发明名称

(54) 发明名称

谱 CT 的结构传播恢复

摘要

(57) 摘要

一种方法包括：获得来自谱扫描的投影数据或根据所述投影数据生成的图像数据中的至少一种，从所述投影数据或所述图像数据中的所述至少一种中选择局部参考数据集，确定针对所选择的参考数据集的噪声模式，基于所述噪声模式根据所述参考数据集来估计潜在的局部结构，并且基于所估计的潜在的局部结构来恢复所述投影数据或所述图像数据中的至少一种。
1. 一种方法，包括：
获得来自谱扫描的投影数据或根据所述投影数据生成的图像数据中的至少一种；
从所述投影数据或所述图像数据中的所述至少一种中选择局部参考数据集；
确定针对所选择的参考数据集的噪声模式；
基于所述噪声模式根据所述参考数据集来估计潜在的局部结构；并且
基于所估计的潜在的局部结构来恢复所述投影数据或所述图像数据中的至少一种。
2. 如权利要求1所述的方法，还包括：
利用所估计的潜在的局部结构作为对所述恢复的约束。
3. 如权利要求1-2中的任一项所述的方法，还包括：
将移除的纹理或噪声中的至少一种的子部分添加回所恢复的投影数据或图像数据。
4. 如权利要求1-3中的任一项所述的方法，其中，所述局部参考数据集是仅从所述投影数据中选择的。
5. 如权利要求1-3中的任一项所述的方法，其中，所述局部参考数据集是仅从所述图像数据中选择的。
6. 如权利要求1-3中的任一项所述的方法，其中，所述局部参考数据集是从所述投影数据中选择的并且所述投影数据未被恢复，并且所述方法还包括：
从所恢复的投影数据中选择第二局部参考数据集；
确定针对所选择的第二参考数据集的第二噪声模式；
基于所述第二噪声模式根据所述第二参考数据集来估计第二潜在的局部结构；并且
基于所估计的第二潜在的局部结构来恢复所述图像数据。
7. 如权利要求1-6中的任一项所述的方法，其中，所述局部参考数据集包括以下中的一项：特定单色图像、非谱图像、组合的谱/非谱图像、低能量图像或高能量图像。
8. 如权利要求1-7中的任一项所述的方法，其中，所述局部参考数据集包括以下中的一项：特定单色正弦图、非谱正弦图、组合的正弦图/非谱正弦图、低能量正弦图或高能量正弦图。
9. 如权利要求1-8中的任一项所述的方法，还包括：
基于全局方法来选择所述局部参考数据集，在所述全局方法中，针对所述投影图像或所述图像数据中的至少一种的整体来选择单个参考数据集。
10. 如权利要求9所述的方法，其中，所述选择基于以下中的一种或多个：最大总体百分；最小幅值；在局部标准偏差上的最小中值；局部噪声估计的最小平均值；以及基于两个感兴趣区域的输入的对比噪声比图像。
11. 如权利要求1-8中的任一项所述的方法，还包括：
基于局部方法来选择所述局部参考数据集，在所述局部方法中，针对每个像素，选择最优参考数据集。
12. 如权利要求1-11中的任一项所述的方法，其中，所述噪声模型基于以下中的一种或多个：加权卡罗估计、解析法、或直接提取。
13. 如权利要求1-12中的任一项所述的方法，还包括：
通过以下方式基于所述噪声模型根据所述参考数据集来估计所述潜在的局部结构：提取一个样本附近的样本的子体积，计算局部核，将所述局部核乘以空间核，将乘积化归一化为等
权利要求书

权利要求 14 中所述的任一项所述的方法，并包括：

针对每个系统的一次或多次迭代，通过以下方式来恢复所述投影数据或所述图像数据中的所述至少一种：提取所述系统周围的体素的子体积，计算局部核，将所述局部核乘以空间核，将乘积归一化为等于一的和，并且恢复每个体素。

权利要求 15 所述的投影数据和/或图像数据处理器（120），包括：

存储器（124），其存储结构传播算法；以及

微处理器（122），其结合来自谱扫描的投影数据或图像数据中的至少一种来运行所述结构传播算法以从所述投影数据或所述图像数据中的所述至少一种移除噪声或伪影中的至少一种，同时保留潜在的目标结构和谐信息。

权利要求 16 所述的投影数据和/或图像数据处理器，其中，所述微处理器；从所述投影数据或所述图像数据中的所述至少一种中选择局部参考数据集；确定针对所选择的参考数据集的噪声模式；基于所述噪声模式根据所述参考数据集来估计潜在的局部结构；并且基于所估计的潜在的局部结构来恢复投影数据或图像数据中的至少一种。

权利要求 17 所述的投影数据和/或图像数据处理器，其中，所述微处理器通过以下方式基于所述噪声模型根据所述参考数据集来估计所述潜在的局部结构：提取一体素周围的体素的子体积，计算局部核，将所述局部核乘以空间核，将乘积归一化以使和等于一，应用尖峰噪声抑制，并且估计所述结构。

权利要求 18 所述的投影数据和/或图像数据处理器，其中，所述微处理器恢复所述投影数据或所述图像数据中的所述至少一种包括，针对每个体素的一次或多次迭代，通过：提取所述体素周围的体素的子体积，计算局部核，将所述局部核乘以空间核，将乘积归一化以便和等于一，并且恢复每个体素。

权利要求 19 所述的投影数据和/或图像数据处理器，其中，所恢复的所述投影数据或所述图像数据中的至少一种被进一步处理、被显示、被制成胶片、或被归档。

权利要求 20 所述的编码有计算机可读指令的计算机可读存储介质，所述计算机可读指令当由处理器运行时，令所述处理器：

获得来自谱扫描的投影数据或根据所述投影数据生成的图像数据中的至少一种；

从所述投影数据或所述图像数据中的所述至少一种中来选择局部参考数据集；

确定针对所选择的参考数据集的噪声模式；

基于所述噪声模式根据所述参考数据集来估计潜在的局部结构；并且

基于所估计的潜在的局部结构来恢复投影数据或图像数据中的至少一种。
谱 CT 的结构传播恢复

技术领域
[0001] 下文总体上涉及谱投影数据和/或谱图像数据处理，并且更具体地涉及谱投影数据和/或谱图像数据的结构传播恢复，并且结合对计算机断层摄影（CT）的具体应用而进行描述。然而，下文还适用于其他成像模态。

背景技术
[0002] 谱（或多能量）CT 已经利用各种不同的光子能量（例如，利用双能量 CT）采集的两个衰减值来求解包括被扫描的材料的质量衰减系数的光电和康普顿贡献，并且然后通过其光电和康普顿贡献的值来识别未知的材料。该方法非常适合具有接近诊断范围的平均值的 k 边缘能量的诸如碘的材料。因为两个基函数的任何两个线性无关的跨越整个衰减系数空间，所以任何材料都能够由两种其他材料的线性组合来表示，所述两种其他材料一般称为基础材料，例如水和碘。

[0003] 基础材料图像提供诸如单色图像、材料抵消图像、有效原子序数图像和电子密度图像的新应用。随着最近的技术进步，存在若干用于执行诸如双源、快速 kVp 切换和双层探测器配置的双能量 CT 采集的方法。另外，定量成像是当前医学成像界的主要趋势之一。谱 CT 支持该趋势，因为额外的谱信息改进能够测得的关于被扫描的目标及其材料成分的定量信息。

[0004] 双能量材料分解是用于提取表示两种基础材料的射束硬化无关的线积分的数学方案，所述射束硬化无关的线积分即被扫描的目标内的光电吸收和康普顿散射。然而，谱 CT 遭受固有的噪声挑战，尤其是在进行了材料分解的情景中。因为材料分解是不适宜问题，所以分解显著放大了噪声，其中，所获得的噪声在各个材料之间是高度相关的。遗憾的是，如果直接根据材料线积分来重建图像，则图像噪声非常多。因此，所获得的图像质量很低，这可能降低图像的临床价值。

发明内容
[0005] 本文中描述的各方面解决以上提及的问题和其他问题。

[0006] 下文描述了一种使用恢复算法来改进谱 CT 图像质量的方法，所述恢复算法从成像研究（即，投影数据和/或图像数据）移除噪声和/或伪影，同时保留潜在的目标结构和谱信息。所述算法能够被应用于投影域、图像域、或投影域和图像域两者中。一般地，参考数据集，即图像或正弦图，根据谱扫描的投影或图像数据来导出并且结合确定的噪声模式被使用，以估计潜在的局部目标结构，所述潜在的局部目标结构也被利用作为额外的约束。所述估计以及任选地所述额外的约束提供移除噪声和伪影的鲁棒且高质量的恢复。

[0007] 在一个方面中，一种方法包括：获得来自谱扫描的投影数据或者根据所述投影数据生成的图像数据中的至少一种，从所述投影数据或所述图像数据中的所述至少一种中选择局部参考数据集，确定针对所选择的参考数据集的噪声模式，基于所述噪声模式根据所述参考数据集来估计潜在的局部结构，并且基于所估计的潜在的局部结构来恢复所述投影
数据或所述图像数据中的至少一种。
[0008] 在另一个方面中，一种投影数据和/或图像数据处理器包括：存储器，其存储结构
传播算法；以及处理器，其结合来自扫描的投影数据或图像数据中的至少一种来运行所述
结构传播算法以从所述投影数据或所述图像数据中的所述至少一种移除噪声或伪影中的
至少一种，同时保留潜在的目标结构和谱信息。
[0009] 在另一方面中，一种计算机可读存储介质被编码有计算机程序指令。所述计算机
可读指令当由处理器运行时，令所述处理器；获得来自扫描的投影数据或根据所述投影
数据生成的图像数据中的至少一种，从所述投影数据或所述图像数据中的所述至少一种中
选择局部参考数据集，确定针对所选择的参考数据集的噪声模式，基于所述噪声模式根据
所述参考数据集来估计潜在的局部结构，并且基于所估计的潜在的局部结构来恢复投影数
据或图像数据中的至少一种。

附图说明
[0010] 本发明可以采取各种部件和部件的布置以及各种步骤和步骤的安排的形式。附图
仅出于图示优选的实施例的目的并且不应当被解释为对本发明的限制。
[0011] 图 1 示意图地图示了结合采用结构传播恢复算法的投影数据和/或图像数据处理
器的范例成像系统；
[0012] 图 2 示意图地图示了结构传播恢复算法的范例模型；
[0013] 图 3 图示了根据第一投影数据重建的现有技术图像；
[0014] 图 4 图示了使用本文中描述的结构传播恢复方法结合第一投影数据的恢复的图
像；
[0015] 图 5 图示了根据第二投影数据重建的现有技术图像；
[0016] 图 6 图示了使用本文中描述的结构传播恢复方法结合第二投影数据的恢复的图
像；
[0017] 图 7 图示了根据第三投影数据重建的现有技术图像；
[0018] 图 8 图示了使用本文中描述的结构传播恢复方法结合第三投影数据的恢复的图
像；
[0019] 图 9 图示了用于处理投影数据和/或图像数据的范例方法。

具体实施方式
[0020] 下文描述了一种使用恢复算法来改进谱 CT 图像质量的方法，所述恢复算法从谱
图像研究的投影数据和/或图像数据移除噪声和/或伪影，同时保留潜在的目标结构和谱
信息。
[0021] 首先参考图 1，图示了谱成像系统 100，例如谱计算机断层摄影 (CT) 扫描器。所图
示的谱成像系统 100 利用如下文更详细地讨论的 kVp 切换以产生谱投影数据。谱成像系统
100 包括大体固定机架 102 和旋转机架 104，旋转机架 104 由固定机架 102 可旋转地支撑并
且绕检查区域 106 关于 z 轴旋转。
[0022] 诸如 X 射线管的辐射源 108 与旋转机架 104 一起旋转并且发射贯穿检查区域 106
的辐射。辐射源电压控制器 110 控制辐射源 108 的平均或峰值发射电压。在一个实例中，这
包括在扫描的视图之间，在扫描的视图内，和/或其他情况下在两个或更多个发射电压（例如，80keV与140keV，100keV与120keV，等等）之间切换发射电压。

[0023] 探测器阵列112对称相对于辐射源108在检查区域106的对称的角度弧。探测器阵列112探测贯穿检查区域106的辐射并且生成指示所述辐射的投影数据。在所述扫描是多次能量扫描并且辐射源电压在用于扫描的至少两个发射电压之间切换的情况下，探测器阵列112生成针对辐射源电压中的每个的投影数据（在本文中也称为正弦图）。

[0024] 再次地，所提示的谱成像系统100利用kVp切换。在型变中，谱成像系统100包括以两个不同的发射电压发射辐射以产生谱投射数据的至少两个辐射源108，并且/或或者探测器阵列112包括产生谱投射数据的能量分辨探测器。在另一型变中，谱成像系统100包括用于产生谱投射数据的以上方法和/或其他方法的组合。

[0025] 重建器114重建谱投射数据，生成指示对象的被扫描部分或被定位在检查区域106中的目标的体积图像数据。这包括重建在一个或多个发射电压处的谱图像数据和/或在多个发射处的常规（非谱）图像数据。垫板或对象支撑物116将对象或目标支撑在检查区域106中。

[0026] 操作者控制台118包括诸如监视器的人类可读输出设备和诸如键盘、鼠标等的输入设备。驻存在控制台118上的软件允许操作者经由图形用户接口（GUI）或其他方式与谱成像系统100交互和/或操作谱成像系统100。这可以包括选择多能量谱成像协议，在所述多能量谱成像协议中，发射电压在两个或更多个电压之间切换。

[0027] 投影数据和/或图像数据处理器120包括至少一个微处理器122，至少一个微处理器122运行存储在诸如物理存储器124或其他非易失存储介质的计算机可读存储介质中的至少一个计算机可读指令。微处理器122还可以运行由载波、信号或其他非易失存储介质承载的一个或多于个计算机可读指令。投影数据和/或图像数据处理器120能够是控制台118和/或其他计算机系统的部分。

[0028] 所述至少一个计算机可读指令包括（一个或多个）结构传播恢复指令126，（一个或多个）结构传播恢复指令126能够被应用到谱投射数据（或谱域）和/或重建的图像数据（或图像域）。在（一个或多个）结构传播恢复指令126被应用到两者的情况下，其首先被应用到谱投射数据，生成新的投影数据，恢复的投影数据然后被重建以生成图像数据，并且然后（一个或多个）结构传播恢复指令126被应用到重建的图像数据。

[0029] 如上面更详细地描述的，运行（一个或多个）结构传播恢复指令126包括：从输入的投影数据和/或图像数据中选择参考投影和/或图像数据集；根据所选择的参考投影和/或图像数据集来确定噪声模型；基于所述噪声模型根据参考数据集来估计潜在的局部目标结构；并且将所估计的潜在的局部目标结构传播通过输入的投影数据和/或图像数据；恢复投影数据和/或图像数据。

[0030] 任选的，所估计的潜在的局部目标结构能够被用作对恢复的约束。另外，移除的纹理和/或噪声中的一些能够被添加回。应当理解，（一个或多个）结构传播恢复指令126通过移除噪声和/或伪影来改进谱数据的质量；同时保留潜在的目标结构和谱信息。

[0031] 所恢复的投影数据和/或所恢复的图像数据能够被进一步处理，经由显示监视器被显示、被制成胶片、被存储在数据储存库中（例如，影像存储与传输系统或PACS、电子病历或EMR、辐射信息系统或RIS、医院信息系统或HIS,等等）和/或以其他方式被利用。
图 2 示意性地图示了（一个或多个）结构和各传播胡适指令 126 的各种例模块 200。

参考文献选择器 202 从输入的图像数据中选择局部参考数据集，所选输入的图像数据和/或图像数据能够自成像系统 100(图 1) 和/或其他系统生成。针对参考数据集选择的标准包括能够根据其导出或估计潜在的局部目标结构的参考数据。

合适的参考图像数据的范例包括但不限于：特定单色图像（例如，70keV），因为噪声在各个材料之间是不同步的，并且存在其中某些对比噪声比 (CNR) 为最优的特定单色图像；非谱（或常规）CT 图像，组合的谱/非谱图像，例如基于所有材料或全谱的非谱 CT 图像，其可以允许更准确地提取结构：仅基于部分谱的低能量图像和/或高能量图像；和/或其他参考图像。

合适的参考投影数据的范例包括但不限于：特定单色正弦图（例如，70keV），因为噪声在各个材料之间是不同步的；以及非谱（或常规）CT 正弦图，组合的谱/非谱正弦图，例如，基于所有材料或全谱的没有材料分解的非谱 CT 正弦图；仅基于部分谱的没有材料分解的低能量正弦图和/或高能量正弦图，和/或其他参考投影数据。

在一个实例中，利用全局方法来选择参考数据。对于该方法，能够针对全部接收到的投影数据和/或图像数据来选择单个参考数据集。所述选择能够基于以下标准中的一个或多个：最小总体变分 (total variation)；最小阈；在图像/正弦图的局部标准偏差上的最小中值；局部噪声估计的最小平均值；基于两个 ROI 的输入的 CNR 图像，等等。在图 1 中示出了单色图像中的总体变分选择标准的范例。

方程 1

\[\hat{c} = \arg \min_{c} \int \int [dR_i] dldj. \]

其中，c 是单色能量并且 \(R_{ij} \) 是参考图像是 R 中的 i, j 像素。

在另一实例中，利用局部方法来选择参考数据。对于该方法，针对每个像素，选择最优参考数据集（或投影数据和/或图像数据的子集）。所述部分被能在来自潜在的参考数据集中的一个中的像素的位置附近选择。该方法利用以下事实：输入的投影数据和/或图像数据中的不同区域可能具有针对局部结构偏差的不同的最优参考数据集。

噪声建模器 204 对所选择的参数数据集的噪声模型进行建模。合适的建模方法的范例包括但不限于：蒙特卡罗估计、解析法、直接提取和/或其他方法。所获得的噪声模式或模型被利用于估计局部结构参考数据集。范例解析方法被描述在 Wunderlich 的 "Image Covariance and Lesion Detectability in Direct Fan-Beam X-Ray Computed Tomography" (Phys. Med. Biol. 53 (2008), 第 2472 至 2493 页) 中。

直接提取方法的范例被描述在 2009 年 11 月 25 日提交的并且题为 "ENHANCED IMAGE DATA/DOSE REDUCTION" 的申请序列为 61264340 的专利申请中，通过引用将其整体并入本文中；并且被描述于 2009 年 12 月 15 日提交的并且题为 "ENHANCED IMAGE DATA/DOSE REDUCTION" 的申请序列为 61286477 的专利申请中，通过引用将其整体并入本文中。在本文中也预见到其他方法。

恢复器 206 恢复投影数据和/或图像数据。所图示的恢复器 206 包括结构导出器 208 和结构传播器 210。

结构导出器 208 根据参考数据集来估计潜在的局部结构。所述估计可以改进参考
数据集的局部 CNR，这有助于估计数据集并且使得能够进行非常准确的结构估计。结构导出器 208 利用由噪声建模器 204 生成的噪声模型作为引导，这有助于在噪声与潜在的目标结构之间进行区分。

对于估计，结构导出器 208 可以利用各种算法，例如双边滤波、扩散滤波、全变差去噪、均值漂移等。通过非线性性举例的方式，下文描述了一种使用双侧双选来估计局部结构的方法。该算法包括任选的突峰噪声抑制。

对于参考数据集 R 中的每个体素 R_{i,j,k}，结构导出器 208 执行以下：
1. 提取体素 R_{i,j,k}周围的 n 个体素的子体积；
2. 基于方程 2 来计算核 \(w_{i,j,k}^{2} \)；
3. 方程 2：
 \[
 w_{i,j,k}^{2} = \exp \left(-\frac{\left(R_{i,j,k} - R_{i+j, j+k} \right)^{2}}{2(\sigma_{i,j,k}^{2})^{2}} \right)
 \]
4. 其中，\(\alpha \) 是控制权重的竞争力的参数并且 \(\sigma_{i,j,k}^{2} \) 是在以上讨论的噪声建模中估计的对 \(R_{i,j,k} \) 的局部噪声水平估计；
5. 将局部核乘以空间核：\(w_{i,j,k}^{2} = (w_{i,j,k}^{2})^2 \)，其中，能够基于方程 3 来确定具有标准偏差的三维 (3D) 空间高斯核；
 \[
 w_{i,j,k}^{2} = \exp \left(-\frac{(i'dx)^2 + (j'dy)^2 + (k'dz)^2}{2\sigma_{i,j,k}^{2}} \right)
 \]
6. 将 \(w_{i,j,k}^{2} \) 归一化以使和等于一；
7. 应用突峰噪声抑制如下：如果中心权重 \(w_{i,j,k}^{2} \) 大于突峰，并且 \(\alpha < \alpha_{max} \)，则 \(\alpha = \alpha \ast \alpha_{max} \) 并且返回步骤 2；并且
8. 基于方程 4 来估计目标结构：
9. 方程 4：
 \[
 \hat{R}_{i,j,k}^{NR} = \frac{\sum_{n} \sum_{n} \sum_{n} R_{i,j,k} \cdot w_{i,j,k}}{\sum_{n} \sum_{n} \sum_{n} w_{i,j,k}^{2}}
 \]
结构传播器 210 将所估计的结构传播到输入的投影数据和 / 或图像数据，任选地，所述估计被利用作为对恢复的额外的约束。移除的纹理和 / 或噪声中的一些在恢复期间能够被添加回。这可以有助于控制最终图像外观。
为此，结构传感器 210 根据结构输出器 208 的输出来导出局部结构，并且根据噪声建模器 204 的输出来定义结构水平。该方法的强处在于其利用具有改进的 CNR 的非常良好地定义的局部结构。由于处理是在投影数据和 / 或图像数据上进行的，所以投影数据和 / 或图像数据的强度值非常准确地被保留。

通过非限制性举例的方式，在一个实例中，结构传感器 210 针对投影数据和 / 或图像数据中的每个体素 \(V_{i,k} \) 执行以下的 N 次迭代:

1. 提取体素 \(V_{i,k} \) 周围的 n 个体素的子体积；
2. 基于方程 4 来计算局部核 \(W_{i,j,k}^{NR} \):
3. 将局部核以空间核 \(W_{i,j,k}^{NR} \) 与 \(W_{i,j,k}^{NR} \) 进行乘法运算；
4. 将 \(W_{i,j,k}^{NR} \) 归一化以使和等于一；
5. 处理投影数据和 / 或图像数据，如方程 5 中所示；

方程 5:

\[
\hat{W}_{i,j,k}^{NR} = \frac{\sum_{l=-n}^{n} \sum_{j=-n}^{n} \sum_{k=-n}^{n} W_{i,j,k}^{NR} \cdot V_{i,j,k}^{NR}}{\sum_{l=-n}^{n} \sum_{j=-n}^{n} \sum_{k=-n}^{n} W_{i,j,k}^{NR}}
\]

其中，\(W_{i,j,k}^{NR} \) 是输入的目标数据集并且 Iter 是当前迭代的索引。

在步骤 5 中，图像纹理和 / 或噪声中的一些能够被添加回所述目标数据集以控制其最终外观。存在针对纹理和 / 或噪声的两个任选的源，参考投影数据和 / 或图像数据或者目标投影数据和 / 或图像数据。

获得最终的恢复，如方程 6 或方程 7 所示:

方程 6:

\[
V_{i,j,k}^{最终} = \hat{V}_{i,j,k}^{Iter=N} \delta + \left(\hat{V}_{i,j,k}^{Iter=0} - \hat{V}_{i,j,k}^{Iter=N} \right) (1 - \delta)
\]

或者

方程 7:

\[
V_{i,j,k}^{最终} = \hat{V}_{i,j,k}^{Iter=N} \delta + \left(R - \hat{R}_{i,j,k}^{NR} \right) (1 - \delta)
\]

其中，\(\delta \) 是输入参数。
图 3-8 合并在没有恢复的情况下生成的图示示出了恢复的范例结果。

对于第一组的投影数据和 / 或图像数据，图 3 表示现有技术图像 300，其中，未利用（一个或多个）结构传播恢复指令 126，并且图 4 表示其中利用（一个或多个）结构传播恢复指令 126 的图像 400。如所示出的，区域 402 比对应的区域 302 噪声更少，而没有图像 400 中的结构的可见损失。

对于第二组的投影数据和 / 或图像数据，图 5 表示现有技术图像 500，其中，未利用（一个或多个）结构传播恢复指令 126，并且图 6 表示其中利用（一个或多个）结构传播恢复指令 126 的图像 600。如所示出的，区域 602 比对应的区域 502 噪声更少，而没有图像 600 中的结构的可见损失。

对于第三组的投影数据和 / 或图像数据，图 7 表示现有技术图像 700，其中，未利用（一个或多个）结构传播恢复指令 126，并且图 8 表示利用（一个或多个）结构传播恢复指令 126 的图像 800。如所示出的，区域 802 比对应的区域 702 噪声更少，而没有图像 800 中的结构的可见损失。

图 9 图示了根据本文中的公开内容的范例方法。

应当理解，动作的顺序不是限制性的。因此，本文中预见到其他顺序。另外，可以省略一个或多个动作和 / 或可以包括一个或多个额外的动作。

在 902，获得输入的投影数据和 / 或图像数据。

在 904，从所述投影数据和 / 或所述图像数据中选择局部参考数据集。

在 906，确定针对所选择的参考数据集的噪声模型。

在 908，基于所述噪声模型来估计潜在的局部结构。

在 910，将所估计的结构传播到所述投影数据和 / 或所述图像数据，恢复所述投影数据和 / 或所述图像数据。

在 912，所恢复的投影数据和 / 或所恢复的图像数据能够被进一步处理、经由显示监视器被显示、被制成胶片、被归档在数据储存库中、和 / 或以其他方式被利用。

以上可以通过被编码或被嵌入在计算机可读存储介质中的计算机可读指令的方式来实施，所述计算机可读指令当由（一个或多个）计算机处理器运行时，令所述（一个或多个）处理器运行所描述的动作。额外地或备选地，所述计算机可读指令中的至少一个由信号、载波或其他暂态介质承载。

已经参考优选实施例描述了本发明。他人在阅读并理解前述详细的描述之后可以进行修改和更改。旨在将本发明解释为包括所有这样的修改和更改，只要它们落入权利要求书或其等价要件的范围内。
图 1
图 2

图 3 现有技术

图 4

图 5 现有技术

图 6

图 7 现有技术

图 8
获得投影和/或图像数据

从所述投影和/或图像数据中选择局部参考数据集

确定针对所选择的局部参考数据集的噪声模型

基于所述噪声模型根据所选择的局部参考数据集来估计潜在的结构

将所估计的潜在的结构传播到所获得的投影和/或图像数据，恢复所述投影和/或图像数据

所恢复的投影和/或图像数据被进一步处理、被显示、被制成胶片、被归档和/或以其他方式被利用

图 9