wo 2014/0662773 A2 || I NPF V00O A 0.0 R0 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization
International Bureau

(43) International Publication Date

—~
é

=

\

(10) International Publication Number

WO 2014/066273 A2

1 May 2014 (01.05.2014) WIPO I PCT
(51) International Patent Classification:
GO09B 7/00 (2006.01)
(21) International Application Number:
PCT/US2013/065985
(22) International Filing Date:
21 October 2013 (21.10.2013) (84)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
13/657,332 22 October 2012 (22.10.2012) US
(71) Applicant: COGCUBED CORPORATION [US/US];
100 Third Ave. S., #1703, Minneapolis, MN 55401 (US).
(74) Agent: HELLER, Edward, P., III; 105 Casey Ln., Athos,
CA 95003 (US). .
(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EF, EG, ES, FL, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: COGNITIVE ASSESSMENT AND TREATMENT PLATFORM UTILIZING A DISTRIBUTED TANGIBLE-GRAPH-

ICAL USER INTERFACE DEVICE

Sifteo System

Computer or Base Device

Runtime
¥

.NET
Framework

Sifteo API
for SDK

Input / Output
¥

Sifteo Cube(s)

Accelerom

Battery Button

eter

‘ CPU

Lco
Screen

Bluetooth /
Near-field

1208

Fig. 13

1200

[¢———Input-

1206

l— Input / Output
Account Identifier

Output
Game Data

1202

End User /
Player
Input Account and Player Data

1212 1204
L

Host/or Server Computer(s)

Data
Repository

Account and Player Djata
Demographics / Education /
Medical

;514 1210

(57) Abstract: A cognitive disorder diagnostic and treatment system that employs cognitive cubes, gameplay associated with the
cognitive cubes, and a data gathering as statistical analysis base device that may be a computer, that communicates the gathered data
to a web server host according to a unique ID associated with particular cognitive cubes and further associated with a particular play-
er. Using the statistical data gathered using the gameplay, various cognitive disorders may be successtully diagnosed and treated

with higher reliability.

WO 2014/066273 PCT/US2013/065985

5
Cognitive assessment and treatment platform utilizing a distributed tangible-
graphical user interface device.
10 Kurt Edward Roots

Monika Drummond Roots

10

15

20

25

WO 2014/066273

which are hereby incorporated by reference in its entirety.

The present application claims the benefit of US provisional application

numbers 61/549, 698, filed October 20, 2011, and 61/551,384, filed October 25, 2011,

The present application incorporates the following references in their

entirety:

ADHD/Attention

. US, Pat. No. 5,813,310, June 1999

US. Pat. No.5,940,801 Aug 17, 1599

3. US. Pat. No. 5,377,100 Dec 27, 1994

U, Pat. No. 5,813,310 June 22, 1999

. S, Pat, No. 6,053,739

Patent apphication: 2008/0021351
Patent application: 2010/0279258

US. Pat. No. 7720610

Autism

US. Pat. No. 6398222

Sifteo:

. Patent apphcation: 2011/0057946

Patent application® 2012/0189748

US. Pat. No. DE35190

PCT/US2013/065985

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985

Background of the Invention
1. Field of the invention

The invention relates to the field of cognitive disorders including assessing
attention deficits and/or comorbidities, treating attention deficit hyperactivity
disorder, and/or conditions with attentional impairment such as autism spectrum

disorder (ASD), anxiety, depression, and epilepsy.

2. Background of the art

Assessing and treating attention deficits, comorbidities and/or treating other
conditions that have attention deficits have fundamentally been a challenge for
parents, teachers, and health care providers. For example, there is no specific test
for diagnosing attention deficits. Also, there is no aid for differentiating ADHD from
conditions that have attentional deficits as a symptom of the disorder. This
represents a challenging situation for educators and health care providers.
Therefore, the following conditions can be comorbid with ADHD or they may

manifest themselves with attentional deficits separately from the disorder.

. Learning or language problems
o Autism Spectrum Disorders(ASD)
. Anxiety disorders

° Mood Disorders

. Psychotic Disorders

o Seizure disorders

. Traumatic brain injuries

. Frontal lobe pathology

. Vision or hearing problems
o Sleep disorders

o Dementias

o Substance Use Disorders

Gathering as much information as possible about the individual from

disparate sources is currently the best way to diagnose and treat an individual’s

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985

symptoms. For example, current diagnostic aids used in assessing ADHD are
subjective, expensive, time intensive, and provide little information about accessory
movements in response to a stimulus. These diagnostics aids make it difficult to

identify ADHD, comorbidities, and/or other attentional related diagnoses.

Consider the typical diagnostic aids for ADHD which are reviewed by health
care providers to help make a clinical diagnosis. Tests such as the Conners’ Rating
Scale require subjective responses from parents and teachers, making coordination
difficult. The computerized Conners’ Continuous Performance Test (CPT) provides
objective data in regards to inattention and impulsive patterns of response.
However, it does not provide data regarding accessory movements such as
restlessness, hyperactivity, and other inappropriate movements. In addition, it does
not give inter-response data. If the subject taking the exam has a reading disorder,
it will impair his or her ability to respond accurately and it will increase response
time. The T.0.V.A. is another computer based test used as a diagnostic aid for
ADHD, which uses a microswitch to record responses. It does utilize auditory and
visual stimuli, which removes the reading level limitation. However, it is unable to
measure accessory and/or inter-response movements that may be contributing to

reaction time and errors of omission and commission.

Upon properly establishing a diagnosis, it is then important to establish a
course of treatment. This is vital in both schools and in the medical field.
Attentional deficits greatly limit academic aptitude and long term potential leading
to the development of some of the common comorbidities such as anxiety and
depression. Addressing these symptoms at a young age are cruicial in decreasing

these detrimental effects long term.

Medications and talk therapy dominate the treatment course of attentional
deficits and overall there is limited availability of cognitive training interventions
as a method of treating attentional limitations. Those that exist are frequently
delivered on laptops, iPhones, or iPads, do not take into consideration the following

because of the devices used:

10

15

WO 2014/066273 PCT/US2013/065985

5
. Detailed behavioral pattern prior to and following response cannot be
monitored.
o Data collection only takes place on one device, instead of three or more.
o Testing attention in response to various degrees of spatial

differentiation is not possible.

The deficiency for data-driven methods which aid in diagnosing and treating
these and other disorders, a need exists for a platform which that collects, stores,

and analyzes data to reveal patterns in physical and cognitive behaviors.

Further, engaging those with ADHD, ASD and other conditions in their
treatment is another barrier to recovery for which an evidence-based tool is
necessary. Research shows that games appeal to this barrier and provide this

engagement. .

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985

Summary of the invention

The invention solves many of these problems. It provides a platform that
collects data that was previously unavailable in nature and in quantity. The
platform captures response and inter-response movement patterns from each
player. The system then combines this data with demographic information and

analyzes it through to produce a profile that explains player behavior.

The novel data is produced by hands-on game interactions and responses.
This platform which employs a gaming system improves engagement by taking
advantage of psychological predisposition of humans to entertaining challenges
triggered by visual and auditory stimulus. The techniques applied to this new type
of data make it possible to evaluate and treat attention deficits and/or many of their

comorbidities such as depression, anxiety, and ASD.

This platform employs a tangible-graphical user interface. One type of such
device, illustrated in Figure 1, is known as “Sifteo Cubes,” a game platform made by
Sifteo Inc. of San Francisco, California. Sifteo Cubes are motion-sensitive wireless
blocks, which contain multiple sensors and variable displays. They can interact

with each other on all four sides. They can be manipulated by hand.

Because of the features of such devices, this game system allows for a third
dimension to be studied, a limitation of traditional hardware devices. For example,
computers cannot indicate what the participant is doing between disturbances. In
contrast, these devices can offer clues about movement in the tilting, pressing, and
neighboring actions. This is at a very granular level, because each device has an
accelerometer. Further, the gaming platform is designed to capture data at a sub-
second second interval. Additionally, while an iPad might offer clues about
participant behavior between disturbances, the platform itself is less interactive

because in-game interactions do not require tangible movements.

A further advantage of using this system is the insight into spatial attention

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985

capabilities. Neither computer-based tests nor the iPad can test auditory spatial
attention and visual spatial attention. The innovative platform we have designed
captures this type of data, creating a more robust tool.

Some other advantages of this platform versus existing technology like

1Pad/iTouch/iPhone include:

. Behavioral pattern prior to and following response can be monitored.

o Eliminates affect of reading disability on reaction time and patterns of
response.

. Multiple devices allows for granular data to be gathered during test
session.

. Platform provides auditory patterns of response.

. Testing for auditory spatial attention and visual spatial attention.

The platform is broadly useful for gathering data that is useful for diagnosing
and treating issues in all cognitive areas. One embodiment, called Groundskeeper,
is specifically designed as a diagnostic aid and cognitive improvement tool, which
allows for treatment focused on executive functioning, like ADHD, for children and
adolescence. In this game, four interactive devices or sensors are used. At any
given time a gopher, groundskeeper or empty field will appear on the devices in
randomized frequencies. See Figure 2. During specific levels, greater auditory and
visual distracters are added. A rabbit and/or birds appear during these levels to
increase distracters. Bird chirping sounds are also varied to one bird or several
birds. The participant is asked to respond as quickly as possible by hitting the
mallet (the fourth device) to the device exhibiting a gopher. The participant is
instructed to only hit the device once and a sound will be heard indicating they have
hit the gopher as intended. The instructed arrangement for the basic levels of the
game on the devices to the participant is seen in Figure 3. The participant is
instructed to not respond to other stimuli, do any other movements with the device

or hit the stimulus device more than once.

This game or test is designed to test several domains of attention by

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985

including a combination of multi-task approaches while monitoring behavior prior
and following a response by analyzing the degree of movement of the devices as
difficulty of the game increases including adding a spatial disturbance in the later
stages of the game. In addition to providing diagnostics for executive functioning
deficits, this tool can treat these deficits by analyzing the pattern of manipulation of
the tangible-graphical device using game based applications, giving instant
feedback to fine tune their abilities. This feedback, over time, is a behavioral based
intervention that can improve attentional capabilities as a measure of executive
functioning without requiring medications. It can also monitor medication

treatment effects over time.

Another game is called Roopets. See, Fig. 4. This game, is useful for
intervention purposes in ASD. It is designed to be used with three or more tangible
devices. One device sits in the pocket of a toy caterpillar while two or more players
each receive a device. The goal of the game is to have a leader and a follower, where
the leader will move the caterpillar in a series of actions over a set period, and then
have the follower do the same movements. This allows the game to capture a data
difference based on movements of the devices embedded in the caterpillar and the
follower, i.e., between the leader and follower. This data is used as a feedback
mechanism for behavioral patterns common in social deficits like ASD. This
disorder causes the temporal gyrus, a location in the brain, to be deficient in visual
processing, which is process crucial for successful social interactions. To improve
the function of this area of the brain, which research has shown can be improved by
principals of neuroplasticity similar to a muscle improving function through
exercise, requires detailed tracking of responses from someone with the condition.
The activity requires the therapist, teacher, or leader in this case to provide
auditory, but primarily physical instructions through movement, which the patient
or player will interpret and attempt to mimic. This comprehension by the temporal
gyrus will manifest itself by player responses and will exhibit its progress by
tracking this movement over a period of time, thus allowing the patient or player to
mimic the movement. With the data from the game providing feedback, the leader

can guide the patient with ASD to fine tune their physical movements in

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985

conjunction with improving their visual processing of movements.

Physically active games influence dopamine and norepinephrine, chemicals
in the brain that regulate attention, mood, memory and learning. Our game Roopets
Racing is useful because it boosts physical activity thereby increasing these
chemicals, providing a natural treatment for disorders with attention deficits, mood
disorders, anxiety disorders, among others affected by dopamine and/or

norepinephrine imbalance.

Data is captured real time in response to game play and stored. Thereafter,
the captured data is parsed and accumulated using inventive algorithms into
predictive data that can be used by a practitioner in diagnosing or treating cognitive
disorders.

Brief description of the drawings:

Fig. 1 illustrates a child manipulating four cubes of the first embodiment.

Fig. 2 illustrates the graphic displayed on the four cubes of the first

embodiment.

Fig. 3 illustrates the use of the mallet in the first embodiment. The player

must use the mallet to strike the cube illustrating the gopher.

Fig. 4 illustrates a second game embodiment where one cube is a leader and a

second cube is manipulated by a follower/patient.

Fig. 5 illustrates an overview of the game platform.

Fig. 6 illustrates the interaction of the player with the game in a first

embodiment.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
10

Fig. 7 illustrates the overall data flow for a game, a component of the broader

platform.

Fig. 8 illustrates the various states of a state machine that control a game.

Fig. 9 illustrates the base device in wireless communication with four cubes.

Fig. 10 illustrates the mechanism that the Sifteo Cubes uses to display
graphics.

Fig. 11 shows sounds and images being pushed from the base station to the

cubes.

Fig. 12 illustrates the neighboring of two cubes.

Fig. 13 illustrates the game platform in communication with an online

database system.

Fig. 14 illustrates process that determines if registration has taken place

before.

Fig. 15 illustrates a registration process.

Fig. 16 illustrates process for generating a registration code from the unique

cube number.

Fig. 17 illustrates the process for displaying the registration code on the

cubes.

Figure 18 illustrates the display of the registration code on a cube.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
11

Figure 19 illustrates a website registration form to register an account holder with

a linking identifier.

Figure 20 illustrates the procedure for communicating between an account
holder and a web server application using a web registration form that checks to

determine whether a particular “owner” has previously registered.

Figure 21 illustrates the procedure whereby a base device receives from a
Web server owner-data-store a list of players unique to the owner of a particular set

of cognitive cubes.

Figure 22 illustrates a system perspective of player lookup based on

registration identifier of owner and player data from a web host or server.

Figure 23 illustrates the base device procedure for retrieving player data and
storing player data in an array in response to the communication of a unique

identifier to a web-based server.

Figure 24 illustrates a method of using cognitive cubes to and display the

player’s name on a set of cubes.

Figure 25 illustrates the overall process of players selection using a cognitive

cubes.

Figure 26 illustrates a form that may be displayed on a web-based server
whereby an account holder or owner may add players to their account at any time.

The form illustrates the kind of data that may be entered and/or reported.

Figure 27 illustrates the process for collecting game data into memory in
communicating that game data to the web server are host or storage therein
according to the owner data store and for the player associated with the particular

game that was just played.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
12

Figure 28 illustrates the data flow for game logic generating game data and

movement data.

Figure 29 illustrates a game state machine that iterates and sub 2nd intervals
that captures data from the cognitive cubes and stores them into an array located in

memory.

Figure 30 illustrates a data array located in memory that is divided in the
plurality arose written at a subsecond intervals, wherein each column is associated
with a particular measurement taken from one or more of the cognitive cubes

associated with a particular game.

Figure 31 illustrates the procedure for uploading game data into the game store
located on the web server are host associated with a particular owner and in
particular player. The player is given the option to play again, whereby a new set of
data is accumulated, statistically analyzed and communicated to the web host or

server.
Detailed Specification

Each game on the device collects player data and is synchronized and stored
on a host or server computer. From this system, data is aggregated with
demographic, educational, and medical data and then analyzed to explain player
behavior. The results are displayed on a user interface, like a mobile phone or web
browser. This platform can be applied to any tangible-graphical user interface that

utilizes multiple interactive devices or sensors.

In a first embodiment, see Fig. 5, Sifteo Cubes 10 link wirelessly 12 to a base
device 14 that acts as a computer. This device can be a computer or specialized
firmware provided by Sifteo, which is called the Sifteo Base. In either case, games
are written using with the Sifteo SDK, which supports C++, Python, or C#

programming languages. The games are written, compiled, and then executed by

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
13

this base device or the computer. Portions of the game, which can be images from
the game, are loaded onto the Sifteo Cubes before the game is played. The computer
or base device is responsible for acting as the master node of this distributed system
which may involve several cubes. As the master nodes, it controls the coordination
of the game and it serves as the landing area for any game data received during
play from the player. The Sifteo system is outlined in Figure 5. See the following
Sifteo patents for more details about the Sifteo Cube system. Application:
12/909,690, 13/341,780, and US. Pat. No. D635190.

The data flow for data collection and storage of the platform is defined in Fig.
6. As described, the games collect player data, the data is uploaded to host or
server computer, the data is combined with player demographic information, and

then the data is analyzed to provide a player profile of behavior.

Fig. 7 illustrates the overall data flow for a game, a component of the broader
platform. Data flows through each game following control from a state machine.
Upon starting 704, the Sifteo account holder is asked to register 708 the devices
with CogCubed, a website, through the web if they have not done so before 706.
Once complete 712, the relevant player lists for that account holder are shown on
the device 710. If they do not register, a default player list is shown to the device
714. The player or players are asked their name to start the game 716. The game is
then played and data is collected 718. At the end of the game 720, the player or
players can play again 722 or stop 724.

Fig. 8 illustrates the data flows based on different transitions in the game
from starting the game 704, to account holder registration 708, to player selection
714, to playing the game 718, to ending the game 724. These are all events that are
controlled logically by the state machine controller interface available in the Sifteo
SDK. Each state executes until the logic of the game advances the state, whether
that logic is initiated by a human or by the computer. This is a standard interface
utility in the Sifteo SDK, which is used to control game states. Games are designed

for tangible graphical systems like the Sifteo Cubes.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
14

In more detail, the player starts a game by loading or installing a particular
game onto the computer or base device 702. This follows the Sifteo game
installation instructions. The player then starts the game by initiating the Sifteo
runtime library which also resides on the computer or base device. 702 This will
cause the computer or base device to begin executing the game executable, which
are written in C++,C#, or Python and are based on the specifications available from
the Sifteo SDK. By executing the game, the state machine starts and the first state,
e.g., 706, starts.

In reference to Fig. 9, the computer or base device 902 communicates
wirelessly with one or more cubes 904-910 by executing said program. Each cube
displays graphics. The base device 902 plays music in the background from the
computer or base device, which signals that the game has started. Communication
occurs bidirectionally. Each cube sends or receives signals from the computer or

base device and also with each other.

Figure 1 depicts a child playing a CogCubed game with the cubes from the
Sifteo Cube system graphically represented in Figure 9. One example of the

pictures that may be depicted on the is shown in Figure 2.

Fig. 10 is an overview of the mechanism that the Sifteo Cubes utilizes to
display graphics. The games graphic images 108, 110, 112 are displayed on the
cubes by using logic and structures available in the Sifteo SDK 102. This logic
requires putting game graphics into an image index or structure 104 by using a
Sifteo Utility 106 for image bundling. The images referenced by the Sifteo structure
reside in a directory which is accessible by the game system. The logic within the
game program then uses C# or C++ code to call functions available in the Sifteo
SDK to reference this structure which points to the images used by the game. The
Original Sifteo Cubes employ the use of C# in the Sifteo SDK while the new version
of the Sifteo Cubes use C++ in the Sifteo SDK.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
15

In reference to Fig. 11, the game starts 704 and a start event 718 in the state
machine begins. Graphics defined in said structure are displayed on the cubes using
said logic from the Sifteo SDK. Audio files in the format of WAV or MP3 files are
also played during this event in the game. These files, which are referenced by the
game system, are played, stopped, or looped in the game by referencing the sound
utility in the Sifteo SDK. Unlike images, these audio files do not need to be bundled
together in an index or data structure. This is part of the Sifteo SDK.

In reference to Figure 12, the cubes are physically neighbored by a user. This
neighboring can be used to advance the game state machine seen in Fig. 8. The
Sifteo SDK provides a neighboring event handler. It may be used to logically

change the state in the game.

In one embodiment illustrate in Fig. 13, advancing the state machine from
the start state to the registration state that links 1206 to a player’s account online,
hosted on a host 1204 or server computer(s), to the Sifteo Cube system 1200. This
link is based on a key (not shown) that exists on both the cubes and the host or
server computer systems. This key is necessary to link (on output 1208) the physical
actions of players from the game cubes to information about each player, such as

demographics, education, and medical history.

This link is made through a generated key identified on the cubes and that is
associated thereafter with the particular set of cubes that the account holder 1202
for the particular cubes must then register online. Logic from the cubes will lookup
this key on the host or server computer to return all player names associated with

the account holder back to the cube.

Logic within the registration state first employs an algorithm that
determines that checks a special data structure, represented by the Sifteo data class
in the Sifteo SDK, to see if registration has happened before. This special data
store uses nonvolatile storage and persists when games are stopped and the system

is turned off. This algorithm process is seen in Figure 14.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
16

A data store structure 1404, part of the Sifteo SDK, is checked for a unique
account identifier which signals registration. If any identifier is found, the state
transitions to the player state. If no identification is found in the nonvolatile data
structure, a different algorithm 1410, detailed in Figure 15, is initiated to generate
an identifier which is displayed on the cube and used for account registration. The
registration process 1410 occurs if the cube account holder has not registered their

device on the web.

Referencing Fig. 15, the game platform uses a unique device ID 1502 (see
below for more) associated with particular cubes to generate 1504 an account ID
which comprises the aforementioned key. The game platform instructs the player
to open a web browser 1508, enter 1510 the numeric registration code (account ID)
displayed on the game cube 1506, and submit this data, the account ID or

registration code, to the host or server computers data store 1512.

If the cube account holder has registered these cubes before, the algorithm
will find an identifier value (key, account ID, registration code) in this data store.
This will then trigger the state machine to advance from registration to the player

state for player selection. The logic executed by the algorithm is seen in Figure 14.

If the logic in the registration state does not find an identifier value
indicating a previous registration, a different algorithm, illustrated in Fig. 16,
generates a unique numeric identifier produced from one of the devices. Each cube
from Sifteo is shipped with a unique hardcoded identifier 1602 that can be read
programmatically through the Sifteo SDK. This algorithm, illustrated in Fig. 17,
uses C# code to parse 1604 the last several digits of the identifier from each cube to
create a unique key that ultimately links the physical cubes to a players account.
The process from generation 1604, storage 1606, and display 1608 of the unique
identifier is illustrated in Figure 16. The display, illustrated in Figure 18,
instructs the user to register the registration code (unique identifier) at the

registration website.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
17

The said identifier (1604) is saved to the special data structure 1606
represented in the Sifteo data class from the Sifteo SDK. This identifier is written
to this structure by using a C# method from the Sifteo SDK. The logic ensures this

identifier will only be written if the data structure is empty.

Referring to Fig. 17, the unique identifier parsed 1702 from just one
randomly selected cube is displayed on a cube screen using another algorithm,
which writes the digits of the identifier to the display of one device. Using C#, a
single cube is randomly selected from N potential cubes by using standard
randomization logic. The string identifier is then converted to an 8 digit decimal
integer. The algorithm loops through each decimal digit of the integer, from
beginning to end, matching 1710 the integer value to column 1 of a 2 dimension
array 1704. Within the lookup array, column 1 contains a digit while column 2,
1706, contains the coordinate geometry location of each pixel necessary to create
that digit on a screen. Upon matching to the integer in column 1, the algorithm will
retrieve the coordinates in column 2, which the algorithm inputs into the Sifteo
class in the SDK responsible for displaying pixels. The pixels relating to the
matched integer will be written to the cube and an X-axis offset will be added as
padding for the next digit, if it exists. The novel algorithm loops through all digits,

performing this logic, until they all have been written to the cube display.

Referring to Figure 18, the account holder is prompted to register this

identifier on the CogCubed website.

On the registration website, seen in Figure 19, the player is asked to provide
this identifier and additional details related to their account. When submitted, this
web form writes this data regarding the account holder of the cubes to a host or
server data repository by using standard web form technology. Referring to Fig. 20,
the web form is programmed to use server-side validation to check to ensure that

account has not already been created.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
18

The game platform prompts the account holder to press down on the cube to
complete registration and advance the state. Physically pressing this cube down,
which is logically handled through the Sifteo SDK event handlers, transitions the

state machine from registration 708 to player selection 718. Figs.7 and 8.

Referencing Figs. 21 and 22, one or many players can be added to an account
by using a web form on the host or server computers. The web form inserts player
data, such as demographics, education, and medical history using standard web
technology. This data is linked to the account identifier and allows for combining

game date to detailed player data.

Referencing Figs. 21, 22 and 23, advancing the state machine from
registration to player selection triggers the retrieval and display player lists for
selection by the user or player. (The player lists are associated with the set of
cubes via the unique ID or key.) This is performed through the following method,

where the overall process is seen in Figure 22.

The unique cube identifier, stored in the data structure represented by the
Sifteo data class from the Sifteo SDK, is used to look-up player data from a host or
server data repository containing user or player data. This retrieval process uses
C# code and libraries supported by the .NET Framework, which is separate, but
interoperable with the Sifteo SDK. In the new version of the Sifteo SDK, C++
libraries could be used to accomplish the same task. The Web server uses the
numeric identifier associated with a set of cubes (account) as a filter or predicate
clause in a query to select and return player details to the game cube from this
repository. If the unique identifier matches an identifier registered online from the
web form, the query retrieves all players associated with that specific account. The
player list is sorted alphabetically during this retrieval from A to Z. These player
names or handles, which are represented as character strings, are returned from
the query and written to a string array in memory within the game. One player is
assigned to each element of an N element array. The array will automatically size

itself based on the number of players returned. See Figure 23.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
19

If there is no match, indicating no registration or improper registration, a
default male and female player name list is returned to the array. The special Sifteo
SDK data store is also reset to NULL or empty, so that registration is prompted on

next use.

Referencing Fig. 24, the player names are logically be accessed in the player
array by physically tilting a cube to the left or to the right. This movement initiates
a tilting event handler, which is supported by the Sifteo SDK. This handler logic
triggers a novel algorithm that changes the pointer location in the array to
reference a higher or lower order element assigned to an index. When the index
location changes, the algorithm points to the new array location, loads the location
contents which is a player name, and then writes out each letter of the player to
spell the player name. If a cube is physically tilted left, the algorithm decreases the
array pointer by 1 if it is greater than -1. This prevents the program from going out
of bounds in the array. Physically tilting the device to the right results in

incrementing the pointer value by 1.

Based on the location of the pointer in the array, the algorithm loops through
each character of the player name from left to right, matching the character value
to column 1 of a 2 column array. Within the lookup array, column 1 contains a
character while column two contains the coordinate geometry location of each pixel
necessary to create that character on a screen. Upon matching to the character in
column 1, the algorithm retrieves the coordinates in column 2, which the algorithm
inputs into the Sifteo class in the SDK responsible for displaying pixels. The pixels
relating to the matched character are written to the cube and an X-axis offset will
be added as padding for the next digit, if it exists. The algorithm loops through all
characters of the player name, performing this logic, until they all have been

written to the cube display.

Referencing Fig. 25, the player is instructed to tilt the device to control player
selection. Each tilt to the right causes a new player to be displayed on the device.

When the player advances the player list to the desired player, they are instructed

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
20

to push the device down.

The player has the option to select one or more players for multi-player
games by repeating said selection process. Physically pushing the cube down is
handled by a Sifteo SDK event handler. This causes the player selected to be saved
to an array. Pushing the cube down twice consecutively without selecting a new
player causes the state machine to advance from player selection to game start.
The game state starts and the state machine stays in this state while the game is
being played by each player. Fig. 26 illustrates the kinds of data fields that might

be associated with each player.

Referring to Fig. 27, the game is played and data captured. Game data
comprises subsequent physical responses from cube movement. The data is
captured into memory, which is transferred to a host or server computer data
repository at the end of the game state. This data repository is linked to other

player data via the registration and player link.

Referring to Fig. 28, 29 and 30, the game starts and the state machine stays
in this state until the game finishes. Game logic drives the response of the player.
Physical cube movement causes data input to the computer. (Fig. 29) This cube
movement data is collected into an array in memory (Fig. 30), along with game
data, at a sub-second interval during the game state. This data, which is stored
logically as variables in C#, is written to an array. Data in the numeric and string
variables is updated in real-time as the game is played in the game state. The
variables are written directly and constantly to the array as the state machine

progresses through the state and stops when the state stops.

Game data, listed in Table I, refers to randomized counters, in game events,
images, timers, sequences, scoring counters, level counters, and other stimuli
necessary to play games. The types and frequency of images and sound are
important to all games for game play and creating a response by physically moving

the cubes. These types of game objects are controlled through the Sifteo SDK.

10

11

WO 2014/066273 PCT/US2013/065985
21

Variables from Table I are aggregated for inter-level, level and game perspectives

for different types of analyses.

Physical movement data, also listed in Table I, includes any movement of the
cube by the player. The Sifteo SDK event handlers are used to report physical
responses to the cubes. The type of combined data captured from the game and from

physical movement is seen in Table I.

Table I
Unique ownerlaccount id mapping to the device
Accountld registration
Playerld Unique player id mapping to the player of the game
Gameld Random ID to differentiate game played
Event General action in game for human reading purposes

Unique device id indicating which tangible device is being
Deviceld moved/used

Unique image id representing image on device. Imageld
Imageld explicitly designed to graphical image.

Boolean 1 or O variable indicating a new image is displayed
or not. Newlmageld = 1 when new image is displayed.
Decision to display new image can be random or explicit in

Newlmageld the came.
Segsionlevel Session or level of the game
TiltX TiltX = TiltLeft+TiltRight
TiltY TiltY = TiltUp+TiltDown
.

m< Tiltz< u
TiltZ m = TiltFlip, n = TiltFlipBack
Movement Movement = TiltX + TiltY + TiltZ

12

13

14

15

16
17
18
19
20

21

22

23

WO 2014/066273

TimeMovement

NeighboringEventOn

Neighbor EventOff

OffTiltCounter

OnTiltCounter
TiltLeft
TiltRight
TiltUp
TiltDown

TiltMiddle

TiltFlip

TiltFlipBack

PCT/US2013/065985
22

Movement/Virtuallicks

Boolean 1 or 0 variable indicating cubes moved together
from neighboring event. NeighboringEventOn=1 when
cubes neighbored, else 0. Neighboring event handled by
Sifteo SDK.

Boolean 1 or 0 variable indicating cubes moved apart from
neighboring event. NeighboringEventOff=1 when cubes
removed from neighboring event, else 0. Neighboring event
handled by Sifteo SDK.

Off response tilt counter. Counter increments on each tilt
from point of device neighbor removal (after neighboring)
until next image displayed.

XN
o f(Movement)
me< MO?]‘E‘;’\‘RETLT< n
m = NeighborEventOff, n = Newlmageld
On response tilt counter. Counter increments on each tilt
from point new image is displaved until neighbored.

\\ f(Movement)

m< Movement< u

n = NeighborEventUn, m = Newlmageld

Tilt only to the left. Atomic data provided by Sifteo SDK.
Tilt only to the right. Atomic data provided by Sifteo SDK.
Tilt only upwards. Atomic data provided by Sifteo SDK.
Tilt only downwards. Atomic data provided by Sifteo SDK.
Tilt return to middle. Atomic data provided by Sifteo SDK.

Boolean 1 or 0. TiltFlip = 1 when cube is flipped over,
otherwise 0. Sifteo SDK event handler controls {lipping
method.

Boolean 1 or 0. TiltFlipBack = 1 when cube is flipped back
over, otherwise 0. Sifteo SDK event handler controls
flipping back method.

24

25

26
27

23

29

30
51

32

33

34

30

WO 2014/066273

VirtualFicks

Correct

Incorrect
Response

ImageDraws

CorrectDisplay

ImageDisplaylLength

DateTime

DoubleHit

FrameFlapse

DeviceDistance

TopBottomHit

PCT/US2013/065985
23

Measureable time unit recorded as ticks which operates
within the state machine. Configurable measure.

Number of correct responses, as deemed by rules in the
game, based on responses by a player in a game. For
example, game defines correct response as
NeighboringEventOn and NeighboringEventOff while only
defined correct image 1s displayed,

Number of incorrect responses game, as deemed by rules
in the game, based on responses by a player in a game. For
example, game defines incorrect response as
NeighboringEventOn and NeighboringEventOff while
defined correct image is NOT displayed.

Response = NeighboringEventOn + NeighboringEventOff
Total number of images displayed during the game

Number of correct images displayed during the game, as
deemed corrvect by rules within the game,

Length of time image is displayed as defined by the
number of VirtualTicks an image 1s assigned display on
device.Configurable.

Date and time game is played

Count for double or multiple hits of neighboring device
until next image displayed. DoubleHit is

m = Response,, n = Newlmageld

Actual state machine time in ticks elapsed for session
and/or game

Fixed distance ininches devices may he placed apart. This
varies by type of game and will vary by session as part of
setup.

Measured by response to top or bottom of device. Count for
device hits from top or bottom.

36

37

38

39

40

41

WO 2014/066273

CubePressed

CubeNCounter

ResponseCounter

ResponseCorrect

Responselncorrect

CorrectReaction

PCT/US2013/065985
24

Number of times device is pressed and released. Atomic
data provided by Sifteo SDK

Counter in VirtualTicks that starts when two or more
devices are put together (neighhored) until the moment
they are removed.

S f (VirtualTicks)

S
L VirtualTicks<n
m = NeighborfventOn n = NeighborEventOff

VirtualTicks between image displays, acts as control for
response correct/incorrect.

0
\ [(VirtualTicks)

m< VirtualTicks< n
m = Response, n = Newlimageld

VirtualTicks when image is displayed until correct
response is hit. Delta between response counter measures
response time.

0
\ [(VirtualTicks)

m< VirtualTicks< n
m = Response - 1 = Newlmageld

Virtual ticks when image is displayed until incorrect
response is hit. Delta between response counter measures
response time.

0
\ [(VirtualTicks)

m< VirtualTicks< n
m = Response;, ... 1 = Newimageld

VirtualTicks from when an image is displayed until a
correct response.,

\\\ f(VirtualTicks)

R
m&VirtualTicks<n

nz= ReSponse ., recr M = Newlmageld

42

43

44

45

46

47

48

49

WO 2014/066273

IncorrectReaction

OffTiltReaction

On'TiltReaction

NeighborReaction

TouchReaction

Cubel.ocation

Omissions

Comissions

PCT/US2013/065985
25

Number of VirtualTicks from when an image is displayed
until an incorrect response,

\\\ f(VirtualTicks)

me Virtaa‘iTicks< n
Nz ReSponse , coreer M = Newlmageld

Amount of tilt (not ticks) from point of device neighbor
removal (after neighboring) until next image displayed.
Configurable to other events.

SRR

X .
> f(TimeMovement)
m< TimeMovement< n

m = Response, n = Newlmageld

Amount of tilt (not ticks) for each device from point new
image is displayed until device is neighbored. Configurable
to other events.

\\ ‘ f(TimeMovement)

1< TimeMovement< n
n= Response, m = Newlmageld

Amount of VirtualTicks from when two devices are put
together (neighbored) until the moment they are removed,

NS

N
\ fiVirtualTicks)

m< VirtualTicks< o
m= NeighborEventOn n = NeighborEventOff

Amount of touch for each device from configurable point in
time. Atomic data provided as part of Sifteo SDK.

The geometric coordinates of the cubes physical location.
Atomic data provided as part of Sifteo SDK.

Number of times the correct stimulus is presented and
there is no response. Omissions = CorrectDisplay Correct

Number of times the correct stimulus 1s presented and a
different stimulus is hit. Comissions = Incorrect

10

15

20

WO 2014/066273 PCT/US2013/065985
26

Referring to Fig. 31, the game state ends after a defined period of time or a
certain goal is achieved by the player. This varies depending on the game and is

controlled by logic defined in the Sifteo SDK.

If the player chooses to play again, the state machine resets itself to the start

state. If the player chooses not to play again, the state machine ends.

As illustrated in Fig. 31, when the game state ends, either because a set time
elapsed or the player completed an objective, combined game and movement data
that is stored in the array is uploaded and transferred through standard web
protocols to a host or server computer based on the player and account registration
identifier. An algorithm loops through the array storing the data and then .NET
libraries are used to securely transfer the data. In the new version of the Sifteo
SDK, C++ libraries can be used to accomplish the same task. The account
registration and player identifiers are contained in the data that is uploaded (Table
D). These exist because of account registration and player creation, which is
important to this invention. It allows all of the collected game data to join to data
stored on the host or server computer. This includes self-reported player
demographic data, education, and medical history. See Fig. 25.

Combined data, which includes game data, movement data, and player data, is

analyzed to provide a complete player profile spanning multiple cognitive areas.

Table 11

WO 2014/066273 PCT/US2013/065985
27

Piayers Analysis Beta

N
R N

\\\\\\g\\\\k NN
S \\\,\\‘}\ » TR

N\ N S\ N\ \
1 1 3 roundsh %
Z 1 3. G z
3 1
4 1 208
5 i 440 4 55
&) 3 308
¥ W 1 404G 8.0
8 20806 1460 EREY 1 340 5 (3P0
We7 368 180 3 354 prariil GOy
BE7T 4400 3 S48 18 .33
ogn 333 3 355 21687
TR 387 1 4 > £15 .33
833 133 586 3 371 1433
74 4 33 287 3 352 PLERCR
8 £33 G40 3 838 13.67

Table II shows summary statistics for a game representing some factors that
are indicative of impulsivity and inattention. These summary statistics are
generated through summation, averaging, and standard deviation operations of
response metrics across game data by player. Inattention will in general have more
errors of omission and less tilt movements than control. Impulsivity will be
represented as more commission and greater tilting movements than control. This
pattern of response is derived from the physical movement of the cubes to various

sound and image stimuli.

The game may employ distracters. Fig. 2 is exemplary, where a player is told
to use the mallet to strike the gopher. The gopher appears randomly, and other
figures, such as the boy mowing the grass may randomly appear along with the

gopher to distract the player.

Figure 4, shows more details about player movements captured during the

10

15

WO 2014/066273 PCT/US2013/065985
28

games. A player that has more or even less movement than other players or

instructors will yield a different data profile which may indicate a cognitive deficit.

In clinical trials of the system conducted at the University of Minnesota,
several classifier algorithms employed in the platform produce statistically
significant results in predicting diagnoses, type, and comorbidities based on
combined player/patient data and demographic education and medical data. Said
classifier algorithms rely on transformed data from the game. For example,
neighbor_reaction time (Table I, item 45) is a transformed variable. It is computed
as follows. When considering the variables in Table I, first subtracting
VirtualTicks-CubeNCounter, and then taking the maximum CubeNCounter when
considering this difference per game instance, and then lastly taking the
summation of the CubeNCounter per game instance, results in the total amount of
neighbor reaction per game played. Sample SQL code to create this transformed

variable is seen here:

select sum(counter) neighbor_reaction, gameid
from
(
select max(cubencounter) counter, diff, gameid
from
(select gameid,
event,
cubeid,
datetime,
sessionlevel,
virtualticks,
cubencounter,
(virtualticks-cubencounter) diff
from Game_Table
where (virtualticks-cubencounter) < virtualticks

order by sessionlevel, virtualticks) as b

10

15

20

WO 2014/066273 PCT/US2013/065985
29

group by diff, gameid) as f
group by gameid

Said algorithms results in probabilistic output stating that player is a certain
percent likely to have or not have diagnosis and type of cognitive disorder like
ADHD, ASD, anxiety, or depression. These results can be used as a diagnostic aid
and/or for intervention. Exemplary results are illustrated in Table III

Table 111

Players Beta - Clinical

kinha Groundskesper 82% 22% 18%
§ is - 81 1%
viskesper 82% 18% 14%
Groundskeepar 5% 8% 12%

Symptoms of inattention are indicated by increased reaction time measured
in virtual ticks, fewer commissions as defined in Table II, and less accessory

movements as measured by TiltX + TiltY + TiltZ, as defined in Table I, than control.

Hyperactivity and impulsivity is determinable by more commissions, as
defined in Table I, specifically when the spatial component, as determined by
measuring spatial coordinates, is introduced in the game level, and this causes
decreased overall reaction time compared to control. There are several types of
reaction time, measured in ticks by the point in time a new stimulus is presented to

the point of response. Different types of reaction time are captured based on correct

or incorrect responses.

10

15

WO 2014/066273 PCT/US2013/065985
30

ASD symptoms are determined by more omissions, specifically when the
spatial component, as determined by measuring spatial coordinates, is introduced
in the game level, over control; and wherein more commissions are determined, as

defined in Table I, in response to a disturbance.

Anxiety symptoms are determined by an uneven distribution of reaction time
over sessions in comparison to controls, as measured in ticks by the point in time a
new stimulus is presented to the point of response. Different types of reaction times
are captured based on correct or incorrect responses. It is also determined by more
omissions, as defined in Table I, compared to control. Further, increased movement

as defined by Table I, compared to control is also presented.

Depression symptoms are determined by more omissions and commissions as
defined in Table I, increased cube neighbor reaction time, as defined in Table I, and
further increased neighbor reaction time when spatial relationships, as determined

by measuring spatial coordinates, are applied compared to control.

10

15

20

25

WO 2014/066273 PCT/US2013/065985

31

We claim:

1.

3.

A statistical data gathering system, comprising;
a base device 14;

a plurality of cubes 10, the cubes responding to three dimensional movement
and neighboring with other cubes to transmit data regarding its three
dimensional location and neighboring with other cubes to the base

station;

wherein the base devise is configured to selectively transmit images and
sound to the cubes such that a player has to perform a predefined

action in response 12;

the base device further configured to periodically capture said data from the
cubes and record the data into a table, the data including data

pertinent to a cognitive disorder;

the base device further configured to determine statistics from said table, the
statistic including sums, averages, standard deviation to produce

response metrics that are indicative of a cognitive disorder.

The system of claim 1 further including:

a web-based server 1204 configured to store player data, including the
player’s name and medical history; and

means 1206 for establishing a unique relationship between a particular set of

cubes and the web-based server.

The system of claim 2 wherein the base device is configured to determine a

unique number 1504 associated with a particular set of cubes and to use this

number to communicate with the web-based server.

10

15

20

25

30

WO 2014/066273 PCT/US2013/065985
32

4. The system of claim 3 wherein the base device and web-based server are
mutually configured to download to the base device pertinent player data for every

player associated with a set of cubes.

5. The system of claim 3 wherein the base device is further configured to
instruct the player to play a game with the cubes which involves the player reacting
a specific manner to a plurality of difference cube configurations; or by following the

lead of a lead cube manipulated by a person other than the player being diagnosed.

6. The system of claim 5 wherein the specific configurations include
predetermined disturbance configurations, the reaction to such disturbances

comprising an indicia of a cognitive disorder.

7. The system of claim 6, the table being configurable to record in the table the
occurrence of specific disturbance configurations, wherein the data from said table
following said disturbance configuration being selectively analyzable to determine

particular responses.

8. The system of claim 7, based on summary statistics, wherein the symptoms of
inattention are determined by comparing reaction time measured in virtual ticks,
fewer commissions as defined in Table I, and less accessory movements as

measured by TiltX + TiltY + TiltZ, as defined in Table I, with control.

9. The system of claim 7, wherein, based on summary statistics, hyperactivity
and impulsivity symptoms are determined by comparing more commissions, as
defined in Table I, specifically when the spatial component, as determined by
measuring spatial coordinates, is introduced in the game level, and decreased

overall reaction time compared to control.

10. The system of claim 7, wherein, based on summary statistics, ASD symptoms
are determined by comparing over control more omissions, specifically when the

spatial component, as determined by measuring spatial coordinates, is introduced

10

15

WO 2014/066273 PCT/US2013/065985
33

in the game level; and wherein more commissions are determined, as defined in

Table I, in response to a disturbance.

12. The system of claim 7 wherein, based on summary statistics, anxiety
symptoms are determined by an uneven distribution of reaction times over sessions
in comparison to controls, as measured in ticks by the point in time a new stimulus
is presented to the point of response; wherein increased movement as defined by

Table I, compared to control.

13. The system of claim 7, wherein, based on summary statistics, depression
symptoms are determined by more omissions and commissions as defined in Table
I, increased cube neighbor reaction time, as defined in Table I, and further
increased neighbor reaction time when spatial relationships, as determined by

measuring spatial coordinates, are applied compared to control.

WO 2014/066273 PCT/US2013/065985

1/25

SN

000000000000

/////////////////

\\\

WO 2014/066273 PCT/US2013/065985

 Player/Patient 17

- Othrer PlayersfPatients

" Cube helng moved

oo LR Lowsd

WO 2014/066273

PCT/US2013/065985
4/ 25
Sifteo System
Computer or Base Device - 14
NET |, | Sifteo
Framework | “|Runtime
A [
v Speakers
Sifteo API
for SDK Volume
1 -
Input / Output 12
v
Sifteo Cube(s) -
Accelerom Battery Button - End User /
eter Player
Bluetooth / LCD
cPU Near-field Screen

Fig. 5

PCT/US2013/065985

WO 2014/066273

5/25

S\ e

Fig. 6

WO 2014/066273

6/25

PCT/US2013/065985

714

706 —

—Player List—

-3 Player Select
{
No PlayerID
/y\
Aonfirmedt
".<\ on |?rme/>
716 —>\\; i
Player ID
¥
718 —— Play Game

Play Game
fvent |+ 702
i
Account ID
¥
Start Game | 704
/7 08
/i\
/’first Tim}\ Register ID
N Use? - Yes on website
N
No
* N
P
Show /A’Ez:oun'c\ll}
Appropriate #——Yes—< .
\Q’\tered?/
Player Menu < gy
g
) No i
712
710
End Game | «— 720
¥
SN
Rl
Play again?}} - 729
. A
N
hd
No
¥
Stop Game
Event 124

Fig. 7

WO 2014/066273 PCT/US2013/065985

71725

708

714

718

724

Fig. 8

WO 2014/066273

902

\

PCT/US2013/065985

Computer or
Base Device
Controller

—

8/25
904
Cube 1 ¢
906
Cube 2 —
T
Cube 3 —

End User/
Player

0O
c
(ox
(]
=z
PS

912

WO 2014/066273 PCT/US2013/065985

9/25
Computer/Base and Cubes 108
P *
CogCubed
Points / References— Game Image
104 .
102 \
/ 110 —_
i S
Logic from ISr‘Irf;ZZ CogCubed
Sifteo SDK —Calls— Reference Gamezlmage
Structure
Genetates 112 T~
106

| CogCubed
\ Sifteo Game Image
N

Utility

Fig. 10

WO 2014/066273 PCT/US2013/065985

10/ 25
704
718
Start State ~
902

Computer or Base /
Device Controller Cube 1
Sifteo SDK Cube 2
Cube N

bt ah e aw a a wa ke

|3

Fig. 12

WO 2014/066273

PCT/US2013/065985

11/25

Sifteo System

Computer or Base Device

.NET Sifteo
Framework | Runtime

3 —

y Speakers

Sifteo API
for SDK Volume

5
Input / Output
v

Sifteo Cube(s)

Accelerom

Battery Button
eter

Bluetooth / LCD

cPU Near-field Screen

1202
—1200
’ Input End User/
np Player
Input Account and Player Data
1206 P Y
1212 J /1204
Host{or Server CGmputer(s)
Input / Output —y | Web Data
Account Identifier Form Repository
4 A
| Output —» Account and Player Djata
Game Data Demographics / Education /
Medical
S 1210
1208 1214

Fig. 13

WO 2014/066273

PCT/US2013/065985

12/ 25
State
1402—— Transition
Event
1410 1404 |
/ \ Checks
¥ A
Registration | Data
Method Generates D> Structure
A
1406
Value
—No Found
Yes
1408 l
\ Transition
State

Fig. 14

WO 2014/066273 PCT/US2013/065985

13/25

1502

Unique
Device
IDs

1506

1504 ‘41///
A

Account ID
Generate > Account ID-#4 Displayed on
Device

k /
Open Vg
Website and

Enter
Account ID

1508

1510

¥

User submits
data

\ data store

1512

Fig. 15

WO 2014/066273

PCT/US2013/065985

14/ 25

1602

Uniqueld for Cube N from
CubeSet Class | ——Loop through each—» |

Start element End element

EnE

v v |
X x| x| x| x| x| x|x|x|[x|x]|x

Supported by Sifteo SDK

Eight-digit identifier
Data Write parsed from end of string
Structure
T\\\\ 1604
I 1606
Input
v /////1608
Display &
Algorithm

Fig. 16

WO 2014/066273 PCT/US2013/065985

15/ 25

1704 ((
.. . . . Start element End element
Lookup digit | Cogrdinate geometry pixel location l Loop through each l
1710 0 | {xyhixyhixy}.| <+——Lookup Digit X[X | X|x|x]X
1| (oyhieyhixyd,. | |
{xyL{xyLi{xy} 1706 1702
2 | doyboyhixyh. / Eight-digit identifier parsed T
from end of string
3 | {yhixyhLixyl. Retrieve next digit
4 | {xyLixyhixy}.
5 | b yh{xyh- | —Return Coordinates for One Digit— Sifteo SDK Paint /
6 | b xyh{xyh- | —increase X Offset for Next Digit— Draw
7 {X/V}/{X/V}/{X/V}/- /
8 | {xyhixyhixyl. 1708
9 | doyhixyhixyl.

,,,,,,,,,,,,,,,,,,,, R O . N
Hegistration wabsiie :

iy ranrvd $0% FE R IRy iyt ey
~~~~~~~~~~~~~~~ LS IO DYORTSss SIatgmmmm

.....................................................................................................................................................................................................................................



WO 2014/066273 PCT/US2013/065985

16/ 25

A\

First Name: sign-up to play with CogCubeg!

Last Name:
E-mail
Password:
Verify Password:
Aspount Type:
Schoo! Name:
Pasition:
Account 1D 4

Uniock reai-time metrics regarding
game play to track progress andg
abilities

WIS

- i~ S
< with fends and amiy

Fig. 19



WO 2014/066273

171725

PCT/US2013/065985

Seoount Malder)
o, ra

AT -
= in,

\

Sy

[ oI -.\“-v*"""“

|

Inputs

st Server Compaters}

Web Form frinerts

f'“““‘“““““““‘“““““‘;
3 ‘I}

Owner "

jeihecks axi

stng— |

£
Rk

data stowre §

S




WO 2014/066273 PCT/US2013/065985

18/ 25

W

Load defadt |
player :

e Player st e

Fig. 21



WO 2014/066273

19/ 25

PCT/US2013/065985

Siften System

~input Account identifiere

H

st oF Server Computsrisl

Owner
data store

e by
O

e
b

Dty

5\."’ l{‘?
{ !
i Player |
{ ' g
1 dats store \&
!‘\.“ X

Hifteo Doty Stors

NET Libwary for TORAP
Commurication

Betrisve and store

wElement 1~ Player]

—Rlement Nm&{

Wifococes

entifer—w

Players
Return Sorted

Aocaononacy

Fig. 23



WO 2014/066273 PCT/US2013/065985

20/ 25

ihdex | String

L0

L - Decraise—w i P

Tilt Event Erncdey

 Right - Incresss—e | 2| Playerd

| | |
Start element ¥ End slement

.

~-Loop thraugh each-

Lookup Char | To oty pixel location

aed b Char

&

Player String

eyt ohar

o<

d | sardayibovi. Ratrigye 1

Sy

P bovhisvkingde | peturn Coordinates for One Chars| . e Tt 1
' Sifteo SDE Palnt

By bl e increase X Gffset for Next Char—w Uraw

g | dny

x

h | xvhioyhboyl

S {;{{y})‘::}{!)){}f {.\‘S ,;l-'

Fig. 24




WO 2014/066273 PCT/US2013/065985

21/ 25

2 another
N
iy




WO 2014/066273

PCT/US2013/065985

22 /25

Conner's inventory Scove (Rarentsy

3 {inatientio:
HY iayperaoiivity

LP (earning problems;

EF fexscutive functioning)

AG fdefianceiatigression]

PR {peer refationshins)

Lonnar's invantary Score {Taacher
Nfinatentio

HY (Syperactivity)

LE fexecutive functioningisarming)
AS {defiancelaauression

H {peer refationships)

CPY Score Percan

CETProW

LPT ADHD sublyd

Medicated with a stimuiant or not
RMedipated with a nonsstimulant or not
Curvent education {grade isval)

Comornudiies

Game-State

D Datd pe—y

vy

Wossangnt ¥
Erasta

Hsst or Server Computer(s]

{3ata regository
<

H
Cipenvay |

&

¢
!
’1‘ data store L
ke

\

LTI
Ldany

A S 7

Input Game Data { if
w fRpid Movement Data L LIROHS i
Linkwith aceountfpkeyer ’

y 3

“ranaanansaanssaassansat

3
ey Players

; H
{ i
h
g
¢
] 4
1"& %
VTRV




WO 2014/066273 PCT/US2013/065985

23/ 25

Fig. 27

QaEme
Retivity

Lo >~ -

": e N .

i GENETAteS
: \1 : «\“‘:'S“

g =
g

¥ W

Gams
dats

........................................................................

Fig. 28



WO 2014/066273

S R
{ 3
{‘F’i ay Gane)
&
hY £
N, __.'{ N
.\’\-‘h\_,.v "
3
3
3
3
3
N
¥

Game Nate

Game Logic

Cihe
Bovemsnt

{8 Logio ~

HATTie Adtivity

to Array

PCT/US2013/065985




WO 2014/066273 PCT/US2013/065985

25/ 25

Algorithm to store dats

Ward Sreay in Memaory

Ward

Gameandmovementdatal T I VR PR X PR PR X XXX X | X

Writtan at
Subssecontdinenat T IX X T X PR XX XN X PR PR X

¥

Ry rs0000000000000000000000

\,v_
. .
i\\.
.

i TII e,

A
L

Remote Host or Servey

Fig. 31




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings

