[54] 发明名称
快速光谱分辨监测器

[57] 摘要
一种用于监测光谱倾斜度的方法和装置，利用阵列波导光栅（AWG）将具有多个波长通道的复用光信号分解成多个分波段，其中每个分波段跨越不同的波长范围且包括多于一个波长通道。提供光电探测器阵列用于测量每个分波段的光功率，同时电子控制器利用在每个分波段测得的光功率来计算复用光信号的光谱倾斜度。根据本发明的光谱倾斜度监测器可以提供光谱分辨率，提高了监测速度并降低了制造成本。
1. 一种光谱倾斜度监测器，其特征在于包括：
将具有多个波长通道的复用光信号分解成多个分波段的阵列波导光栅，所述每个分
波段包括多于一个的来自所述多个波长通道中的波长通道。
2. 根据权利要求1所述的光谱倾斜度监测器，其特征在于：所述多个波长通道中
的波长通道的数量为n，所述阵列波导光栅包括：
用于传输复用光信号的光波导；
波导阵列，所述波导阵列具有光耦合到第一平板波导的第一端和光耦合到第二平板
波导的第二端，所述第一平板波导用于接收来自所述光波导的复用光信号，所述第二平
板波导用于将所述复用光信号的n个解复用的分信号聚焦到n个独立位置；和
光耦合到第二平板波导的多路多模输出波导，所述每一路多模输出波导有经选择的
宽度以收集多路解复用的分信号并提供所述分波段中的一个。
3. 根据权利要求2所述的光谱倾斜度监测器，其特征在于：所述光波导是单模波
导。
4. 根据权利要求1至3中任何一项所述的光谱倾斜度监测器，包括光电探测器，
所述光电探测器光耦合到所述多模输出波导的每一路，以测量在所述分波段的每一个中
的光功率。
5. 根据权利要求4所述的光谱倾斜度监测器，包括电子控制器，所述电子控制器
利用测得的在所述分波段的每一个中的光功率来计算所述复用光信号的光谱倾斜度。
6. 根据权利要求5所述的光谱倾斜度监测器，其特征在于：所述光电探测器是光
电探测器阵列的一部分。
7. 根据权利要求6所述的光谱倾斜度监测器，其特征在于：所述光电探测器阵列，
所述电子控制器和所述阵列波导光栅被集成到同一块基片上。
8. 根据权利要求1至7中任何一项所述的光谱倾斜度监测器，其特征在于包括：
用于调节所述阵列波导光栅的加热元件。
9. 根据权利要求1至7中任何一项所述的光谱倾斜度监测器，其特征在于：所述
多个分波段中的每个分波段跨越不同的波长范围。
10. 根据权利要求2至7中任何一项所述的光谱倾斜度监测器，其特征在于：所述
阵列波导光栅有足够的分辨率以分辨n个波长通道。
11. 根据权利要求1至7中任何一项所述的光谱倾斜度监测器，包括用于监测双向
光纤链路的四个阵列波导光栅。
12. 一种阵列波导光栅包括：

光波导，所述光波导用于传输具有 n 个波长通道的复用光信号；

波导阵列，所述波导阵列具有光耦合到第一平板波导的第一端和光耦合到第二平板波导的第二端，所述第一平板波导用于接收来自所述光波导的复用光信号，所述第二平板波导将所述复用光信号的 n 个解复用子信号聚焦到 n 个独立位置；和

光耦合到第二平板波导的多路多模输出波导，所述每一路多模输出波导有经选择的宽度以收集多个解复用的分信号。

13. 根据权利要求 12 所述的阵列波导光栅，其特征在于：所述光波导是单模波导。

14. 根据权利要求 12 或 13 所述的阵列波导光栅，其特征在于：所述每路多模输出波导光耦合到光电探测器，所述光电探测器用于产生光功率测量值以计算光谱倾斜度。

15. 一种光谱倾斜度监测器，包括：

提供具有多个波长通道的复用光信号的输入端；

光耦合到输入端的多个薄膜滤波器，所述多个薄膜滤波器用于将复用光信号分解成多个分波段，所述每个分波段包括多于一个来自于所述多个波长通道的波长通道；

用于测量每个分波段的光功率的光电探测器；和

利用在所述每个分波段测得的光功率来计算所述复用光信号的光谱倾斜度的电子控制器。
快速光谱分解监测器

交叉引用的相关申请
[01] 本发明主张于2004年10月6日提交的60/616,353号美国临时专利申请的优先权，通过参考将其内容结合入本申请中。

5 橡皮胶片
[02] 无。

技术领域
[03] 本发明主要涉及波分复用（WDM）光信号的监测，特别是一种用于带有光放大器的波分复用（WDM）系统中的监测倾斜度的方法和设备。

10 背景技术
[04] 在波分复用（WDM）系统中，具有不同波长的多个光通道被复用并在同一根光纤中传输。这些信号需被放大（例如：每隔80～120千米）以补偿光纤传输的损耗。

[05] 光放大器利用掺稀土元素的光纤放大器（例如，掺铒光纤放大器）与光泵浦连接，提供所需的光功率增益，以同时放大所有波长，这样可降低每个通道放大所需的费用。但是，当光放大器无法向所有传输波长通道提供相同的光功率增益时，问题就会出现。

[06] 不同波长的光功率的变化或光谱失真是直接由光放大器增益产生的（例如，非均匀增益曲线），并且累计的失真使失真更加严重。而且，较短的波长作为附加的功率泵浦，导致较短的波长经历称为受激喇曼散射（SRS）的附加增益。结果，产生带有正的斜率的光谱倾斜，并且随着放大器链路继续增长。

[07] 为了及时地精确修正和/或控制光谱倾斜，需要监测倾斜并实时测量其斜率。传统的监测方法使用的是光谱分析仪，其中光谱被扫描或被解复用到各自的波长通道，每个被解复用的波长通道的光功率被分别测量。当光谱分析仪相当精确时，它们也非常昂贵且体积比较庞大。而且，尽管这些监测器测量由稳态信号功率变化所产生的倾斜很精确，但是它们对监测由于快速供应、光通道恢复和瞬间光功率而导致的倾斜又显得反应太慢，所述快速供应、光通道恢复和瞬间光功率由光纤切断或设备故障引起。所有这些事
件均会导致光谱严重失真和在小于微秒级的时间内产生正向或负向的倾斜，使现有技术的监测技术在减少对服务的负面影响方面表现出是无效的。

用于测量这些快速瞬态现象而产生光谱倾斜的监测器典型的是单端监测器，其只能测量光信号的总功率。更特别的是，这些监测器是利用受激朗曼散射(SRS)导致的光谱倾斜和光信号总功率之间的线性关系推测出光谱倾斜度的。然而这些快速监测器缺少光谱分辨，而且不能确定光谱倾斜是正向还是负向，这些信息对于采取正确的行动很重要。

本发明的一个目的是提供一种测量光谱倾斜度的快速光谱分辨监测器。

本发明的另一目的是提供一种具有紧凑结构和低成本的用于测量光谱倾斜度的快速光谱分辨监测器。

本发明的另一目的是提供带有精确数据的快速反馈以驱动倾斜度修正设备和/或驱动光泵浦以调节光泵浦功率到所需的更高的或更低的值。

发明内容

本发明涉及一种监测光谱倾斜度的方法和设备，其中光信号分为多个分波段，每个分波段跨越不同的波长范围，分波段的数量少于波长通道的数量。光谱倾斜度利用在每个分波段测量到的光功率来计算。

根据本发明的一个实施例，使用多个薄膜滤波器(TFFs)将光信号分成多个分波段。根据本发明的另一个实施例，使用阵列波导光栅(AWG)将光信号分成多个分波段。

有利地，光谱倾斜度监测器用于提供光谱分辨率，提高监测速度，降低制造成本。而且，它可以被设计成提供在任意宽度内的平坦传输和没有内在损耗的分波段传输频带，同时仍然可以在带有很高隔离性的通道间隔的分解基础上分解通道波段，而不需要空的或跳过的通道（dead or skipped channels）。

根据本发明的一个方面，提供一种监测光谱倾斜度的方法，包括：使有多个波长通道的复用光信号经过一个光谱倾斜度监测器，以使在光谱倾斜度监测器中的阵列波导光栅将复用的光信号分解成多个分波段，每个分波段包括多个来自所述多个波长
通道的波长通道：在每个分波段测量光功率，和，利用在每个分波段测量的光功率计算复用的光信号的光谱倾斜度。

[16] 根据本发明的一个方面，还提供了一种光谱倾斜度监测器，它包括：将带有多个波长通道的复用光信号分解成多个分波段的阵列波导光栅，每个分波段包括多于一个的来自所述多个波长通道的波长通道。

[17] 根据本发明的一个实施例，多个波长通道中的波长通道的数量为 n，阵列波导光栅包括：用于传输复用光信号的光波导；波导阵列，所述波导阵列具有光耦合到第一平板波导的第一端和光耦合到第二平板波导的第二端，所述第一平板波导用于接收来自所述光波导的复用光信号，所述第二平板波导用于将所述复用光信号的 n 个解复用的分信号聚焦到 n 个独立位置；光耦合到第二平板波导的多路多模输出波导，所述每一路多模输出波导有经选择的宽度以收集多路解复用的分信号并提供所述分波段中的一个。

[18] 根据本发明的一个方面，还提供了阵列波导光栅，它包括：用于传输具有 n 个波长通道的复用光信号的光波导；波导阵列，所述波导阵列具有光耦合到第一平板波导的第一端和光耦合到第二平板波导的第二端，所述第一平板波导用于接收来自光波导的复用光信号，所述第二平板波导将复用光信号的 n 个解复用的分信号聚焦到 n 个独立位置；和光耦合到第二平板波导的多路多模输出波导，所述每一路多模输出波导有经选择的宽度以收集多个解复用的分信号。

[19] 根据本发明的另一方面，提供光谱倾斜度监测器，包括：提供具有多个波长通道的复用光信号的输入端；光耦合到输入端的多个薄膜滤波器，所述多个薄膜滤波器用于将复用光信号分解成多个分波段，所述每个分波段包括多于一个来自于所述多个波长通道的波长通道；用于测量每个分波段的光功率的光电探测器；利用在所述每个分波段测得的光功率来计算所述复用光信号的光谱倾斜度的电子控制器。

附图说明

[20] 结合附图，对本发明的进一步特征和优点进行详细说明，在这些图中；
[21] 图 1 是根据本发明的一个实施例，在带有光谱倾斜度监测器的 WDM 系统中的一个节点的示意图。

[22] 图 2A 是根据高通道数和均匀通道分布计算出的光谱倾斜度；

[23] 图 2B 是当一个分波段满载而别的分波段空载时计算的光谱倾斜度；

[24] 图 2C 是当一个分波段满载而别的分波段部分载荷时计算的光谱倾斜度；

[25] 图 2D 是图 2C 中计算的光谱倾斜度与标准化波带功率计算的光谱倾斜度的比较；

[26] 图 3 是用于计算光谱倾斜度的运算法则的一个实施例的流程图；

[27] 图 4A 是表示当 40 个通道波段满载时，根据图 3 中所述运算法则计算的光谱倾斜度；

[28] 图 4B 是表示当 40 个通道中的 16 个通道波段满载时，根据图 3 中所述运算法则计算的光谱倾斜度；

[29] 图 4C 是表示在一个极端倾斜的例子中，根据图 3 中所述运算法则计算的光谱倾斜度；

[30] 图 4D 是表示在一个极端倾斜的例子中，根据图 3 中所述运算法则计算的光谱倾斜度；

[31] 图 5 是适用于如图 1 所示的光谱倾斜度监测器的解复用器的示意图；

[32] 图 6A 是另一个基于阵列波导光栅（AWG）的解复用器的示意图，所述阵列波导光栅适用于如图 1 所示的光谱倾斜度监测器；

[33] 图 6B 是显示相对于多模波导的标准的 40 个输出通道的位置和宽度的示意图；

[34] 图 6C 显示利用标准 AWG 平顶技术（顶端），按比例缩放的版本（中部）和本发明（底部）而可获得的频带分离滤波的比较图；
[35] 图 6D 是另一个基于 AWG 的解复用器的示意图，所述 AWG 适于如图 1 所示的光谱倾斜度监测器：

[36] 图 7 是根据本发明的一个实施例的在带有光谱倾斜度监测器的 WDM 系统中的双向节点的示意图：和，

[37] 图 8 是具有 4 个带有多模输出波导的 AWG 的芯片的示意图。

[38] 注意，在所有附图中相同的技术特征用相同的参考数字标识。

优选实施例的详细说明

[39] 图 1 是一个波分复用系统中节点 10 的示意图。节点 10 包括光放大器 20，光谱倾斜度监测器 30，光谱倾斜补偿器 40 和接头 50。其它元件，例如色散补偿模块（DCMS）（未示出），可选择使用。

[40] 光放大器 20 放大传入节点 10 的 WDM 光信号。一个适当的光放大器的例子是掺稀土元素光纤放大器，例如掺铒光纤放大器。当然，其它光放大器，例如拉曼（Raman）放大器或掺铒光纤放大器与拉曼放大器的混合也可以。在光纤放大器 20 引入光谱倾斜和/或加强由放大器 20 的上游引入的光谱倾斜的时候，光纤放大器 20 也同时放大了波长通道中的所有光信号的功率水平。

[41] 光谱倾斜度监测器 30 监测和/或测量被放大的光的光谱倾斜度。根据本发明，光谱倾斜度监测器 30 包括波段解复用器 31，所述波段解复用器 31 将波分复用（WDM）光信号分解成多个分波段（即：波长波段）。每个分波段跨越一个不同的波长范围并具有已知的最大数量的波长通道。每个分波段的带宽与邻近的分波段带宽是相同的或不同的，但是并不与其它分波段重叠。每个分波段或满载或空载或部分载荷。光谱倾斜度监测器 30 也包括用于测量每个分波段的总光功率的探测器 39 和电子控制器 37，所述电子控制器 37 基于每个分波段中测得的总光功率来计算光谱倾斜度。

[42] 光谱倾斜补偿器 40 接受来自电子控制器 37 的控制信号并对光谱倾斜进行补偿。一些适当的光谱倾斜补偿器包括增益平坦滤波器(GFFs)，可调式光衰减器，和/或动态增
益均衡器(DGEs)。可选地，光谱倾斜补偿器可以是光放大器的一个部分（即：光谱倾斜
可以通过调节光放大器的工作条件来补偿）和/或作为二级光放大器的一个部分。

[43] 接头(tap) 50 分流被放大的光信号中相对少的一部分（例如 5%）并使其改变方向
进入光谱倾斜度监测器 30，此时被放大的光信号的剩余部分被传输到光谱倾斜补偿
器 40。一个适当的接头的例子是 5/95 悟合接头。

[44] 有利的，相对于光谱分析仪（例如，需要少数光电探测器），根据本发明的光谱
倾斜度监测器能够加速监测速度，同时可以降低制造成本。而且，相对于单一的功率测
量，根据本发明的光谱倾斜度监测器还提高了光谱分辨率。

[45] 特别地，尤其当波分复用系统中波长通道增加和/或减少时，这种增强的光谱分辨
率使得能够更加精确地计算光谱倾斜度。例如，参考如图 2A，图 2B 和图 2C 所描述的
实验和模拟结果。作为范例，通过四个数据点的线性拟合来计算光谱斜率度，每个数据
点与四个波段中的一点的总光功率相对应。在图 2A 中，所述光信号有高通道数和
均匀通道分布，据此绘出的光谱倾斜曲线相当精确。如图 2B，一个分波段满载其它则
空载，据此绘出的光谱倾斜曲线不准确。如图 2C，其中一个分波段满荷载其它则部分
荷载，据此绘出的光谱倾斜曲线也不准确。但是在实例的实例中，可以利用光谱分辨率
归一化每个分波段的光功率并提高所计算的光谱倾斜度的精确度。例如，参考图 2d，
是由测得的波段功率（波段功率）所得到的光谱倾斜度与由归一化的波段功率（归一化
波段功率）所得到的光谱倾斜度的比较。归一化波段功率利用已知的通道载荷和/或估计
的通道载荷计算得到的。

[46] 参考图 3，它表示运算法则的一个例子，其中在每个波段的总功率通过将光功率
转化成单位 dB 而归一化，以根据通道的负载决定相关的功率增益或损失。在第一步骤
60 中，光谱倾斜度监测器利用多个光电探测器测量在每个分波段的光功率。接着，来自
所有波长通道的总光功率被计算，以作为步骤 62 中测得的光功率的总和。在步骤 64
中，总光功率与上次的计算值相比较。如果总光功率相对恒定，则重复步骤 60。如果
总功率与上次测得的值相差很大，则根据步骤 68~72 计算光谱倾斜度。更具体地，光
谱倾斜度的计算步骤如下：为每一个分波段计算估计的每个通道的平均功率（步骤 68)；
利用测得的每个分波段的光功率除以估计的每个分波段的平均功率来确定每个分波段
的负载通道数量（步骤 70)，最后利用步骤 70 中确定的负载的通道数和步骤 60 中测
得的光功率，就可以计算出一个以 dB 为单位的归一化波段功率（步骤 72）。这些归一化波段功率被绘制出来以得到新的光谱斜率度。

[47] 在步骤 67 中，利用光纤中的总信号功率、光纤的衰减、色散、光纤的种类以及受激喇曼散射(SRS)引起的倾斜取决于较短的波长的负载的事实来估算光谱倾斜度。相应地，预定存储的参数包括：总功率和满载系统中的通道数量、光纤跨度距离、输入功率、光纤种类以及由受激喇曼散射引起的倾斜与光纤长度的图。

[48] 在步骤 68 中，每个通道的平均功率用下式进行计算：

$$P(j) = P_{av} + \frac{dP}{df}(f_j - <f>)$$

其中，P(j) 等于波段数为 j 的每个通道的平均功率，P_{av} 等于由来自光电探测器的归一化功率的总和除以满载系统的通道总数所得到的每个通道的平均功率，f_j 是第 j 波段的中心频率，<f> 是所有波段的平均中心频率。特别的，此等式假设通道的分布是线性的。

[49] 图 4A-4D 利用上述运算法则显示了不同的模拟的光谱倾斜度。在这些模拟中，光信号假定为标准的拥有 100GHz 带宽的 40 信道波分复用（WDM）信号。图 4A 中，40 信道波长波段满载荷，1.67dB 的光谱倾斜度在第一次迭代后计算得到 1.48dB，在第二次迭代后得到 1.67dB。图 4B 中，其中 40 信道中的 16 个负载，1.67dB 的光谱倾斜度在第一次迭代后计算得到 0.95dB，第二次迭代后得到 1.80dB。图 4C 和 4D 中，其中满载的 40 信道波长波段的光谱倾斜是非线性的，令人难以忘记的是–2.68 dB 的光谱倾斜度在第四次迭代后估计得到的是–2.15 dB，第五次迭代后得到–2.68 dB。

[50] 图 5 是图 1 中波段解复用器 31 的一个实施例。波段解复用器包括 4 个薄膜滤波器(TFFs)15a-d。如图所示，每个滤波器分别与不同的光电探测器 17a-d 耦合。一个适当的光电探测器的例子是一个边缘固定的光电二极管。可选择的，四个光电探测器可被制造成阵列从而降低制造成本。

[51] 在实际操作中，40 通频道的波分复用光信号进入解复用器，它直接指向第一薄膜滤波器 15a。第一薄膜滤波器 15a 将光信号中的第一部分（即，第一分波段）通过第一光电探测器 17a，在此处测量光功率，光信号中的第二部分到达下一个薄膜滤波器 15b。
第二薄膜滤波器 15b 已过滤的光信号中的第一部分（即，第二分波段）通过光电探测器 17b，在此处测量光功率，已过滤的光信号中的第二部分到达下一个薄膜滤波器 15c。

第三薄膜滤波器 15c 将已二次过滤的光信号中的第一部分（即，第三分波段）通过光电探测器 17c，在那里测量光功率，已二次过滤的光信号中的第二部分到达下一个薄膜滤波器 15d。薄膜滤波器 15d 将剩余光信号（即，第四和剩余分波段）通过第四光电探测器 17d。利用在每个分波段测得的光功率计算光谱斜率度（例如，用如图 3 所示的运算法则）。可选择的，用运算法则（未示出）计算光谱倾斜度，所述运算法则为被薄膜滤波器抑制的分波段之间的通道作补偿。

【52】有利地，用基于薄膜滤波器的光谱倾斜度监测器能够提高光谱分辨率，提供了是正向倾斜还是负向倾斜的反馈，用基于薄膜滤波器的光谱倾斜度监测器是快速的，是可靠的。关于监测速度，根据本发明，已经找到利用光衰减器（VOA）和/或增益平坦滤波器（GFF）在小于大约一微秒内修正倾斜度的光谱倾斜度监测器。尽管光衰减器（VOA）和/或增益平坦滤波器（GFF）的精确度比一些补偿元件低，但是已经发现基于光谱倾斜度监测器的薄膜滤波器（TFF）和快速倾斜补偿器的结合（利用光衰减器和增益平坦滤波器）能提供接近最佳的端到端的性能。

【53】图 6A 和 6B 是图 1 中所描述的波段解复用器 31 的另一个实施例。基于阵列波导光栅的波段解复用器包括单模输入波导 32、第一平板波导 34、具有多个带有不同波长的单模波导的波导阵列 35、第二平板波导 36 和四个宽的多模输出波导 38a-d。它们都布置在一个基片 33 上，为了说明起见，阵列波导光栅 31 是基于标准的 40 信道的 100 GHz 阵列波导光栅。四个光电探测器 39a-d 也如图所示连接于基片 33，使得每个光电探测器 39a-d 被置于不同的多模光波导 38a-d 的端部。优选，每个光电探测器 39a-d 有足够的带宽来收集来自相应的多模输出波导 38a-d 中的光。例如，假如每个光电探测器的带宽大于相应的多模波导输出端的带宽，这种标准就可以达到。一个合适的光电探测器的例子是边缘固定的光电探测器。可选择的，四个光电探测器被设置成阵列从而降低制造成本。

【54】在实际操作中，40 信道的波分复用光信号进入单模输入波导 32，在所述单模输入波导 32 中，所述光信号被传导通过第一平板波导 34，并被导入波导阵列 35。由于阵列中的多个波导具有不同的波长，光信号的不同部分传播入不同的光波导，会产生不同
的相位以及干扰信号。此干扰信号会导致光信号的解复用，解复用部分被映像到第二平板波导 36 的外边缘。在传统的阵列波导光栅中，每个被映像的解复用部分被不同波导收集，这是已知的技术，将不再讨论。在如图 6A 所示的阵列波导光栅中，多模输出光波导 38a-d 收集小组的被映像的解复用信号成分（即，小组的邻近的波长通道）。如图 6B 所示，四个多模输出光波导 38a-d 中的每一个都足够宽以收集 10 个相邻的波长通道，(即，38a 收集 λ₁-λ₁₀, 38b 收集 λ₁₁-λ₂₀, 38c 收集 λ₂₁-λ₃₀, 38d 收集 λ₃₁-λ₄₀)。这些分波段的光功率用光电探测器 39a-d 测量，光谱倾斜度也就计算出来(例如，用如图 3 所示的运算法则)。

[55] 有利的，上述阵列波导光栅能够提供增强的光谱分辨率，提供了是正向倾斜还是负向倾斜的反馈，为每个分波段提供一个宽的平顶线形，而没有设计损耗，达到无瑕操作，上述阵列波导光栅是快速的，准确的，可靠的，并且容易与其它元件集成以形成结构紧凑的设备。其中的一些优点被实现是因为阵列波导光栅拥有足够的分辨率以分辨光信号中的通道数量（即，在本实施例中通道数为 40），但是然后将信道分为分波段损害了其分辨率的优势。

[56] 关于宽的平顶的形状，可直接参考图 6C，它显示出可实现的标准阵列波导光栅平顶设计的波段分离滤波设备与具有多模输出波导的阵列波导光栅相比较。图 6C 顶端的图显示出被设计为解复用一个独立的通道的传统的平顶阵列波导光栅光谱。光谱在传输频带上呈波纹和固有设计损耗。这种平顶设计的例子在美国专利 No. 5,412,744 中被讨论，在此通过参考被结合入本申请。图 6C 中部的图显示出简单的缩放顶端的图的光谱以覆盖一个波段中的多个通道（灰色的柱形表示将单独的传输频带分成分波段）。得到的光谱在相邻的分波段范围里呈现很大的干扰。相反的，底部的图显示本发明的具有宽而平的传输频带而且不带固有传输频带损耗的光谱，它在相邻的分波段范围里呈现很低的干扰。

[57] 关于达到无瑕工作，如图 6A，图 6B 所示的阵列波导光栅可以在 100GHz 系统中将相邻的分波段之间的间隙最小化至小于一个通道带宽。换句话说，阵列波导光栅技术有潜力提供 10 跳跃-0 间隙。最小化分波段之间的间隙非常重要，因为间隙中的通道在功率测量时被忽略或部分被忽略，这将会对监测的准确性产生直接的影响。需要注意的是薄膜滤波器和/或其它解复用技术都不能够提供这个级别的精确度。
[58] 关于监测器的速度，根据本发明已找到利用光衰减器 VOA 和/或 GFF 增益平坦滤波器在小于大约一微秒内修正倾斜度的光谱倾斜度监测器。

[59] 在图 6A、图 6B 所描述的实施例中，阵列波导光栅对温度敏感或绝热。现有技术中，阵列波导光栅通常制作成绝热的以防止波长丢失随着温度而偏移。但是根据本发明的阵列波导光栅，温度的校正和/或稳定性不总是需要。例如，由于波段的带宽很宽而且通道是离散的，每个波段的光功率的变化会在很大程度上仅取决于它的边缘通道。换句话说，总的影响将会取决于波段中分布（band population distribution）。在满居量波段中，对于 15 至 65 满工作范围，倾斜度和/或功率误差可以忽略不计。

[60] 图 6D 是图 1 中所描述的波段解复用器 31 的另一个实施例。解复用器基于一个阵列波导光栅 131，它包括单模输入波导 132；第一平板波导 134；波导阵列 135，所述波导阵列具有多个单模波导；第二平板波导 136 和四个多模输出波导 138a-d。它们都在一个基片 133 上，为了说明的目的，阵列波导光栅 131 是基于标准的 40 通道的 100GHz 阵列波导光栅。加热器 129 连接到基片以均匀加热波导阵列 135。四个光电探测器 139a-d 也连接到基片 133，每个光电探测器被置于不同的多模光导 138a-d 的端部。优选的是，光电探测器 139a-d 中的每一个有足够大的带宽以收集来自相应的多模输出波导 138a-d 中的所有光。例如，假如每个光电探测器的带宽大于相应的多模输出波导带宽，这种标准就可以达到。一个合适的光电探测器的例子是边缘固定的光电探测器。可选择的，光电探测器 139a-d 被制造成一个阵列从而降低成本。

[61] 值得注意的是，这个实施例利用了这样一个事实，即随着温度的变化，每个波段的中心波长是可调的。这种对温度的敏感性可用于进一步改进光谱的分辨率。

[62] 在实际操作中，40 通道的波分复用光信号进入单模输入波导 132，在所述单模输入波导 132 中，所述光信号被传导通过第一平板波导 134，并被导入波导阵列 135。由于阵列中的多个波导具有不同的波长，光信号的不同部分被输入不同的光波导，会产生不同的相位和干扰信号。这种干扰信号导致光信号的解复用，解复用部分映射在第二平板波导 136 的外边缘。四个多模输出波导 138a-d 中的每一个都被制作成具有足够的带宽以收集 10 路相邻的波长通道的光信号。四个波段中的每一个光功率用不同的光电探测器测量（即，139a-d 中的一个）。一旦加热器 129 第一次启动，温度就上升。这
种温度的上升使得每个分波段中收集的光的中心波长偏移一个较高的波长值。由于分波段边缘通道的变化，这导致产生四个新的光功率测量值。一旦加热器 129 第二次启动，温度就下降。这种温度的下降使得每个分波段收集到的光的中心波长偏移一个较低的波长值。由于分波段边缘通道的再次变化，导致又产生四个另外的新的光功率测量值。然后根据利用这十二个光功率测量值的最小二乘拟合可以绘制光谱斜率图。有利的是在同样光电探测器数量情况下，此结构可获得提高的光谱分辨率。

[63] 为了说明的目的，如图 1 所示的光谱倾斜度监测器 30 是在有反馈的配置下描述的。另外，作为选择，光谱倾斜度监测器 30 可以应用在前馈配置中。事实上，在很多波分复用系统中，监测光放大器 20 的上游和下游两者的光谱倾斜度是有好处的。

[64] 参考图 7，它显示出双向光纤链路中的节点的示意图。节点 100 包括第一光放大器 120a 和第二光放大器 120b，光谱倾斜度监测器 130，和多个接头 150a-d。

[65] 第一光放大器 120a 和第二光放大器 120b 放大传输到节点 100 的 WDM 光信号。一个适当的光放大器的例子是掺稀土元素的光纤放大器，例如掺铒光纤放大器(EDFA)。当然，其它的光放大器，例如拉曼 (Raman) 放大器或拉曼放大器和掺铒光纤放大器的混合也可以。在光放大器 120 引入光谱倾斜和/或加强由放大器 120a/120b 的上游引入的光谱倾斜的时候，光放大器 120 也同时提高波分复用的光信号中的所有波长通道的功率水平。

[66] 光谱倾斜度监测器 130 监测和/或测量光放大器 120a/120b 的上游和下游的光谱倾斜度。根据本发明，光谱倾斜度监测器 130 包括四个阵列波导光栅，每个阵列波导光栅将波分复用光信号分解为四个分波段，每个分波段具有不同的波长范围和具有已知的最大数量的波长通道。每个分波段的带宽与相邻的分波段的带宽是相等的或不同的。每个分波段满载，或是空载，或是部分负载。光谱倾斜度监测器 130 还包括用于测量每个分波段的总光功率的多个光电探测器 139，和用于计算基于每个分波段测得的总光功率的光谱倾斜度的电子控制器 137。作为选择，可设置温度控制器（未示出）以调节阵列波导光栅。
[67] 光谱倾斜补偿器（未示出）接收来自光谱倾斜度监测器 130 的控制信号并补偿光谱倾斜。一些合适的光谱倾斜补偿器的例子包括增益平坦滤波器，可调式光衰减器，和/或动态增益均衡器。可选的，光谱倾斜补偿器可以为光放大器 120a/120b。

[68] 接头 150a-d 分流放大的光信号中的比较小的部分（例如：10%），并使其改变方向进入光谱倾斜度监测器 130，此时放大的光信号的剩余部分被传输到光谱倾斜补偿器。一个合适接头的例子是 10/90 端合接头。

[69] 有利的，光谱倾斜度监测器 130 将四个阵列波导光栅，十六个光电二极管，一个温度控制器和/或光电二极管偏压电路集成到同一个芯片上。而且一套电子控制器也用于监测和计算四路接入信号中每路的光谱倾斜度。从而，这种配置将使得设备的结构紧凑而且减少了所需元件的数量。如图 8 所示的是带有四个阵列波导光栅的芯片结构，所述芯片被封装在标准的、全合格的、阵列波导光栅类型的包装中。

[70] 以上描述的本发明的具体实施例仅为范例。例如，当以上描述的实施例是基于带有多模输出波导的标准 40 道 100 GHz 的阵列波导光栅，且所述波导有足够的带宽以收集 10 个波长通道，因此提供一种监测四个不同分波段的光功率的方法，也可以带有多模输出波导的阵列波导光栅是很有使用价值的，同时其它的应用也可以预测到。因此本发明的保护范围仅由所附的权利要求来限制。
图 2C

图 2D