(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 February 2001 (08.02.2001)

PCT

(10) International Publication Number WO 01/09385 A2

(51) International Patent Classification7:

C12O 1/68

English

(21) International Application Number: PCT/US00/20571

(22) International Filing Date: 28 July 2000 (28.07.2000)

(25) Filing Language: English

(30) Priority Data:

09/364,320

(26) Publication Language:

29 July 1999 (29.07.1999) US

- (71) Applicant: EPOCH PHARMACEUTICALS, INC. [US/US]; Suite 110, 12277 134th Court N.E., Redmond, WA 98052 (US).
- (72) Inventors: LUKHTANOV, Eugeny, Alexander; 817 205th Street SE, Bothell, WA 98012 (US). PODYMINO-GIN, Mikhail, A.; 4950 N.E. 193rd Street, Lake Forest Park, CA 98155 (US). HEDGPETH, Joel; 33 Robinhood Drive, San Francisco, CA 94127 (US).
- (74) Agents: KLEIN, Howard, J. et al.; Klein & Szekeres, LLP, Suite 700, 4199 Campus Drive, Irvine, CA 92612 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

1/0938

(54) Title: ATTACHMENT OF OLIGONUCLEOTIDES TO SOLID SUPPORTS THROUGH SCHIFF BASE TYPE LINKAGES FOR CAPTURE AND DETECTION OF NUCLEIC ACIDS

(57) Abstract: Derivatized oligonucleotides (ODNs) are coupled to a solid support in improved yield resulting in a high density of coupled oligonucleotide per surface unit of the support, through a Schiff base type bond formed between an NH₂ group attached either to the solid support or to the ODN and an aromatic aldehyde attached to the other of the solid support and the ODN. The preferred solid support-ODN conjugate is formed between semicarbazide groups attached to a glasss surface and an aromatic aldehyde attached at either 3', or 5' end of an ODN or to an intermediate nucleotide of the ODN.

1	ATTACHMENT OF OLIGONUCLEOTIDES TO SOLID SUPPORTS
2	THROUGH SCHIFF BASE TYPE LINKAGES FOR CAPTURE AND
3	DETECTION OF NUCLEIC ACIDS
4	Field of Invention
5	The present invention generally relates to the chemistry of the
6	attachment of oligonucleotides to solid supports. More particularly the present
7	invention relates to linking oligonucleotides to solid supports through a Schiff
8	base type covalent linkage for capture and detection of single- and double
9	stranded DNA and RNA targets.
10	Background of the Invention
11	The detection and quantification of very small quantities of nucleic
12	acids plays an important role in the biological, forensic and medical sciences.
13	Typically nucleic acids in samples are detected by hybridization to a
14	complementary oligonucleotide containing more than 8 contiguous
15	nucleotides. To provide a signal proportional to the target-oligonucleotide
16	hybrid, typically either the target or the capturing oligonucleotide contains a
17	signal generating label, such as a radioactive-, fluorescent-,
18	chemiluminescent- moiety or an enzyme (such as horseradish peroxidase) that
19	through its catalytic activity yields a detectable product. The prior art is well
20	developed in this regard and numerous methods are available for the detection
21	and quantification of signal in the nucleic acid field.
22	Following the hybridization of the capturing and labeled
23	oligonucleotide to the target nucleic acid it is necessary to separate the signal
24	generating duplex from unreacted target and labeled oligonucleotide. This can
25	usually be accomplished because either the target, or more typically the
26	capturing oligonucleotide has been immobilized on a solid support thereby
27	allowing the isolation of the hybrid free from contaminating molecules. In a
28	"sandwich assay" variation, an oligonucleotide is immobilized to a solid

2

1 support and is used to capture a target. The captured target is detected by

- 2 hybridization with a second labeled oligonucleotide, that has a different
- 3 sequence than the capturing oligonucleotide.
- 4 Numerous types of solid supports suitable for immobilizing
- 5 oligonucleotides are known in the art. These include nylon, nitrocelluose,
- 6 activated agarose, diazotized cellulose, latex particles, plastic, polystyrene,
- 7 glass and polymer coated surfaces. These solid supports are used in many
- 8 formats such as membranes, microtiter plates, beads, probes, dipsticks etc. A
- 9 wide variety of chemical procedures are known to covalently link
- 10 oligonucleotides directly or through a linker to these solid supports. Of
- 11 particular interest as background to the present invention is the use of glass
- 12 and nylon surfaces in the preparation of DNA microarrays which have been
- described in recent years (*Ramsay*, Nat. Biotechnol., 16: 40-4 (1998)). The
- 14 journal Nature Genetics has published a special supplement describing the
- utility and limitations of microarrays (Nat.Genet., 21(1): 1-60 (1999).
- Typically the use of any solid support requires the presence of a
- 17 nucleophilic group to react with an oligonucleotide that must contain a
- 18 "reactive group" capable of reacting with the nucleophilic group.
- 19 Alternatively, a "reactive group" is present or is introduced into the solid
- 20 support to react with a nucleophile present in or attached to the
- 21 oligonucleotide. Suitable nucleophilic groups or moieties include hydroxyl,
- sulfhydryl, amino and activated carboxyl groups, while the groups capable of
- 23 reacting with these and other nucleophiles (reactive groups) include
- 24 dichlorotriazinyl, alkylepoxy, maleimido, bromoacetyl goups and others.
- 25 Chemical procedures to introduce the nucleophilic or the reactive groups on to
- 26 solid support are known in the art, they include procedures to activate nylon
- 27 (US 5,514,785), glass (Rodgers et al., Anal. Biochem., 23-30 (1999)), agarose
- 28 (Highsmith et al., J., Biotechniques 12: 418-23 (1992) and polystyrene (Gosh

- 1 et al., Nuc. Acid Res., 15: 5353-5372 (1987)). Dependent on the presence of
- 2 either a reactive or nucleophilic groups on the solid support and
- 3 oligonucleotide, coupling can either be performed directly or with bifunctional
- 4 reagents. Bifunctional and coupling reagents are well known in the art and
- 5 many are available from commercial sources.
- 6 Of special interest as background to the present invention is the
- 7 procedure described by *Kremsky et al.* (Nuc.Acid Res., 15: 2891-2909 (1987))
- 8 for the preparation of a 16-mer oligonucleotide containing a 6 carbon
- 9 carboxylic acid linker on the 5'-end. This product was synthesized using the
- 10 appropriate phosphoramidites on a standard synthesizer. The acid was then
- 11 reacted with 3-amino-1,2-propanediol in the presence of 1-(3-
- 12 dimethylaminopropyl)-3-ethylcarbodiimide to yield a stable diol. The diol was
- 13 oxidized to the aldehyde stage that was subsequently reacted with hydrazide
- 14 latex beads to form Schiff base linkages that were reduced with sodium
- 15 cyanoborohydride. The authors indicated that the oligonucleotide diol was a
- stable intermediate but that the aldehyde should be prepared immediately
- 17 before coupling to the latex bead to minimize undesirable reaction of the
- 18 aldehyde with the oligonucleotide bases.
- Another article of special interest as background to the present
- 20 invention is by *Tsarev et al.* (Biorg.Khim., 16: 765-79 (1990)) that describes
- 21 coupling of an aromatic aldehyde to the 5' phosphate of an oligonucleotide
- 22 through alkylation. The product was used to probe the enzyme-T7A2
- 23 promoter complex.
- 24 Typically, glass surfaces are activated by the introduction of amino-,
- 25 sulfhydryl-, carboxyl- or epoxyl- groups to the glass using the appropriate
- 26 siloxane reagent. Specifically, immobilization of oligonucleotide arrays on
- 27 glass supports has been described: by Guo et al., Nuc. Acid Res., 22: 5456-
- 28 5465 (1994) using 1,4-phenylene diisothiocyanate; by *Joos et al.*, Anal.
- 29 Biochem., 247: 96-101 (1997) using succinic anhydride and carbodiimide

- 1 coupling; and by Beatti, et al., Mol. Biotech., 4: 213-225 (1995) using 3-
- 2 glycidoxypropyltrimethoxysilane.
- 3 The rapid specific reaction of cytidine in single stranded DNA with
- 4 semicarbazide moiety containing reagent, in the presence of bisulfite, has also
- 5 been described (*Hayatsu*, Biochem., 15: 2677-2682 (1976)).
- 6 Procedures which utilize arrays of immobilized oligonucleotides, such
- 7 as sequencing by hybridization and array-based analysis of gene expression
- 8 are known in the art. In these procedures, an ordered array of oligonucleotides
- 9 of different known sequences is used as a platform for hybridization to one or
- 10 more test polynucleotides, nucleic acids or nucleic acid populations.
- 11 Determination of the oligonucleotides which are hybridized and alignment of
- 12 their known sequences allows reconstruction of the sequence of the test
- polynucleotide. See, for example, U.S. Patent Nos. 5,492,806; 5,525,464;
- 14 5,556,752; PCT Publications WO 92/10588, WO 96/17957 and the scientific
- publications by Ramsay, Nat. Biotechnol., 16: 40-4 (1998) and by Lipshutz et
- 16 al., Nat. Genet., 21: 20-24 (1999)).
- However, many of the current immobilization methods suffer from one
- or more of a number of disadvantages. Some of these are, complex and
- 19 expensive reaction schemes with low oligonucleotide loading yields, reactive
- 20 unstable intermediates prone to side reactions and unfavorable hybridization
- 21 kinetics of the immobilized oligonucleotide. The efficient immobilization of
- 22 oligonucleotides on glass surface in arrays in a high-through put mode requires
- 23 a) simple reliable reactions giving reproducible loading for different batches,
- b) stable reaction intermediates, c) arrays with high loading and fast
- 25 hybridization rates, d) high temperature stability, e) low cost, and f) low
- 26 background.
- The present invention represents a significant step in the direction of
- 28 meeting or approaching several of these objectives.

5

1 SUMMARY OF THE INVENTION 2 In accordance with the present invention a Schiff base type covalent 3 linkage is formed between a group containing an NH₂ moiety and an aromatic 4 aldehyde or ketone to covalently link an oligonucleotide (ODN) to a solid 5 support. The Schiff base type linkage is between the solid support and either 6 the 3', or 5' end of the ODN, or between the solid support and one or more 7 intermediate nucleotides in the ODN. Alternatively the Schiff base type 8 linkage is located in a combination of these sites. In this regard it should be 9 understood that the Schiff base type covalent linkage may be situated not 10 directly on the solid support or the ODN but on linking groups (linkers) which 11 are themselves covalently attached to the solid support and to the ODN, 12 respectively. Thus, either the solid support or the ODN or both may include a 13 linking group that includes the -NH₂ or aromatic aldehyde group which forms 14 the Schiff base type covalent bond to join the ODN to the solid support. 15 In accordance with one aspect and preferred mode or embodiment of 16 the invention the Schiff base type covalent bond is formed between a semicarbazide group or moiety of the formula R'-NH-CO-NH-NH₂, and the 17 18 aromatic aldehyde moiety of the formula R"-Q-CHO, preferably a benzaldehyde moiety, where the group R' designates 19 20 either the solid support or the ODN residue including any linker group 21 attached to the solid support or ODN, and where the R" designates the other of 22 said solid support or ODN residues including any linker group attached to 23 them. The symbol Q in this formula designates an aromatic ring or a 24 heteroaromatic ring which may have up to three heteroatoms independently

itself be substituted with alkyl, alkoxy or halogen groups where the alkyl or alkoxy group preferably has 1 to 6 carbons. The linkage formed between the solid support and the ODN is thus depicted by the formula

selected from N, O and S, and where the aromatic or heteroaromatic ring may

25

26

27

1	R'-NH-CO-NH-N=CH-Q-R"
2	where the symbols have the meaning provided above.
3	In accordance with still another aspect and preferred mode or
4	embodiment of the invention the semicarbazide moiety is attached to a glass
5	surface, and the benzaldehyde moiety is attached with a linker to the 3', or to
6	the 5' end of the ODN, or to one or more nucleotides situated internally in the
7	ODN. The synthetic methodologies to prepare the semicarbazide modified
8	solid support surface and the aromatic aldehyde coupled ODNs comprise still
9	further aspects of the present invention.
10	Advantages of the solid support ODN conjugates linked together with
11	the above-summarized Schiff base type linkages including an aromatic
12	aldehyde or ketone, and particularly with semicarbazone linkages, include (a)
13	their ability to be formed below pH 7, (b) stability of the Schiff base-with-
14	aromatic-aldehyde bonds and particularly of the semicarbazone-formed-with-
15	an-aromatic-aldehyde bonds, (c) ability to attach a high percentage (typically
16	more than 60 %, and preferably about 90 %, even more preferably 95 % or
17	more) of the ODN to the semicarbazide moiety containing solid support, and
18	(d) obtaining high coupling densities (preferably of about 10 ⁴
19	oligonucleotides/ μm^2 and most preferably about 10 ⁵ oligonucleotides/ μm^2) on
20	unit surface of the solid support. These advantages are to be contrasted with
21	the prior art procedures, see for example [Kremsky et al. (Nuc.Acid Res., 15:
22	2891-2909 (1987))] where an aliphatic aldehyde attached to the ODN is
23	coupled with a hydrazone-containing solid support to form a hydrazone that is
24	unstable and must be reduced to provide a stable solid support-ODN
25	conjugate.
26	Another aspect of the present invention is a general method for the
27	isolation of single stranded DNA in a process where an aldehyde-labeled
28	primer is used and an amplicon is immobilized on a semicarbazide containing

- 1 solid support. Denaturation of the amplicon and separation yield single
- 2 stranded DNA in solution and on the solid support, which could be used
- 3 individually for many applications known in the art. This is an improvement
- 4 and further development of the procedure described by *Mitchell et al.*, Anal.
- 5 Biochem., 178: 239-42 (1989), where single-stranded DNA is "affinity
- 6 generated" following a polymerase chain reaction using a biotinylated primer,
- 7 followed by streptavidin-solid support separation.
- 8 In accordance with still another aspect or embodiment of the present
- 9 invention the oligonucleotides linked to the solid surface with the
- 10 semicarbazone bonds also contain one or more appropriately attached minor
- 11 groove binder moieties, a fluorescent generating moiety and a fluorescent
- 12 quencher. This conjugate is designed such that during amplification reactions,
- with a perfect complementary target, the quencher molecules are cleaved
- during amplification by the 5'-nuclease activity or a polymerase (as described
- in United States Patent No. 5,210,015 and in *Witter et al.*, Biotechniques 22:
- 16 130-138 (1997)) resulting in a fluorescent immobilized oligonucleotide.
- 17 Mismatched targets are not amplified and no fluorescent signal is generated.
- 18 The specification of United States Patent No. 5,210,015 and the publication
- 19 Witter et al., Biotechniques 22: 130-138 (1997) are expressly incorporated
- 20 herein by reference.
- In accordance with yet another aspect of the present invention, non-
- 22 specific adsorption of the negatively charged nucleic acids to the
- 23 semicarbazone or other Schiff base-modified glass surface can be largely
- eliminated by converting the unreacted NH₂ groups (preferably semicarbazide
- 25 -R'-NH-CO-NH-NH₂ groups) into a moiety containing an anione. This is
- 26 accomplished by reacting the solid support ODN conjugate with a reagent that
- 27 introduces an anionic group, for example by reacting the conjugate with 4-
- 28 formyl-1,3-benzenedisulfonate group. In addition, unreacted silanol functions

on the solid support, preferably glass surface are end-capped with a 1 2 hydrophobic siloxane to increase stability of the immobilized oligonucleotides. 3 Although this is not usually necessary, the semicarbazone linkages 4 formed with the aromatic aldehyde moiety and linking the oligonucleotide 5 with the solid support can be reduced to provide still stable solid-support-ODN 6 conjugates. 7 In accordance with a still further aspect of the present invention an 8 ODN containing cytidine is immobilized on a solid support containing 9 semicarbazide groups by bisulfite catalyzed covalent attachment through the 10 cytidine nucleotides of the ODN. 11 The present invention is primarily used at present for the capture and 12 detection of nucleic acids using oligonucleotides attached to glass surfaces 13 with the Schiff base type, (preferably semicarbazone) bonds, and more 14 particularly for the capture and detection of PCR generated nucleic acid 15 sequence in array format, although the use of the invention is not limited in 16 this manner. Generally speaking the oligonucleotides immobilized on solid 17 support in accordance with the present invention exhibit superior direct 18 capture ability for complementary oligonucleotide, DNA and RNA sequences. 19 BRIEF DESCRIPTION OF THE DRAWINGS 20 Figure 1 is a graph showing in three dimensions the optimization of oligonucleotide attachment via semicarbazone bonds to a glass 21 22 surface as a function of concentration of the oligonucleotide and pH of the 23 medium. 24 Figure 2 is a graph showing the attachment of oligonucleotide to 25 the glass surface as expressed in units of fmol/spot as a function of time. 26 Figure 3 is a graph showing the efficiency of hybridization and 27 efficiency of oligonucleotide attachment as a function of oligonucleotide 28 concentration applied on each spot.

1	Figure 4 is the depiction of a hybridization of macroarray
2	consisting of six ODN probes to eight different 30-mer ODN targets, the
3	sequences of which are disclosed in Table 1, wherein each oligonucleotide is
4	spotted in triplicate giving an array of 3×6 spots and wherein the target
5	sequences 1 and 8 correspond to X and Y copy of the amelogenin gene and
6	wherein all other target sequences contain nucleotide substitutions at positions
7	indicated in bold in Table 1 and wherein match or mismatch of the base pairs
8	formed between each probe and the target are indicated at the bottom of each
9	ODN triplicate.
10	Figure 5 is a depiction of a hybridization of the same
11	macroarray of six ODN probes shown in Figure 4 to single stranded 235-mer
12	PCR products generated from female or male human genomic DNAs and to
13	132-mer product representing isolated male copy of amelogenin gene
14	fragment, and wherein the PCR product generated from male DNA sample
15	represents a heterozygous equimolar mixture of female and male copies of the
16	gene fragment.
17	Figure 6 is a schematic depiction of a solid support tethered 5'
18	nuclease assay.
19	DESCRIPTION OF THE PREFERRED EMBODIMENTS
20	Derivatized Supports
21	As is noted in the Summary, in accordance with the present invention
22	one of the solid support or the oligonucleotide (ODN) contains a nucleophilic
23	amino group while the other contains an aromatic or heteroaromatic aldehyde
24	or ketone capable of reacting with the nucleophilic amino group to form a
25	Schiff base-type covalent linkage that attaches the ODN to the solid support,
26	in a reasonably fast, high yield reaction resulting in high concentrations of the
27	ODN per unit surface of the solid support, bound thereto by a stable covalent
28	bond. In order to have these properties the nucleophilic amino group

10

preferably and ideally has a pKa less than 7.0 In the preferred embodiments 2 the nucleophilic amino (NH₂) group is covalently linked to the solid support 3 while the aromatic aldehyde or ketone (preferably aldehyde) is linked to the 4 ODN. 5 Thus, the solid supports used in the preferred embodiments of the invention contain the nucleophilic NH₂ group, as a primary amine (R'-6 7 NH_2), or as a hydrazinyl, (R'-NH-NH₂), oxyamino (O-NH₂), or semicarbazido (R'-NH-CO-8 NH-NH₂) group. R' simply denotes the rest of the solid support, including a 9 10 possible linking group or linker). Most preferably the solid support in 11 accordance with the present invention includes a semicarbazido group attached 12 to the matrix of the solid support with a linker containing more than one atom 13 and less than 30 atoms. These amino (NH₂) group containing moieties can be 14 introduced on to the solid support or surface by methods known in the art. 15 Among the several types of solid supports available in the art 16 glass is most preferred. In accordance with this preferred embodiment of the 17 invention the glass surface contains the nucleophilic amino (NH₂) group, 18 which, as noted above, may be primary amino hydrazinyl, oxyamino, or a 19 semicarbazido group, linked to the glass surface with a linker containing more 20 than one atom and less than 30 atoms. Most preferably a semicarbazido group 21 is linked to the glass surface with the linker. The semicarbazido group has a 22 pKa less than 7.0. The semicarbazido and other amino (NH₂) groups can be 23 introduced on to the glass surface by methods known in the art, involving a 24 reaction with an appropriate trialkyloxysilane. For the most preferred 25 embodiments of the invention the semicarbazido group is introduced to the 26 glass surface with a semicarbazide containing trialkyloxysilane, as is shown in 27 **Reaction Scheme 1.**

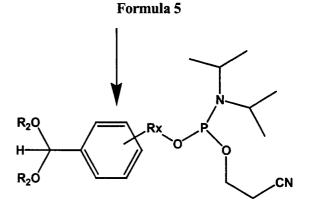
11

1
2
3
4
$$R_1O$$
 Si
 NCO
 R_1O
 $R_$

Reaction Scheme 1

14

15


16 In Reaction Scheme 1 \mathbb{R}_1 represents an alkyl group of 1 to 10 carbons, 17 although one of more of the R_1 groups can also be phenyl. In the presently 18 most preferred embodiment \mathbf{R}_1 is ethyl. \mathbf{n} is an integer, preferably having the 19 values of 0 to 30, even more preferably 0 to 10. Thus, in accordance with this 20 scheme a trialkoxy siloxane compound (Formula 1) having an isocyano group 21 attached by an alkyl chain is reacted with hydrazine to provide a 22 trialkoxysilane including a semicarbazide (Formula 2), which is thereafter 23 reacted with the glass surface to provide a glass surface (solid support) having a semicarbazide groups attached through the linker $(CH_2)_n$ (Formula 3). A 24 25 detailed description of the conditions of these reactions is provided in the 26 experimental section of this application for patent.

1	Derivatized Oligonucleotides
2	In the preferred embodiments of the invention an aromatic or
3	heteroaromatic aldehyde is covalently linked to the oligonucleotide (ODN), so
4	as to enable the ODN to react with the nucleophilic NH ₂ (preferably
5	semicarbazide) groups linked to the solid support.
6	Prior to the current invention methods for the introduction of
7	aldehyde groups into oligonucleotides were complicated and required post
8	oligo-synthesis periodate oxidation of a diol precursor, as described by
9	O'Shannessy et al., in Anal. Biochem., 191: 1-8 (1990)). It is a novel aspect
10	or feature of the present invention to provide a phosphoramidite reagent that
11	includes a protected aromatic aldehyde and which can be used for the
12	introduction of the aldehyde group into an ODN during standard automated
13	oligonucleotide synthesis. In the most preferred embodiments the aromatic
14	aldehyde group or moiety is the "benzaldehyde" moiety having a linker
15	designated "Rx" attached to the phenyl ring, as illustrated in Reaction
16	Scheme 2 by Formula 4.

13

$$R_2O$$
 R_2O
 R_2O
 R_2O
 R_2O
 R_2O

Formula 4

Formula 6

Reaction Scheme 2

2

14

aldehyde is preferred.

3 In Formula 4 the symbol R_x represents a chain of atoms, which may 4 include a ring, and which may have the overall length of 2 to 150 atoms. R_x 5 may contain atoms selected from C, H, N, O and S and in addition may 6 contain one or more of -NH-, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-7 C(=O)-NH-, -NH-C(=S)-NH-, -S-, OP(O)(O)O or -S-S- groups. Synthetic methods to construct R_x are known in the art and are described, for example, 8 9 in United States Patent No. 5,849,482 in connection with the description of 10 synthesizing linker arms. The specification of United States Patent No. 11 5,849,482 is expressly incorporated herein by reference. It should be 12 understood that instead of the aromatic aldehyde of Formula 4, an aromatic ketone (such as acetophenone) could also be used, although the use of the 13

In accordance with Reaction Scheme 2 the aromatic aldehyde (or ketone) of Formula 4 is protected in the aldehyde group by formation of a diacetal, cyclic acetal or dialkanoate derivative of Formula 5. In Formula 5 R₂ represents an alkyl group of 1 to 6 carbons, an acyl group of one to 6 carbons, or the two $\mathbf{R_2}$ groups together form a carbocyclic ring of 2 - 4 carbons (as in a cyclic acetal, for example in a cyclic acetal formed with ethylene glycol). The protected aldehyde of Formula 5 is then converted into a phosphoramidite reagent of Formula 6, as is shown in the reaction scheme. Detailed experimental conditions for this conversion are described for an example in the experimental section. The phosphoramidite reagent of Formula 6 is then used later to introduce the protected aldehyde into an oligonucleotide (as described below.

$$R_2Q$$
 R_2Q
 R_2Q
 R_3Q

Instead of the phosphoramidite reagent of Formula 6 the protected aromatic aldehyde can also be attached to a primary or secondary amino group that is itself attached to the 5' or to the 3' end of an ODN, or to a primary or secondary amino group that is attached to an internal nucleotide in the ODN.

- 1 Amino-tailed ODNs can be prepared in accordance with the state-of-the-art,
- 2 and are described for example in United States Patent No. 5,512,667 the
- 3 specification of which is incorporated herein by reference. A reagent that is
- 4 suitable for attaching a protected aromatic aldehyde to said amino groups at
- 5 either tail end of the ODN or to one or more internal nucleotides is shown in
- 6 Formula 7. In Formula 7 R_2 and R_x are defined as in connection with
- 7 Formula 5. Y is a reactive group (capable of reacting with a nucleophilic
- 8 amine), such as a carbonate, isocyanate, isothiocyanate, mono or di-substituted
- 9 pyridine, aziridine, CO-X, SO₂-X (X is halogen), mochlorotriazine,
- dichlorotriazine, hydroxysulfosuccinimide ester, hydroxysuccinimide ester,
- 11 azodonitrophenyl or azido group. As example it is noted that an appropriately
- 12 acitivated 3- $(\alpha,\alpha$ -dimethoxytolu-4-yl)propionic acid derivative can be coupled
- 13 to 5-(3-aminopropyl) uridine nucleotide incorporated in the ODN as an
- 14 internal base.

Reaction Scheme 3

1	Reaction Scheme 3 discloses an actual example for the
2	synthesis of a controlled pore glass reagent 12 suitable for the synthesis of 3'-
3	aromatic-aldehyde-tailed oligonucleotides. In this regard it should be
4	understood that in the present description the numbers given to actual
5	compounds are to be distinguished from numbers given to general formulas.
6	Thus, the compound designated "6" in Reaction Scheme 3 is to be
7	distinguished from Formula 6 in Reaction Scheme 2. A detailed description
8	of the exemplary reaction conditions leading to the protected aldehyde
9	function attached to a controlled pore glass support designated 12 in the
10	scheme, is provided in the experimental section. The CPG support 12 includes
11	a dimethoxytriphenylmethyl (DMT) protecting group on a primary hydroxyl
12	function. After the DMT protecting group is removed an ODN can be built in
13	step-wise fashion on this support, in accordance with steps known in the art,
14	resulting in an ODN where the aromatic aldehyde moiety is attached to the 3'
15	end. The ODN, still having the aromatic aldehyde at its 3' end is then removed
16	from the solid support by methods well established in the state of the art.
17	Reaction Scheme 3 also discloses an exemplary synthetic route
18	to provide a phosphoramidite reagent 10, where the aldehyde function is
19	protected as the di-acetate. The phosphoramidite reagent 10 can be used in
20	accordance with the state of the art for synthesizing ODNs where the aromatic
21	aldehyde function is at the 5' end of the ODN.
22	The experimental section describes the conditions utilized for
23	purification and deprotection of the diacetal and diacetate derivatives used in
24	onnection with this invention. The presence of an aldehyde group in the
25	oligonucleotide that was synthesized utilizing the aldehyde containing support
26	and/or the phosphoramidite reagent 10 can be confirmed with a reaction with
27	2,4-dinitrophenylhydrazine, followed by reversed phase HPLC analysis. This
28	technique clearly distinguishes the resulting hydrazone-ODN from starting

aldehyde -ODN. The aldehyde ODNs prepared in accordance with the 1 present invention showed no noticeable change in reactivity when stored at 2 3 -20°C for months. Coupling of the ODNs with the Modified Solid Support 4 5 The nucleophilic amino groups on the solid glass surface, as described 6 above for the preferred embodiment, are reacted with the aldehyde groups attached to the 3'- or 5'- and of the ODN or to an internal base. Or 7 8 alternatively, as described briefly above, the aromatic aldehyde is attached to 9 the solid support (glass surface) and the amino group (preferably 10 semicarbazide) is attached to the ODN. 11 Generally the coupling reactions are performed at pH's between 2 and 7, 12 preferably at pH 6 and most preferably at pH 5. It has been found that, except 13 for the pH the reaction conditions are not critical for the reaction. It was 14 found, especially when semicarbazide NH₂ groups are used as in the preferred 15 embodiment, that high concentrations of ODN per unit surface of the glass support can be achieved in accordance with the invention. Preferably 16 concentrations of 10⁴ oligonucleotides/µm² and more preferably 10⁵ 17 18 oligonucleotides/µm² are obtained in accordance with the invention. The 19 semicarbazone linkage was determined to be stable at neutral and moderate 20 basic pH's used in standard PCR and diagnostic assays. 21 Moreover, as another aspect or feature of the present invention an 22 essentially background free solid support surface is achieved by treating the 23 un-reacted NH₂ groups on the solid support with an anionic generating 24 reagent. 25 Exemplary glass-oligonucleotide conjugate products formed from reaction 26 of the nucleophilic amino group containing solid support with the aldehyde 27 derivitized oligonucleotide are shown in Formula 8

20

carbon atom adjacent to X. Thus it should be understood that in Formulas 8

and 9 the groups V, W and T represent the possible linker groups attaching

the Schiff base type bond to the solid support and to the ODN, as applicable.

21

22

21

Reaction Scheme 4

1

2 Reaction Scheme 4 discloses the formation of an ODN--to-glass conjugate

3 linked with semicarbazone bonds in accordance with the presently most

4 preferred embodiment of the invention.

In still other embodiments, the oligonucleotide is attached to the solid

6 support through more than one type of aromatic aldehyde containing moiety

7 introduced at either the 3', 5' or at internal nucleotides.

8 It is also within the scope of the present invention to immobilize a long

9 chain DNA to a solid support that contains a semicarbazide moiety as

disclosed above. with bisulfite catalyzed covalent attachment through cytidine

residues, in analogy to the reaction described by *Hayatsu* in Biochem., 15:

12 2677-2682 (1976), incorporated herein by reference.

13 Stability of the semicarbazone linkage under PCR assay conditions were

14 determined using a model compound shown below:

1 2 3 4 5 6 7 8 9 Formula 10

9 Formula 10

10

27

herein by reference.

11 The semicarbazone conjugate (Formula 10) was treated in a PCR buffer at 12 95°C for 30 minutes and analyzed by reversed phase HPLC chromatography. 13 Comparison of the treated semicarbazone conjugate with the starting material 14 showed little or no degradation. 15 In another embodiment a solid surface linked oligonucleotides also contain 16 appropriately held, minor grove binder, fluorescent generating moiety and a 17 fluorescent quencher. This conjugate is designed such that during amplification 18 reactions with a perfect complementary target the quencher molecules are cleaved 19 during amplification by the 5'-nuclease activity, in analogy to the reaction 20 described in United States Patent No. 5,210,015 and in Witter al., Biotechniques 21 22: 130-138 (1997), resulting in a fluorescent immobilized oligonucleotide. 22 Mismatched targets are not amplified and no fluorescent signal is generated. This 23 is schematically in **Figure 6**. The chemistries and methods to attach a the minor 24 groove binder (MGB), fluorophore (F) and quencher (Q) to an ODN has been 25 described in US 5,801,155, and in co-pending application serial number 26 09/054,832, filed on April 3, 1998, the specifications of which are incorporated

28 Materials for construction of arrays include, but are not limited to, nylon,

1 polypropylene, nitrocellulose, glass, silicon wafers, optical fibers, copolymers and

2 other materials suitable for construction of arrays such as are known to those of

3 skill in the art.

4 Endcapping of unreacted groups on the solid surface

5 After the covalent attachment of the oligonucleotide the solid support via the

6 semicarbazone linkage, the unreacted amino groups on the surface are treated with

7 anion generating reagents aiding to limit non-specific primer and amplicon

8 background. This is achieved by treatment of the solid surface with appropriate

9 aromatic aldehydes (Formula 11). Similarly, when a semicarbazide-labeled

10 oligonucleotide is coupled to aromatic aldehyde containing solid support, the

11 unreacted aldehyde groups are reacted with anion generating reagents (Formula

12 12), where R₆ and R₇ are independently H-, -COO or -SO₃. Unreacted silanol

groups can also be modified to further enhance surface characteristics. The

14 appropriate silanes are commercially available (UCT, Bristol, PA).

15

19

20

21

22

23

roi muia 1

Formula 11

Formula 12

Hybridization Characteristics of Modified Solid Supports

The oligonucleotide loadings on the solid surface were determined by the

25 use of 5'-or 3'-aldehyde-modified oligonucleotides ³²P-labeled at opposing ends

26 using the appropriate nucleotide triphosphate ³²P-labeled and either terminal

27 deoxynucleotidyl transferase or T4 polinuclotide kinase. The ³²P-labeled

28 oligonucleotide was reacted directly with the semicarbazide modified glass surface

as small spots approximately 1.5 mm in diameter and the excess semicarbazide 1 groups where capped by reaction with 4-formyl-1,3-benzenedisulfonic acid. 2 Covalently bound oligonucleotide was quantified with a phosphor imager using a 3 appropriate standard curve. Maximum attachment was achieved in about one hour 4 at a surface density of about 10⁵ oligonucleotide molecules/µm². Reaction with 5 oligonucleotide concentrations greater than 15µM (>15µM) yielded maximum 6 immobilization on the glass surface. 7 The hybridization potential of the oligonucleotides immobilized via a 8 semicarbazone linker to the solid support, was tested by direct capture of a 9 complementary ³²P-labeled oligonucleotide. Optimum capture of about 100 fmole 10 oligonucleotide/spot could be achieved, when a concentration of about 275 fmole

phosphor-imaging that a 235 bp amelogenine gene fragment PCR product separated 13

oligonucleotide/spot was applied to the solid surface. Additionally it was shown by

into single strand, using a biotinylated primer and streptavidin beads, appropriately 14

³²P-labeled, could be captured efficiently with the probe bound in accordance with 15

16 the invention. In another demonstration six different captured oligonucleotides

immobilized in an array each efficiently captured their complementary single 17

stranded PCR amplified target. 18

11

12

19

Preferred Modes of Using the Invention

Oligonucleotide Arrays

1

29

2 In another embodiment of the present invention, immobilized oligonucleotides 3 are used in procedures which utilize arrays of oligonucleotides, such as sequencing 4 by hybridization and array-based analysis of gene expression. In sequencing by hybridization, an ordered array of oligonucleotides of different known sequences is 5 6 used as a platform for hybridization to one or more test polynucleotides, nucleic 7 acids or nucleic acid populations. Determination of the oligonucleotides which are 8 hybridized and alignment of their known sequences allows reconstruction of the 9 sequence of the test polynucleotide. Alternatively, oligonucleotides comprising the 10 wild-type sequence and all possible mutant sequences for a given region of a gene 11 of interest can be placed on an array. Exposure of the array to DNA or RNA from a 12 subject or biological specimen, under hybridization conditions, allows 13 determination of wild-type or mutant status for the gene of interest. This is 14 described, without using the present invention, in the prior art, for example in U.S. 15 Patent Nos. 5,492,806; 5,525,464; 5,556,752; PCT publications WO 92/10588 16 and WO 96/17957, all of which are incorporated herein by reference. Both of the 17 foregoing techniques require discrimination between related sequences, especially 18 at the single-nucleotide level; hence, the simplicity, reproducibility of solid support 19 attachment oligonucleotides of the invention provides improvements in these 20 techniques. Materials for construction of arrays include, but are not limited to, 21 nylon, polypropylene, nitrocellulose, glass, silicon wafers, optical fibers, 22 copolymers and other materials suitable for construction of arrays such as are 23 known to those of skill in the art. 24 An additional application of the present invention to array technology is in the 25 examination of patterns of gene expression in a particular cell or tissue. In this 26 situation oligonucleotides or polynucleotides corresponding to different genes are 27 arrayed on a surface, and a nucleic acid sample from a particular cell or tissue type, 28 for example, is incubated with the array under hybridization conditions. Detection

of the sites on the array at which hybridization occurs allows one to determine

1 which oligonucleotides have hybridized, and hence which genes are active in the 2 particular cell or tissue from which the sample was derived. 3 Array methods can also be used for identification of mutations, where wild-type 4 and mutant sequences are placed in an ordered array on a surface. Hybridization of 5 a polynucleotide sample to the array under stringent conditions, and determination 6 of which oligonucleotides in the array hybridize to the polynucleotide, allows 7 determination of whether the polynucleotide possesses the wild-type or the mutant 8 sequence. Since many mutant sequences of clinically-relevant genes differ from 9 their wild-type counterpart at only one or a few nucleotide positions, the enhanced 10 discriminatory powers of the modified oligonucleotides of the invention provides 11 improvements in mutation detection. Array methods can also be used in any 12 diagnostic procedure where nucleic acid hybridization is feasible in combination 13 with an appropriate detection system. The nucleic acids include DNA, RNA and 14 sequences amplified by methods known in the art. 15 In all of the above-mentioned applications of array technology, the simplicity 16 and efficiency of oligonucleotide attachment to solid supports in accordance with 17 the invention provides significant improvements in manufacturing and performance 18 of the arrays. 19 General 20 The availability of oligonucleotides containing an aldehyde linker directly from 21 the oligonucleotide synthesizer allows the immobilization of oligonucleotides to 22 any amine containing solid support. Thus oligonucleotide affinity chromatography 23 material can be readily synthesized in accordance with the invention. In addition, 24 the use of a primer labeled at the 3'-end with an aldehyde allows facile 25 immobilization of the amplicon, after amplification, to an amine containing solid 26 surface and allows the isolation of single strands after denaturation.

27 EXAMPLES

The following examples are included for illustrative purposes only and are not

- 1 intended to limit the scope of the invention.
- 2 General Experimental
- 3 All air and water sensitive reactions were carried out under a slight positive
- 4 pressure of argon. Anhydrous solvents were obtained from Aldrich (Milwaukee,
- 5 WI). Flash chromatography was performed on 230-400 mesh silica gel. Melting
- 6 points were determined on a Mel-Temp melting point, apparatus in open cappilary
- 7 and are uncorrected. Elemental analysis was performed by Quantitative
- 8 Technologies Inc. (Boundbrook, NJ). UV-visible absorption spectra were
- 9 recorded in the 200-400-nm range on a UV-2100 (Shimadzu) or a Lambda 2
- 10 (Perkin Elmer) spectrophotometers. ¹H NMR spectra were run at 20°C on a
- 11 Bruker WP-200 or on a Varian XL-200 spectrophotometer; chemical shifts are
- 12 reported in ppm downfield from Me₄Si. Thin-layer chromatography was run on
- 13 silica gel 60 F-254 (EM Reagents) aluminum-backed plates.
- 14 Example 1. Preparation of (a,a-Dimethoxytolu-4-yl)-oxyethyl, 2-cyanoethyl N,N-
- 15 diisopropylphosphoramidite (5).
- 16 4-Hydroxyethoxybenzaldehyde dimethyl acetal (3)
- To a solution of 4-hydroxyethoxybenzaldehyde (*Bernstein et al.*, J. Am. Chem.
- 18 Soc., 73: 906-912 (1951); 8.5 g, 51.2 mmol), 2,2-dimethoxypropane (30 mL, 244
- 19 mmol) in a mixture of methanol (40 mL) and CH₂Cl₂ (100 mL) was added
- anhydrous Amberlyst 15 (Aldrich) (1.0 g). The mixture was stirred for 5 hrs, the
- 21 catalyst was removed by filtration and the filtrate was concentrated to give the
- 22 crude product contaminated with the starting aldehyde. This material was
- 23 chromatographed on silica eluting with 1:1 ethyl acetate-hexane. The pure product
- 24 fractions were pooled and concentrated. Drying under vacuum afforded 7.6 g (70
- 25 %) of the title compound as a pale yellow, viscous liquid. ¹H NMR: d 7.28 (d, J= 9)
- 26 Hz, 2 H), 6.92 (d, J=9 Hz, 2H), 5.31 (s, 1H), 4.86 (t, J=5.5 Hz, 1H), 3.98 (t, J=5.5 Hz, 1H), 3.98
- 27 Hz, 2H), 3.71 (q, J=5 Hz, 2H), 3.20 (s, 3H). ¹³C NMR: d 158.60, 130.19, 127.74,
- 28 113.90, 102.46, 69.43, 59.52, 52.27.
- 29 (a,a-Dimethoxytolu-4-yl)-oxyethyl, 2-cyanoethyl N,N-diisopropylphosphoramidite

- 1 (5).
- To a solution of 1 (4.76 g, 22.45 mmol) and ethyldiisopropylamine (10 mL) in

- 3 50 mL of anhydrous CH₂Cl₂ was added 2-cyanoethyl
- 4 diisopropylchlorophosphoramidite (5.85 g, 24.7 mmol). After being stirred for 1 h,
- 5 the reaction was treated with methanol (1 mL) to quench excess phosphitylating
- 6 agent and diluted with CH₂Cl₂. The solution was washed with 5% sodium
- 7 bicarbonate, brine and dried over Na₂SO₄. Concentration under vacuum gave an oil
- 8 which was chromatographed on silica eluting with hexane-ethyl acetate-
- 9 triethylamine (2:1:0.1). The desired product was obtained as a colorless, viscous
- 10 syrup (6.3 g, 68 %) after solvent evaporation and drying in *vacuo*.
- 11 Example 2. Preparation of Acetyloxy[4-(6-[bis(4-
- 12 methoxyphenyl)phenylmethoxy]-5-{[bis(methylethyl)amino]-(2-
- 13 cyanoethoxy)phosphinooxy}hexyloxy)phenyllmethyl acetate (10)
- 4-[4-(2,2-Dimethyl-1,3-dioxolan-4-yl)butoxy]benzaldehyde (6).
- 15 A solution of 4-hydroxybenzaldehdye (2.83 g, 23.22 mmol), toluene-4-sulfonic
- acid 4-(2,2-dimethyl-<1,3>dioxolan-4-yl)-butyl ester (Lehmann et al.,
- 17 Carbohydr. Res., 169: 53-68 (1987); 7.62 g, 23.22 mmol) and 1,8-
- diazabicyclo[5,4.0]undec-7ene (3.6 ml) in 50 ml of anhydrous DMF was stirred at
- 19 85 °C for 4h. The DMF was removed *in vacuo* and the residue was purified by
- 20 silica gel chromatography eluting with 30% ethyl acetate in hexane. The pure
- 21 product fractions were evaporated affording a homogenous oil: 4.93 g (75%)
- 22 yield; TLC (1:1, ethyl acetate/hexane), $R_f = 0.68$; ¹H NMR (CDCl₃) 9.89 (1H, s,
- 23 aldehyde), 7.83 (2H, d, J = 8.9 Hz, aromatic), 6.98 (2H, d, J = 8.8 Hz, aromatic),
- 24 (2H, m, CH₂), 4.06 (2H, t, J = 6.6 Hz, CH₂), 3.53 (1H, t, J = 7.1 Hz, CH), 1.86 (2H,
- 25 m, CH₂), 1.60 (2H, m, CH₂), 1.41 and 1.36 (6H, 2 x s, methyl). Anal. Calcd for
- 26 $C_{16}H_{22}O_4 \cdot 0.15 H_2O$: C, 68.38; H, 8.00. Found: C, 68.31; H, 8.08.
- 27 Acetyloxy{4-[4-(2,2-dimethyl(1,3-dioxolan-4-yl))butoxy]phenyl}methyl acetate
- 28 (7).
- Sulfuric acid (1.0 ml of a 1% solution in acetic anhydride) was added to a

- 1 solution of 3 (4.78 g, 17.13 mmol) in 60 ml of acetic anhydride. The solution
- 2 was stirred for 90 min at room temperature and then poured into 500 ml of ice-cold
- 3 5% sodium bicarbonate solution. The product was extracted into ethyl acetate
- 4 (500 ml) and the extract was washed with water (2 x 500 ml), dried over sodium
- 5 sulfate and evaporated affording 7 as an oil: 5.89 g (90%) yield; TLC (1:1, ethyl
- 6 acetate/hexane), $R_f = 0.73$; ¹H NMR (CDCl₃) 7.62 (1H, s, acetal CH), 7.43 (2H,
- 7 d, J = 8.7 Hz, aromatic), 6.90 (2H, d, J = 8.6 Hz, aromatic), 4.08 (2H, m, CH₂),
- 8 3.97 (2H, t, J = 6.5 Hz, CH_2), 3.52 (1H, t, J = 7.1 Hz, CH_2), 2.11 (6H, s, acetyl),
- 9 1.82 (2H, m, CH₂), 1.60 (2H, m CH₂), 1.41 and 1.36 (6H, 2 x s, methyl). Anal.
- 10 Calcd for $C_{20}H_{28}O_7$: C, 63.14; H, 7.42. Found: C, 63.19; H, 7.40.
- 11 Acetyloxy[4-(5,6-dihydroxyhexyloxy)phenyl]methyl acetate (8).
- 12 Trifluoroacetic acid (1.5 ml) was added to a solution of 7 (5.8 g, 15.26 mmol)
- in 20% aqueous methanol. The solution was stirred for 40 min at room
- temperature and then diluted with 400 ml of ethyl acetate and washed with 400 ml
- of 5% sodium bicarbonate solution followed by 400 ml of water. The organic
- solution was dried over sodium sulfate and evaporated. The residue was purified
- by silica gel chromatography eluting with a gradient of 50% hexane in ethyl
- acetate to 100% ethyl acetate to 5% methanol in ethyl acetate. The pure product
- 19 fractions were evaporated affording an oil: 1.1 g (20%) yield; TLC (5% methanol
- 20 in ethyl acetate), $R_f = 0.64$; ¹H NMR (CDCl₂) 7.62 (1H, s, acetal CH), 7.44 (2H,
- 21 d, J = 8.7 Hz, aromatic), 6.90 (2H, d, J = 8.6 Hz, aromatic), 3.98 (2H, t, J = 6.3 Hz,
- 22 CH₂), 3.68 (1H, m, CH), 3.46 (2H, m, CH₂), 2.11 (6H, s, Acetyl), 1.82 (2H, m,
- 23 CH₂), 1.55 (4H, m, CH₂). Anal. Calcd for $C_{17}H_{24}O_7$: C, 59.99; H, 7.11. Found:
- 24 C, 60.26; H, 7.08.
- 25 Acetyloxy(4-{6-[bis(4-methoxyphenyl)phenylmethoxy]-5-hydroxyhexyloxy}-
- 26 phenyl)methyl acetate (9).
- Dimethoxytrityl chloride (1.21 g, 3.57 mmol) was added to a solution of 8 (1.0
- 28 g, 2.94 mmol) in 17 ml of dry pyridine. The solution was stirred at room
- 29 temperature for 2 h. and then poured into 250 ml of 5% sodium bicarbonate and

1 extracted with 300 ml of ethyl acetate. The extract was dried over sodium sulfate

- 2 and evaporated. The residue was purified by silica gel chromatography eluting
- 3 with 50% hexane in ethyl acetate (1% triethylamine). The pure product fractions
- 4 were pooled and evaporated affording a foam: 1.66 g (85%) yield; TLC (1:1,
- 5 ethyl acetate/hexane), $R_f = 0.50$; ¹H NMR (CDCl₃) 7.62 (1H, s, acetal CH), 7.43
- 6 (2H, d, J = 8.2 Hz, aromatic), 7.33 6.81 (17H, aromatic), 3.92 (2H, t, J = 6.4 Hz,
- 7 CH₂), 3.78 (6H, s, OCH₃), 3.17 (1H, dd, J = 3.3 and 9.4 Hz, CH), 3.03 (1H, t, J =
- 8 7.7 Hz, CH), 2.37 (1H, m, CH), 2.10 (6H, s, acetyl), 1.81 1.38 (6H, multiplets,
- 9 CH₂). Anal. Calcd for $C_{38}H_{42}O_9$: C, 71.01; H, 6.59. Found: C, 70.91; H, 6.42.
- 10 Acetyloxy[4-(6-[bis(4-methoxyphenyl)phenylmethoxy]-5-
- 11 {[bis(methylethyl)amino]-(2-cyanoethoxy)phosphinooxy}hexyloxy)phenyl]methyl
- 12 acetate (**10**)
- 2-Cyanoethyl diisopropylchlorophosphoramidite (0.49 ml, 2.19 mmol) was
- added to a solution of **9** (0.83 g, 1.29 mmol) dissolved in 32 ml of anhydrous
- methylene chloride containing 0.67 ml of N,N-diisopropylethylamine. The
- 16 reaction solution was stirred for 1.0 h at 25 °C under argon and then treated with
- 17 1.0 ml of methanol and poured into 300 ml of 5% sodium bicarbonate solution.
- 18 The mixture was extracted with ethyl acetate (300 ml) and the extract was dried
- 19 over sodium sulfate and evaporated. The crude product was purified by silica gel
- 20 chromatography eluting with a gradient of 25-50% ethyl acetate in hexane (2%
- 21 triethylamine). The pure phosphoramidite fractions were evaporated affording a
- homogenous oil: 0.61 g (56%) yield; TLC (1:1, ethyl acetate/hexane), $R_f = 0.62$;
- 23 ^{31}P NMR (DMSO-d₆) 147.82 (singlet). Anal. Calcd for $C_{47}H_{59}N_2O_{10}P$ 0.2 H_2O :
- 24 C, 66.68; H, 7.07; N, 3.31. Found: C, 66.46; H, 7.27; N, 2.94.
- 25 Example 3. Preparation of CPG (12)
- A solution of 9 (0.83 g. 1.29 mmol), succinic anhydride (0.15 g, 150 mmol),
- 27 triethylamine (0.2 ml) and N-methyl imidazole (12 ul) in 3.0 ml of dry methylene
- 28 chloride was stirred at room temperature under argon for 14 h. Pentafluorophenyl
- 29 trifluoroacetate (0.39 ml, 2.32 mmol) was added and the solution was stirred for an

- 1 additional 30 min. The reaction solution was loaded onto a silica gel column and
- 2 eluted with 25% ethyl acetate in hexane (0.5% triethylamine included). The pure
- 3 product fractions were pooled and evaporated affording a surup: 467-mg (40%)
- 4 yield; TLC (1:1, ethyl acetate/hexane), $R_f = 0.56$; ¹H NMR (CDCl₃) 7.62 (1H, s,
- 5 acetal CH), 7.42 (2H, d, J = 8.3 Hz, aromatic), 7.33 6.72 (17H, aromatic), 5.16
- 6 (1H, t, J = 5.8 Hz, CH), 3.90 (2H, t, J = 6.0 Hz, CH₂), 3.77 (6H, s, methoxys), 3.16
- 7 (2H, m, CH_2), 3.01 (2H, t, J = 6.4 Hz, succinyl CH_2), 2.80 (2H, t, J = 6.5 Hz,
- 8 succinyl CH₂), 2.11 (6H, s, acetyls), 1.82 1.32 (6H, multiplets, CH₂). Anal. Calcd
- 9 for $C_{48}H_{45}F_5O_{12}$: C, 63.43; H, 4.99. Found: C, 63.65; H, 4.71.
- 10 Attachment of 11 to CPG (12)
- To a suspension of controlled pore glass (LCAA 500 A,
- 12 4.2 g; loading, 283 umol/g) in 13.0 ml of anhydrous DMF was added 11 (226 mg,
- 13 0.252 mmol) and triethylamine (1.5 ml). The mixture was gently shaken under argon
- 14 for 24 h. Anhydrous pyridine (84 ml) was then added followed by acetic anhydride
- 15 (84 ml). The mixture was shaken for 1.0 h. The beads were filtered, rinsed with
- 16 DMF and methanol and dried: loading- 41 umol/g.
- 17 Example 4 Preparation of 3-(4-Semicarbazido) propyltriethoxysilane
- Anhydrous hydrazine (3.2 ml; Aldrich, Milwaukee, WI) were dissolved in
- 19 30 ml of anhydrous acetonitrile. 2.5 g of isocyanatopropyltriethoxysilane (United
- 20 Chemical Technologies, Bristol, PA) were added dropwise with vigorous stirring.
- 21 Reaction mixture was stirred for 1 h at room temperature and the solvent was
- 22 removed in vacuum. Oily residue was dissolved in anhydrous ethanol, the solution
- 23 was filtered, and the solvent and unreacted hydrazine were evaporated under
- 24 reduced pressure. The last step was repeated twice omitting filtration. The
- 25 resulting viscous residue was dried in vacuum overnight to afford 2.7 g (yield
- 26 96%) of the desired product as a clear oil. H NMR: d 6.82 (s, 1H, NH), 6.32 (t,
- 27 J=5.4 Hz, 1H, NH), 4.05 (br s, 2H, NH₂), 3.72 (q, J=7 Hz, 6H, CH₂), 2.96 (q, J=6.6
- 28 Hz, 2H, CH₂), 1.41 (m, 2H, CH₂), 1.26 (t, J=6.9 Hz, 9H, CH₃), 0.49 (m, 2H, CH₂).

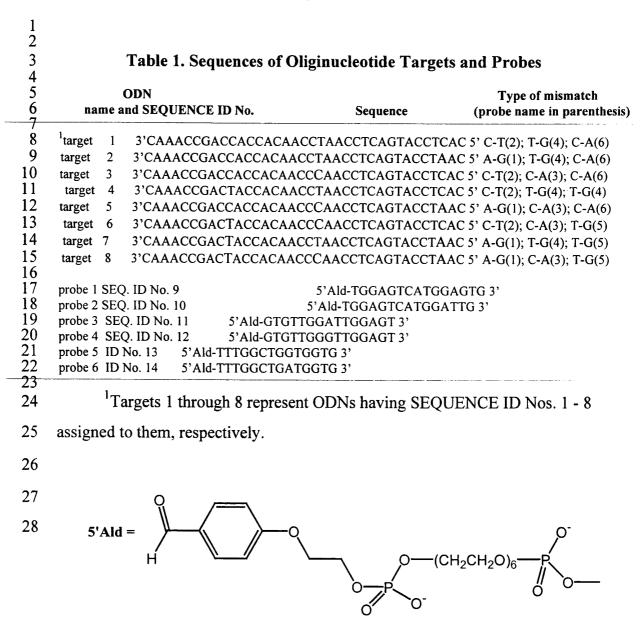
1	Example	5	Oligonucleotide	Synthesis
---	---------	---	-----------------	-----------

- 2 All oligonucleotides were synthesized on an ABI 392 DNA/RNA
- 3 synthesizer using standard phosphoramidite chemistry. The oligonucleotides were
- 4 purified by reverse-phase HPLC, and their concentrations determined by UV
- 5 spectrophotometry at 260 nm (Ref) Yield was similar to that observed in normal
- 6 oligonucleotide synthesis.
- 7 Example 6 Derivatization of Glass Slides and Preparation of Oligonucleotide
- 8 Arrays
- 9 Preparation of Slides
- Glass slides were derivatized according to the standard silanization procedure
- described below. Pre-cleaned microscope slides (Corning Glass Works, Corning,
- 12 NY) were treated with 1N HNO₃ for 1 h at room temperature and then rinsed with
- 13 running deionized water followed by anhydrous ethanol wash. The slides were
- then immersed in 1% 3-(4-semicarbazido)propyltriethoxysilane solution in 95%
- ethanol/water for 30 min. The slides were washed with 95% ethanol for 5 min,
- 16 twice with acetonitrile, 5 min per wash, and finally with ether. After that the slides
- were cured for 45 min at 110°C. The derivatized slides can be stored at least for a
- 18 month on a bench top in a dust proof container without noticeable loss of activity.
- 19 Immobilization of Oligonucleotides
- Benzaldehyde-modified oligonucleotides were dissolved in 100 mM sodium
- 21 acetate buffer (pH 5.0) at the desirable concentration and spotted manually directly
- on the derivatized slide as a 0.5 l droplets following a grid pattern on a wet paper
- 23 template underneath the slide. Slides were incubated at 37°C in a covered Petri
- 24 dish located in a humid container for 1-5 hours. To block all unreacted
- 25 semicarbazide groups on the glass surface the slides were treated with 100mM
- solution of 4-formyl-1,3-benzenedisulfonic acid disodium salt in 100 mM sodium
- 27 acetate buffer (pH 5.0) for 1 h at 37°C. The slides were then rinsed with water,
- 28 washed for 30 min at 37°C with 30% methanol in 0.5 M sodium phosphate buffer
- 29 (pH 7.0) followed by a 30 min wash in 5'SSPE, 0.1% Triton X-100 at the same

33

1 temperature. The slides were rinsed thoroughly with water, air dried at room

- 2 temperature and were ready for use in hybridization experiments.
- Figure 1 shows the effect of different pH's and oligonucleotide concentration
- 4 on immobilization efficiency. A pH of 5 and an oligonucleotide concentration of
- 5 20 mM showed optimum immobilization on glass surfaces.
- 6 Figure 2 shows that optimum oligonucleotide immobilization is achieved on
- 7 the glass surface in about 1 hour.
- 8 Example 7 Determination of Oligonucleotide Loading and Hybridization
- 9 Efficiency
- The 5' or 3' aldehyde-modified oligonucleotides were radioactively labeled
- at the opposite end using [a-32P]ddATP (NEN, Boston, MD) and terminal
- deoxynucleotidyl transferase (Promega, Madison, WI), or [g-32P]ATP (Amersham,
- 13 Arlington Heights, IL) and T4 polinucleotide kinase (NE Biolabs, Beverly, MA),
- 14 respectively. Briefly, 1.2 nmol of oligonucleotide and 100 mCi of appropriate
- 15 radioactive triphosphate were taken into a labeling reaction using the conditions
- specified by the manufacture. The labeled oligonucleotide was purified using
- 17 NENSORBä 20 cartridge (NEN, Boston, MD). Eluate from the cartridge
- 18 containing labeled oligonucleotide was dried down, dissolved in 100 ml of 100
- 19 mM sodium acetate buffer (pH 5.0) and supplemented with 9 nmol of unlabeled
- 20 oligonucleotide to approximately 100 mM final concentration. Serial dilution of
- 21 this stock was made using the same buffer with a two fold decrement. 0.5 l of
- 22 oligonucleotide solutions at various concentrations were applied in quadruplicates
- 23 to semicarbazide-derivatized glass slide and allowed to react at 37°C for 3 h. The
- 24 glass surface was blocked and washed as described above, and bound
- oligonucleotide was quantified by phosphor imaging using a Bio-Rad GS-250
- 26 Molecular Imager. The data from the phosphor imager were converted to fmol/spot
- 27 by comparing to standard curves generated from a serial dilution of known
- amounts of the same labeled oligonucleotide probes spotted on a microscope slide
- and dried down without any washing.


34

1	To determine hybridization efficiency or availability of attached
2	oligonucleotides for hybridization with a complementary target, an aldehyde-
3	modified non-radiolabeled probe was immobilized on a slide as described above.
4	2.4'5.0 cm cover slip was positioned over the area where the probes were spotted
5	using 0.2 mm thick spacers made from electric tape. 80-100 ml of hybridization
6	mixture (1 mM 5' ³² P-labeled complementary oligonucleotide, 5'SSPE, 0.1%
7	Triton X-100) was applied by capillary action between the slide and the cover slip.
8	The slide was incubated overnight at 37°C in a closed Petri dish over wet
9	Whatman 3MM paper in a humid container to prevent evaporation of the
10	hybridization solution. Two 30 min washes were performed on a shaker with 25 m
11	per slide of hybridization buffer. The level of hybridization was quantified as
12	described above.
13	Figure 3 investigates the effect of oligonucleotide concentration applied in
14	the immobilization reaction on the glass surface on covalent attachment and
15	hybridization efficiencies. As shown, optimum hybridization target capture starts
16	to occur at oligonucleotide applied concentrations of about 10 mM, that yields
17	covalently attached oligonucleotide of >200 fmol/2mm spot. Optimum
18	oligonucleotide target capture of about 75-100 fmol/2 mm spot occurs.
19	Example 8 Hybridization of Oligonucleotide Arrays with Short
20	Oligonucleotide Targets or Single-stranded PCR Products
21	Female and male human genomic DNA samples were obtained from Coriell
22	Institute of Medical Research (NIGMS Human Genetic Mutant Cell Repository,
23	Camden, NJ). The 235 bp amelogenine gene fragment corresponding to exon 3
24	was amplified by PCR using a set of primers, 5'-
25	GCTGCACCACAAATCATCCC-3' (SEQUENCE ID No. 15) and 5'-biotin-
26	CTGGTGAGGCTGTGGCTGAAC-3' (SEQUENCE ID No. 16). The
27	amplification reaction (100 ml) contained 50 mM KCl, 10 mM Tris-HCl (pH 8.3),
28	1.5 mM MgCl ₂ , 0.001% gelatin, 100 ng DNA, 1 mM of each primer, 200 mM each

29 dATP, dCTP, dTTP and dGTP, and 2.5 units of JumpStartä*Taq* DNA polymerase

- 1 (Sigma, St. Louis, MO). PCR was performed in a Statagene RoboCycler Gradient
- 2 40 Temperature Cycler (Stratagene, La Jolla, CA) using 35 cycles (95°C for 1 min,
- 3 65°C for 1 min, 72°C for 1min).
- 4 The PCR products were purified by 4% non-denaturing polyacrilamide gel
- 5 electrophoresis. One DNA strand of PCR products derived from the non-
- 6 biotinylated primer was 5' end labeled using [g-32P]ATP and T4 polynucleotide
- 7 kinase. This labeled strand was separated using streptavidin-coupled magnetic
- 8 beads Dynabeads M-280 (Dynal, Inc., Lake Success, NY) according to
- 9 manufacture's instructions. Briefly, 50 ml of labeling reaction mixture containing
- 10 1-2 mg of PCR product was diluted twice with 2'B&W buffer (10 mM Tris-HCl
- 11 (pH 7.5), 1 mM EDTA, 2 M NaCl) and added to 1 mg of pre-washed Dynabeads.
- 12 The suspension was incubated at room temperature for 15 min with occasional
- mixing. Beads were separated using the magnet, washed three times with 100 ml
- 14 of B&W buffer and treated with 75 ml of 0.1 N NaOH to denature the DNA
- strands. The mixture was incubated at room temperature for 5 min, supernatant
- was collected, and denaturation step was repeated one more time. Combined
- 17 supernatants were neutralized with equal volume of 0.1 N HCl and ethanol
- 18 precipitated. The specificity of amplification was confirmed by sequencing the
- 19 labeled strand using Maxam and Gilbert procedure (Maxam, A.M., & Gilbert, W.
- 20 Proc. Natl. Acad. Sci. U.S.A. 79, 560-564(1977)).
- 21 Hybridization of oligonucleotide macroarrays consisting of six
- oligonucleotides spotted in triplicates with 5' labeled 30-mer complementary
- 23 synthetic oligonucleotide targets was accomplished the same way as it had been
- 24 described in the previous section, except for the hybridization time, which was
- 25 reduced to 3 h. After that slides were washed for 15 min at room temperature in
- 26 hybridization buffer (5'SSPE, 0.1% Triton X-100). Slides were then washed 2'15
- 27 min at 42°C in 0.5'SSPE, 0.1% Triton X-100. In some cases an additional 15 min
- 28 wash was necessary to improve the mismatch discrimination. Finally, the slides
- were air dried and analyzed by phosphorimaging.

1	To hybridize single stranded PCR product to the same array of
2	oligonucleotides, the concentration of the target was 10-20 nM. Overnight
3	hybridization at 37°C was followed by 15 min wash in hybridization buffer, and
4	2'15 min wash at 37°C in 0.5'SSPE, 0.1% Triton X-100.
5	The oligonucleotide sequences of the primers and probes used, are shown
6	in Table 1. The specificity of the capture using an array of capture oligonucleotides
7	is shown in Figures 4 and 5. Specifically, Figure 4 is the depiction of a
8	hybridization of macroarray consisting of six ODN probes to eight different 30-
9	mer ODN targets, the sequences of which are disclosed in Table 1, wherein each
10	oligonucleotide is spotted in triplicate giving an array of 3×6 spots and wherein the
11	target sequences 1 and 8 correspond to X and Y copy of the amelogenin gene and
12	wherein all other target sequences contain nucleotide substitutions at positions
13	indicated in bold in Table 1 and wherein match or mismatch of the base pairs
14	formed between each probe and the target are indicated at the bottom of each ODN
15	triplicate. Figure 5 is a depiction of a hybridization of the same macroarray of six
16	ODN probes shown in Figure 4 to single stranded 235-mer PCR products
17	generated from female or male human genomic DNAs and to 132-mer product
18	representing isolated male copy of amelogenin gene fragment, and wherein the
19	PCR product generated from male DNA sample represents a heterozygous
20	equimolar mixture of female and male copies of the gene fragment.
21	These results illustrate the reproducibility of the immobilization reactions.
22	In addition the hybridization results show the expected results for the indicated
23	match and mismatches.
24	
25	
26	
27	
28	
29 30	
30 31	

Formula 13

WHAT IS CLAIMED IS:

1. A composition of matter comprising an oligonucleotide attached to a
 solid support, having the formula selected from the group consisting of formula

4 (i) and formula (ii),

56

7

8

9

1

1011

14

15

13

16
17
18

solid-phase
$$m$$
 T Q X W R_5

19

21

where the symbol solid-phase represents a solid matrix to which the rest of the composition is covalently attached;

n=1 to 30;

25 **m** is 1 to 30;

26 \mathbf{R}_3 is H, C_1 - C_6 alkyl or C_3 - C_6 cycloalkyl;

27 **X** is -N=; -ON=: -C=(O)-NH-N=; -NH-C=(O)-NH-N= or -NH-O-C=(O)-

28 NH-N=; **Q** is carbocyclic condensed or not-condensed aromatic ring, or a

29 condensed or not-condensed heteroaromatic ring, said carbocyclic or

PCT/US00/20571 WO 01/09385

1 heteroaromatic ring being optionally substituted with a lower alkyl, lower alkoxy

- 2 or halogen group;
- 3 V is a linker having the length of 2 to 100 atoms that contains carbon to
- carbon bonds and optionally and independently may contain carbon to oxygen 4
- 5 bonds and one or more moieties selected from the group consisting of -NH-, -
- OH, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-NH-, -NH-C(=S)-NH-, -S-, 6
- 7 $OP(O)(O^{-})O$ - and -S-S-;
- 8 W is a linker having the length of 2 to 100 atoms that contains carbon to
- 9 carbon bonds and optionally and independently may contain carbon to oxygen
- 10 bonds and one or more moieties selected from the group consisting of -NH-, -
- 11 OH, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-NH-, -NH-C(=S)-NH-, -S-,
- 12 OP(O)(O)O- and -S-S-, said linker W terminating with a carbon atom adjacent to
- 13 X;
- 14 T is a valence bond or a linker having the length of 1 to 100 atoms, that
- 15 contains carbon to carbon bonds and optionally and independently may carbon to
- 16 oxygen bonds and one or more moieties selected from the group consisting of -
- 17 NH-, -OH, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-NH-, -NH-C(=S)-NH-, -S-
- 18 and -S-S-, said linker T terminating with a carbon atom adjacent to X.
- R_5 is $-O-P=(O)(-U^-)-3'$ -oligomer of nucleotides or $-O-P=(O)(-U^-)-5'$ -oligomer of 19
- 20 nucleotides where U is O or S.
- 21 2. A composition of matter in accordance with Claim 1 in accordance with
- 22 formula (i).
- 23 3. A composition of matter in accordance with Claim 2 where \mathbf{X} is -N= or
- 24 -NH-C=(O)-NH-N=.
- **4.** A composition of matter in accordance with Claim 3 where \mathbf{X} is 25
- 26 -NH-C=(O)-NH-N=.
- 5. A composition of matter in accordance with Claim 2 where Q represents 27
- 28 a benzene ring.

- 6. A composition of matter in accordance with Claim 4 where Q
- 2 represents a benzene ring.
- 7. A composition of matter in accordance with Claim 2 where the solid
- 4 phase is a glass surface.
- 5 **8.** A composition of matter in accordance with Claim 1 in accordance with
- 6 formula (ii).
- 9. A composition of matter in accordance with Claim 8 where \mathbf{X} is -N= or
- 8 -NH-C=(O)-NH-N=.
- 9 10. A composition of matter in accordance with Claim 9 where X is
- 10 -NH-C=(O)-NH-N=.
- 11. A composition of matter in accordance with Claim 8 where **Q**
- 12 represents a benzene ring.
- 13 12. A composition of matter in accordance with Claim 8 where the solid
- 14 phase is a glass surface.
- 13. A composition of matter in accordance with Claim 2 where NH₂ groups
- 16 not attached to the oligonucleotide are end-capped with a covalently linked moiety
- 17 containing an anion.
- 18 14. A composition of matter comprising an oligonucleotide attached to a
- 19 glass support, having the formula

22

24

- where Glass represents the glass support;
- \mathbf{R}_1 is alkyl of 1 to 10 carbons or phenyl;
- **n** is an integer having the values 1 to 30;
- 29 R₃ is H or an alkyl group of 1 to 6 carbons;

41

1 V is a linker having the length of 2 to 100 atoms, that contains carbon to 2 carbon bonds and optionally and independently may contain carbon to oxygen bonds and one or more moieties selected from the group consisting of -NH-, -3 OH, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-NH-, -NH-C(=S)-NH-, -S-, 4 OP(O)(O-)O- and -S-S-, and 5 6 R_5 is $-O-P=(O)(-U^-)-3'$ -oligomer of nucleotides or $-O-P=(O)(-U^-)-5'$ -7 oligomer of nucleotides where U is O or S. 8 **`15.** A composition of matter in accordance with Claim 14 where **n** is 3. 9 16. A composition of matter in accordance with Claim 14 where \mathbf{R}_3 is H. 10 17. A composition of matter in accordance with Claim 14 where the phenyl 11 group is attached through linker V to the 5'-end of the oligonucleotide. 12 18. A composition of matter in accordance with Claim 14 where the phenyl 13 group is attached through linker V to the 3'-end of the oligonucleotide. 14 19. A composition of matter in accordance with Claim 14 where n is 3, R₃ 15 is H, and the phenyl group is attached through linker V to the 5'-end of the 16 oligonucleotide. 17 20. A composition of matter in accordance with Claim 19 where the linker 18 V includes an OP(O)(O⁻)O- moiety. 19 21. A method of attaching an oligonucleotide to a solid support, to provide 20 a solid-support oligonucleotide conjugate, the method comprising the step of: 21 reacting a derivatized solid support of the formula (iii) with a derivatized 22 oligonucleotide of the formula (iv), or by reacting a derivatized solid support of 23 the formula (v) with a derivatized oligonucleotide of the formula (vi) 24 25 26 27

- 1 carbon bonds and optionally and independently may contain carbon to oxygen
- 2 bonds and one or more moieties selected from the group consisting of -NH-, -
- OH, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-NH-, -NH-C(=S)-NH-, -S-, 3
- OP(O)(O)O- and -S-S-, said linker W terminating with a carbon atom adjacent to 4
- 5 **X**;
- 6 T is a valence bond or a linker having the length of 1 to 100 atoms, that
- 7 contains carbon to carbon bonds and optionally and independently may
- 8 CONTAIN carbon to oxygen bonds and one or more moieties selected from the
- 9 group consisting of -NH-, -OH, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-
- NH-, -NH-C(=S)-NH-, -S- and -S-S-, said linker T terminating with a carbon atom 10
- 11 adjacent to X.
- 12 R_5 is $-O-P=(O)(-U^-)-3'$ -oligomer of nucleotides or $-O-P=(O)(-U^-)-5'$ -
- 13 oligomer of nucleotides where U is O or S.
- 22. A method in accordance with Claim 21 where a derivatized solid 14
- support of the formula (iii) is reacted with a derivatized oligonucleotide of the 15
- 16 formula (iv).
- 17 23. A method in accordance with Claim 22 where the reaction is conducted
- in an aqueous phase having a pH less than approximately 8. 18
- 19 24. A method in accordance with Claim 23 where the reaction is conducted
- 20 in an aqueous phase having a pH less than approximately 7.
- 21 25. A method in accordance with Claim 22 where X is selected from the
- 22 group consisting of -N and -NH-O-C=(O)-NH-N.
- 23 26. A method in accordance with Claim 22 R₃ is H and Q represents a
- 24 benzene ring.
- 25 27. A method in accordance with Claim 21 where a derivatized solid
- support of the formula (v) is reacted with a derivatized oligonucleotide of the 26
- 27 formula (vi).
- 28 28. A derivatized solid support of formula (iii) or of formula (v)

44

1 2 3 solid-phase 4 5 formula (iii) formula (v) 6 7 8 where the symbol solid-phase represents a solid matrix; 9 n=1 to 30; 10 m is 1 to 30; 11 \mathbf{R}_3 is H, C_1 - C_6 alkyl or C_3 - C_6 cycloalkyl; 12 X is -N; -ON: -C=(O)-NH-N; -NH-C=(O)-NH-N or -NH-O-C=(O)-NH-N;13 **Q** is carbocyclic condensed or not-condensed aromatic ring, or a condensed 14 or not-condensed heteroaromatic ring said carbocyclic or heteroaromatic ring 15 being optionally substituted with a lower alkyl, lower alkoxy or halogen group, 16 and 17 T is a valence bond or a linker having the length of 1 to 100 atoms, that 18 contains carbon to carbon bonds and optionally and independently may include 19 carbon to oxygen bonds and one or more moieties selected from the group 20 consisting of -NH-, -OH, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-NH-, -21 NH-C(=S)-NH-, -S- and -S-S-, said linker T terminating with a carbon atom 22 adjacent to X. 29. A derivatized solid support in accordance with Claim 28 that is in 23 24 accordance with formula (iii). 25 **30.** A derivatized solid support in accordance with Claim 29 where **X** is 26 selected from the group consisting of -N and -NH-O-C=(O)-NH-N. 27 31. A phosphoramidite reagent of the formula

28

1
2
3
4
5 R_2O R_3 R_2O R_3 R_2O R_3 R_2O R_3 R_2O R_3 R_3

where $\mathbf{R_2}$ is an alkyl group of 1 to 6 carbons, an acyl group of one to 6 carbons, or the two $\mathbf{R_2}$ groups together form a carbocyclic ring of 2 - 4 carbons;

 \mathbf{R}_3 is H, C₁-C₆alkyl or C₃-C₆cycloalkyl;

 $\mathbf{R_x}$ is a chain of atoms, optionally including a ring, of an overall length of 2 to 150 atoms, including carbon to carbon bonds and optionally and independently including carbon to oxygen bonds and one or more moieties selected from the group consisting of -NH-, -O-, -NH-C(=O)-, -C=(O)-NH-,-NH-C(=O)-NH-, -NH-C(=S)-NH-, -S-, OP(O)(O)O or -S-S- groups, and

Q is carbocyclic condensed or not-condensed aromatic ring, or a condensed or not-condensed heteroaromatic ring said carbocyclic or heteroaromatic ring being optionally substituted with a lower alkyl, lower alkoxy or halogen group.

- 32. A phosphoramidite reagent in accordance with Claim 31 where R_3 is H.
- 33. A phosphoramidite reagent in accordance with Claim 32 where Q
 represents a benzene ring.
 - **34.** A derivatized controlled pore glass suppport of the formula

CPG~NH

CPG~NH

R₂

OR₄

R₂

OR₂

10

where **n** is an integer having the values of 1 to 30 **R**₂ is an alkyl group of 1 to 6 carbons, an acyl group of one to 6 carbons, or the two **R**₂ groups together form a carbocyclic ring of 2 - 4 carbons;

- 14 \mathbf{R}_3 is H, C₁-C₆alkyl or C₃-C₆cycloalkyl, and
- 15 \mathbf{R}_4 is H or is dimethoxytriphenylmethyl.
- 35. A derivatized controlled pore glass suppport in accordance with Claim 34 where R₃ is H.
- 18 **36.** A derivatized controlled pore glass support in accordance with Claim 19 35 where $\bf n$ is 4 and $\bf R_2$ is CH₃CO-.
- 20 37. A method of coupling a solid support to an oligonucleotide, the support
- 21 having a matrix and NH-C(O)-NHNH, groups covalently attached to the matrix
- 22 through a covalently attached linker group, the oligonucleotide including cytosine
- 23 nucleosides, the method comprising the step of:
- reacting in an aqueous phase in the presence of bisulfite the solid support with the oligonucleotide.
- 38. A method of binding a nucleic acid or a fragment thereof to a
- 27 substantially complementary strand of oligonucleotide, said method comprising the
- 28 steps of:
- providing an array of oligonucleotides of varying sequences on a solid

- 1 support surface where each ODN is bound to the surface by a covalent bond
- 2 including a Schiff base formed between an NH₂ group and an aromatic aldehyde,
- 3 and
- 4 contacting the nucleic acid or fragment thereof with the array of
- 5 oligonucleotides bound to the solid surface.
- 6 **39.** The method of Claim 38 where the Schiff base is formed between a
- 7 semicarbazide group attached to the solid surface and an aromatic aldehyde
- 8 attached to each of the oligonucleotides.
- 9 **40.** The method of Claim 39 where the solid surface is a glass surface.

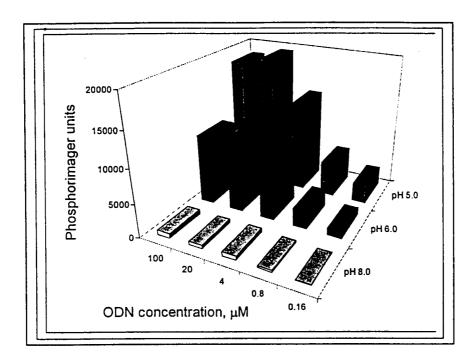


Fig. 1

PCT/US00/20571

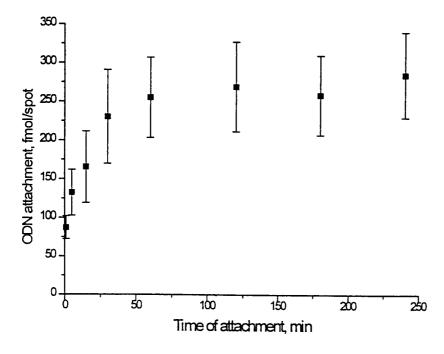


Fig. 2

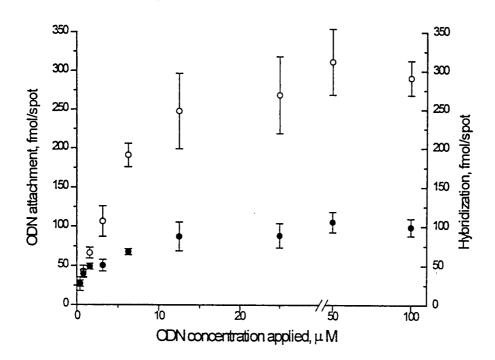
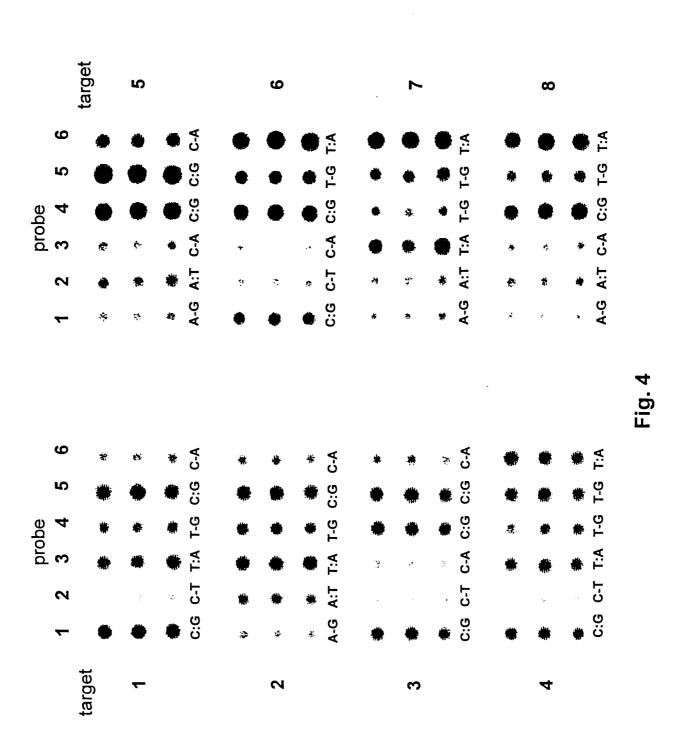
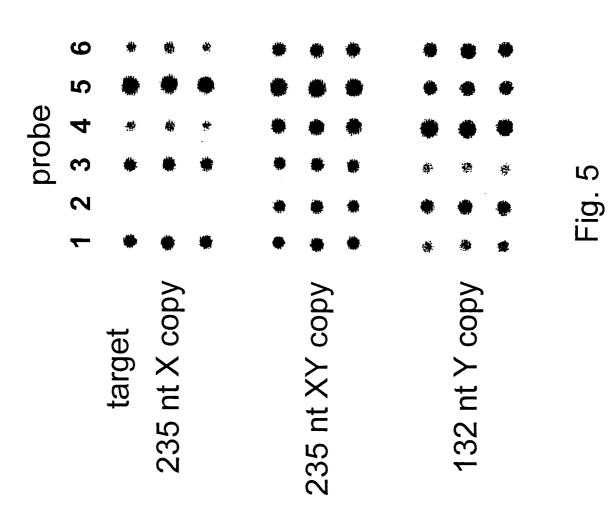




Fig. 3

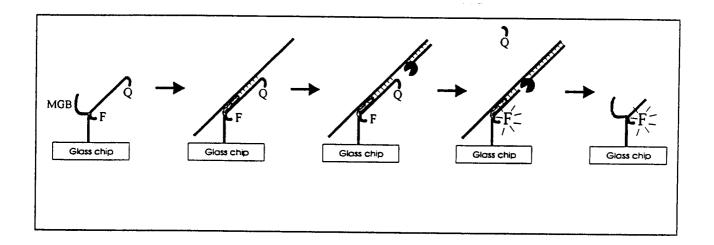


Fig. 6