发明名称
二元酚双（二烷基苯基磷酸酯）制备方法

摘要
本发明是对二元酚双（二烷基苯基磷酸酯）制备方法的改进，其特征由二元酚与磷酸三烷基苯基酯，在催化剂催化下进行酯交换反应，二者摩尔比为1：2～3：1。一步法合成，生产工艺简单，更容易得到产品，纯度高，可以较现有技术制备方法提高2～3%，并且生产过程环保性好，无污染物产生，并无废水，大大降低了后续环保处理费用，也降低了总体生产成本。无HCl产生，也降低了对设备要求（无酸性不需防腐），也不需另行增加收集HCl气体及处理装置，生产过程环保性好。
1. 二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于由二元酚与磷酸三烷基苯基酯，在催化剂催化下进行酯交换反应，二者摩尔比为 1 ： 2-1 ： 3。

2. 根据权利要求 1 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于二元酚为对苯二酚或者间苯二酚。

3. 根据权利要求 1 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于磷酸三烷基苯基酯为磷酸三（2,6-二甲基）苯基酯。

4. 根据权利要求 3 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于二元酚双（二烷基苯基磷酸酯）为二元酚【二（2,6-二甲基）苯基磷酸酯】。

5. 根据权利要求 1 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于二者摩尔比为 1 ： 2-1 ： 2-2。

6. 根据权利要求 1,2,3,4 或 5 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于酯交换在 100~280℃中进行。

7. 根据权利要求 6 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于酯交换在 120~250℃中进行。

8. 根据权利要求 6 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于升温采用梯度升温。

9. 根据权利要求 6 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于酯交换反应在 10-1mmHg 真空下进行。

10. 根据权利要求 9 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于反应开始真空度为 50-100mmHg，反应一段时间后，真空升至 10-1mmHg。

11. 根据权利要求 6 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于在酯交换反应用惰性气体驱赶置换出的反应副产物。

12. 根据权利要求 6 所述二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于后续洗涤采用低碳醇。
二元酚双（二烷基苯基磷酸酯）制备方法

技术领域
本发明是对二元酚双（二烷基苯基磷酸酯）制备方法的改进，尤其涉及一种一步法合成，方法简单，且生产过程环保性好的二元酚双（二烷基苯基磷酸酯）制备方法，是针对申请人在先申请专利200910033993.1二元酚（芳基多聚磷酸酯）阻燃剂制备方法的进一步补充。

背景技术
工程塑料分解温度通常在300-550℃，为达到阻燃效果，阻燃剂必须在工程塑料引燃时同步分解才能起到阻燃作用，如果其分解迟于工程塑料引燃则起不到阻燃作用，因此要求阻燃剂分解温度范围应在300-550℃。聚合芳基磷酸酯阻燃剂，特点是耐温性好，与工程塑料相溶性好，在工程塑料中使用对热变形温度（HDT）降低影响小，但其缺点是分解温度高，一般情况下分解2%时，温度需达450℃左右，该类聚合物最佳阻燃温度在450-600℃，在300-450℃范围内初始阻燃效果不好。而目前使用的小分子芳基双磷酸酯（双酚A双（二苯基磷酸酯）BDP；间苯二酚双（芳基磷酸酯）RDP；二元酚双（二烷基苯基磷酸酯）XDP），主要分解温度在300-450℃，能够满足塑料阻燃基本要求，但由于分解温度相对低，在塑料加工温度较高时，会导致部分挥发或分解，影响阻燃材料的性能；此外，小分子加入后对塑料有增塑作用，会导致热变形温度（HDT）降低，特别是BDP、RDP（常温下为液体）增塑作用更大，导致塑料热变形温度（HDT）降低较多，一般情况下会使材料的HDT下降20℃以上，使添加此阻燃剂材料在某些场合使用性能下降，因此在需耐高温材料中不能使用。要求耐高温塑料可以采用聚合芳基磷酸酯阻燃剂与小分子芳基磷酸酯阻燃剂复配使用，既可以达到阻燃UL94、V0级，又使材料热变形温度下降较小，保持高的耐热温度。而XDP由于结构不同于BDP、RDP，常温下为固体粉末，增塑作用较小，加入塑料树脂中HDT降低较小。因此在工程塑料阻燃时，最好为采用聚合芳基磷酸酯阻燃剂与XDP复配使用，使之既可以在达到阻燃要求，又能达到耐热性能。

XDP 已有商业化产品，例如日本大八公司的 PX-200，旭电化工业株式会社 FP-500，其方法如中国专利96111832，EP0947547，EP0509560所述。它们制备XDP方法：先将二甲苯基苯酚与三氯氧磷为原料，制备一氯二甲基苯基磷酸酯，再与二元酚反应得到XDP的二步法工艺。在二步法制备过程中，每一步都会产生大量的HCl气体，HCl气体是一种腐蚀性很强的酸性气体，不仅制备过程需耐腐蚀设备，增加了设备成本，并且要吸收HCl气体，进行酸、碱洗、水洗，产生大量废水，工艺复杂。此外，也有采用三氯氧磷与二元酚反应，生成中间体，然后再与二甲苯基苯酚封端反应合成产物二步法工艺。其工艺不仅仍需二步进行，每步也产生大量的HCl气体，上述缺陷依然存在，而且副反应多，会增加产品纯度难度。还有日本专利特开平9-255691，先用一氯化二（2，6-二甲基）苯基磷酸酯单体与间苯二酚或对苯二酚（二元酚）反应，得到单分子二元酚双（2，6-二甲基）苯基磷酸酯。同样存在上述缺点。

在申请人在先申请专利200910033993.1合成聚合芳基磷酸酯（HPP）中，以二元酚
与芳基双磷酸酯（或称烷基苯基双磷酸酯）或磷酸三烷基苯基酯，以摩尔比 1：1.01～1：1.2，在催化剂催化及真空中条件进行酯交换反应。此法制备简单，一步反应得到产品，并无 HCl 气体。所得的苯酚副产物或烷基苯酚可以回收再利用，后处理简单，只需用醇类溶剂洗涤（醇类溶剂可以循环使用，无废水产生）。蒸馏即得产品，但其得到的为芳基聚磷酯酸酯。

发明内容

【0005】本发明目的在于克服上述已有技术的不足，提供一种一步法合成，方法简单，且生产过程环保性好的二元酚双（二烷基苯基磷酸酯）制备方法。

【0006】本发明目的的实现，主要改进是采用酯交换方法来制备二元酚双（二烷基苯基磷酸酯）XDP，使二元酚与磷酸三烷基苯基酯一步法酯交换反应直接得到 XDP，二者摩尔比为：1：2～1：3，反应过程置换出二烷基苯酚用真空抽出，回收利用，从而克服现有合成方法的不足，实现本发明目的。具体说，本发明二元酚双（二烷基苯基磷酸酯）制备方法，其特征在于由二元酚与磷酸三烷基苯基酯，在催化剂催化下进行酯交换反应，二者摩尔比为 1：2-1：3。

【0007】本发明中：

【0008】二元酚双（二烷基苯基磷酸酯），是指具有如下结构通式产品：

![结构通式](image)

【0009】其中聚合度 n = 1-2，R 代表二元酚，R’ 代表 1-5 个甲基。

【0010】其中甲基数最好为 2 个即二元酚双【二（2,6-二甲基）苯基磷酸酯】。

【0011】二元酚，是指在一个或二个苯环上带有总计二个羟基的酚类，例如双酚 A、双酚 S、对苯二酚、间苯二酚等。本发明中，较好选择对苯二酚、间苯二酚，有利于提高磷含量。

【0012】磷酸三烷基苯基酯，指具有三个烷基苯基的磷酸酯，例如磷酸三（2,6-二甲基）苯基酯 TXP、磷酸三甲基苯基酯、磷酸三（2,5-二甲基）苯基酯、磷酸三（2,4,6-三甲基）苯基酯、磷酸三（2,4,5,6-四甲基）苯基酯，磷酸酯 TXP，原料易得，反应容易进行。

【0013】本发明酯交换，是指二元酚酯与磷酸三烷基苯基酯酯交换缩聚反应，由一个二元酚将二个磷酸三烷基苯基酯上的二个烷基苯基脱出，得到二元酚双（二烷基苯基磷酸酯），为使反应很好进行，获得高纯产品，反应温度较好在 100℃以上至反应产物分解温度范围内，温度高，反应速度加快，试验经济反应温度以 100-280℃较好，温度过低会导致生成聚合物，是本发明所不需要的。最好的反应温度为 120-250℃。

【0014】本发明反应中，磷酸三烷基苯基酯过量，是有利于反应向合成产物方向进展。其中二者更好的摩尔比为 1：2-1：2.2。
与现有技术相同，酯交换反应在催化剂催化下，可以使反应更充分。本发明中优选采用二类催化剂，即节约性酸类钠盐化合物，例如苯酚钠，对苯二酚钠，双酚 A 二钠，间苯二酚钠，或路易斯碱酸催化剂，例如无水的三氯化铝，氧化镁，四氯化铁，四氯化锡，四丁基锡，三氯化铁等。其用量与通常催化剂用量相仿，例如 0.1-5%。

本发明酯交换，为可逆反应，在真空条件下进行，更有利于将酯交换反应脱出的烷基酯及时移出反应器，有利于反应向正方向进行。试验显示其真空度更有利于烷基酯的抽出及反应的进行，试验得到真空度在 10-1mmHg，已经能满足反应要求，具有较好的经济性。其中一种更好反应开始真空度低一些例如 50-100mmHg（以防止原料被抽出），反应 1-2 小时后，温度升至 200℃左右，再将真空升至 10-1mmHg。在酯交换反应中，用惰性气体例如具有工业应用价值的氨气，二氧化碳驱赶，更容易使烷基酯脱出反应器。真空或惰性气体驱出的烷基酯具有较高纯度，经冷凝回收使用。

此外，为获得高纯度产物，一种较好的是酯交换得到产物后，将反应所得产物移出，例如加入低碳醇（例如 1-4 碳）混合搅拌，洗涤除去催化剂及未反应的物，及自然分层，分离溶剂，蒸馏去除溶剂以及低分子量的杂质（例如未洗涤除去的杂质），可以获得不含杂质的二元酚双（二烷基苯基磷酸酯）。

本发明二元酚双（二烷基苯基磷酸酯）制备方法，相对于现有技术，由于采用二元酚与磷酸三烷基苯基磷酸酯交换反应，控制摩尔比为 1 : 2 ~ 1 : 3 的一步法酯交换直接得到 XDP，一步法合成，生产工艺简单，更容易得到产品，纯度高，可以较现有技术制备方法提高 2-3%，并且生产过程环保性高，无污染物产生，并无废水，大大降低了后续环保处理费用，也降低了总体生产成本。无 HCl 产生，也降低了对设备要求（无酸性不需防腐），也不需另行增加收集 HCl 气体及处理装置，生产过程环保性好。本发明方法也可以用于制备 BDP、RDP，同样具有上述工艺带来的优点，并且所得产品性能与原有生产制备产品性能相仿，只是前述结构式中的 R’ 为氢。

以上结合若干个具体实施例，示例性说明及帮助进一步理解本发明实质，但实施例具体细节仅是为了说明本发明，并不代表本发明构思下全部技术方案，因此不应理解为对本发明总的技术方案限定，一些在技术人员看来，不偏离本发明构思的非实质性增加和/或改动，例如以具有相同或相似技术效果的技术特征简单改变或替换，均属本发明保护范围。

附图说明
图 1 为实施例 1 所得间苯二酚双【二（2,6-二甲基）苯基磷酸酯】XDP 气相色谱图。

具体实施方式
实施例基本制备方法：
将商业化的三-(2,6-二甲苯基磷酸酯) TXP，加入反应器中，慢慢投入对苯二酚或其他二元酚，缓慢升温至 80℃以上，加入 0.1-5wt% 上述催化剂，升温至 100℃以上，物料熔融后，打开搅拌，先开真空至 50-100mmHg，酯交换反应生成 2,6-二甲苯酚被抽出，通过冷凝回收装置冷凝成液体回收使用。两小时后，反应物继续慢慢升温至 200℃-250℃，再真空
至10-1mmHg，维持250℃反应3h，可得到XDP。（升温可采用梯度升温，例如每分钟2-3℃）。
将反应物冷却至100℃左右，加入乙醇，冷至室温，静置使XDP慢慢沉淀（此过程实际是洗涤与重结晶同时进行），过滤分离白色沉淀物，用去离子水洗涤，真空烘干，即得到白色粉末二元酚酯【二（2,6-二甲基）苯基磷酸酯】XDP。以下具体实施例中，未具体说明条件，均采用上述工艺条件。

[0024] 实施例1：将328gTXP加入到反应器，慢慢加入44g间苯二酚，升温至80℃，加入二苯硼钠催化剂4g，升温至100℃左右，开始搅拌，并打开真空，抽出的2,6-二甲基苯酚经冷凝器回收，反应慢慢升温至250℃，并保温反应至3h。冷却至100℃，加入乙醇溶液300g，继续冷却至50℃以下，产物开始重结晶，沉淀过滤用去离子水进行洗涤，将该沉淀物于60℃干燥，得233g白色粉末即为间苯二酚酯【二（2,6-二甲基）苯基磷酸酯】XDP，收率为85%，熔点：103℃，主含量：98.1%。气相色谱见附图，各积分波数据见表1。

[0025] 实施例2：将328gTXP加入到反应器，慢慢加到44g对苯二酚，升温至80℃，加二苯硼钠4g，重复上述过程，得白色粉末240g即为对苯二酚酯【二（2,6-二甲基）苯基磷酸酯】XDP，收率为87.6%，熔点105℃，主含量97.7%。

[0026] 实施例3：将260gTPP（磷酸三苯酯）加入到反应器，慢慢加入44g间苯二酚，重复上述反应过程，反应结束并加入60g去离子水，在70℃搅拌一小时，分层，将油层真空蒸馏除去剩余的水分，得188gRDP，收率为81.7%，主含量97%。

[0027] 实施例4：将260gTPP加入到反应器，慢慢加入91.3g双酚A，重复上述反应过程，反应结束，冷却至80℃加甲苯80g，去离子水70g，洗涤一小时，分水，油层真空蒸馏，蒸出甲苯及水，得BDP213g，收率为77.1%，主含量96%。

[0028] 对于本领域技术人员来说，在本专利构思及具体实施例启示下，能够从本专利公开内容及常识直接导出或联想到的一些变形，本领域普通技术人员将意识到也可采用其他方法，或现有技术中常用知识技术的替代，以及特征间的相互不同组合，例如二元酚产品的改变，在反应温度内的改变，以及后处理方法的改变，等等的非实质性改动，同样可以应用，都能实现与上述实施例基本相同功能和效果，不再一一一一举例展开细说，均属于本专利保护范围。

[0029] 表1例1间苯二酚酯【二（2,6-二甲基）苯基磷酸酯】气相色谱图各积分峰数据

<table>
<thead>
<tr>
<th>保留时间</th>
<th>峰高</th>
<th>峰面积</th>
<th>面积百分比（%）</th>
<th>含量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.990</td>
<td>61.3</td>
<td>262.5</td>
<td>0.0067</td>
</tr>
<tr>
<td>2</td>
<td>1.398</td>
<td>185.0</td>
<td>955.6</td>
<td>0.0243</td>
</tr>
<tr>
<td>3</td>
<td>6.157</td>
<td>3181.5</td>
<td>22826.1</td>
<td>0.5800</td>
</tr>
<tr>
<td>4</td>
<td>7.840</td>
<td>147.9</td>
<td>935.4</td>
<td>0.0238</td>
</tr>
<tr>
<td>5</td>
<td>8.748</td>
<td>265.3</td>
<td>1463.5</td>
<td>0.0372</td>
</tr>
<tr>
<td>6</td>
<td>9.040</td>
<td>1973.0</td>
<td>11290.4</td>
<td>0.2869</td>
</tr>
<tr>
<td>7</td>
<td>9.807</td>
<td>50.9</td>
<td>277.3</td>
<td>0.0070</td>
</tr>
<tr>
<td>8</td>
<td>10.282</td>
<td>157.4</td>
<td>804.6</td>
<td>0.0204</td>
</tr>
<tr>
<td>9</td>
<td>10.498</td>
<td>414.3</td>
<td>2167.2</td>
<td>0.0551</td>
</tr>
<tr>
<td>10</td>
<td>10.673</td>
<td>51371.3</td>
<td>3860751.4</td>
<td>98.0985</td>
</tr>
<tr>
<td>11</td>
<td>11.840</td>
<td>5393.4</td>
<td>30861.1</td>
<td>0.7842</td>
</tr>
<tr>
<td>序号</td>
<td>12</td>
<td>13.323</td>
<td>126.2</td>
<td>739.8</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>序号</td>
<td>13</td>
<td>13.173</td>
<td>302.3</td>
<td>2252.1</td>
</tr>
<tr>
<td>序号</td>
<td>14</td>
<td>525969.9</td>
<td>3955587.2</td>
<td>100.0000</td>
</tr>
</tbody>
</table>