Staging (RPE) 23 18 (15)
2b 3(2)
2c 85 (69)
3a 17 (14)
NA 1(1)

Sample preparation

Samples were thawed and 3 ul aliquots of each test sample (serum from patients with
prostate cancer) and quality control serum (a pooled sample obtained from serum of five
healthy patients, purchased from ProMedDx, “SerumP3”) were spotted onto VeriStrat ®

serum cards (Therapak). The cards were allowed to dry for 1 hour at ambient temperature
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after which the whole serum spot was punched out with a 6mm skin biopsy punch
(Acuderm). Each punch was placed in a centrifugal filter with 0.45 pm nylon membrane
(VWR). One hundred pl of HPLC grade water (JT Baker) was added to the centrifugal filter
containing the punch. The punches were vortexed gently for 10 minutes then spun down at
14,000 rcf for 2 minutes. The flow-through was removed and transferred back on to the
punch for a second round of extraction. For the second round of extraction, the punches were
vortexed gently for 3 minutes then spun down at 14,000 rcf for 2 minutes. Twenty microliters
of the filtrate from each sample was then transferred to a 0.5 ml eppendorf tube for MALDI

analysis.

All subsequent sample preparation steps were carried out in a custom designed
hhmidity and temperature control chamber (Coy Laboratory). The temperature was set to 30

°C and the relative humidity at 10%.

An equal volume of freshly prepared matrix (25 mg of sinapinic acid per 1 ml of 50%
acetonitrile:50% water plus 0.1% TFA) was added to each 20ul serum extract and the mix
vortexed for 30 sec. The first three aliquots (2 x 2ul) of sample:matrix mix were discarded
into the tube cap. Eight aliquots of 2l sample:matrix mix were then spotted onto 8 different
sample spot locations of a stainless steel MALDI target plate (SimulTOF). The MALDI

target was allowed to dry in the chamber before placement in the MALDI mass spectrometer.

This set of samples was processed for MALDI analysis in 6 batches. QC samples

were added to the beginning (2 preparations) and end (2 preparations) of each batch run.
Spectral acquisition

MALDI spectra were obtained using a MALDI-TOF mass spectrometer (SimulTOF
100  from Virgin Instruments, Sudbury, MA, USA). The instrument was set to operate in
positive ion mode, with ions generated using a 349 nm, diode-pumped, frequency-tripled
Nd:YLF laser operated at a laser repetition rate of 0.5 kHz. External calibration was
performed using a mixture of standard proteins (Bruker Daltonics, Germany) consisting of
insulin (m/z 5734.51), ubiquitin (m/z 8565.76 ), cytochrome C (m/z 12360.97), and
myoglobin (m/z 16952.30).

Spectra from each MALDI spot were collected as 800 shot spectra that were
'hardware averaged' as the laser fires continuously across the spot while the stage is moving

at a speed of 0.25 mm/sec. A minimum intensity threshold of 0.01 V was used to discard any
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'flat line' spectra. All 800 shot spectra with intensity above this threshold were acquired
without any further processing.  The spectral acquisition used a raster scanning method
which is described in U.S. patent application publication 2013/0320203 of H. Roder et al,,

inventors.
Raster Spectral Preprocessing
Raster spectra rescaling by batch

A coarse alignment step was performed to overcome shifts in the m/z grid resulting
from instrument calibration. As the instrument is recalibrated prior to batch acquisition,
rescaling was performed independently by batch. An m/z grid shift factor was determined for
each batch by comparing peaks in the first acquired reference spectrum to a historical
reference spectrum. The m/z grid from the historical reference was applied to the newly

acquired spectra with the calculated shift.
Alignment and filtering of raster spectra

This workflow performs a ripple filter, as it was observed that using this procedure
improved the resulting averages in terms of noise. The spectra were then background
subtracted and peaks were found in order to perform alignment. The spectra that were used
in averaging were the aligned ripple filtered spectra without any other preprocessing. The
calibration step used a set of 43 alignment points listed below in table 14. Additional
filtering parameters required that the spectra had at least 20 peaks and that at least 5 of the

alignment points were used in alignment.

Table 14 Alignment points used to align the raster spectra

m/z

3168

4153

4183

4792

5773

5802

6433

6631

7202

7563

7614

43
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7934

8034

8206

8684

8812

8919

8994

9133

9310

9427

10739

10938

11527

12173

12572

12864

13555

13763

13882

14040

14405

15127

15263

15869

17253

18630

21066

23024

28090

28298

33500

67150

Raster Spectra Averaging

Averages were created from the pool of rescaled, aligned and filtered raster spectra.
We collected multiple 800 shot spectra per spot, so that we end up with a pool in excess of
500 in number of 800 shot raster spectra from the 8 spots from each sample. We randomly
select 500 from this pool, which we average together to create a final 400,000 shot average

deep MALDI spectrum.
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Pre-Processing of Averaged Spectra
Background estimation and subtraction

Details regarding background subtraction are known in the art and describe in US
Patent 7,736,905, the content of which is incorporated by reference. Estimation of
5  background was performed with additional consideration for the high mass region. The two

window method of background estimation and subtraction was used (Table 15).

Table 15: Background estimation windows

Wide windows m/Z width
3000 80000
30000 80000
31000 160000

Medium windows
3000 5000
30000 5000
31000 10000

Normalization of spectra

10 A normalization scalar was determined for each spectrum using a set of
normalization windows. These windows were taken from the bin method parameters from a
pre-existing project using Deep-MALDI. While a new set of windows was investigated for
this Example dataset, a superior set was not found. The normalization was performed in a
two stage process. First, the spectra were normalized using the windows found in table 16.

15  Following, the spectra were normalized using the windows found in table 17.

Table 16: Step 1 normalization windows

Left

Right

3530.679

3784.658

3785.029

4078.739

4220.21

4323.065

4875.581

4943.903

5260.635

5435.524

5436.47

5682.433

6050.421

6376.807

6510.852

6601.081

7751.414

7898.826

10606.12

10897.2
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10908.61 | 11356.51

12425.27 | 12527.26

17710.35 | 18504.69

19212.92 | 20743.82

22108.95 | 22959.15

23738.5 | 24739.04

Table 17: Step 2 normalization windows

Left Right

4168.226 | 4219.839

4875.581 | 4943.903

4946.131 | 5077.576

5080.918 | 5259.892

5260.635 | 5435.524

6510.852 | 6601.081

7751.414 | 7898.826

10606.12 | 10897.2

10908.61 | 11356.51

The normalization scalars that were found for each average were compared by t-test by
clinical group Relapse (patients relapsing after RPE) versus NoRelapse (patients not
relapsing after RPE). As shown in Figure 17, the scalars were not found to be significantly
associated with patient relapse status. (Note, at this point we have not yet initiated the
classifier development process of Figure 1 and hence have not yet generated or assigned
class labels for the samples. We just used the Relapse and NoRelapse labels to confirm that

our normalization scalars were acceptable.)

Average spectra alignment

The peak alignment of the average spectra is typically very good; however, a fine-
tune alignment step was performed to address minor differences in peak positions in the
spectra. A set of alignment points was identified and applied to the analysis spectra (table

18).

Table 18: Calibration points used to align the spectral averages |

m/Z

3315

4153
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4457

4710

5066

6433

6631

7934

8916

9423

9714

12868

13766

14045

14093

15131

15872

16078

17256

17383

18631

21069

21168

28084

28293

67150

Feature definitions

Feature definitions (i.e., selection of features or m/z ranges to use for classification)
were selected interactively by viewing the spectra. The left and right boundaries were
assigned manually using an overlay of many spectra. The process was performed iteratively
over batches to ensure that the boundaries and features were representative of the whole
dataset. A final iteration was performed using the class labels assigned to the spectra of
‘Relapse’ and ‘No Relapse’ to ensure selected features were appropriately assigned
considering these clinical groupings. A total of 329 features were identified to use in the new
classifier development project. These feature definitions were applied to all spectra to create
a feature table of feature values. An example of the selected features is shown in Figure 18.
The full list of feature definitions can be found in Example 3 Appendix A, table Al. After
the feature definitions are assigned, a feature table is created by computing the integrated
intensity value of the spectra over each of the features listed in the Example 3 Appendix A

table A1l.
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Batch correction of spectra
SerumP3 Analysis

Two preparations of the reference sample, SerumP3, were plated at the beginning (1,
2) and end (3, 4) of each run. The purpose of these samples is to ensure that variations by
batch due to slight changes in instrument performance (for example, aging of the detector)
can be corrected for. The section below describes the batch correction procedure. To
perform batch correction, one spectrum must serve as the reference for the batch which is an
average of one of the preparations from the beginning and one from the end of the batch. A

procedure for selecting the pair is first described.

The reference samples were preprocessed as described above. All 329 features were
used to evaluate the possible combinations (1-3, 1-4, 2-3, 2-4). We compared each possible

combination of replicates using the function:
A = min (abs (1-ftrval 1/ftrval2), abs (1-ftrval2/ftrvall))

where ftrvall (ftrval2) is the value of a feature for the first (second) replicate of the replicate
pair. This quantity A gives a measure of how similar the replicates of the pair are. For each
feature, A is reported. If the value is >0.5, then the feature is determined to be discordant, or
‘Bad’. A tally of the bad features is reported for each possible combination. If the value of A
is <0.1, then the feature is determined to be concordant and reported as ‘Good’. A tally of the
Good features is reported for each possible combination. Using the tallies of Bad and Good
features from each possible combination, we computed the ratio of Bad/Good. The
combination with the lowest ratio was reported as the most similar combination and unlikely
to contain any systematic or localized outlier behavior in either of the reference spectra.
Finally, if no ratio can be found that is less than 0.25, then the batch is a failure. This
threshold was easily met for all batches. The highest threshold was 0.125.

Batch Correction
Batch 1 was used as the baseline batch to correct all other batches. The reference
sample was used to find the correction coefficients for each of the batches 2-6 by the

following procedure.
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. J _:
Within each batch j (2 < j < 6), the ratio ﬁ-’ = % and the average amplitude A{ =

4

%(A{ + A}) are defined for each i" feature centered at (m/z);, where A{ is the average

reference spectra amplitude of feature i in the batch being corrected and A} is the reference
spectra amplitude of feature i in batch 1 (the reference standard). It is assumed that the ratio

of amplitudes between two batches follows the dependence
r(4, (m/2)) = (ao + a;1n(A)) + (by + b1In(A))(m/2) + co(m/z)? .

On a batch to batch basis, a continuous fit is constructed by minimizing the sum of the

J

: , 2
square residuals, A/=Y; (ﬁ -1/ (ay, aq, by, b4, co)) , and using the experimental data of

the reference sample. The SerumP3 reference samples are used to calculate the correction

function. Steps were taken to not include outlier points in order to avoid bias in the

parameter estimates. The values of the coefficients ag, ay, by, by and c¢g, obtained for the

different batches are listed in Example 3 Appendix B (table B.1). The projection in the fij
versus (m/z); plane of the points used to construct the fit for each batch of reference

spectra, together with the surface defined by the fit itself, is shown in figure B.1 of Appendix
B.

Once the final fit, r/ (/T, (m/z)), is determined for each batch, the next step is to

correct, for all the samples, all the features (with amplitude A at (m/z)) according to

Acorr = m. After this correction, the corrected (ff{ , (m/z)i,f‘ij ) feature values
calculated for reference spectra lie around the horizontal line defined by r = 1, as shown in
Figure B.2 of Example 3 Appendix B. Post correction coefficients are calculated to compare
to quality control thresholds. These coefficients can be found in Example 3 Appendix B

table B.2 and the corresponding plots in Figure B.2 of the appendix.
Final feature table assembly
Normalization by Partial lon Current (PIC) method

The batch corrected feature table was examined to find regions on intrinsic stability to
use as the final normalization windows. First, the univariate p values were found by
comparing the clinical groups Relapse and No Relapse. Features with p values less than 0.15

were excluded from the PIC analysis as these features may contribute meaningful information
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in test development. A set of 188 features were used in the PIC analysis, of which 13

features were used in normalization (see table 19).

Table 19: Features used in the final normalization

PIC
Features

4459

4718

4818

4856

6612

6634

8928

9430

9641

9721
12873
12968

13081

Partial ion current normalization of spectra is known in the art, see e.g., U.S. patent

7,736,905, therefore a detailed description is omitted for the sake of brevity.

The normalization scalars computed using the features found in table 19 were
compared by clinical group (Relapse, NoRelapse) to ensure normalization would not impede
the new classifier development effort. As shown in Figure 19, no association was found

between the scalars and the clinical group.

Following PIC normalization, the feature table was finalized for use in the classifier
development process described below. That is, integrated intensity values of the features
selected for classification was computed and stored in a table for each of the spectra in the

development set.
SerumP3 analysis of features

As a final assessment of the preprocessing procedure, the Serum P3 samples were
analyzed across all batches in the initial feature table and following the PIC normalization.
Prior to batch correction, the median and average CVs were 14.2% and 17.5% respectively.

Following batch correction and the final normalization, the median and average CVs for the
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SerumP3 samples were 13.7% and 17.4%. These modest improvements reflect the relatively
small role of batch correction in the processing of data and demonstrate that little variability

is introduced across batches.
Classifier development for Example 3

The new classifier development process was carried out using the
platform/methodology shown in Figure 1, and described previously at some length, which we
have termed “Diagnostic Cortex”™ . The methodology of Figure 1 is particularly useful for
constructing a classifier and building a prognostic test where it is not a priori obvious which
patients should be assigned to the better or worse prognosis groups (Low and High Risk, or
Early and Late relapse/progression, respectively in Figure 1, blocks 1104 and 1106). The
risk of overfitting to the data is minimized by regularization (step 1132) and the use of
majority voting or average probability cutoff in the selection or definition of the final
classifier at step 1144. Confidence in performance metrics for a classifier generated by the
method of Figure 1 is enhanced by the observation of many master classifiers (MCs) with

similarly good performance and the use of out-of-bag estimates for performance metrics.

The classifier generation procedure is described in some detail in Examples 1 and 2
above. The reader is also directed to the US patent application publication no. 2015/0102216,
H. Roder et al. inventors, for a further description and examples of the methodology. The
following discussion will provide further explanations of the method in the present Example

3.
Definition of class labels

As shown in Figure 1 step 1102, an initial class label assignment is made for each of
the samples in the development set 1100, in this example the 124 blood-based samples that
passed QC filtering and for which patient clinical data was available. In this example, we
are trying to assign the correct class label for each sample, either Low Risk or High Risk (or,
equivalently, Late or Early, respectively), with Low Risk or the equivalent signifying good
prognosis, indolence, and late progression of disease and High Risk or the equivalent
signifying relatively poor prognosis, aggressiveness of the prostate cancer, and early
progression of disease. Time-to-event data, in this case time from sample collection to
relapse after RPE was used for assigning the initial class label and classifier training. In this

situation, class labels are not obvious and, as shown in Figure 1, the method uses an iterative
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method to refine class labels at the same time as creating the classifier. See loop 1142. An
initial guess is made for the class labels at step 1102. The samples are sorted on time to
relapse and half of the samples with the lowest time-to-event outcome are assigned the
“Early” class label (early relapse, i.e. poor outcome, high risk) while the other half are
assigned the “Late” class label (late relapse, i.e. good outcome, low risk). A classifier is then
constructed using the outcome data and these class labels. This classifier can then be used to
generate classifications for all of the development set samples and these are then used as the
new class labels for a second iteration of the classifier construction step. This process is
iterated until convergence (i.e., the number of persistently misclassified samples is minimized

at step 1140 after multiple iterations through the process of Figure 1 including loop 1142).
Creation and Filtering of Mini-Classifiers (steps 1120 and 1126)

The development set samples 1100 were split into training and test sets in multiple
different random realizations. See Step 1108, Figure 1 and loop 1136. Six hundred and

twenty five realizations (iterations through loop 1136) were used.

In step 1120, many k-nearest neighbor (kNN) mini-classifiers (mCs) that use the
training set as their reference set were constructed using subsets of features. In this project we
tried two different approaches in terms of the nature of features used by the mini-classifiers.
In approach (1), see description below, we used only mass spectral features while in approach
(2), see description below, in addition to those mass spectral features, we also used age, PSA

and % fPSA as features for classification by the mini-classifiers.

To be able to consider subsets of single, two, or three features and improve classifier
performance, it was necessary to deselect features that were not useful for classification from

the set of 329 features of Example 3 Appendix A. Feature deselection was carried out using

~ the bagged method outlined in Example 3 Appendix C. In the case of approach (2), age, PSA

and % fPSA did not pass the filtering criteria of the bagged method more times than the
applied threshold, but we kept these three features for classifier training nevertheless. The
methodology of deselection of features is disclosed in U.S. provisional application of J.
Roder et al., serial no. 62/154,844 filed April 30, 20135, the contents of which is incorporated

by reference herein.

To target a final classifier that has certain performance characteristics, these mCs are

filtered at step 1126. Each mC is applied to its training set and performance metrics are
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calculated from the resulting classifications of the training set. Only mCs that satisfy
thresholds on these performance metrics pass filtering to be used further in the process. The
mCs that fail filtering are discarded. For this project only hazard ratio filtering was used, i.e.
the classifier was applied to the training set of samples and the hazard ratio calculated
between the time to relapse for the two classification groups had to lie within a preset range

for the mC to pass filtering. The filtering options used in this project are listed in table 20

Table 20 Filtering parameters used in step 1126 Figure 1

Iteration Approach (1) Approach (2)
of loop 1142 of — —
Figure 1 k HR filtering k HR filtering
range range
0 7 3.0-10.0 7 3.0-10.0
1 7 2.5-10.0 7 2.0-10.0
2 7 2.5-100 7 2.5-10.0

Here in Table 20 and below, “iteration” means an exercise of classifier generation using the
through the loop 1142 of Figure 1 with “iteration 0 referring to an initial iteration through
the process, “iteration 1” referring to a second iteration, etc. It will be appreciated that by
experimenting with the parameters for the classifier generation process, such as for example
filtering parameters for the mini-classifiers, the number of features used by the mini-
classifiers, or inclusion of additional non-mass spectral features for classification such as
PSA level, age, etc., and performing the process of Figure 1 many times, one can explore the
performance of classifiers generated using the process of Figure 1 to find one that has optimal

performance.
Combination of mini-classifiers using logistic regression with drop-out

Once the filtering step 1126 is complete, at step 1130, the mini-classifiers are
combined into one master classifier using logistic regression trained using the training set
labels as indicated 1132 in Figure 1. To help avoid overfitting the regression is regularized

using extreme drop out with only a small number of the mCs chosen randomly for inclusion
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in each of the logistic regression iterations. The number of dropout iterations in step 1132
was selected based on the typical number of mCs passing filtering to ensure that each mC
was likely to be included within the drop out process multiple times. For this project 10 mCs
were randomly selected for each drop out iteration. The number of drop out iterations that

were carried out in each iteration are listed in table 21.

Table 21: Number of drop out iterations used

Iteration (of loop 1142 of Figure | Approach (1) Approach (2)
1)

0 300,000 300,000

1 250,000 300,000

2 250,000 200,000

Training/test set splits (loop 1136)

The use of multiple training/test splits (loop 1136) and evaluation of Master
Classifier (MC) performance on the new test set in each iteration) avoids selection of a single,
particularly advantageous or difficult, training set for classifier creation and avoids bias in
performance assessment from testing on a test set that could be especially easy or difficult to

classify.

The output of the logistic regression performed at step 1132 that defines each MC is a
probability of being in one of the two training classes (Early or Late). During the iterative
classifier construction and label refinement process, classifications were assigned by majority
vote of the individual MC labels obtained with a cutoff of 0.5 applied to the logistic
regression output. This process was modified to incorporate only MCs where the sample was

not in the training set (modified, or “out-of-bag” majority vote, MMV).

Example 3 Results

The performance of the classifiers was assessed using Kaplan-Meier plots of time to
relapse (time between sample collection and relapse after RPE), TTR, of samples classified

as Early and Late, together with corresponding hazard ratios (HRs) and log-rank p values.
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Kaplan-Meier plots corresponding to the data in table 22 are shown in Figure 20. The

classifications per sample are listed in Example 3 Appendix E.

Note in Figure 20 that the

classifiers generated in both approaches show a clear separation in time to relapse between

the Early and Late class label groups. The results are summarized in table 22.

Table 22; Performance summary for time to relapse (Early vs Late)

#Early/#Late HR (95% Cl) log-rank p
Approach (1) 56/68 2.38(1.08-5.73) | 0.035
Approach (2) 55/69 2.49(1.13-6.07) | 0.026

Table 23: Percent relapse free for each classification risk group at 3, 4 and 5 years after

sample collection

Time on study Approach (1) Approach (2)

[years] Early (%) Late (%) Early (%) Late (%)
3 81 94 81 94

4 79 92 79 92

5 77 92 77 92

10 59 83 59 83

Table 24: Multivariate analysis of time to relapse

Approach (1) Approach (2)

Covariate HR (95% Cl) P value HR (95% C1) P value

Late vs Early 2.41(1.00-5.82) | 0.050 2.64 0.033
(1.08 - 6.44)

PSA 1.18 (0.94-1.47) | 0.150 1.18 0.142
(0.95-1.48)

fPSA 1.00(0.94-1.06) | 0.983 1.00 0.955
(0.94 - 1.06)

Age (50-59 .vs. <50) 0.94 (0.12-7.59) | 0.955 0.98 0.984
(0.12 -7.88)

Age (60-69 .vs. <50) 0.65 (0.08-5.67) | 0.699 0.62 0.665
(0.07 - 5.41)

Age (>70 .vs. <50) 0.59(0.05-7.08) | 0.673 0.57 0.656
(0.05 - 6.86)

Baseline clinical characteristics are summarized by classification group in table 25.

Table 25: Clinical characteristics by classification group

Approach (1)

Approach (2)

Early (N=56) |

Late (N=68)

Early (N=55) |

Late (N=69)

Median {(Range)
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PSA 3.96 (1.65-8.72) 3.67 (1.3-8.4) 3.99 (1.65-8.72) 3.7 (1.3-8.4)
%fPSA 15.18 (6.2-47.1) | 15.88 (5.7-33.1) | 15.5 (6.2-47.1) | 15.85(5.7-33.1)
Age at diagnosis 62.0 (46.8-74.3) | 59.5(42.9-72.2) | 62.2 (46.8-74.3) | 59.5(42.9-72.2)

n (%)
Total Gleason Score 2 1(2) 0(0) 1(2) 0(0)
(biopsy) 3 0(0) 0(0) 0(0) 0(0)
4 0 (0) 1(1) 0(0) 1(1)
5 1(2) 2(3) 1(2) 2 (3)
6 54 (96) 65 (96) 53 (96) 66 (96)
Gleason Score 1 1 1(2) 0(0) 1(2) 0 (0)
(biopsy) 2 1(2) 2(3) 1(2) 2(3)
3 54 (96) 66 (97) 53 (96) 67 (97)
Gleason Score 2 1 1(2) 0(0) 1(2) 0(0)
(biopsy) 2 0 (0) 2(3) 0(0) 2(3)
3 55 (98) 66 (97) 54 (98) 67 (97)
Total Gleason Score 4 0(0) 1(1) 0(0) 1(1)
(RPE) 5 8 (14) 16 (24) 9(16) 15 (22)
6 16 (29) 24 (35) 15 (27) 25(36)
7 27 (48) 24 (35) 26 (47) 25 (36)
8 5(9) 1(1) 5(9) 1(1)
9 0{0) 1(1) 0(0) 1(1)
NA 0(0) 1(1) 0 (0) 1(1)
Gleason Score 1 2 2 (4) 5(7) 2 (4) 5(7)
(RPE) 3 48 (86) 60 (88) 47 (85) 61 (88)
4 6(11) 2(3) 6 (11) 2(3)
NA 0(0) 1(1) 0(0) 1(1)
Gleason Score 2 2 6(11) 14 (21) 7 (13) 13 (19)
(RPE) 3 22 (39) 26 (38) 21 (38) 27 (39)
4 25 (45) 24(35) 24 (44) 25 (36)
5 3(5) 2(3) 3(5) 2 (3)
NA 0 (0) 2(3) 0 (0) 2 (3)
pT Staging (RPE) 2a 5(9) 13(19) 5(9) 13 (19)
2b 2 (4) 1(1) 2 (4) 1(1)
2c 42 (75) 43 (63) 41 (75) 44 (64)
3a 7 (13) 10 (15) 7 (13) 10 (14)
NA 0(0) 1(1) 0 (0) 1(1)

The sample classifications were identical for the two approaches except for three samples -

which swapped classifications between the two. Inclusion of PSA, %fPSA and age may

improve classification (Approach 2), but any improvement seems to be quite marginal. This

is consistent with the lack of significance of PSA, %fPSA, and age as predictive factors for

outcome in the multivariate analysis of table 25. Test classification remains a significant

predictor of TTR and is the only available significantly predictive factor of TTR in

multivariate analysis. While there is an indication that patients with higher TGS from RPE

tend to be assigned an Early classification (5/6 patients with TGS 8 from RPE are classified

as Early), larger sample numbers would be required to demonstrate this conclusively. As the
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vast majority of patients in this study had TGS by biopsy of 6, it is clear that the
classifications obtained from the mass spectral analysis provide information in addition to
Gleason score at time of diagnosis, before additional, more reliable tumor staging can be
obtained after RPE. Furthermore, this information is independent of PSA and %fPSA
measurements as shown by Mann-Whitney tests performed to. assess association between

these variables and the classification groups (table 26).

Table 26: Mann-Whitney test p-values

Mann-Whitney test p-value

Approach (1) Approach (2)
PSA 0.105 0.118
% fPSA 0.474 0.767
age 0.111 0.052

Conclusions and clinical significance of classifier generated in Example 3

Applying the procedure of Figure 1 to the feature table obtained from Deep MALDI
spectra generated from serum samples collected from low risk prostate cancer patients and
associated outcome data, it was possible to create a test able to stratify patients into two
groups with better and worse prognosis following RPE, thus differentiating indolent from
aggressive prostate cancer using a blood-based sample prior to RPE. The difference in TTR
between the two classification groups was statistically significant and clinically meaningful,
with a hazard ratio of around 2.5. See Figure 20 and Tables 22-25. Slightly less than half of
the patients were assigned to the poor prognosis group (Early). Five years after sample
collection (at least 4 years after RPE), 92% of the patients in the good prognosis group were
disease free compared with only 77% in the poor prognosis group (Late). This difference
increased at ten years post sample collection, with 83% of patients relapse-free in the good

prognosis group compared with 59% in the poor prognosis group.

The next step in the development of this potentially clinically useful test is to validate

the current results in an independent cohort of patients in a similar indication. (See Figure 1
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step 1148). This is planned using an additional sample set collected from patients in the

TPCSDP.

These results are in line with previous work on low risk prostate cancer based on
plasma samples collected from patients in a watchful waiting protocol. See Examples 1 and 2.
In the case of Example 2 (cohort of patients on watchful waiting with TGS of 7 or lower) at
five years after sample collection, 88% of patients were progression-free in the good
prognosis group compared with 69% of patients in the poor prognosis group, and the hazard
ratio for time to progression between good and poor prognosis groups was 2.95 (95% CI:
1.13-5.83). In the present study, the indication was similar (low risk prostate cancer with
Gleason score of 6 or below); however, in this present cohort all patients underwent RPE
soon after diagnosis. As one would expect that this latter treatment paradigm should improve
outcomes for the poor prognosis group more than the good prognosis group, one would
expect that the hazard ratio in the present setting should be smaller than that in the watchful
waiting setting. The consistency between the two development projects adds to our

confidence in the classifiers described in this disclosure and their performance estimates.

As watchful waiting or active surveillance protocols are now becoming more widely
applied to these “low risk” prostate cancer patients (see Klotz L, Zhang L, Lam A, et al,
Long-term follow up of a large active surveillance cohort of patients with prostate cancer J.
Clin. Oncol. 2015 (33):272-277; Morash C, Tey R, Agbassi C, et al., Can Urol Assoc 2015:
9(5-6): 171-178) and there are recognized issues determining whether all these patients
should be considered as really “low risk” (see Cooperberg M., Lbng-Term Active
Surveillance for Prostate Cancer: Answers and Questions. J. Clin. Oncol. 2015: 33 (3): 238-
240), it would seem that clinical utility of the test in Example 3 may lie more in the
prediction of outcomes following diagnosis of prostate cancer with Gleason score from
biopsy of 6 or lower in an active surveillance setting, than in prediction of outcomes
following RPE in this population. The test could indicate which patients in this “low risk”
setting are really good candidates for active surveillance/watchful waiting and which patients
should go straight on to more aggressive treatment regimens such as immediate RPE.
Acquiring a set of serum samples from an active surveillance population to test performance
of this test in that setting is therefore an important next step. As explained above, one might
expect an even better separation in outcomes between classification groups in the active

surveillance setting.
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In addition, as this test is prognostic of relapse following RPE, it could be useful to
predict prognosis of patients with higher risk prostate cancer who undergo immediate RPE.
Presumably the test should still have some predictive power for time to relapse even in the
setting of patients with higher biopsy Gleason scores and it may be able to provide additional
information to physicians trying to assess how aggressive a patient’s prostate cancer is prior

to RPE and possibly indicate the need for additional supportive therapies.

Testing system

After a classifier for predicting indolence or aggressiveness of prostate cancer has
been generated and defined as explained in Examples 1-3 (including specifying the feature
table with intensity values, final classifier definition, mini-classifier parameters including
filtering etc.), it is now ready for use to classify a blood-based sample from a prostate cancer
patient to assign a class label for the sample as either Early (high risk of relapse/aggressive)
or Late (low risk/indolence). The class label is provided to the medical practitioner ordering
the test. The class label can be used to guide treatment, for example initiating more

aggressive treatment if the class label is Early or the equivalent.

Figure 21 is an illustration of a system for processing a test sample (in this example a
blood-based sample from a prostate cancer patient) using a classifier generated in accordance
with Figure 1. The system includes a mass spectrometer 2106 and a general purpose
computer 2110 implementing a final classifier 2120 coded as machine-readable instructions
and a constitutive mass spectral data set including a feature table 2122 of class-labeled mass
spectrometry data stored in memory 2114. It will be appreciated that the mass spectrometer
2106 and computer 2110 of Figure 21 could be used to generate the classifier in accordance

with the classifier development process of Figure 1.

The operation of the system of Figure 21 will be described in the context of a
predictive test for indolence or aggressiveness of prostate cancer as explained in the above
Examples, but it will be appreciated that the methodology described in this section can be

used in other examples.

The system of Figure 21 obtains a multitude of samples 2100, e.g., blood-based
samples (serum or plasma) from diverse prostate cancer patients. The samples 2100 are used

by the classifier (implemented in the computer 2110) to make predictions as to whether the
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patient providing the sample is likely to have aggressive or indolent prostate cancer, and
typically will be have just been diagnosed with “low risk™ prostate cancer (TGS <7) with the
physician deciding whether watchful waiting/active surveillance is an appropriate treatment
protocol or maybe in an indication ready to undergo RPE and the physician may require
additional prognostic information to plan additional supportive therapy post RPE. The
outcome of the test is a binary class label, such as Low Risk, Low, Late, or the equivalent, or
High Risk, High, Early or the equivalent, with Low or the equivalent indicating that the
patient is likely to have an indolent form of the cancer and High meaning that the patient is
likely to have an aggressive form of the cancer. The particularly moniker for the class label

is not important and could be in accordance any binary system.

The samples may be obtained on serum cards or the like in which the blood-based
sample is blotted onto a cellulose or other type card. The obtaining of the mass spectra and
the pre-processing of the spectra will normally follow the methods used in generating the
classifier in accordance with Figure 1 and described in the Examples. As one possible
example, in which typical “Dilute and Shoot” ~ 2000 shot spectra are acquired for each
sample, three aliquots of the sample are obtained. ~ The three aliquots of the sample are
spotted onto a MALDI-ToF sample “plate” 2102 and the plate inserted into a MALDI-ToF
mass spectrometer 2106. The mass spectrometer 2106 acquires a mass spectrum 2108 from
each of the three aliquots of the sample. The mass spectra are represented in digital form and
supplied to a programmed general purpose computer 2110. The computer 2110 includes a
central processing unit 2112 executing programmed instructions. The memory 2114 stores

the data representing the mass spectra 2108.

The memory 2114 also stores a final classifier 2120 defined as per the procedure of
Figure at step 1144, which includes a) a constitutive mass spectral data set 2122 in the form
of a feature table of N class-labeled spectra, where N is some integer number, in this example
a development set used to develop the classifier as explained in Examples 1-3. The final
classifier 2120 includes b) code 2124 representing a KNN classification algorithm (which is
implemented in the mini-classifiers as explained above in Figure 1, as well as values defining
the parameters of the mini-classifiers such as features to use, etc.), ¢) program code 2126 for
executing the final classifier generated in accordance with Figure 1 on the mass spectra of
patients, including logistic regression weights and data representing master classifier(s)
forming the final classifier, and d) a data structure 2128 for storing classification results,

including a final class label for the test sample. The memory 2114 also stores program code
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2130 for implementing the processing shown at 2150, including code (not shown) for
acquiring the mass spectral data from the mass spectrometer in step 2152; a pre-processing
routine 2132 for implementing the background subtraction, normalization and alignment step
2154 (details explained above), a module (not shown) for calculating integrated intensity
values at predefined m/Z positions in the background subtracted, normalized and aligned
spectrum (step 2156), and a code routine 2138 for implementing the final classifier 2120
using the dataset 2122 on the values obtained at step 2156. The process 2158 produces a
class label at step 2160. The module 2140 reports the class label as indicated at 2160 (i.e.,

“low”, “Late” or the equivalent).

The program code 2130 can include additional and optional modules, for example a
feature correction function code 2136 (described in co-pending US patent application serial
no. 14/486,442) for correcting fluctuations in performance of the mass spectrometer, a set of
routines for processing the spectrum from a reference sample to define a feature correction
function, a module storing feature dependent noise characteristics and generating noisy
feature value realizations and classifying such noisy feature value realizations, modules
storing statistical algorithms for obtaining statistical data on the performance of the classifier
on the noisy feature value realizations, or modules to combine class labels defined from
multiple individual replicate testing of a sample to produce a single class label for that
sample. Still other optional software modules could be included as will be apparent to

persons skilled in the art.

The system of Figure 21 can be implemented as a laboratory test processing center
obtaining a multitude of patient samples from oncologists, patients, clinics, etc., and
generating a class label for the patient samples as a fee-for-service. The mass spectrometer
2106 need not be physically located at the laboratory test center but rather the computer 2110
could obtain the data representing the mass spectra of the test sample over a computer

network.

Further considerations:

Deep-MALDI spectra

As explained in Example 3, it is possible to obtain much more spectral information
from the samples used in generation of the classifier using the techniques termed “Deep-

MALDI” described in the pending application of Roder et al., serial no. 13/836,436 filed
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March 15, 2013, the content of which is incorporated by reference herein. In that technique,
more than 100,000 laser shots, and potentially hundreds of thousands or even millions of
laser shots, are applied to the MALDI plate spot containing the sample (or as a sum from
shots on several such MALDI plate spots). This technique produces a vastly increased
amount of spectral information than obtained from typical 2,000 shot “dilute and shoot”
spectra. If this technique is used, during the classifier development process there may be
many dozens, if not hundreds or even thousands of potential m/z features which can be used
for classifier generation. All of these features may be used for classifier development, or a
statistical analysis of the features may be performed to identify those features that are most
discriminatory or differentially expressed in the Low and High risk patients. If Deep MALDI
is used for generating the classifier then the same procedures are used for obtaining spectral
data from the sample under test. For example, the methods described in Example 3 are used
in both classifier generation and in the testing environment at Figure 21, step 2150, and in the

pre-processing steps 2154.

Reselection of feature values during iterative development of the classifier

We have found from other exercises of classifier development using the procedure of
Figure 1 that when we have a feature space with a large number of features (typically
hundreds or even thousands, as is often the case particular when you use Deep MALDI) and
where there is some inherent ambiguity or uncertainty in the initial definition of the class
labels during classifier development (as here), it can be advantageous to not only perform
label flipping during iterations of the classifier development process of Figure 1 (step 1140)
but also at the same time use the new class label groupings to reselect features from the
available feature space for classification (again, using the statistical methods for feature
selection). This technique is explained in some detail in the related US application serial no.
14/486,442 filed September 15, 2014. In essence, and with reference to Figure 1, when the
loop 1142 is entered and new groupings defined at the new iteration of step 1102, at the same
time new features are selected in the feature space of available mass spectrometry features
using statistical analysis of the features for each of the group labels in the development set.
Then, in the subsequent iteration of the step 1120 the mini-classifiers are constructed and

executed using the redefined group labels and new features. Repeated iteration of this
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process tends to converge on a generalizable and unique definition of both group labels and

classification features.
m/z features

Note that, in the above classifier development process and in applying a final
classifier to a test sample, we have not found it necessary to correlate the m/z features we use
for classification to particular proteins or biomarkers circulating in blood. The validity of the
classifier is established by whether it works or not and whether it is generalizable to new
samples. The methods we have described demonstrate that the classifier works and is

generalizable.

Constitutive set for classification of test samples

Once the classifier generation process of Figure 1 is followed and a final classifier
defined for future testing, the data set of class-labeled spectra used in generating the classifier
(and in particular a feature table of intensity values at particular m/z ranges) is stored and
then used as a reference set for classification using the testing procedure of Figure 21. As
noted, this “constitutive set” of spectra is obtained from blood-based samples of humans
diagnosed with prostate cancer and includes patients both with indolent cancer and with
aggressive cancer.  This constitutive set can consist of spectra from all of the samples in a

classifier development sample set (1100) or some subset thereof.

The appended claims are offered as further descriptions of the disclosed inventions.
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Appendices

Example 1 Appendix A: Feature Definitions Used in New Classifier Development for
Prostate Cancer

5 All feature definitions
Left m/z Center m/z Right m/z

3081.583 3090.249 3098.915
3308.621 3329.648 3350.675
4145.045 4160.911 4176.776
4177.923 4197.23 4216.536
4446.822 4468.04 4489.258
4556.927 4572.41 4587.894
4694.939 4717.304 4739.669
4772.094 4790.636 4809.178
4809.56 4824.661 4839.762
4846.644 4860.598 4874.552
4880.493 4896.55 4912.607
5053.678 5071.264 5088.85
5090.762 5109.303 5127.845
5279.182 5292.874 5306.565
6376.924 6430.949 6484.973
6576.342 6590.984 6605.625
6606.408 6652.759 6699.111
6782.803 6797.117 6811.43
6822.441 6835.653 6848.866
6849.6 6859.632 6869.663
6870.397 6891.073 6911.748
6928.141 6946.736 6965.332
7018.671 7055.25 7091.829
7370.816 7387.447 7404.077
7405.224 7419.56 7433.897
7514.946 7556.617 7598.289
7658.311 7681.058 7703.805
7893.703 7945.124 7996.544
7999.22 8034.583 8069.947
8181.751 8209.468 8237.185
8551.43 8562.293 8573.157
8574.723 8589.795 8604.867
8666.721 8691.776 8716.831
8730.019 8759.869 8789.72
8792.411 8818.347 8844.283
8859.941 8870.798 8881.656
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8883.796 8923.25 8962.704
9043.529 9067.232 9090.935
9092.465 9154.245 9216.026
9265.334 9282.308 9299.283
9324.362 9346.077 9367.792
9368.098 9381.861 9395.624
9398.071 9433.855 9469.639
9471.168 9487.836 9504.505
9617.762 9641.159 9664.556
9690.553 9717.467 9744.382
9777.537 9793.747 9809.957
9902.628 9935.506 9968.385
10325.87 10347.13 10368.38
10430.11 10453.51 10476.9
11502.59 11525.29 11547.99
11642.19 11673.55 11704.91
11709.09 11730.3 11751.51
12525.06 12571.66 12618.25
12808.63 12864.18 12919.74
13676.71 13706.17 13735.63
13737.77 13758.42 13779.07
13781.02 13797.76 13814.5
13825.46 13839.55 13853.64
13855.09 13877.11 13899.13
13899.72 13913.81 13927.91
13928.52 13939.29 13950.05
13958.08 13970.19 13982.3
14026.12 14041.39 14056.66
14056.69 14066.96 14077.23
14612.46 14676.26 14740.06
15010.07 15126.44 15242.8
15269.09 15291.55 15314.01
15315.44 15345.55 15375.65
15724.22 15852.06 15979.89
16008.09 16031.26 16054.44
16056.83 16093.15 16129.47
16605.01 16682.66 16760.32
17091.97 17138.56 17185.16
17223.02 17266.27 17309.52
17333.41 17393.86 17454.31
17563.93 17601.92 17639.91
18598.12 18640.3 18682.49
21007.96 21074.42 21140.87
21949.42 22238.76 22528.1
27742.59 27978.55 28214.5

65

PCT/US2015/052927



WO 2016/054031 PCT/US2015/052927

28227.94 28314.56 28401.17
28793.87 28909.23 29024.6
29572.29 29667.12 29761.95

Example 1 Appendix B: Samples from the Oregon Prostate Cancer data set used in
Classifier Development

5 Samples used in the Classifier Development and clinical data available

Patient ID | Primary Gleason Score | Secondary Gleason Score | Total Gleason Score
2

3

9

10

15

18

19

20

21

26

29

32
22--EB
N--04--1
N--06--0
N--15--0
N--18--0
OET

11

13

14

16

17

25

27

13 --WFG
N--07--0
N--08--0
N--19--1
N--22--0

NiviNIN|IVNIN NN NN NN NN Yol O[OV DO D

wlwlwlw|lwlw|lwlwjlwjlwlw|lwjwlw|lw(lw|jlwjlwlwjlw|lwwlwlwlwiwlwjlwjlwlw(wlw]w
SDajbdlnldld|dlble|lad|dlEIdldjwlWWWIWIWWWIWIWIWIWIWIWW|WIW(W
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N--27--0 3 4 7
N--31--1 3 4 7
N--39--1 3 4 7
UW-01 3 4 7
Uw-12 3 4 7
KP-02 4 3 7
KP-03 4 3 7
KP-04 4 3 7
N--03--0 4 3 7
N--23--0 4 3 7
UwW-09 4 3 7
UW-10 4 3 7
Uw-11 4 3 7
8 4 4 8

33 4 4 8
N--01--0 4 4 8
N--02--0 4 4 8
N--10--0 5 3 8
N--13--1 4 4 8
N--16--1 4 4 8
N--21--0 4 4 8
N--24--0 4 4 8
N--32--1 4 4 8
N--35--1 4 4 8
N--36--1 3 5 8
UW-06 5 3 8
Uw-08 4 4 8
UW-16 4 4 8
UW-17 4 4 8
1 4 5 9

23 4 5 9
N--11--0 4 5 °
N--14--1 4 5 9
N--25--0 4 5 9
N--28--0 4 5 9
N--34--0 4 5 9
N--5--1 5 4 9
UW-03 4 5 9
UW-07 4 5 9
UW-13 4 5 9
UW-18 4 5 9
KP-05 5 5 10
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Example 1 Appendix C: MMV labels attributed to each patient after 3 label flips

Risk levels as defined in Table 1 are also included.

Patient ID Final MMV Label | Definition (as in Table 1)
1 High High
10 Low Low
11 High Int
13 Low Int
13-WFG Low Int
14 Low Int
15 High Low
16 Low Int
17 Low int
18 Low Low
19 Low Low
2 High Low
20 High Low
21 Low Low
22-EB Low Low
23 High High
25 Low Int
26 Low Low
27 High Int
29 High Low
3 High Low
32 High Low
33 High High
5 Low Int
6 Low Int
7 High Int
8 High High
Low Low
KP-02 High Int
KP-03 High Int
KP-04 Low Int
KP-05 Low High
N-01-0 Low High
N-02-0 High High
N-03-0 Low Int
N-04-1 High Low
N-06-0 Low .| Low
N-07-0 High Int
N-08-0 Low Int
N-10-0 Low High
N-11-0 Low High
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N-13-1 Low High
N-14-1 Low High
N-15-0 Low Low
N-16-1 High High
N-18-0 High Low
N-19-1 Low Int
N-21-0 High High
N-22-0 High Int
N-23-0 Low Int
N-24-0 High High
N-25-0 High High
N-27-0 High int
N-28-0 Low High
N-31-1 High Int
N-32-1 High High
N-34-1 High High
N-35-1 High High
N-36-1 High High
N-39-1 High Int
N-5-1 Low High
OET Low Low
Uuw-01 Low Int
Uw-03 High High
UW-06 High High
uw-07 Low High
Uw-08 Low High
UW-09 High Int
Uw-10 High Int
Uuw-11 Low Int
Uw-12 Low Int
Uw-13 High High
Uw-16 High High
UW-17 High High
UwW-18 High High

Example 2 appendices

PCT/US2015/052927

Appendix A: Feature Definitions Used in New Classifier Development for Prostate

Cancer
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All feature definitions

Left m/z | Center m/z | Right m/z
3153.208 3164.868 3176.529
3353.837 3372.531 3391.224
3419.727 3442.492 3465.257
3473.03 3490.798 3508.566
4055.23 4068.741 4082.252
4137.036 4153.693 4170.351
4170.721 4190.155 4209.588
4698.8 4712.168 4725.537
4759.221 4802.16 4845.099
4983.911 5008.526 5033.142
5053.501 5069.418 5085.336
5090.443 5104.695 5118.946
5121.167 5133.938 5146.708
5525.044 5570.204 5615.365
5843.444 5879.72 5915.996
5978.924 6000.949 6022.974
6366.989 6387.348 6407.707
6409.047 6457.28 6505.514
6518.615 6532 6545.385
6623.863 6631.566 6639.268
6566.766 6632.507 6698.248
6785.31 6794.313 6803.315
6826.591 6838.081 6849.57
6850.447 6859.449 6868.452
6870.181 6882.263 6894.346
6916.615 6940.779 6964.943
7459.185 7488.68 7518.175
7526.229 7562.357 7598.486
7601.624 7617.379 7633.133
7657.771 7674.354 7690.938
7887.538 7929.737 7971.936
7976.674 7990.148 8003.622
8005.695 8033.827 8061.96
8188.822 8205.257 8221.693
8226.727 8238.276 8249.825
8651.726 8684.856 8717.985
8726.499 8759.074 8791.648
8797.941 8827.554 8857.167
8887.061 8931.11 8975.16
9041.789 9061.223 9080.657
9084.787 9147.53 9210.273
9281.714 9303.369 9325.024
9329.466 9346.308 9363.151
9366.482 9382.584 9398.686
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9400.788 9437.805 9474.821
9623.278 9643.606 9663.934
9693.159 9709.261 9725.363
9727.954 9747.388 9766.821
9917.122 9933.965 9950.807
10045.12 10073.81 10102.5
10130.62 10227.42 10324.21
10326.06 10342.54 10359.01
10409.79 10460.69 10511.59
10610.05 10649.29 10688.53
10778.11 10838.26 10898.41
11501.77 11535.78 11569.79
11653.08 11680.38 11707.67
11713.23 11736.36 11759.5
12524.61 12570.59 12616.58
12768.69 12848.51 12928.32

13256.1 13278.08 13300.06

13490.6 13556.3 13622.01
13660.37 13699.01 13737.65
13740.89 13760.09 13779.29

13781.6 13794.79 13807.98
13825.56 13840.37 13855.17
13857.95 13878.31 13898.67
13901.91 13915.09 13928.28
13928.74 13942.62 13956.51
13960.21 13979.18 13998.15
14020.82 14048.12 14075.42

14078.2 14103.42 14128.63
14130.48 14156.63 14182.77
14339.49 14402.65 14465.81
14830.89 14885.25 14939.62
14941.47 14989.6 15037.72
15039.57 15067.33 15095.09
15096.02 15155.01 15214.01
15270.23 15291.74 15313.26
15314.65 15346.57 15378.5
15705.12 15736.59 15768.05
15769.44 15801.13 15832.83
15833.76 15867.07 15900.39
15901.31 15925.14 15948.97
15951.75 15981.59 16011.43
16014.21 16034.34 16054.47
16055.85 16088.94 16122.02
16125.23 16148 16170.78
16175.11 16204.76 16234.4
16600.22 16666.38 16732.53
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17222.34 17246.92 17271.5
17272.23 17288.13 17304.04
17358.26 17377.42 17396.58
17398.03 17417.91 17437.79
17852.61 17901.41 17950.21
18594.98 18622.82 18650.65
18652.82 18677.4 18701.98
20902.69 20954.66 21006.62
21011.14 21064.46 21117.78
23258.31 23571.9 23885.49
27660.21 27839.26 28018.31
28019.44 28098.51 28177.59
28227.29 28315.97 28404.65

28815.5 28888.93 28962.36

Example 2

Appendix B: Samples from the Oregon Prostate Cancer data set used in Classifier

Development
Samples used in the Classifier development and clinical data available

PatientID Code TGS bapszﬁ\ne TlmeTTz;(;g]r ession Censor Set
WWO001354 | 8 7 469 | 714 0 Development
WWOQ01537 | 99 6 5.85 | 824 1 Development
WW001578 | 8 6 10.43 | 83 0 Development
WWO001636 | 99 Unknown 3.75 | 985 1 Develbpment
WWwW001826 | 99 6 19.88 | 207 1 Development
WWwW001883 | 8 5 Unknown | 1325 0 Development
WW001990 | 99 7 Unknown | 1279 1 Development
Www002048 | 99 6 Unknown | 644 1 Development
WWO002055 | 99 3 Unknown | 917 1 Development
wwo002063 | 8 6 Unknown | 412 0 Development
WW002089 | 99 6 Unknown | 99 1 Development
Ww002097 | 99 5 Unknown | 810 1 Development
wwo040139 | 8 6 8.11 | 1918 0 Development
WW040220 | 8 6 6.6 | 1286 0 Development
WW040238 | 8 6 6.3 | 1106 0 Development
WWwW040261 | 8 6 6.7 | 1895 0 Development
WW040295 | 8 5 1)91 0 Development
WWw040303 | 8 6 9.2 | 1726 0 Development
WWwO040311 | 8 6 7.9 | 1820 0 Development
WW040360 | 8 6 14.1 | 165 0 Development
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WWwW040386 | 8 6 10 | 1650 0 Development
Ww040444 | 99 6 4.4 | 350 1 Development
WWw040451 | 99 6 8.6 | 986 1 Development
WWwW040469 | 99 6 Unknown | 461 1 Development
WWwWO040527 | 8 4 8.6 1701 0 Development
Ww040543 | 8 7 3.1 1705 0 Development
WWO040550 | 99 6 24.8 | 889 1 Development
WWwWO040683 | 99 3 5.5 | 769 1 Development
WWwW040709 | 8 6 3.1 1509 0 Development
WWwW040717 | 99 6 10.5 | 1210 1 Development
wwo040790 | 8 6 11.5 | 1432 0 Development
Wwo040873 | 8 6 4.1 1363 0 Development
WW040899 | 99 6 9.1 | 455 1 Development
WW040907 | 99 6 1.7 | 355 1 Development
WWwW040931 | 8 5 7.8 | 362 0 Development
WWO040980 | 99 6 6 | 1013 1 Development
WWw041020 | 8 6 4.7 | 1098 0 Development
WWwW041046 | 8 6 8.8 |90 0 Development
WWw041053 | 99 6 5.4 | 909 1 Development
WWwW041145 | 8 6 4196 0 Development
WWQ041194 | 8 5 0.4 | 912 0 Development
WWwW001180 | 99 6 26.6 | 609 1 Development
WwWwo001198 | 99 6 13.82 | 581 1 Development
WWw001313 | 99 7 12.68 | 512 1 Development
Ww001438 | 8 5 9.7 | 447 0 Development
WwO001495 | 99 6 7.5 | 1365 1 Development
WWO001958 | 8 6 Unknown | 1573 0 Development
WWO001966 | 8 6 Unknown | 560 0 Development
WWO040030 | 99 6 18.6 | 176 1 Development
WW040758 | 8 6 8.2 | 275 0 Development
WWwO001016 | 90 5 2.75 | 1813 0 Development
Ww001131 | 90 6 15.36 | 1723 0 Development
WWw001719 | 90 5 8.14 | 1825 0 Development
WWwWO001727 | 90 |16 8.8 | 1638 0 Development
WWwW001909 | 90 6 0.5 | 1840 0 Development
WwWw001982 | 90 4 Unknown | 1832 0 Development
Ww002014 | 90 4 Unknown | 1819 0 Development
WW002071 | 90 5 Unknown | 1807 0 Development
WWw040014 | 90 6 1.35| 1714 0 Development
Ww040097 | 90 5 6.93 | 2010 0 Development
WW040345 | 8 6 6.2 | 1826 0 Development
WW001115 | 8 6 10.21 | 1018 0 Development
Ww001214 | 8 6 8.92 | 801 0 Development
Wwo001222 | 8 6 15.06 | 761 0 Development
WwO001230 | 8 5 911 |71 0 Development
WWO001255 | 90 4 9.29 | 1736 0 Development
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WWQ01339 | 8 6 6.96 | 506 0 Development
Ww001396 | 90 6 7.33 | 1911 0 Development
WWwW001404 | 8 3 1.84 | 490 0 Development
WW001446 | 90 5 10.13 | 1818 0 Development
WWwW001487 | 90 6 2.8 | 1897 0 Development
Ww001503 | 8 7 8.89 | 303 0 Development
WWQ01545 | 8 Unknown 2.12 | 1553 0 Development
WW001586 | 90 6 8.32 | 1817 0 Development
WW001594 | 8 6 47111204 0 Development
Ww001701 | 90 6 43111748 0 Development
WWwWO001735 | 90 6 10.48 | 1839 0 Development
WWO001768 | 90 6 8.07 | 1900 0 Development
WW001792 | 90 6 4.28 | 1871 0 Development
WW001875 | 90 4 0.76 | 1827 0 Development
WWwW002105 | 90 4 Unknown | 1846 0 Development
Ww040022 | 90 6 11.4 | 1826 0 Development
WWwWO040048 | 8 6 5.34 | 1034 0 Development
WWwW040188 | 8 6 25.7 | 295 0 Development
WW040352 | 8 7 9.2 | 1367 0 Development
WW040436 | 8 7 5.4 | 1722 0 Development
WW040634 | 8 6 0.5 1672 0 Development
WwW040642 | 8 5 8.3 | 1469 0 Development
WW040667 | 8 6 4.9 | 999 0 Development
WW040725 | 8 7 9.1 | 1461 0 Development
WWwW001800 | 8 5 2.98 | 91 0 Validation
WW001842 | 8 5 3.41 | 442 0 Validation
WWO002006 | 8 5 Unknown | 119 0 Validation
WW002030 | 8 5 Unknown | 507 0 Validation
Ww002113 | 8 6 13.9 | 1654 0 Validation
WWwO040055 | 8 4 2.26 | 1981 0 Validation
WWw040121 | 8 6 8.67 | 364 0 Validation
Ww040170 | 8 6 12.8 | 909 0 Validation
WW040246 | 8 6 16.3 | 1728 0 Validation
WW040287 | 8 5 4.4 | 1872 0 Validation
WWwW040337 | 8 6 6.6 | 1848 0 Validation
Ww040378 | 8 6 5.4 | 555 0 Validation
WW040493 | 8 7 15.1 ] 1715 0 Validation
WWO040501 | 8 7 12.1 | 761 0 Validation
Ww040519 | 8 6 15.2 | 1716 0 Validation
WWwWO040659 | 8 6 4.5 | 1597 0 Validation
WWO040691 | 8 6 5.3 | 1286 0 Validation
Ww040733 | 8 Unknown 6.1 | 629 0 Validation
Ww040741 | 8 6 3.7 | 652 0 Validation
WW040816 | 8 7 5.9 | 1426 0 Validation
WWO040915 | 8 6 1.1 1363 0 Validation
WWO040949 | 8 6 1.8 292 0 Validation

74




WO 2016/054031 PCT/US2015/052927
WwQ040972 | 8 6 13.4 | 95 0 Validation
WWwW041103 | 8 6 6.1 | 186 0 Validation
wwo041129 | 8 4 1.2 |93 0 Validation
Ww041152 | 8 6 6.5 | 97 0 Validation
WWwW041186 | 8 6 4.3 | 1096 0 Validation
WWwW001321 | 8 6 6.74 | 1485 0 Validation
WW001420 | 8 6 9.81 | 763 0 Validation
WWwW001511 | 8 5 11.29 | 1406 0 Validation
Ww001644 | 8 6 19.47 | 476 0 Validation
WWQ001677 | 8 6 6.17 | 1825 0 Validation
WWwW001859 | 8 7 3.5 | 1658 0 Validation
WWO001917 | 8 6 Unknown | 1099 0 Validation
WWwW001974 | 8 3 Unknown | 368 0 Validation
WWwW040105 | 8 6 7.1 1903 0 Validation
WWwW040147 | 8 6 7.12 | 87 0 Validation
WW040162 | 8 6 4.68 | 1967 0 Validation
WW040600 | 8 6 S | 1003 0 Validation
WWwW040618 | 8 6 19.1 | 1568 0 Validation
WWO040675 | 8 7 5.5 | 442 0 Validation
WW040824 | 8 7 311281 0 Validation
WWwW040832 | 8 6 3.3 11279 0 Validation
WwW041038 | 8 5 5.8 | 1181 0 Validation
WWwW041095 | 8 6 0.8 | 1197 0 Validation
WW041160 | 8 6 7.1 1026 0 Validation
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Example 3

Appendix A: Feature Definitions

Table A.1 Feature definitions n=329
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Left Center Right 4577.384 | 4592.602 | 4607.819
3073.625 | 3085.665 | 3097.705 4616.938 | 4625.282 | 4633.627
3098.586 | 3109.891 | 3121.197 4633.927 | 4643.324 | 4652.721
3123.546 | 3138.669 | 3153.793 4664.148 | 4675.274 4686.4
3190.793 | 3210.615 | 3230.436 4690.609 | 4717.673 | 4744.736
3230.73 | 3242.623 | 3254.516 4746.54 | 4756.162 | 4765.785
3255.103 | 3264.647 | 3274.191 4766.386 | 4773.152 | 4779.918
3296.802 | 3316.77 | 3336.739 4780.218 | 4791.194 | 4802.17
3349.072 | 3363.608 | 3378.144 4802.621 | 4817.881 | 4833.142
3380.2 | 3391.946 | 3403.692 4836.299 | 4855.995 | 4875.691
3405.16 | 3420.283 | 3435.407 4880.953 | 4891.177 | 4901.401
3435.7 | 3445.097 | 3454.494 4909.52 | 4918.316 | 4927.111
3454.788 | 3465.359 | 3475.931 4927.261 | 4937.636 | 4948.01
3490.725 | 3508.305 | 3525.884 4948.16 | 4963.045 | 4977.93
3531.431 | 3553.896 | 3576.36 4987.552 | 4998.979 | 5010.405
3581.059 | 3593.099 | 3605.138 5011.007 | 5020.103 | 5029.199
3665.631 | 3679.286 | 3692.941 5029.65 | 5041.077 | 5052.504
3693.94 | 3712.036 | 3730.132 5053.556 | 5067.839 | 5082.123
3745.211 | 3754.755 | 3764.299 5087.535 | 5104.074 | 5120.613
3764.592 | 3775.604 | 3786.616 5121.383 | 5134.355 | 5147.326
3798.592 | 3814.263 | 3829.933 5149.837 | 5156.322 | 5162.808
3831.545 | 384153 | 3851.514 5164.9 | 5181.637 | 5198.375
3876.474 | 3887.486 | 3898.499 5209.77 | 5223.753 | 5237.736
3898.583 | 3906.18 | 3913.777 5238.036 | 5247.734 | 5257.432
3914.356 | 3928.158 | 3941.959 5275.624 | 5289.757 | 5303.89
3942.253 | 3953.412 | 3964.571 5347.191 | 5358.543 | 5365.894
3994.23 | 4008.619 | 4023.008 5370.646 | 5377.186 | 5383.726
4024.182 | 4031.67 | 4039.159 5383.877 | 5389.815 | 5395.754
4039.452 | 4050.464 | 4061.476 5395.905 | 5403.422 | 5410.94
4086.437 | 4098.77 | 4111.104 5411.09 | 5416.277 | 5421.464
4111.308 | 4118.525 | 4125.742 5421.615 | 5429.809 | 5438.003
4126.043 | 4133.109 | 4140.176 5439.807 | 5449.204 | 5458.601
4198.812 | 4209.788 | 4220.764 5463.713 | 5472.057 | 5480.402
4241.573 | 4249.445 | 4257.316 5481.454 | 5495.813 | 5510.171
4258.28 | 4265.83 | 4273.38 5510.472 | 5521.222 | 5531.972
4273.837 | 4286.166 | 4298.495 5535.439 | 5557.829 | 5580.219
4328.264 | 4340.217 | 4352.17 5663.828 | 5675.387 | 5686.946
4352.32 | 4360.815 | 4369.31 5696.097 | 5709.823 | 5723.549
4369.611 | 4380.962 | 4392.314 5740.923 | 5748.044 | 5755.165
4393.817 | 4408.627 | 4423.436 5756.127 | 5762.381 [ 5768.636
4424.789 | 4431.179 | 4437.569 5769.502 | 5776.671 | 5783.84
4437.87 | 4459.22 | 4480.57 5787.496 | 5795.483 | 5803.469
4496.507 | 4506.58 | 4516.654 5803.95 | 5815.979 | 5828.007
4552.738 | 4564.991 | 4577.245 5828.68 | 5842.055 | 5855.431
5856.297 | 5867.218 | 5878.14
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5879.39 | 5889.157 | 5898.924 7039.395 | 7045.154 | 7050.912

5899.02 | 5910.808 | 5922.595 7067.293 | 7073.79 | 7080.287
5924.106 | 5934.47 | 5944.834 7119.824 | 7147.228 | 7174.633
5946.068 | 5961.861 | 5977.654 7177.589 | 7188.951 | 7200.314
5978.694 | 5997.458 | 6016.222 7232.783 | 7257.933 | 7283.084
6016.895 | 6026.806 | 6036.717 7292.812 | 7300.633 | 7308.454
6052.178 | 6074.758 | 6097.337 7316.187 | 7321.946 | 7327.705
6099.552 | 6108.597 | 6117.642 7327.772 | 7333.817 | 7339.863
6161.136 | 6170.373 | 6179.611 7339.896 | 7346.093 | 7352.29
6184.807 | 6192.938 | 6201.069 7352.819 | 7360.754 | 7368.688
6201.261 | 6209.585 | 6217.908 7379.768 | 7393.009 | 7406.249
6218.004 | 6226.039 | 6234.074 7406.3 | 7419.793 | 7433.287
6245.993 | 6254.58 | 6263.166 7433.608 | 7447.584 | 7461.56
6273.718 | 6283.244 | 6292.771 7463.692 | 7479.362 | 7495.032
6292.867 | 6301.238 | 6309.61 7497.824 | 7510.356 | 7522.889
6321.927 | 6331.742 | 6341.556 7731.041 | 7738.801 | 7746.561
6349.371 | 6357.324 | 6365.277 7761.341 | 7779.077 | 7796.813

6379.18 | 6386.108 | 6393.037 7808.996 | 7828.02 | 7847.044
6393.229 | 6399.965 6406.7 7849.362 | 7871.424 | 7893.485
6408.625 | 6437.829 | 6467.033 7904.954 | 7912.836 | 7920.719
6467.129 | 6485.171 | 6503.214 8007.424 | 8015.07 | 8022.717
6520.161 | 6531.72 | 6543.279 8134.028 | 8157.158 | 8180.287
6548.095 | 6556.042 | 6563.989 8195.752 | 8206.991 | 8218.23
6577.691 | 6589.431 | 6601.17 8238.737 | 8253.917 | 8269.098
6603.961 | 6611.61 | 6619.26 8304.472 | 8328.669 | 8352.866
6620.319 | 6634.319 | 6648.32 8353.406 | 8363.536 | 8373.667
6648.512 | 6657.076 | 6665.64 8380.133 | 8391.495 | 8402.857
6668.623 | 6680.651 | 6692.68 8404.767 | 8413.388 | 8422.01
6700.438 | 6707.101 | 6713.764 8422.133 | 8430.231 | 8438.33
6719.237 | 6731.65 | 6744.063 8457.421 | 8464.072 | 8470.723
6744.599 | 6755.677 | 6766.754 8470.846 | 8477.558 | 8484.271
6767.638 | 6773.171 | 6778.704 8497.292 | 8508.651 | 8520.011
6786.982 | 6792.762 | 6798.542 8520.544 | 8531.198 | 8541.852

6799.97 | 6808.919 | 6817.868 8554.723 | 8564.761 | 8574.799
6824.892 | 6836.679 | 6848.467 8575.476 | 8585.268 | 8595.06
6848.948 | 6859.629 | 6870.31 8618.77 | 8631.702 | 8644.635
6873.797 | 6881.433 | 6889.07 8649.87 | 8660.554 | 8671.239
6890.609 | 6897.599 | 6904.589 8671.855 | 8696.119 | 8720.383
6914.565 | 6921.586 | 6928.606 8720.568 | 8728.512 | 8736.456
6933.102 | 6941.477 | 6949.853 8736.518 | 8745.817 | 8755.116
6950.469 | 6956.75 | 6963.032 8756.348 | 8770.604 | 8784.861

6963.34 | 6970.545 | 6977.75 8791.574 | 8796.962 | 8802.351

6978.92 | 6992.222 | 7005.524 8802.474 | 8822.181 | 8841.887
7014.269 | 7022.06 | 7029.85 8861.964 | 8871.848 | 8881.732
7029.912 | 7034.592 | 7039.272 8883.826 | 8890.538 | 8897.251
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8897.436 | 8901.654 | 8905.873 10488.32 | 10503.84 | 10519.36
8905.934 | 8928.258 | 8950.582 10521.66 | 10532.67 | 10543.68
8967.272 | 8974.415 | 8981.559 10543.99 | 10551.18 | 10558.36
8988.149 | 8997.971 | 9007.794 10573.66 | 10589.18 | 10604.71
9010.011 | 9020.295 | 9030.58 10615.84 | 10636.81 | 10657.79
9030.764 | 9038.216 | 9045.668 10705.55 | 10734.07 | 10762.59
9055.367 | 9062.134 | 9068.902 10773.07 | 10782.59 | 10792.12
9069.184 | 9079.194 | 9089.205 10792.19 | 10804.96 | 10817.72
9091.547 | 9097.798 | 9104.049 10827.72 | 10846.77 | 10865.83
9115.171 | 9134.336 | 9153.501 10912.98 | 10923.56 | 10934.15
9196.082 | 9206.437 | 9216.792 10954.02 | 10965.58 | 10977.14
9217.991 | 9226.317 | 9234.643 11035.47 | 11057.93 | 11080.38
9234.742 | 9244.546 | 9254.35 11092.07 | 11107.19 | 11122.31
9254.941 | 9263.932 | 9272.924 11137.08 | 11149.06 | 11161.04
9273.256 | 9291.73 | 9310.203 11288.09 | 11306.44 | 11324.78
9310.761 | 9318.865 | 9326.969 11357.26 | 11375.9 | 11394.54
9344.962 | 9359.289 | 9373.615 11396.27 | 11410.09 | 11423.9
9387.662 | 9395.293 | 9402.923 11425.13 | 11447.54 | 11469.96
9410.817 | 9430.014 | 9449.211 11505.19 | 11532.05 | 11558.92
9475.524 | 9484.41 | 9493.296 11613 | 11627.24 | 11641.47
9494.536 | 9504.042 | 9513.549 11642.18 | 11654.28 | 11666.38
9520.898 | 9534.803 | 9548.707 11666.74 | 11688.44 | 11710.15
9559.484 | 9576.179 | 9592.874 11712.08 | 11733.43 | 11754.78
9615.006 | 9641.179 | 9667.352 11756.23 | 11786.66 | 11817.09
9689.387 | 9720.901 | 9752.414 11817.93 | 11834.77 | 11851.61
9784.265 | 9793.021 | 9801.777 11868.93 | 11898.52 | 11928.11
9840.895 | 9862.594 | 9884.294 11928.7 | 11944.87 | 11961.05
9908.49 | 9918.931 | 9929.371 12143.52 | 12158.28 | 12173.04
9929.66 | 9941.495 | 9953.331 12271.47 | 12290.85 | 12310.22
10002.41 | 10012.36 | 10022.32 12400.43 | 12412.62 | 12424.81
10066.88 | 10079.24 | 10091.61 12433.83 | 12457.39 | 12480.94
10091.7 | 10102.24 | 10112.77 12489.93 | 12507.27 | 12524.61
10120.09 | 10135.29 | 10150.49 12536.4 | 12565.8 | 12595.2
10150.78 | 10162.62 | 10174.45 12597.2 | 12613.41 | 12629.61
10174.65 | 10185.23 | 10195.82 12647.98 | 12674.21 | 12700.44
10195.91 | 10210.35 | 10224.78 12716.47 | 12738.02 | 12759.57
10225.16 | 10236.04 | 10246.91 12761.24 | 12785.79 | 12810.35
10250.09 | 10263.03 | 10275.97 12829.73 | 12873.16 | 12916.59
10276.55 | 10285.11 | 10293.68 12935.63 | 12967.54 | 12999.44
10295 | 10313.15 | 10331.3 13051.23 | 13080.96 | 13110.69
10333.03 | 10346.26 | 10359.49 13117.71 | 13134.41 | 13151.12
10359.69 | 10365.85 10372 13225.86 | 13241.27 | 13256.68
10408.98 | 10420.87 | 10432.75 13258.69 | 13274.73 | 13290.77
10436.76 | 10448.55 | 10460.34 13304.99 | 13318.16 | 13331.32
10472.41 | 10480.21 | 10488.01 13347.56 | 13364.6 | 13381.64
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Example 3 Appendix B: Batch Correction
Table 8.1 Baich correction coeflicients

Maded Al Al BG 81 C

Batch2 7.86E-01 | 1.97E-02 | 3.04E-05 | <1.53E-06 | -7.82E-10
Batch3 BJ6E-01 | 6 70E-03 | 2.45E-05 | 789807 [ -6.40E-10
Batchd 841E-01 | 4.54E-03 | 2.64E-05 | -6.29E-08 | -6.52E-10
BatchS 8.69E-01 | 2.57E-02 | 2.87E-D5 | -3.489E-06 | -B.96E-10
Batchb 843E-01 | ~1.518-02 | 3.66E-05 | 152806 | -1.23E-09

Figure B.1 Batch correction plots pre-correction
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Table B.2 Batch correction coefficients on correctad tables
fodel AD Al 80 Bi £ ResSD
Batch? 1.00E+QQ | -7.90E-05 | -4.0DE-07 | 7.28E-D8 | 2.14E-11 | 1.40BE-01
Batch3 1OIE+GO | 8.79E-D4 | -2.03E-G0 | 3.78E-08 | 7.060B-11 | 1.23E-(31
Batchd 995601 | -5.85E-04 | 8.1DE-07 | 4.13E-08 | -2.76B-11 | 115801
Batchb 1LO3E+00 | -1.128-02 | -5,79E-06 | 1.06E-08 | 2.03E-10 | 1.308-01
Batchd 9.80E01 | -2.56E-04 | 2.06E-06 | «1.198-07 | -5.878-11 | 141508

Figure B.2 Batch correction plots post-correction
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Batch Z Post Correction

Fit Results

] T vy ¥ H ¥

A
i
1)
i,

P

b

Uncorrocted F¥al ! Reference Fal

§ deteged
&

it 23 30 38

i
o
{j’

JalRet !
JaiRet

S

10

86
SUBSTITUTE SHEET (RULE 26)



WO 2016/054031

Batch 3 Post Correction

PCT/US2015/052927

Fit Results

A
i
1)

]
i
¥

Uncorrocted F¥al ! Reference Fal

* N *

252 e

8

H t ) A : P - % g
10 1§ 2 25
miz (1073}

s

¢ R

Eax P

weses Blackan Ao Fit
.

ValRet |

10

87
SUBSTITUTE SHEET (RULE 26)



WO 2016/054031

Batch 4 Post Correction
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Batch 5 Post Correction
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Example 3 Appendix £ Feature Deselection Method

A nultitude of sphits (a total of 623) of the development sef samples mito two subsets 15 created.
One of the snbsets 15 nsed for feature (dejselection and the remamder 13 left aside.

For each split a KNN classifier 15 created using the given subset as the frammng set of the classifier
and one single feature. For this project k=7 was used. The created classifier 1s applied fo the
trainmg subset and the classifier performance s assessed i terms of hazard ratio befween
classification groups {(Early vs Late}. A filter 1s applied to these performance estimates, such that
the feature only passes filtering if the classtiier using this samiple subset for training has adequate
performance. For the approaches used m this repori, the feature deselection step used K = 7 for the
kNN classifiers and a hazard ratio range for filtering between 2.5 and 10.0, for both approaches in
all label flip sterations.

All features that pass filtering for a given subset choice are added to a list. Thus i< repeated for all
the subset realizations geperated. The lists of features passing filtering are then compiled across the
subset realizations o deternune how often a feature passes filtering. Features that pass filtering
most of the subsets are likely to be useful and robust for the guestion being addressed, as they are
not dependent on any particular samiple subset. Features that pass filtering for very few subset
realizations are likely to have been overfifted to those few subsets and are not likely to be useful

Figure C.1 shows an example of the distribution of how many features pass filtering 1n how many
subset realizations.

It is apparent that the distribution falls off quite quuckly with a tail contaming features that cecur i
a relatively large proportion of subset realizations, which are those which are likely to be most
usefud for classifier development.
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Number of features passing filtering for a given number of subset realizations {y axis} vs. the

Figtwe .1

number of subset realizations. {Red line shows the cut off for which features were deselected for that

specific iteration)
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Example 3 Appendix D: Features used m fmal classifiers

Approach {1} | Approach {2}
3110 3116
3211 3243
3243 3265
3265 3317
3317 3554
3554 3755
3755 3778
3778 3887
3887 4088
3833 4266
499 4286
4266 4431
4285 4643
4431 4718
4593 4756
4718 4881
4756 4818
4881 4838
4538 5068
5041 3156
5068 5182
3156 5224
5182 3675
5224 5710
3675 5748
5710 5777
5748 3816
5777 58487
3816 6210
2887 6332
£109 6634
5210 6657
6283 8773
6332 &B60
£438 6881
6634 68488
6657 6871
6756 5992
8773 7074
5793 7258
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&850 7322
5881 7334
6898 7346
6371 7420
£992 7443
7074 7779
7258 7871
7322 8381
7334 3464
7346 85309
7420 8331
7448 8365
7479 8632
7778 8661
7871 8729
3391 B746
8464 8771
8508 8202
8531 8293
B5635 2078
3632 9206
8651 9264
8696 9339
8723 9430
3746 10075
8771 10421
8841 10533
8802 10734
3398 11306
2079 13507
5098 12613
9206 13275
9264 13624
9358 13943
5430 13984
9641 14043
9721 15025
9793 17033
10079 17148
10421 17271
10448 17336
10533 18850
10734 19464
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11306 18575

11448 20812

11545 20848

12547 21062

12613 21817

13275 23036

13624 27716

13883 27944

13843 28082

13584 30001 %

14043 30002 *

14188 30003 *

14784

15029

16630

17033

17148

17271

17336

18830

io464

18573

20812

20546

21062

21475

23036

23256

27718

27944

28082

* 30001 Age at diagnosis; 30002: PSA {ng / mi}; 30003 PS4 {%). All other features refer to m/z values.
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Classification Classification
Fiename SampletD {Approach {1)} {Approach {2))
Average Q0001 _1000705897.4xt | 100070587 | Early Early
Average 00001 _101051627.4xt | 101051627 | Lste Late
Average Q0001 10B4295535.4xt [ 108428355 | Late Late
Average 00001 1128054 1312805 Early Early
Average 00001 118508.xt 118508 Early Early
Average_00001_157578.0a 157578 Late Late
Average_00001_157590.ixt 157580 Late Late
Average_00001_158292.ixt 158292 Late Late
Average 00001 1809204t 180920 Late Late
Average 00001 _182834.0a 182834 Late Late
Average 00001 183488 txt 183483 Early Early
Average 0D001_1905911ivd 190811 Late Late
Average 00001 209775.4xt 208775 Early Early
Average 00001 223800.04 223800 Late Late
Average 00001_224788.ixt 224788 Late Late
Average 00001 2267864t 226786 Late Late
Average 00001 226987 &xt 2265987 Early Early
Average_00001_2285205.0a 228805 Late Late
Average 00001_223360.txt 228360 Early Early
Average 0D001_239074.4xt 238074 Late Late
Average 00001 2411124 2431112 Late Late
Ayerage 00001 241121.0a 241131 Late Late
Average Q0001 241123 ixt 241122 Late Late
Average 0O0001_255951.4xt 235851 Late Late
Average 00001 255985 4xt 255585 Early Early
Average 00001 260476.4xt 260476 Early Early
Average 00001 2733160t 273316 Early Early
Average_(0001_274882.ixt 274982 Late Late
Average 00001_278636.4xt 278636 Early Early
Average 00001 286982 fxi 286982 Early Early
Average 00001 2878740 287874 Early Early
Average 00001 _2B7880.1xt 287880 Late Late
Average (0001 2286094k 288609 Late Late
Average 00001 294677 ixt 284677 Early Early
Average 00001 _294981.ba 2545281 Late Late
Average_00001_236404.ixt 236404 Late Early
Average 0(D001_296417 .4t 296417 Late Late
Ayerage 00001 296838.1xt 296898 Late Late
Average 00001 _296044.0a 2965944 Late Late
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Average 00001 _307920.ixt 307920 Early Early
Average (0001 3100704 310070 Late Late
Average 00001 310370.4xt 310370 Early Early
Average_00001_312967.04 312867 Late Late
Average 00001_313197.1xt 313187 Early Early
Average 00001_313555.4xt 313585 Early Early
Ayerage 00001 _3168%37.1xt 318897 Late Late
Average 00001 3197831 319783 Early Early
Average 00001 _319933.ixt 31584933 Early Early
Average 00001 _318953.4x¢ 319953 Early Early
Average (0001 _318978.6d 318978 Late Late
Average 00001 _323657.0d 323657 Late Late
Average 00001_3230670.ixt 23670 Early Late
Average 00001 32391441 323914 Early Early
Average 00001 _3250814xt 325081 Late Late
Average 00001 _326057.1xt 326057 Early Early
Average 00001 _326060.txt 326060 Early Early
Average 00003 3263164 326316 Late Late
Average 00001 3264501t 326450 Late Late
Average 00001 327622.4xt 327822 Early Early
Average 00001 3276844t 327684 Early Early
Average 00001 _328489.1xt 328489 Early Earhy
Average {0001 _328957.4xd 328857 Late Late
Average 00001_329385.&« 325385 Late Late
Average 00001 _330189.1xt 330169 Early Early
Average 00001_332082.1xt 332082 Late Late
Average 0D00I_332578.4xdt 332578 Late Late
Average 00001 334141t 334141 Early Early
Average 00001 33425540t 334255 Early Early
Average 00001_336363.1xt 336363 Late Late
Average 00001 _336955.4xt 336955 Early Early
Average (0001 _33%8433.6d 335433 Late Late
Average_00001_341209.01 341208 Late Late
Average Q0001 341734 1xt 341734 Late Late
Average 00001 3419354yt 341825 Late Late
Average 00001 3420834t 342009 Early Early
Average 00001 _342860.0a 342860 Late Late
Average Q0001_342385.1xt 342985 Late Late
Average (D003 3438741 343874 Late Late
Average Q0001 3442387 td 344282 Late Late
Average 00001 _344289.pa 344289 Late Late
Average 00001_344539.ixt 344939 Late Late
Average {(0001_345168.txt 345168 Early Early
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Average 00001 346821 .1xt 346821 tate Late
Average 00001 3471834 347183 Early Early
Average 00001 348387 &xi 348382 Early Early
Average 00001 3302350 350235 Early Early
Average_(0001_353843.1xt 353843 Late Late
Average (0001_354235.4x 334225 Early Early
Average 00001_354400.0x1 354400 Late Late
Average 00001 353346t 355346 Early Early
Average 00001 _3553814.1xt 355914 Late Late
Average 00003 3610154 361015 Late Late
Average 00001 36352%8.4xt 363529 Early Early
Average 00001_363749.04 363748 Late Late
Average 00001_370511.ixt 370511 Early Earhy
Average 00001 37176241 371782 Early Early
Average Q0001 5704021811 txt | 5704021811 | Early Early
Average 00001 5802062717 txt | 5802062717 | Late Late
Avarage 00001_5836060014.tit | 5836060014 | Early Early
Average 00001_5913033212.0x | 5813033212 | Late Late
Average 00001 6018704 601870 Early Early
Average 00001 610232.1xt 610232 Late Late
Ayerage 00001 _61077Z.0a 810772 Late Late
Average 00001 _613294.1xt 613254 Early Earhy
Average 00001 _&22251.4xd 622251 Late Late
Average 00001 6237164t 623716 Early Early
Average 00001 626399.1xt 526359 Early Early
Average 00001_628652.1xt 528652 Late Late
Average 0D001_630085.ixt 530085 Late Late
Average 00001 _6368662.1x1 636662 Late Late
Average 00001 637317.4 637317 Early Late
Average (Q0001_640612.1xt 640612 Late Late
Average 00001 _640794.4x1 640794 Early Early
Average 00001 _641548 ¢ 641548 Late Late
Average_00001_64%071.0a 649071 Late Late
Average D0001_660326.1xt 560326 Early Early
Average 0D001_661812.4xt 561812 Late Late
Average 00001 6625234t £62523 Early Early
Average 00001 6633480 563348 Early Early
Average Q0001_56655828.1xt 565928 Late Late
Average 00001 _685710.4xt 669710 Early Early
Average 00001 6724804t 672480 Early Early
Average 00001 _676629.4xt 676629 Early Early
Average_00001_B9287 txt 88287 Late Late
------- end of appendices -—---
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Claims
We claim:

1. A method for predicting the aggressiveness or indolence of prostate cancer in a

patient previously diagnosed with prostate cancer, comprising the steps of:
obtaining a blood-based sample from the prostate cancer patient;

conducting mass spectrometry of the blood-based sample with a mass spectrometer
and thereby obtaining mass spectral data including intensity values at a multitude of m/z

features in a spectrum produced by the mass spectrometer;
performing pre-processing operations on the mass spectral data;

classifying the sample with a programmed computer implementing a classifier
operating on the intensity values of the sample after the pre-processing operations are
performed and a set of stored intensity values of m/z features from a constitutive set of mass

spectra obtained from blood-based samples of a multitude of prostate cancer patients;

wherein the classifier produces a class label for the blood based sample of High,
Early, or the equivalent signifying the patient is at high risk of early progression/relapse of
the prostate cancer indicating aggressiveness of the prostate cancer, or Low, Late or the
equivalent, signifying that the patient is at low risk of early progression/relapse of the

prostate cancer indicating indolence of the prostate cancer.

2. The method of claim 1, wherein the mini-classifiers execute a K-nearest neighbor
classification algorithm on a set of features selected from the list of features set forth in

Example 1 Appendix A, Example 2 Appendix A, or Example 3 Appendix A.

3. The method of claim 1, wherein the classifier is defined from one or more master
classifiers generated by conducting logistic regression with extreme drop-out on a multitude

of mini-classifiers which meet predefined filtering criteria.
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4. The method of claim 1, wherein non-mass spectral information on the patient whose
sample is tested in claim 1 is obtained, including at least one of age, PSA and % fPSA,
wherein such non-mass spectral information is also obtained for each prostate cancer patient
whose blood-based sample is a member of the constitutive set and stored in a computer
memory, and wherein the final classifier uses such non-mass spectral information in addition

to the mass spectral data when generating a class label for the sample.

5. The method of claim 1, wherein each prostate cancer patient whose sample is a
member of the constitutive set supplied the sample after diagnosis with prostate cancer but

before radical prostatectomy (RPE).

6. The method of claim 1, wherein each prostate cancer patient whose sample is a
member of the constitutive set has a Total Gleason Score of 6 or lower at the time the blood-

based sample from such patient was obtained.

7. A system for prostate cancer aggressiveness or indolence prediction, comprising:

a computer system including a memory storing a final classifier in memory defined
from one or more master classifiers generated by conducting logistic regression with extreme
drop-out on a multitude of mini-classifiers which meet predefined filtering criteria, a set of
mass spectrometry feature values for a constitutive set for classification, the set of mass
spectrometry feature values obtained from blood-based samples of prostate cancer patients, a
classification algorithm and a set of logistic regression weighting coefficients derived from a

combination of filtered mini-classifiers with dropout regularization;

the computer system including program code for executing the final classifier on a set
of mass spectrometry feature values obtained from mass spectrometry of a blood-based

sample of a human with prostate cancer.
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8. The computer system of claim 7. wherein non-mass spectral information for each
prostate cancer patient whose blood-based samples are in the constitutive set is stored in the

memory, including at least one of age, PSA and % fPSA.

9. The computer system of claim 7, wherein each prostate cancer patient whose sample
is a member of the constitutive set supplied the sample after diagnosis with prostate cancer

but before radical prostatectomy (RPE).

10.  The computer system of claim 7, wherein each prostate cancer patient whose sample
is a member of the constitutive set has a Total Gleason Score of 6 or lower at the time the

blood-based sample from such patient was obtained.

11. A laboratory test system for conducting a test on a blood-based sample from a
prostate cancer patient to predict aggressiveness or indolence of the prostate cancer

comprising, in combination:

a mass spectrometer conducting mass spectrometry of the blood-based sample with a
mass spectrometer and thereby obtaining mass spectral data including intensity values at a

multitude of m/z features in a spectrum produced by the mass spectrometer; and

a programmed computer including code for performing pre-processing operations on
the mass spectral data and classifying the sample with a final classifier defined by one or
more master classifiers generated as a combination of filtered mini-classifiers with
regularization, the final classifier operating on the intensity values of the sample after the pre-
processing operations are performed and a set of stored values of m/z features from a
constitutive set of mass spectra obtained from blood-based samples of prostate cancer

patients;

the programmed computer producing a class label for the blood-based sample of
High, Early or the equivalent signifying the patient is at high risk of early progression/relapse

of the prostate cancer indicating aggressiveness of the prostate cancer, or Low, Late or the
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equivalent, signifying that the patient is at low risk of early progression/relapse of the

prostate cancer indicating indolence of the cancer.

12. The system of claim 11, wherein the m/z features are selected from the list of
features comprising Example 1 Appendix A, Example 2 Appendix A, or Example 3
Appendix A.

13.  The system of claim 11, wherein the mass spectrum of the blood-based sample
is obtained from at least 100,000 laser shots applied to the blood-based sample using
MALDI-TOF mass spectrometry.

14.  The method of claim 1, wherein the mass spectrum of the blood-based sample
is obtained from at least 100,000 laser shots applied to the sample using MALDI-TOF mass

spectrometry

15. A programmed computer operating as a classifier for predicting prostate
cancer aggressiveness or indolence, comprising a processing unit and a memory storing a
final classifier in the form of a set of feature values for a set of mass spectrometry features
forming a constitutive set of mass spectra obtained from blood-based samples of prostate
cancer patients, and a final classifier defined as a majority vote or average probability cutoff,
of a multitude of master classifiers constructed from a combination of mini-classifiers with

dropout regularization.
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