高压真空永磁机构断路器的手动合闸机构

摘要

本发明涉及一种高压真空永磁机构断路器的手动合闸机构，其包括底板，底板上设有第一支架，第二支架，第三支架，第四支架及永磁机构；第一支架，第二支架与第三支架上均设有第一连板与第二连板；第一支架上对应的连板上设有压簧轴，压簧轴上安装有压簧；压簧套与第四支架上的滚轮轴相连，滚轮轴上设有滚轮与第三连板，第三连板与第四支架上的第二连板轴相铰接；第四支架上设有凸轮轴，凸轮轴上设有凸轮及合闸手柄；第一支架与第二支架的第一连板轴两端分别设有第一驱动板与第二驱动板，第二支架与第三支架上的一连板轴上均设有第四连板，且分别与合闸轴与分闸轴相连。本发明能够利用手动合闸，操作方便，安全可靠。
1. 一种高压真空永磁机构断路器的动配合间机构，包括底板（6），所述底板（6）上设有
第一支架（8）、第二支架（20）及第三支架（25）；所述第一支架（8）与第二支架（20）间
设有第四支架（19），所述第二支架（20）与第三支架（25）间设有永磁机构（32），所述永磁机
构（32）内的铁芯（23）上设有合闸轴（22）与分闸轴（24），所述合闸轴（22）邻近第二支架
（20）；其特征是：所述第一支架（8）、第二支架（20）与第三支架（25）上均设有第一连板（5）
与第二连板（9）；所述第一连板（5）与第二连板（9）的一端利用第一连板轴（11）相铰接，
并能够分别相对应的第一支架（8）、第二支架（20）及第三支架（25）运动；所述第二连板
（9）对应于与第一连板（5）相连的另一端分别与对应的支架（8）、第二支架（20）及第三
支架（25）相铰接；所述第一连板（5）对应于与第二连板（9）相铰接的另一端均设有定位
销（37），所述定位销（37）分别嵌置于第一支架（8）、第二支架（20）及第三支架（25）上对
应的定位槽（40）内，定位销（37）能够在对应的定位槽（40）内移动；所述第一支架（8）上
对应的第一连板轴（11）上设有压簧轴（12），所述压簧轴（12）上利用压簧套（29）安装有压
簧（13）；所述压簧套（29）的端部设有滚轮轴（30），所述滚轮轴（30）上设有滚轮（16）与第
三连板（15），所述第三连板（15）对应于与滚轮轴（30）相连的另一端与第四支架（19）上
的第二连板轴（14）相铰接；所述第四支架（19）上设有凸轮轴（18），所述凸轮轴（18）上设有
凸轮（17）及合闸手柄（36），所述凸轮（17）与滚轮（16）相接触，所述凸轮轴（18）能相对第
四支架（19）转动；所述第一支架（8）上对应的第一连板轴（11）两端分别设有第一驱动板
（26）与第二驱动板（27），所述第一驱动板（26）与第二驱动板（27）的另一端分别与第二
支架（20）上对应的第一连板轴（11）两端固定连接；第二支架（20）与第三支架（25）上对应
的第一连板轴（11）上均设有第一连板（5）对应于与第一连板轴（11）相连的另一端通过调节
螺栓（4）与绝缘拉杆（3）相紧固连接。

2. 根据权利要求1所述高压真空永磁机构断路器的动配合间机构，其特征是：所述底
板（6）上设有壳体（7）。

3. 根据权利要求1所述高压真空永磁机构断路器的动配合间机构，其特征是：所述第
一支架（8）、第二支架（20）及第三支架（25）上均设有弧形槽（38）；第一支架（8）、第二支
架（20）及第三支架（25）上对应的第一连板轴（11）嵌置在弧形槽（38）内，并能够在弧形
槽（38）内运动。

4. 根据权利要求1所述高压真空永磁机构断路器的动配合间机构，其特征是：所述第
一连板（5）对应于与第一连板轴（11）相连的另一端通过调节螺栓（4）与绝缘拉杆（3）相
紧固连接。

5. 根据权利要求4所述高压真空永磁机构断路器的动配合间机构，其特征是：所述绝
缘拉杆（3）位于底板（6）上的绝缘筒（1）内；所述底板（6）对应于设置第一支架（8）、第二
支架（20）及第三支架（25）上方均设有绝缘筒（1）；所述绝缘筒（1）内还设有真空管（2），
所述绝缘拉杆（3）对应于与第一连板（5）相连的另一端与真空管（2）的动触头相连。

6. 根据权利要求1所述高压真空永磁机构断路器的动配合间机构，其特征是：所述第
四支架（19）上设有固定轴（31）。

7. 根据权利要求1所述高压真空永磁机构断路器的动配合间机构，其特征是：所述凸
轮轴（18）对应于设置合闸手柄（36）的端部设有棘轮（33）；第四支架（19）上设有止退爪
（34），所述止退爪（34）利用止退爪轴（35）安装在第四支架（19）上。
8. 根据权利要求1所述高压真空永磁机构断路器的手动合闸机构，其特征是：所述压簧轴（12）对应于设置压簧套（29）的端部设有圆螺母（28），所述压簧套（29）利用圆螺母（28）与压簧（13）紧固连接。

9. 根据权利要求1所述高压真空永磁机构断路器的手动合闸机构，其特征是：所述第二连板（9）对应于与第一连板（5）相铰接的另一端设有固定销（10），所述第二连板（9）分别利用固定销（10）分别与第一支架（8）、第二支架（20）及第三支架（25）相铰接。

10. 根据权利要求1所述高压真空永磁机构断路器的手动合闸机构，其特征是：所述第二支架（20）与第三支架（25）上对应的第四连板（21）均利用连接销（39）与合闸轴（22）、分闸轴（24）固定连接。
高压真空永磁机构断路器的手动合闸机构

技术领域
[0001] 本发明涉及一种手动合闸机构，尤其是一种高压真空永磁机构断路器的手动合闸机制。

背景技术
[0002] 高压真空永磁断路器的使用量日趋扩大，在现有的市场上占有一定的份额。但手动合闸功能未能很好的实现，作为一种新型的永磁操作机构而未能实现手动合闸这实在是一种功能上的重要缺陷，使用操作不够方便。

发明内容
[0003] 本发明的目的是克服现有技术中存在的不足，提供一种高压真空永磁机构断路器的手动合闸机构，其能够利用手动合闸，操作方便，安全可靠。
[0004] 按照本发明提供的技术方案，所述高压真空永磁机构断路器的手动合闸机构，包括底板，所述底板上设有第一支架、第二支架及第三支架；所述第一支架与第二支架间设有第四支架，所述第二支架与第三支架间设有永磁机构，所述永磁机构内的铁芯上设有合闸轴与分闸轴，所述合闸轴被第二支架；所述第一支架、第二支架与第三支架上均设有第一连板与第二连板；所述第一连板与第二连板的一端利用第一连板轴相铰接，并能够分别相对应的第一支架、第二支架及第三支架运动；所述第二连板对应于与第一连板相连的另一端分别与对应的第一支架、第二支架及第三支架相铰接；所述第一连板对应于与第二连板相铰接的另一端均设有定位销，所述定位销分别嵌置在第一支架、第二支架及第三支架上对应的定位槽内，定位销能够在对应的定位槽内移动；所述第一支架上对应的第一连板轴上设有压簧轴，所述压簧轴上设有压簧；所述压簧安装于压簧轴，所述压簧安装于压簧轴；所述压簧轴上设有滚轮，所述滚轮轴上设有滚轮与第三连板，所述第三连板对应于与滚轮轴相联的另一端与第四支架上的第二连板轴相铰接；所述第四支架上设有凸轮，所述凸轮轴上设有凸轮及合闸手柄，所述凸轮与滚轮相接触，所述凸轮轴能够相对第四支架转动；所述第一支架上对应的第一连板轴两端分别设有第一驱动板与第二驱动板，所述第一驱动板与第二驱动板的另一端分别与第二支架上对应的第二连板轴两端固定连接；所述第二支架与第三支架上对应的第二连板轴上均设有第四连板；所述第二支架上对应的第四连板与合闸轴固定连接，所述第二支架上的第四连板与分闸轴固定连接。
[0005] 所述第一支架、第二支架及第三支架上均设有弧形槽；第一支架、第二支架及第三支架上对应的第一连板轴嵌置在弧形槽内，并能够在弧形槽内运动。所述第一连板对应于与第一连板轴相连的另一端通过调节螺栓与绝缘拉杆相紧固连接。所述绝缘拉杆位于底板上的绝缘筒内；所述底板对应于设置第一支架、第二支架及第三支架上方均设有绝缘筒；所述绝缘筒内还设有真空管，所述绝缘拉杆对应于与第一连板相连的另一端与真空管的动触头相连。
[0006] 所述第四支架上设有固定轴。所述凸轮轴对应于设置合闸手柄的端部设有棘轮；
第四支架上设有止退爪，所述止退爪利用止退爪轴安装在第四支架上。所述压簧轴对应于设置压簧套的端部设有圆螺母，所述压簧套利用圆螺母与压簧紧固连接。所述第二连板对应于与第一连板相铰接的另一端设有固定销，所述第二连板分别利用固定销分别与第一支架、第二支架及第三支架相铰接。所述第二支架与第三支架上对应的第四连板均利用连接销与合间轴、分间轴固定连接。

[0007] 本发明的优点：当永磁机构处于分间位置时，拉动合间手柄，凸轮轴转动，凸轮推动滚轮移动压缩压簧，压簧储能，当压簧压缩力大于永磁机构分间保持力时，压簧释放能量通过第一连板、第二连板推动绝缘拉杆使断路器合间，同时通过第一驱动板，第二驱动板带动永磁机构中的铁芯从分间位置运动到合间位置，此时凸轮与滚轮脱离回到原始位置，完成整个手动合间过程。所述手动合间机构零件较少，结构简单，故障点少，性能可靠，电动操作与纯机械手动操作互不干扰，通过凸轮和滚轮、压簧等相应配合，实现手动合间功能，操作方便，安全可靠。

附图说明

[0008] 图 1 为本发明的结构示意图。
[0009] 图 2 为图 1 的 A 相视图。
[0010] 图 3 为图 2 中 B 向局部示意图。

具体实施方式

[0011] 下面结合具体附图和实施例对本发明作进一步说明。

[0012] 如图 1～图 3 所示：本发明包括绝缘筒 1、真空管 2、绝缘拉杆 3、调节螺栓 4、第一连板 5、底板 6、壳体 7、第一支架 8、第二连板 9、固定轴 10、第一连板轴 11、压簧轴 12、压簧 13、第二连板轴 14、第三连板 15、滚轮 16、凸轮 17、凸轮轴 18、第四支架 19、第二支架 20、第四连板 21、合间轴 22、铁芯 23、分间轴 24、第三支架 25、第一驱动板 26、第二驱动板 27、圆螺母 28、压簧套 29、滚轮轴 30、固定轴 31、永磁机构 32、棘轮 33、止退爪 34、止退爪轴 35、合间手柄 36、定位销 37、弧形槽 38、连接销 39 及定位槽 40。

[0013] 如图 1 和图 2 所示：所述底板 6 上设有绝缘筒 1，所述绝缘筒 1 为三个，均匀分布在底板 6 上；三个绝缘筒 1 分别形成三相电压的三相相间、B 相与 C 相接线柱。所述绝缘筒 1 内设有真空管 2，所述真空管 2 的静触头位于绝缘筒 1 外，真空管 2 的动触头位于绝缘筒 1 内。绝缘筒 1 内设有绝缘拉杆 3，绝缘拉杆 3 的一端与真空管 2 的动触头相连，通过绝缘拉杆 3 与真空管 2 的动触头对应配合，能够实现断路器的合间与分间。

[0014] 所述底板 6 对应于设置绝缘筒 1 的另一侧设有第一支架 8、第二支架 20、第三支架 25 及第三支架 19；所述第一支架 8、第二支架 20、第三支架 25 及第三支架 19 与底板 6 固定连接。所述第一支架 8、第二支架 20 与第三支架 25 分别位于底板 6 上对应绝缘筒 1 的下方。第一支架 8 与第二支架 20 间设有第四支架 19，第二支架 20 与第三支架 25 间设有永磁机构 32；所述永磁机构 32 固定在底板 6 上，永磁机构 32 内设有铁芯 23，所述铁芯 23 能够在永磁机构 32 内运动。当铁芯 23 位于永磁机构 32 的分间位时，断路器处于分间状态；当铁芯位于永磁机构 32 的合间位时，断路器处于合间状态。

[0015] 所述第一支架 8、第二支架 20 及第三支架 25 上均设有第一连板 5、第二连板 9、弧
形槽 38 及安装槽 40。第二连板 9 的一端利用固定销 10 分别与第一支 架 8、第二支架 20 及第三支架 25 相铰接，第二连板 9 能够绕固定销 10 转动。第二连板 9 对应于设置固定销 10 的另一端利用第一连板轴 11 与第一连板 5 相铰接，所述第一连板轴 11 分别位于第二架 架 8、第二支架 20 及第三支架 25 上对应的弧形槽 38 内，且第一连板轴 11 能够在弧形槽 38 内移动。所述第一连板 5 对应于设置第一连板轴 11 的另一端设有定位销 37，所述定位销 37 位于定位槽 40 内，并能够在定位槽 40 内移动。第二连板 5 对应于设置定位销 37 的端部利用调节螺栓 4 与底板 6 上对应的绝缘杆 3 相紧固连接。

【0016】第二支架 8 上对应的第一连板轴 11 上设有压簧轴 12，所述压簧轴 12 位于第一连板轴 11 上对应于设置第一连板 5 与第二连板 9 间。所述压簧轴 12 上利用压簧套 29 安装有压簧 13，所述压簧套 29 与压簧 13 利用圆螺母 28 与压簧轴 12 紧固连接。所述压簧套 29 的端部设有滚轮轴 30，所述滚轮轴 30 上设有滚轮 16 及第三连板 15，所述第三连板 15 与滚 轮 16 均位于压簧套 29 上对应于与滚轮轴 30 的端部内；所述滚轮轴 16 的两侧均设有第三连板 15。所述第三连板 15 对应于与滚轮轴 30 相连的另一端与第四支架 19 上的第二连板轴 14 相铰接。第二连板轴 14 位于第四支架 19 上的滑动槽内，并能够在滑动槽内移动。


【0018】如图 1 和图 3 所示；所述第四支架 19 上还设有凸轮轴 18，所述凸轮轴 18 上设有凸轮 17 与棘轮 33，所述凸轮 17 与滚轮 16 相接触；凸轮轴 18 能够相对第四支架 19 转动；凸轮 17 与棘轮 33 均与凸轮轴 18 固定连接。当凸轮轴 18 相对第四支架 19 转动时，所述凸 轮轴 18 上的凸轮 17 与棘轮 33 均能够相对第四支架 19 转动。第四支架 19 上还设有止退爪 34，所述止退爪 34 与止退爪轴 35 与第四支架 19 相铰接。所述止退爪 34 位于棘轮 33 的下方，棘轮 33 与止退爪 34 对应配合，能够对棘轮 33 的转动进行微调。凸轮轴 18 对应于与第四支架 19 相连的另一端穿过壳体 7，凸轮轴 18 对应于位于壳体 7 外的端部设有固定连接的合闸手柄 36。当拉动合闸手柄 36 时，能够使凸轮轴 18 相对第四支架 19 转动。

【0019】如图 1、图 2 和图 3 所示；使用时，通过调整永磁机构 32 能够实现高压真空永磁机构断路器的合闸与分闸动作；所述永磁机构 32 的合闸与分闸均可以通过控制机构实现自动合闸与分闸；初始时，永磁机构 32 的铁芯 23 位于分闸位。通过拉动合闸手柄 36 时，能够实 现高压真空永磁机构断路器的自动合闸。合闸手柄 36 的端部设有拉环，工作时，通过拉 板拉动合闸手柄 36 转动。凸轮轴 18 上设有棘轮 33，棘轮 33 下方设有止退爪 34，通过棘轮 33 与止退爪 34 的对应配合，能够对合闸手柄 36 的转动角度进行微调。当凸轮轴 18 在合闸 手柄 36 作用下相对第四支架 19 转动时，所述凸轮轴 18 端部的凸轮 17 也会随着转动。初
始时，凸轮 17 的端部与滚轮 16 相接触，凸轮 17 的转动会给滚轮 16 向外的推力。滚轮 16 与第三连板 15 均位于滚轮轴 30 上，当凸轮 17 的作用力推动滚轮 16 相对运动时，第三连板 15 对应于与滚轮轴 30 相连的端部能够绕第二连板轴 14 转动；且第三连板 15 能够压缩压簧轴 12 上的压簧 13，使压簧 13 进行储能。所述压簧轴 12 通过第一支架 8 上的第一连板轴 11 与第一连板 5 及压簧轴 12 相连接。第一支架 8 上的第一连板轴 11 上两端分别设有第一驱动板 26 与第二驱动板 27；所述第一驱动板 26 与第二驱动板 27 的另一端与第二支架 20 上对应的第一连板轴 11 固定。所述第二支架 20 上的第一连板轴 11 通过第四连板 21 与永磁机构 32 的合间轴 22 连接。当压簧 13 存储的弹性势能大于永磁机构 32 的分间保持力时，凸轮 17 能够通过滚轮 16、第三连板 15 及压簧轴 12 推动第一支架 8 上的第一连板轴 11 在弧形槽 38 内运动。由于第一支架 8 上第一连板 5 与第二连板 9 通过第一连板轴 11 相铰接，第一连板轴 11 在第一支架 8 上的弧形槽 8 作远离第四支架 19 方向的运动时，能够推动第一支架 8 上的第二连板 9 绕固定销 10 做逆时钟运动，且使第一连板 5 端部的定位销 37 在定位槽 40 内滑动。当第一连板 5 与第二连板 9 运动到中心线接近同一直线时，第一连板 5 会将对应的绝缘杠杆 3 向上顶起，使绝缘杠杆 3 与真空管 2 的动触头相接触，使底座 6 上对应的绝缘筒 1 内绝缘杠杆 3 与真空管 2 间的闭合，完成 A 相的合间。

[0020] 当第一支架 8 上的第一连板轴 11 在弧形槽 38 内运动时，第一连板轴 11 同时会带动第一驱动板 26 与第二驱动板 27 同时作远离第三支架 25 方向的运动。由于第一驱动板 26 与第二驱动板 27 同时与第二支架 20 上对应的第一连板轴 11 相固定，第一驱动板 26 与第二驱动板 27 作远离第三支架 25 的方向运动时，能够将第二支架 20 上的第一连板轴 11 在对应弧形槽 38 内相应的位置。第二支架 20 上第一连板轴 11 作远离第三支架 25 方向运动时，第一连板轴 11 会同时带动第一支架 8 上的第一连板轴 5 与第二连板 9 的运动；当第一连板 5 与第二连板 9 运动到中心线接近同一直线时，通过第一连板 5 的端部能够将对应的绝缘杠杆 3 顶起，将第二支架 20 上对应的绝缘杠杆 3 与对应的真空管 2 的动触头相接触，完成底座 6 上 B 相的合间。


[0022] 本发明当永磁机构 32 处于分间位置时，拉动合间手柄 36，凸轮轴 18 转动，凸轮 17
推动滚轮 16 移动压缩压簧 13，压簧 13 储能，当压簧 13 压缩力大于永磁机构 32 分闸保持力时，压簧 32 释放能量通过第一连板 5、第二连板 9 推动绝缘拉杆 3 使断路器合闸，同时通过第一驱动板 26、第二驱动板 27 带动永磁机构 32 中的铁芯 23 从分闸位置运动到合闸位置；此时凸轮 17 与滚轮 16 脱开回到初始位置，完成整个手动合闸过程。所述手动合闸机构零件较少，结构简单，故障点少，性能可靠，电动操作与纯机械手动操作互不干扰，通过凸轮 17 和滚轮 16、压簧 13 等对应配合，实现手动合闸功能，操作方便，安全可靠。
图 3