
(19) United States
US 20120221 671 A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0221671 A1
Chen et al. (43) Pub. Date: Aug. 30, 2012

(54) CONTROLLING SHARED MEMORY

(75) Inventors: Ying Chen, Beijing (CN); Yan Li,
Beijing (CN); Qiming Teng,
Beijing (CN); Huayong Wang,
Beijing (CN)

International Business Machines
Corporation, Armonk, NY (US)

(73) Assignee:

(21) Appl. No.: 13/400,768

(22) Filed: Feb. 21, 2012

(30) Foreign Application Priority Data

Feb. 28, 2011 (CN) 2011 10047985-X

Publication Classification

(51) Int. Cl.
G06F 5/67 (2006.01)

Computer node A

Application
process A

Language
runtime A

Device driver
module A module B

Program NICA NICB Program
buffer A Micro- Shared | | | Micro- buffer B

memory troller B controller A A COO

(52) U.S. Cl. .. 709/213

(57) ABSTRACT

In view of the characteristics of distributed applications, the
present invention proposes a technical solution for applying a
shared memory on an NIC comprising: a shared memory
configured to provide shared storage space for a task of a
distributed application, and a microcontroller. Furthermore,
the present invention provides a computer device that
includes the above-mentioned NIC, a method for controlling
a read/write operation on a shared memory of a NIC, and a
method for invoking the NIC. The use of the technical solu
tion provided in the present invention bypasses the processing
of network protocol stack, avoids the time delay introduced
by the network protocol stack. The present invention does not
need to perform TCP/IP encapsulation on the data packet,
thus greatly saving additional packet header and packet tail
overheads generated from the TCP/IP layer data encapsula
tion.

Computer node B

Application
process B

Language
runtime B

Device driver

Patent Application Publication Aug. 30, 2012 Sheet 1 of 10 US 2012/0221671 A1

Computer node A

Application
process A

S

Language
runtime A

S18

Network protocol
Stack A

S17 S3

Device driver
module A

S15
S4

Program
buffer A

SI6

Computer node B

Application
process B

S10

Language
runtime B

S9
S11

Network protocol
stack B

S8, S12

Device driver
module B

S6

S7 Program
NICB

S13 buffer B

Fig. 1

Patent Application Publication Aug. 30, 2012 Sheet 2 of 10 US 2012/0221671 A1

Physical layer IP packet TCP packet TCP packet IP packet Physical layer
Data

packet header header header tail tail packet tail

Fig. 2A

Physical layer Data Physical layer
packet header packet tail

Fig. 2B

Patent Application Publication Aug. 30, 2012 Sheet 3 of 10 US 2012/0221671 A1

NIC

NIC
memory

On-chip bus Medium
Controller acCeSS —

DMA Interface

unit

Fig. 3

Patent Application Publication Aug. 30, 2012 Sheet 4 of 10 US 2012/0221671 A1

Microcontroller K- Shared

memory

NIC
memory

Medium

Controller access .
unit

interface s DMA Fig. 4 A

Microcontroller

NIC
memory

Medium

Controller access ——
unit

DMA interface
Fig. 4B

Patent Application Publication Aug. 30, 2012 Sheet 5 of 10 US 2012/0221671 A1

31 24 23 16 15 12 8 7 O

TID SIZEKEY | UNIT OP FLAGS

Fig. 5A

31 24 23 16 15 12 11 8 7 O

0000 OO11 OOOOOOO1 || 000 1 0 100 0000 0000

Fig. 5 B

31 24 23 16 15 12 11 8 7 O

0000 OO11 OOOO 1010 000 1 0001 0000 0000

Fig. 5 C

TID KEY ADDR LEN FLAGS

Fig. 6

Patent Application Publication Aug. 30, 2012 Sheet 6 of 10 US 2012/0221671 A1

Destination Source DSAPSSAP Cntl|Org code
address address Length AA AA || 0 OO Type Data CRC

6 6 2 I I 3. 2 38-492 4

Fig. 7A

Destination Source
address address Type Data CRC

6 6 2 46—5OO 4

Fig. 7B

Patent Application Publication Aug. 30, 2012 Sheet 7 of 10 US 2012/0221671 A1

Computer node A

Application
process A

Language
runtime A

Device driver
module A

P NICA
rogram Shared

buffer A Micro- memory
controller A A

Fig. 8

Computer node B

Application
process B

Language
runtime B

Device driver
module B

NICB Program
----- Micro- buffer B

controller B

Patent Application Publication Aug. 30, 2012 Sheet 8 of 10 US 2012/0221671 A1

Computer node A Computer node B

Application Application
process A process B

Language Language
runtime A runtime B

DevCC Device driver
driver module B

module A

NICA Program NICB Program
Shared Shared buffer B buffer A Micro- || || "T""""" Micro- le memory memory

controller A A controller B B

Fig. 9

Patent Application Publication Aug. 30, 2012 Sheet 9 of 10 US 2012/0221671 A1

1001:
Determine whether the local NIC is configured with a shared

memory Supporting the read/write operation

1003:
When the local NIC is configured with a shared memory

supporting the read/write operation, perform the read/write
operation on the shared memory of the local NIC

Fig. 10

1101:
Determine whether the local NIC is configured with a shared

memory according to the state switch on the NIC

1 1 03:

If the local NIC is configured with a shared memory, further determine
whether the shared memory configured on the local NIC supports the
read/write operation according to the task identification code stored in

the shared memory of the local NIC

Fig. 11

Patent Application Publication Aug. 30, 2012 Sheet 10 of 10 US 2012/0221671 A1

1201;
Provide the program buffer of the distributed

application

12O3:
Invoke the language runtime by a dedicated interface on

the language runtime

1205,
Invoke the device driver module to perform

physical layer encapsulation

1207:
Control the read/write operation on the shared memory

On the NIC

Fig. 12

US 2012/0221 671 A1

CONTROLLING SHARED MEMORY

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application claims priority under 35 U.S.C.
S119 from Chinese Patent Application No. 2011 10047985.X
filed Feb. 28, 2011, the entire contents of which are incorpo
rated herein by reference.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention generally relates to technolo
gies for processing data on a network interface card (NIC),
and specifically to an NIC, a computer device, a method for
controlling a read/write operation on a shared memory on a
NIC and a method for scheduling a NIC.
0004 2. Description of Related Art
0005. A distributed application refers to an application
distributed on different computer nodes and accomplishing a
task together through a network. The task can be divided into
a plurality of processes, and different processes can be dis
tributed on different computer nodes. The plural processes
need to invoke each other frequently, or perform plural read/
write operations on the same data. The processes of a distrib
uted application distributed on different nodes usually per
form network communications using the TCP/IP protocol.
TCP/IP is a general communication protocol for Supporting
communications of almost all kinds of applications on the
transmission layer/network layer. The TCP/IP protocol has
not provided customized protocol architecture for distributed
applications.
0006. On traditional distributed computer architecture, an
independent program buffer for a distributed application is
allocated on each computer node. Each process of the distrib
uted program independently performs operations on the pro
gram buffer, and performs data transmission through a TCP/
IP network. According to the traditional architecture, data is
required to go through multi-layered packaging before being
transmitted through the network, as well as multi-layered
decapsulation after being transmitted through the network.
The above encapsulation and decapsulation processes result
in delays of multiple times during the entire data transmission
process, and cause many unnecessary system overheads.
0007 FIG. 1 illustrates schematic diagram of a system for
performing data communication between two computer
nodes in the prior art. Specifically, in the example shown in
FIG. 1, computer node A requests to read a piece of data from
computer node B. The architecture of computer node A
includes an application process A, a language runtime A, a
network protocol stack A, a device driver module A, a NICA
and a program buffer A, the program buffer usually residing in
the physical memory of the computer node. The computer
node A can further include other devices not shown in FIG. 1,
such as a CPU. The architecture of computer node B is iden
tical with that of computer node A.
0008. In step S1, the application process A transmits a read
data request to the language runtime A through a dedicated
programming interface; in step S2, the language runtime A
converts the read data request into a network data transmis
sion request, and passes it to the network protocol stack A for
processing; in step S3, the network protocol stack A, after
performing TCP/IP encapsulation on the data, invokes the
device driver module A to initiate a direct memory access

Aug. 30, 2012

(DMA) operation of the NICA; in step S4, the NICA copies
the address of the program buffer A to the NIC memory (not
shown) on the NICA through the DMA operation; in step S5,
the NICA transmits the content in its NIC memory to the NIC
B of the other computer node B; in step S6, the NICB
generates an interrupt signal after receiving the data request
packet from the NICA, and informs the device driver module
B; in step S7, the device driver module B copies the data
request packet from the NIC memory of the NIC B to the
program buffer B; in step S8, the device driver module B
informs the network protocol stack B of the event of the
arrival of the data request packet, and requests the network
protocol stack B to parse the arrived data request packet; in
step S9, by parsing the data request packet, the network
protocol stack B learns that the content in the data request
packet is a read data request, and informs the application
process B by the language runtime B; in step S10, the appli
cation process B reads the data required by the computer node
A, and constructs a network response notification, then
invokes the language runtime B requesting to transmit the
data; in step S11, the language runtime B passes the network
response notification to the network protocol stack B to form
a network data transmission request; in step S12, after per
forming TCP/IP protocol encapsulation on the data, the net
work protocol stack B invokes the device driver module Band
indicates the address of the program buffer B in which the
data to be transmitted is located to initiate the NIC B to
perform a DMA operation; in step S13, the NICB copies the
data from the program buffer B to the NIC memory on the
NIC B through the DMA operation; in step S14, the NICB
transmits the data to the NICA on the computer node A: in
step S15, the NICA forms an interrupt signal after receiving
the data from network, and informs the device driver module
A; in step S16, the device driver module A copies the data
from the NIC memory of the NICA to the network protocol
stack A: in step S17, the device driver module A informs the
network protocol stack A of the data arrival event to request
the network protocol stack A to parse the arrived data; in step
S18, the network protocol stack A learns that the content of
the data packet is a response corresponding to the read data
request by parsing the data packet, and informs the applica
tion process A by the language runtime A, so as to make the
application process A get the final result.

SUMMARY OF THE INVENTION

0009. One aspect of the present invention provides a net
work interface card, including: a shared memory configured
to provide shared storage for tasks of distributed applications,
where said shared memory can be accessed by a plurality of
computing nodes executing a same task; and a microcontrol
ler configured to control read/write operations on said shared
memory.

0010. Another aspect of the present invention provides a
method for controlling a read/write operation on a shared
memory of a network interface card, where the shared
memory is configured to provide shared storage for tasks of a
distributed application, and the shared memory can be
accessed by a plurality of computing nodes executing a same
task, the method including: determining whether a local net
work interface card is configured with a shared memory Sup
porting said read/write operation; and performing the read/
write operation to the shared memory on the local network

US 2012/0221 671 A1

interface card when the local network interface card is con
figured with the shared memory Supporting the read/write
operation.
0011. Another aspect of the present invention provides a
method for invoking a network interface card, the method
including: providing a program buffer of a distributed appli
cation; invoking a language runtime through a dedicated
interface on the language runtime; invoking a device driver
module to perform physical layer encapsulation; and control
ling a read/write operation on the shared memory of the
network interface card.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The accompanying drawings referenced by this
description are only used to illustrate typical embodiments of
the present invention, and shall not be construed as limitation
to the scope of the present invention.
0013 FIG. 1 illustrates a schematic diagram of a system
for performing data communication between two computer
nodes in the prior art.
0014 FIG. 2A illustrates a schematic diagram of an encap
Sulation structure of a data frame transmitted on a network in
the prior art.
0015 FIG.2B illustrates a schematic diagram of an encap
Sulation structure of a data frame transmitted on a network
according to an embodiment of the present invention.
0016 FIG.3 illustrates a schematic diagram of an internal
structure of a NIC in the prior art.
0017 FIG. 4A illustrates a schematic diagram of the struc
ture of an NIC according to an embodiment of the present
invention.

0018 FIG. 4B illustrates a schematic diagram of the struc
ture of an NIC according to another embodiment of the
present invention.
0019 FIG. 5A illustrates a schematic diagram of a field
structure of a command port according to an embodiment of
the present invention.
0020 FIG.5B illustrates a schematic diagram of the struc
ture of a write operation instance of a command port accord
ing to an embodiment of the present invention.
0021 FIG.5C illustrates a schematic diagram of the struc
ture of an allocation operation instance of a command port
according to another embodiment of the present invention.
0022 FIG. 6 illustrates a schematic diagram of the struc
ture of an allocation table in the shared memory according to
an embodiment of the present invention.
0023 FIG. 7A illustrates a schematic diagram of a physi
cal layer data frame transmitted according to the RFC894
Ethernet network transmission standard.
0024 FIG. 7B illustrates a schematic diagram of a physi
cal layer data frame transmitted according to the RFC 1042
Ethernet network transmission standard.
0025 FIG. 8 illustrates a schematic diagram of a system
for performing data transmission between two computer
nodes according to an embodiment of the present invention.
0026 FIG. 9 illustrates a schematic diagram of a system
for performing data transmission between two computer
nodes according to another embodiment of the present inven
tion.

0027 FIG. 10 illustrates a flowchart of a method for con
trolling a read/write operation on the shared memory of an
NIC.

Aug. 30, 2012

0028 FIG. 11 illustrates a flowchart of a method for deter
mining whether there is a locally configured shared memory
Supporting a read/write operation according to an embodi
ment of the present invention.
0029 FIG. 12 illustrates a flowchart of a method for invo
cating an NIC according to an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

0030 Numerous specific details are provided in the fol
lowing discussion to facilitate thorough understanding of the
present invention. However, it is obvious to those skilled in
the art that the understanding of the present invention can not
be affected without these specific details. It should be appre
ciated that the use of any of the following specific terms is
only for the convenience of description, and therefore, the
present invention should not be limited to be used in any
specific application denoted and/or implied by Such terms.
0031. The inventor of the present invention finds that the
steps S8, S9, S17 and S18 have significant and unpredictable
delay during the above data read process. Therein, Scheduling
delay of the operating system will occur in the steps S8 and
S17; data receiving can be finished only when the operating
system schedules the target application to run, and this delay
is difficult to estimate, usually between 1-1000 milliseconds.
And in the steps S9 and S17, scheduling delay of the language
runtime will occur, and this can be up to several seconds in the
WOrSt Case.

0032 Besides the time delays, the whole data read process
will result in a large amount of network data packet head/tail
overheads, since the network protocol stack will be respon
sible for performing the TCP/IP encapsulation/decapsualtion
on the data during the entire data read process. FIG. 2A
illustrates a schematic diagram of the encapsulation structure
of a data frame transmitted on a network in the prior art. In the
schematic diagram of FIG. 2A, it can be found that when
being transmitted on the network, data go through three
encapsulation processes of TCP, IP and physical layers. The
TCP packet header and tail have 20 bytes in total, the IP
packet header and tail have 20 bytes in total, and the physical
packet header and tail have 26 bytes in total. Therefore, after
being processed by the network protocol stack, if the data
packet transmitted on the network has only 1 byte of original
data, the finally formed network layer data frame will have 67
(20+20+26+1) bytes.
0033 For a distributed application, it needs to perform
frequent transmission and synchronization of shared data on
several specific computer nodes, thus requiring performing
frequent communication among the plural computer nodes
and performing transmission between the program buffer and
NIC memory on each computer node. Obviously, for a task of
a distributed application, its main objective is to make the
application processes on the computing nodes to obtain con
sistent data views, and to ensure the consistency of data
update. TCP/IP protocol stack processing is not only unnec
essary, but also brings additional processing and storage over
heads. In view of the above features of a distributed applica
tion, the present invention proposes a technical Solution of
realizing shared memory on a NIC.
0034 Specifically, the present invention provides a device
modeled afterNIC, including: a shared memory configured to
provide shared storage for a distributed application, and the
shared memory can be accessed by a plurality of computing

US 2012/0221 671 A1

nodes running a same application, as well as a microcontrol
ler configured to control a read/write operation on the shared
memory.
0035. In addition, the present invention further provides a
computer device, including: the above-described NIC, and a
device driver module configured to perform physical layer
encapsulation on the shared memory on the above NIC.
0036 Additionally, the present invention further provides
a method for controlling read/write operations on a shared
memory of a NIC, where the shared memory is configured to
provide shared storage for a distributed application, and the
shared memory can be accessed by a plurality of computing
nodes running the same application, the method including:
determining whether the local NIC is configured with a
shared memory Supporting the read/write operation, and per
forming the read/write operation on the shared memory on
the local NIC if the local NIC is configured with a shared
memory Supporting the read/write operation.
0037. Furthermore, the present invention provides a
method for invocating an NIC, the method including: provid
ing a program buffer for the distributed application, invoking
a language runtime through a dedicated interface on the lan
guage runtime, invoking a device driver module to perform
physical layer encapsulation, and controlling a read/write
operation on the shared memory on the NIC through a dedi
cated interface on the NIC, where the shared memory is
configured to provide shared storage for a task of the distrib
uted application, and the shared memory can be accessed by
a plurality of computing nodes running the same application.
0038. By using the technical solution of the present inven

tion, the network stack processing is bypassed, and the device
driver module is invoked directly by the language runtime,
thus the time delay brought by steps S8, S9, S17, S18 in FIG.
1 can be avoided. In addition, since the present invention
bypasses the network protocol stack processing, and does not
need to perform TCP/IP encapsulation on the data packet and
only needs to perform physical layer encapsulation, the data
packet can be transmitted according to the existing physical
layer transmission model. This significantly saves the addi
tional packet header and tail overheads brought by the TCP/IP
layer data encapsulation.
0039 FIG. 3 shows a schematic diagram of an internal
structure of a NIC in the prior art. The NIC in the prior art
includes control logics, an NIC memory, a DMA interface
and a medium access unit, where the control logics can be
configured to be a programmable chip to control a DMA
operation, so as to realize data read/write to the NIC memory.
The DMA interface is connected externally to the bus of the
computer node to perform a DMA operation. The medium
access unit is responsible for receiving data frames from the
network and transmitting data frames in the NIC memory to
the network. The NIC memory is a temporary storage unit of
the data frames.

0040 FIG. 4A shows a schematic diagram of the structure
of an NIC according to an embodiment of the present inven
tion. The NIC in FIG. 4A is added with a shared memory and
a microcontroller on the basis of the structure of a current
NIC. Therein, the shared memory is configured to provide
shared storage for a distributed application, and the shared
memory can be accessed by plural computing nodes running
the same application. The microcontroller is configured to
control a read/write operation on the shared memory. Further
more, the microcontroller is configured to determine whether
the shared memory Supports a received read/write request,

Aug. 30, 2012

and perform the read/write operation on the shared memory
when it determined that the shared memory supports the
received read/write request. The microcontroller can be
implemented by a simple Field Programmable Gate Array
(FPGA), and not necessarily be designed as a complex gen
eral processor.
0041. The original control logic of the NIC communicates
with the upper-layer device driver module through a specific
port, and similarly, the microcontroller can also communicate
with the upper-layer device driver module through a specific
port. Generally, the device driver module communicating
with the control logics and the device driver module commu
nicating with the microcontroller are different device driver
modules.
0042. According to an embodiment of the present inven
tion, the NIC memory can be configured to buffer data read/
written by the shared memory. According to another embodi
ment of the present invention, the shared memory directly
performs the read/write operation with the program buffer in
the local physical memory without being buffered by the NIC
memory. The specific buffering process will be described in
detail in the following.
0043. According to an embodiment of the present inven
tion, the NIC also includes a command port CMD (not shown)
thereon, the command port is connected with the microcon
troller and communicates with the upper-layer device driver
module, and the command port is configured to receive con
trol commands to the microcontroller, so as to realize the
read/write operation on the shared memory. Furthermore, the
NIC can also include a state port STAT (not shown) thereon,
and the state port is connected with the microcontroller and
communicates with the upper-layer device driver module,
and is responsible for providing the state result of the data
read/write operation on the shared memory on the NIC, so as
to be read and checked by the device driver module. The
command port and the state port together realize the control
ling of the controller.
0044. In different architectures, different I/O primitives
can be used to accomplish port read/write. Taking the IA32
architecture as an example, assuming the port addresses of
CMD and STAT are 0x4AO and 0x4A1 respectively, the fol
lowing instructions issued by the driver program can accom
plish the port read/write:

move the command word into the EAX
register
write the command word into the CMD port
read in state word from the STAT port

MOV cmd word, EAX

OUT Ox4AO, EAX
IN EAX, Ox4A1

0045. According to an embodiment of the present inven
tion, in specific hardware implementation, the CMD port can
be a 16-bit or 32-bit register that controls read/write of the
on-chip storage module. FIG. 5A illustrates a schematic dia
gram of a field structure of a command port according to an
embodiment of the present invention. In the embodiment of
FIG. 5A, the CMD port is implemented as a 32-bit register,
which includes a TID field, a SIZE/KEY field, a UNIT field,
an OP field and a FLAGS field.
0046. Therein, the TID field at bits 24-31 is used to indi
cate a task identification code (TID), and the task identifica
tion code is used to indicate to which task of the distributed
application the data read/written belongs. A distributed appli
cation can include plural tasks. The present invention can

US 2012/0221 671 A1

apply shared memory on the NIC for each task to perform
data sharing, or apply shared memory on the NIC for one or
more tasks to perform data sharing. For the plural computer
nodes, either the NIC of one computer node provides a com
mon shared memory for all the tasks, or the NICs of different
computer nodes provide shared memory for different tasks
respectively.
0047. The OP field at bits 8-11 is used to indicate the
operation type, e.g., 0011 denotes to perform data read opera
tion on the shared memory, 0100 denotes to perform data
write operation on the shared memory, 0001 denotes to per
form memory allocation operation on the shared memory,
0010 denotes to perform memory release operation on the
shared memory. Therein, the read operation and write opera
tion are two basic operations of data. The allocation operation
is used to request allocating a piece of memory space before
the data read/write operation, and the release operation is
used to release a previously allocated memory space after the
data read/write operation.
0048 For different operation types, the meanings of the
SIZE/KEY field of the command port bits 16-23 can also be
different. For example, for the allocation operation, bits 16-23
store the size of the storage space requested to be allocated by
the shared memory. Each allocated storage space of the
shared memory will be assigned a key KEY for identifying a
piece of occupied storage space. For the write operation, the
read operation and the release operation, the key stored by bits
16-23 is used to denote the storage space of the shared
memory to which the write operation, the read operation and
the free operation correspond.
0049. The UNIT field at bits 12-15 of the command port is
used to denote allocation granularity. In an allocation opera
tion, since bits 16-23 only have 8 bytes and the size of the
storage space requested to be allocated by the shared memory
that can be denoted thereby is limited, the UNIT field can
realize an extension of the storage space size. According to an
embodiment of the present invention, the UNIT field is used
to denote a multiple of the filed SIZE. For example, for the
allocation operation, if what is stored between bits 16-23 is
00000001, then when what is stored by bits 12-15 of the
command port is 0001, it indicates that the storage space size
of the shared memory requested to be allocated is 1x1; when
what is stored in bits 12-15 of the command port is 0010, it
indicates that the storage space size of the shared memory
requested to be allocated is 1x2; when what is stored in bits
12-15 of the command port is 0011, it indicates that the
storage space size of the shared memory requested to be
allocated is 1x3, and so forth. According to another embodi
ment of the present invention, the UNIT field is used to
indicate plural multiplies of the field SIZE. For example,
when what is stored in bits 12-15 is 0001, it indicates that the
storage space size of the shared memory requested to be
allocated is 1x1; when what is stored in bits 12-15 is 0010, it
indicates that the storage space size of the shared memory
requested to be allocated is 1x8, and so forth.
0050. Optionally, the FLAGS field at bits 0-7 of the com
mand port is used to denote other control options, including
whether the storage space of the allocated shared memory is
allowed to be modified.

0051 FIG.5B illustrates a schematic diagram of the struc
ture of a write operation instance of a command port accord
ing to an embodiment of the present invention. Therein, the
TID field is 00000011, the KEY field is 00000001, the UNIT
field is 0001, the OP field is 0100, and the FLAGS field is

Aug. 30, 2012

00000000. FIG. 5B denotes a command port instance of
executing a write data operation on a piece of storage space
with a shared memory key of 1 through the CMD port for a
task with a task identifier TID of 3.

0.052 FIG.5C shows a schematic diagram of the structure
ofan allocation operation instance of a command port accord
ing to another embodiment of the present invention. Therein,
the TID field is 00000011, the SIZE field is 00001010, the
UNIT field is 0001, the OP field is 0001, and the FLAGS field
is 00000000. FIG. 5C denotes that, for a task with a task
identifier 3, it requests the shared memory to allocate a stor
age space of 10 bytes of shared memory through the CMD
port.
0053. The structural design of the CMD port can be
adjusted according to the difference of specific applications,
and not limited to the above-listed instances.
0054 The structural design of the STAT port can also be
adjusted according to the difference of specific applications.
In an embodiment of the present invention, the structure of the
STAT port includes a KEY field and a TID field to indicate the
execution status of a read/write command, e.g., whether a
read/write operation is executed successfully, or whether a
read/write operation invokes a remote computer node. This
invention does no specifically define the format of the STAT
port.
0055 FIG. 6 illustrates a schematic diagram of the struc
ture of an allocation table in the shared memory according to
an embodiment of the present invention. In order to perform
effective control on the shared memory in the NIC, according
to an embodiment of the present invention, an allocation table
is maintained in the shared memory. The allocation table
records the tasks supported by the shared memory. Specifi
cally, the allocation table in FIG. 6 includes a TID field, a
KEY field, an ADDR field, a LEN field and a FLAGS field,
where the TID field records the task identification code Sup
ported by the shared memory, the KEY field records the key
to which the storage space allocated by the shared memory for
the corresponding task, the ADDR field records the start
address of the shared memory to which the key corresponds,
the LEN field records the size of the storage space of the
shared memory to which the key corresponds, and the
FLAGS field records other related information. Thus, the
microcontroller can, by querying the allocation table, learn
whether the local shared memory has allocable space and
supports the read/write operation required by the device
driver module.
0056. According to an embodiment of the present inven
tion, the NIC can be further configured with a state switch
thereon, which indicates whether the local NIC is configured
with a shared memory which in an enabled working state. The
microcontroller can be further configured to determine
whether the local NIC is configured with a shared memory
module according to the state switch. Moreover, the state in
the state switch can be altered to denote whether the shared
memory on the local NIC is in an enabled or disabled working
State.

0057. Furthermore, if the local NIC is configured with a
shared memory, the microcontroller can determine whether
the shared memory configured on the local NIC supports a
certain read/write operation according to the task identifica
tion code TID in the above allocation table. This function is
especially useful for the case where the NICs of plural com
puter nodes are all configured with different shared memories
So as to Support different distributed program tasks, by which

US 2012/0221 671 A1

a microcontroller can determine whether the shared memory
configured on the local NIC is the shared memory to which a
certain read/write operation is directed.
0058. In order to indicate that the write operation is to
write data into the shared memory rather than the NIC
memory, or to indicate that the read operation is to read data
out from the shared memory rather than the NIC memory, the
device driver module writes a special identifier in the frame
structure of the physical layer data while performing physical
layer data encapsulation so as to indicate the packet is tar
geted at the shared memory. In an embodiment of the present
invention, the special identifier is recorded in the type field of
the physical layer packet header of the data. FIG. 7A illus
trates a schematic diagram of a physical layer data frame
transmitted according to the RFC894 Ethernet transmission
standard. FIG. 7B illustrates a schematic diagram of a physi
cal layer data frame transmitted according to the RFC 1042
Ethernet transmission standard. Both transmission standards
include a two-byte type field. The device driver module first
sets the frame type of the physical layer network frame to
identify the difference with a common network data packet
before it writes data to the shared memory. For example,
generally the type field is 0x0800 to indicate that an IP packet
is carried in the data frame. The present invention can distin
guisha shared memory read/write packet from a network data
packet by setting the type field to 0x00FF. Other embodi
ments of the present invention can use other fields of the
physical layer frame structure packet header to record the
special identifier, or change the physical layer frame structure
to add a special identifier field.
0059. As described above, in the present invention, either
a common shared memory is provided for all tasks by the NIC
of only one computer node in the plural computer nodes, or
different shared memories are provided for different tasks by
the NICs of different computer nodes. In the former embodi
ment, the NIC of only one computer node among the plural
computer nodes is configured with both the shared memory
and the microcontroller, while the NICs of other computer
nodes are merely configured with a microcontroller to realize
controlling the read/write operation on the remote shared
memory. FIG. 4B illustrates a schematic diagram of an NIC
structure according to another embodiment of the present
invention. The NIC of FIG. 4B includes control logics, a NIC
memory, a media access unit, a DMA interface and a micro
controller. Different from FIG. 4A, the NIC in FIG. 4B does
not include a shared memory. The microcontroller in FIG. 4B
is only used to provide controlling logics to the shared
memory of a remote computer node, and not used to control
the local shared memory. The specific details will be
described in more detail below.
0060. In the following is described different data flows in
the above two embodiments with respect to the architecture of
the computer nodes.
0061 Embodiment 1-only one computer node in the plu

ral computer nodes is configured with a shared memory:
0062 Taking FIG.8 as an example, the NICA ofcomputer
node A is configured with a shared memory A, while the NIC
B of computer node B is not configured with a share memory.
0063 Embodiment 1.1—a read/write operation is issued
by the application process of the computer node configured
with a shared memory:
0064. Taking FIG. 8 as an example, assuming that the
application process A of computer node A issues a data read/
write request.

Aug. 30, 2012

0065 Embodiment 1.1.1—the issued read/write request is
a write data request:
0.066 Taking FIG. 8 as an example, assuming that the
application process A issues a write data request requesting to
write a piece of data in the program buffer A into the shared
memory. For the application, it is transparent whether data is
stored using the shared memory.
0067 First, the application process A provides the address
of the program buffer A of the distributed application, the data
to be written into the shared memory being stored in the
program buffer A. The application process A invokes the
language runtime A using a dedicated interface of the lan
guage runtime A to perform data writing. The language runt
ime A invokes the device driver module A to encapsulate the
data into a physical layer data frame, including encapsulating
the packet header and packet tail of the physical layer data
frame. Therein the device driver module A is a device driver
module dedicated to perform shared memory operations.
Besides, the computer node A further includes a device driver
module (not shown) corresponding to the controller in the
NICA, i.e., a device driver module used in a traditional NIC.
Next, the device driver module A will invoke the traditional
device driver module, so as to copy the data from the program
buffer A to the NIC memory (not shown) of the NICA. As a
variation of the above embodiment, the physical layer encap
sulation can also be performed by a traditional device driver
module.

0068. Next, the microcontroller A determines whether the
local NIC is configured with a shared memory according to
the state switch on the NICA. In this embodiment, the micro
controller A determines that the local NIC has the shared
memory. Since only one computer node in the plural com
puter nodes is configured with the shared memory, the object
upon which the above data write request is targeted is exactly
the shared memory on the local NIC.
0069. Next, the microcontroller A copies the data packet
from the NIC memory on the NICA into the shared memory
A. The above step has various implementations, one of which
is to remove the packet header and packet tail of the data
packet, and copy the effective data part therein into the shared
memory A. In another implementation, the entire data packet
is copied into the shared memory A.
0070. To support data sharing, the storage capacity of the
shared memory is usually very large, and much larger than the
storage capacity of the NIC memory. In this case, if a write
operation of a large amount of data is performed, it can be
impossible to copy all the data to be written into the NIC
memory. Therefore, it is needed to partition a large bulk of
data, so that the partitioned data can be written into the shared
memory B piece by piece from the program buffer A through
the NIC memory. All data read from the program buffer A are
finally written into the shared memory A through buffering of
the NIC memory.
0071. As a variation of the present embodiment, the device
driver module A can copy data from the program buffer A into
the shared memory A directly by writing to the command port
of the microcontroller A. For example, the KEY field in the
command port can be used to describe the address of the data
to be written in the program buffer A, by which the micro
controller can be able to control copying the data at the
address from the program buffer A to the shared memory A.
The above manner can realize a direct data exchange between
the program buffer and the shared memory, but can also bring
additional control overheads.

US 2012/0221 671 A1

0072 Embodiment 1.1.2—the issued read/write request is
a read data request:
0073 Taking FIG. 8 as an example, assume that the appli
cation process A issues a read request, requesting to read data
from the shared memory into the program buffer A.
0074 First, the application process A provides the address
of the program buffer A for receiving the data. The application
process A invokes the language runtime A using a dedicated
interface of the language runtime A. The language runtime A
invokes the device driver module A to encapsulate the address
of the program buffer A to a simple physical layer data frame.
The device driver module A invokes a traditional device
driver module (not shown) corresponding to the NIC memory
in the NICA, so as to copy the address of the program buffer
A to the NIC memory (not shown) of the NIC A.
0075. Next, the microcontroller A determines whether the
local NIC is configured with a shared memory according to
the state switch on the NICA. In the present embodiment, the
microcontroller A determines that the local NIC has the
shared memory. Since only one computer node in the plural
computer nodes is configured with the shared memory, the
object upon which the above data read request is executed is
exactly the shared memory on the local NIC.
0076 Next, the microcontroller A copies the data from the
shared memory A to the NIC memory of the NICA, and then
the controller of the NIC A copies the data from the NIC
memory to the program buffer A according to the address of
the program buffer Astored in the NIC memory.
0.077 As a variation of the present embodiment, the device
driver module A can also directly copy the data from the
shared memory A to the program buffer A by writing to the
command port of the microcontroller A. In this way, the
structure of the command port should be added with a field of
program buffer address to indicate the address into which the
data is to be written.

0078 Embodiment 1.2—a read/write request is issued by
the application process of a computer node not configured
with a shared memory:
0079 Taking FIG. 8 as an example, assume that the appli
cation process B of the computer node B issues a data read/
write request.
0080 Embodiment 1.2.1—the issued read/write request is
a write data request:
0081. Taking FIG. 8 as an example, assume that the appli
cation process B issues a write data quest, requesting to write
a piece of data in the program buffer B into the share memory
A

0082 First, the application process B provides the address
of the program buffer B, in which the data to be written into
the shared memory is stored, of the distributed application.
The application process B invokes the language runtime B by
a dedicated interface on the language runtime B to perform
data partition. The language runtime B invokes the device
driver module B to encapsulate the data into a data frame of
the physical layer, where the device driver module B is a
device driver module dedicated to perform shared memory
operations. Besides, the computer node B further includes a
device driver module (not shown) corresponding to the con
troller in the NIC B, i.e., a device driver module used in a
traditional NIC. Next, the device driver module B will invoke
the traditional device driver module, so as to copy the data
from the program buffer B to the NIC memory (not shown) of
the NIC B. As a variation of the above embodiment, the

Aug. 30, 2012

physical layer encapsulation of the data can also be performed
by the traditional device driver module.
0083. Next, the microcontroller B determines whether the
local NIC is configured with a shared memory according to
the state switch on the NICB. In this embodiment, the micro
controller B determines that the local NIC does not have a
shared memory thereon.
0084. Next, the microcontroller B invokes the controller
on the NICB, so as to transmit the data in the NIC memory of
the NIC B to other computer nodes through the medium
access unit (not shown), the other computer nodes being
computer node A in the present embodiment.
I0085. Then, the NICA of computer node A receives the
data and copies it to the shared memory A. Specifically, after
the NICA receives the data, the controller of the NIC A
determines whether the data is the data to be written into the
shared memory by querying a special identifier in the data
frame, e.g., a type field. If the data is to be written into the
shared memory, then the microcontroller A further deter
mines whether there is a locally configured share memory
according to the state switch on its own NIC. In the present
embodiment, the microcontroller A determines that a shared
memory A is configured locally. Since only one computer
node in the plural computer nodes is configured with a shared
memory, the object upon which the above data write request
is executed is exactly the shared memory on the NICA. Next,
the microcontroller A writes the data into the local shared
memory A.
I0086. It should be pointed out that, a data frame transmit
ted in a network can include a task identifier field TID and a
key field KEY. The TID and KEY can be recorded in the data
fields shown in FIG. 7A, 7B, and the values of TID and KEY
will be recorded in the allocation table of the shared memory.
As for the structure of the allocation table, refer to the above
description with respect to FIG. 6.
I0087 Embodiment 1.2.2—the issued read/write request is
a read data request:
I0088. Taking FIG.8 as an example, assume the application
process B issues a read data request, requesting to read data
from the shared memory into the program buffer B.
I0089 First, the application process B provides the address
of the program buffer B for receiving data. The application
process B invokes the language runtime Busing a dedicated
interface of the language runtime B. Then, the language runt
ime B invokes the device driver module B to encapsulate the
address of the program buffer B into a physical layer data
frame. Moreover, the device driver module B invokes a tra
ditional device driver module (not shown) corresponding to
the NIC memory in NICB, so as to copy the address of the
program buffer B into the NIC memory (not shown) of the
NIC B.

0090 Next, the microcontroller B determines whether a
shared memory is configured locally according to the state
switch on the NICB. In the present embodiment, the micro
controller B determines that there is no shared memory on the
local NIC, and then the microcontroller B forwards the data
read request to other computer nodes or simply neglects this
data read request, the other computer node being computer
node A in the present embodiment.
0091 Next, the controller in the NICA can determine
whether the requested data is data stored in the shared
memory by checking the field type in the data frame. If the
conclusion is yes, the microcontroller A further determines
whether there is a shared memory configured locally. If the

US 2012/0221 671 A1

further conclusion is yes, the microcontroller A parses the
data read request and constructs the data in the shared
memory A into a physical layer data frame. Then, the NICA
transmits the data to the computer node B. After receiving the
data, the computer node B copies the data to the program
buffer B under the control of the controller of NIC B, thus
accomplishing the data read operation.
0092. Embodiment 2 the plural computer nodes are all
configured with shared memories to Support different tasks:
0093. Taking FIG. 9 as an example, the NICA of the
computer node A is configured with a shared memory A, and
the NICB of the computer node B is configured with a shared
memory B. The shared memory A and the shared memory B
can be used to support different tasks. Hereinafter, only the
parts of the embodiment 2 different from embodiment 1 are
described in detail, while the parts identical with the embodi
ments in embodiment 1 are merely described briefly.
0094. Embodiment 2.1—a read/write request is issued to
the local shared memory:
0095 Taking FIG.9 as an example, assume that the appli
cation process A of the computer node A issues a data read/
write request, requesting to perform a read/write operation on
the shared memory.
0096 Embodiment 2.1.1—the issued read/write request is
a write data request:
0097. Taking FIG.9 as an example, assume that applica
tion process A issues a write data request, requesting to write
a piece of data in the program buffer A into the shared
memory A.
0098 First, the application process A provides the address
of the program buffer A of the distributed application. The
application process A invokes the language runtime A, which
in turn invokes the device driver module A to encapsulate the
data into a physical layer data frame. Next, the device driver
module A will invoke the traditional device driver module
(not shown) of the NICA, so as to copy the data from the
program buffer A into the NIC memory (not shown) of the
NICA.

0099 Next, the microcontroller A determines whether the
local NIC is configured with a shared memory according to
the state switch on the NICA. In the present embodiment, the
microcontroller A determines that the local NIC is configured
with a shared memory. Next, the microcontroller A further
determines whether the shared memory A configured on the
local NIC supports the write operation, i.e., whether data is to
be written into this instance of shared memory A instead of
the shared memories on other computer nodes, according to
the task identification code TID stored in the allocation table
of the shared memory A. Specifically, the microcontroller A
can determine whether the write operation is to be performed
on the local shared memory by comparing the task identifi
cation code TID in the allocation table with the TID field of
the write command obtained by the command port of the NIC
A. In the present embodiment, the microcontroller A deter
mines that the write operation is to be performed on the local
shared memory A.
0100 Next, the microcontroller A copies the data from the
NIC A memory on the NIC memory A into the shared
memory A.
0101 Embodiment 2.1.2—the issued read/write request is
a read data request:
0102 Taking FIG.9 as an example, assume the application
process A issues a read data request, requesting to read the
data from the shared memory into the program buffer A.

Aug. 30, 2012

0103 First, the application process A provides the address
of the program buffer A for receiving data. The application
process A invokes the language runtime A. Next, the language
runtime A invokes the device driver module A to encapsulate
the address of the program buffer A into a simple physical
layer data frame. The device driver module A invokes a tra
ditional device driver module (not shown) corresponding to
the NIC memory in the NICA so as to copy the address of the
program buffer A into the NIC memory (not shown) of the
NIC A.

0104. Next, the microcontroller A determines whether the
local NIC is configured with a shared memory according to
the state switch on the NICA. In the present embodiment, the
microcontroller A determines that there is a shared memory
on the locale NIC. Next, the microcontroller A further deter
mines whether the shared memory A configured on the local
NIC supports the read operation, i.e., whether the data is to be
read from the shared memory A instead of the shared memo
ries on other computer nodes, according to the task identifi
cation code TID stored in the allocation table of the shared
memory A.
0105. Then, the microcontroller A copies the data from the
shared memory A into the NIC memory of the NICA, and the
controller of the NICA copies the data from the NIC memory
to the program bufferA according the address of the program
bufferA stored in the NIC memory, thus accomplishing the
data read operation.
01.06 Embodiment 2.2 a read/write request is issued to a
remote shared memory:
0107 Taking FIG.9 as an example, assume the application
process A of the computer node A issues a data read/write
operation, requesting to perform read/write operation on a
shared memory located at a remote node B.
0.108 Embodiment 2.2.1—the issued read/write request is
a write data request:
0109 Taking FIG.9 as example, assume that the applica
tion process A issues a write data request, requesting to write
a piece of data in the program buffer A into the shared
memory B.
0110 First, the application process A provides the address
of the program buffer A, in which the data to be written into
the shared memory is stored, of the distributed application,
and the application process A invokes the language runtime
A. Then, the language runtime A in turn invokes the device
driver module A to encapsulate the data to a physical layer
data frame. Next, the device driver module A will invoke a
traditional device driver module (not shown) corresponding
to the controller in the NICA, so as to copy the data from the
program buffer A into the NIC memory (not shown) on the
NIC A.

0111. Next, the microcontroller A determines whether the
local NIC is configured with a shared memory according to
the state switch on the NICA. In the present embodiment, the
microcontroller A determines that there is a shared memory
on the local NIC. Next, the microcontroller A further deter
mines whether the shared memory A configured on the local
NIC supports the write operation, i.e., whether the data is to
be written into the shared memory A in stead of the shared
memories on other computer nodes, according to the task
identification code TID stored in the allocation table of the
shared memory A. In the present embodiment, the application
process A will write the data into the shared memory B.

US 2012/0221 671 A1

0112. Then, the microcontroller A invokes the controller
on the NICA, so as to transmit the data in the NIC memory of
the NICA to the computer node B through a medium access
unit (not shown).
0113. Then, the NICB of the computer node B receives the
data and copies the data to the shared memory B. Specifically,
after the NICB has received the data, the controller of the NIC
B determines whether the data is the data to be written into the
shared memory by querying a special identifier in the data
frame, e.g., a type field. If the data is to be written into the
shared memory, then the microcontroller B further deter
mines whether a shared memory is provided locally accord
ing to the state switch on its own NIC. In the present embodi
ment, the microcontroller B determines that there is a shared
memory B configured locally. Next, the microcontroller B
further determines whether the shared memory B configured
on the local NIC supports the write operation, i.e., whether the
data is to be written into the shared memory B instead of the
shared memories on other computer nodes, according to the
task identification code TID stored in the allocation table of
the shared memory B. If the conclusion is yes, the microcon
troller B writes the data into the local shared memory.
0114 Embodiment 2.2.2—the issued read/write request is
a read data request:
0115 Taking FIG.9 as an example, assume the application
process A issues a data read request, requesting to read data
from the shared memory into the program buffer A.
0116 First, the application process A provides the address
of the program buffer A for receiving data. The application
process A invokes the language runtime A. Then, the lan
guage runtime A invokes the device driver module A to encap
Sulate the address of the program buffer A to a simple physical
layer data frame. The device driver module A invokes a tra
ditional device driver module (not shown) corresponding to
the NIC memory in the NICA, so as to copy the address of the
program buffer A into the NIC memory (not shown) of the
NICA.

0117 Next, the microcontroller A determines whether a
shared memory is configured locally according to the state
switch on the NICA. In the present embodiment, the micro
controller A determines that there is a shared memory on the
local NIC. Next, the microcontroller A further determines
whether the shared memory A configured on the local NIC
Supports the read operation, i.e., whether the data is to be read
from the shared memory A instead of the shared memories on
the other computer nodes, according to the task identification
code TID stored in the allocation table of the shared memory
A. In the present embodiment, the application process A is to
read the data from the shared memory B.
0118. Then, the NICA transmits the data read request to
the NIC B. Next, the controller in the NICB can determine
whether it is a read/write request to the shared memory, i.e.,
whether the requested data is data stored in the shared
memory, according to the type field in the data frame. If the
conclusion is yes, the microcontroller B further determines
whether there is a shared memory configured locally. If the
further conclusion is yes, the microcontroller B parses the
data read request and constructs the data in the shared
memory into a physical layer network frame. Thereafter, the
NICB transmits the data along with the physical layer net
work frame to the computer node A. After receiving the data,
the computer node A copies the data to the program buffer A
under the control of the controller of the NICA, thus accom
plishing the data read operation.

Aug. 30, 2012

0119 The above various embodiments described in con
junction with FIGS. 8 and 9 only schematically describe some
steps of the related read/write operations in the present inven
tion, and more detailed steps about memory allocation and
release have been described generally above, and will not be
repeated here.
0120 FIG. 10 illustrates a flowchart of a method for con
trolling a read/write operation on a shared memory of an NIC.
In step 1001, it is determined whether a shared memory
Supporting the read/write operation is configured locally. In
step 1003, if the shared memory supporting the read/write
operation is configured locally, the read/write operation is
performed on the local shared memory. The detailed process
of performing a read/write operation has been described
above, and will not be repeated here.
I0121 Furthermore, when there is no shared memory Sup
porting the read/write operation configured locally, a remote
shared memory is requested to perform the read/write opera
tion. If the read/write operation is a write operation, then a
physical layer encapsulation is further performed on the data
to be written, and the steps for requesting a remote shared
memory to perform the read/write operation further includes
transmitting the encapsulated data to be written to the remote
shared memory. If the read/write operation is a read opera
tion, then perform a physical layer encapsulation on the
address of the program buffer into which the data to be read is
to be written, so as to be part of the data read request trans
mitted to the remote, and the step for requesting the remote
shared memory to perform the read/write operation further
includes transmitting the encapsulated data read request to
the remote shared memory. The detailed process of the above
operations has been described above and will be omitted here.
0.122 FIG. 11 illustrates a flowchart of a method for deter
mining whether a shared memory Supporting the read/write
operation is configured locally according to an embodiment
of the present invention. First, in step 1101, it is determined
whether the local NIC is configured with a shared memory
according to the state switch on the NIC. Then in step 1103,
if the local NIC is configured with a shared memory, it is
further determined whether the shared memory configured on
the local NIC supports the read/write operation according to
the task identification code stored in the shared memory.
More detailed descriptions of the above two determination
steps have been described above and will be omitted here.
(0123 FIG. 12 illustrates a flowchart of a method for invo
cating an NIC according to an embodiment of the present
invention. In step 1201, a program buffer of the distributed
application is provided; in step 1203, a language runtime is
invoked by a dedicated interface on the language runtime; in
step 1205, the device driver module is invoked to perform
physical layer encapsulation; in step 1207, the read/write
operation on the shared memory of the NIC is controlled
using the above method. More detailed description of the
above multiple steps have been described above and will not
be repeated here.
0.124. It will be appreciated by those skilled in the art that,
unless explicitly stated, the present invention can be imple
mented as a system, method or computer program product.
Therefore, unless explicitly stated, the present invention can
be implemented in the following forms, i.e., complete hard
ware, complete Software (including firmware, resident soft
ware, microcode, etc.), or a combination of software part and
hardware part which is generally called “circuit”, “module'
or “system' herein. Furthermore, the present invention can be

US 2012/0221 671 A1

implemented in the form of a computer program product
embodied in any tangible medium of expression, which
medium includes computer usable program code.
0.125. Any combination of one or more computerusable or
computer readable mediums can be used. A computer usable
or computer readable medium can be, for example, but not
limited to, electric, magnetic, optical, electromagnetic, infra
red or semi-conductive system, apparatus, device or transmis
sion medium. More specific examples of a computer readable
medium (a non-exhaustive list) include the following: electric
connection with one or more wires, portable computer disk,
hard disk, random access memory (RAM), read-only
memory (ROM), erasable programmable read only memory
(EPROM or flash), optical fiber, portable compact disk read
only memory (CD-ROM), optic storage device, transmission
medium Supporting, for example, internet or internal net
work, or magnetic storage device. It should be noted that a
computer usable or computer readable medium can even be
papers or other mediums on which programs are printed,
because, by electrically scanning the papers or other medium,
for example, the program can be obtained in an electrical
manner, and can be compiled, interpreted or processed in a
proper way, and stored in a computer memory if necessary. In
the context of this specification, a computer usable or com
puter readable medium can be any medium that contains,
stores, conveys, propagates or transmits programs to be used
by or associated with an instruction execution system, device
or apparatus. The computer usable medium can include data
signals transmitted in a baseband or as part of a carrier, and
embodying computer usable program code. The computer
usable program code can be transmitted through any appro
priate mediums, including but not limited to wireless, cable,
optical fiber, RF.
0126 The computer program code for performing the
operations of the present invention can be written in any
combination of one or more programming languages, which
include object-oriented programming languages such as Java,
Smalltalk, C++, as well as conventional procedural program
ming languages such as 'C' programming language or simi
lar programming languages. The program code can be
executed entirely on a user computer, or executed partially on
a user's computer, or executed as an independent Software
package, or executed partially on a user computer and par
tially on a remote computer, or executed entirely on a remote
computer or server. In the latter case, the remote computer can
be connected to the user's computer through any kind of
networks, including local area network (LAN) or wide area
network (WAN), or can be connected to external computers
(e.g., through the Internet using an internet service provider).
0127. The present invention is described above by refer
ring to the flowcharts and/or block diagrams of the method,
apparatus (system) and computer program product according
to embodiments of the present invention. It should be appre
ciated that, each block of the flowcharts and/or block dia
grams and the combination of the blocks in the flowcharts
and/or block diagrams can be implemented by computer pro
gram instructions, which can be provided to a general-pur
pose computer, a dedicated computer or processors of other
programmable data processing devices, so as to produce a
machine, which enables to produce an apparatus for imple
menting the functions/operations specified in the blocks of
the flowcharts and/or block diagrams through executing the
instructions by the computer or other programmable data
processing device.

Aug. 30, 2012

I0128. The computer program instructions can also be
stored in a computer readable medium that is capable of
instructing a computer or other programmable data process
ing devices to operate in a specific way, by which the instruc
tions stored in the computer readable medium produce a
manufactured product including instruction means for imple
menting the functions/operations specified in the blocks of
the flowcharts and/or block diagrams.
I0129. The computer program instructions can also be
loaded in a computer or other programmable data processing
devices to enable the computer or other programmable data
processing devices to perform a series of operation steps, to
produce computer-implemented processes, so that the
instructions executed on the computer or other programmable
data processing devices provide a process of implementing
the functions/operations specified in the blocks of the flow
charts and/or block diagrams.
0.130. The flowcharts and block diagrams in the accompa
nying drawings illustrate the architectures, functions or
operations that can be implemented according to the system,
method or computer program products of the various embodi
ments of the present invention. In this regard, each block in
the flowcharts or the block diagrams represents a module, a
program segment or part of the code, said module, program
segment or part of the code includes one or more executable
instructions for implementing the specified logic functions. It
should be also noted that, in some alternative implementa
tions, the functions indicated in the blocks can occur in a
different order from that is indicated in the blocks. For
example, two blocks illustrated consecutively can actually be
performed in parallel Substantially, and sometimes can also
be performed in a reverse order, which depends on the func
tions involved. It should also be noted that, each block in the
block diagrams and/or the flowcharts and the combination of
blocks in the block diagrams and/or flowcharts can be imple
mented by a dedicated hardware-based system that perform
specified functions or operations, or can be implemented by a
combination of dedicated hardware and computer instruc
tions.
I0131 The terminology used herein is only for describing
specific embodiments, and not intended to limit the present
invention. The singular forms of “one' and “the used herein
are intended to include plural forms, unless explicitly stated
otherwise in the context. It should also be appreciated that,
when the word “include” is used herein, it means the exist
ence of the indicated features, entities, steps, operations, units
and/or components, but does not exclude the existence or
addition of one or more other features, entities, steps, opera
tions, units and/or components, and/or the combination
thereof.
I0132 Equivalent alternatives of the corresponding struc
tures, materials, operations and all the functionally defined
means or steps in the claims are intended to include any
structures, materials or operations for executing the functions
in combination with other units specifically stated in the
claims. The objective of the given description of the present
invention is to illustrate and describe, and not exhaustive, nor
to limit the present invention to the described forms. For those
of ordinary skill in the art, it is obvious that can modifications
and variations can be made without departing from the scope
and sprit of the present invention. The selection and descrip
tion of the embodiments are for the purpose of best explaining
the principles and actual application of the present invention,
so that those of ordinary skill in the art can understand that the

US 2012/0221 671 A1

present invention can have various implementations with all
kinds of variations suitable for the desired specific purposes.

1. A network interface card, comprising:
a shared memory configured to provide shared storage for

tasks of distributed applications, wherein said shared
memory can be accessed by a plurality of computing
nodes executing a same task; and

a microcontroller configured to control read/write opera
tions on said shared memory.

2. The network interface card of claim 1, wherein said
microcontroller is further configured to:

determine whether said shared memory Supports a received
read/write request; and

perform the read/write operation to said shared memory
when said shared memory Supports the received read/
write request.

3. The network interface card of claim 1, further compris
ing:

a command port, wherein (i) said command port is con
nected with said microcontroller, and (ii) said command
port is configured to transmit a control command to the
microcontroller.

4. The network interface card of claim 3, wherein said
control command includes fields for controlling said shared
memory to perform one of the following operations: read
operation, write operation, allocation operation and release
operation.

5. The network interface card of claim 1, further compris
ing:

a state Switch; and
said microcontroller being further configured to determine
whether a shared memory is configured on said network
interface card according to said state Switch.

6. The network interface card of claim 5, wherein a task
identification code is stored in said shared memory, and
wherein if a shared memory is configured on said network
interface card, then said microcontroller is further configured
to determine whether said shared memory Supports the
received read/write request according to said task identifica
tion code.

7. The network interface card of claim 1, wherein the frame
structure of data stored in said shared memory includes an
identifier to indicate that said data is targeted at said shared
memory.

8. The network interface card of claim 7, wherein said
identifier is recorded in a type field of a physical layer header
of said data.

9. The network interface card of claim 1, further compris
ing:

a network interface card memory configured to buffer the
data read/written by said shared memory.

10. The network interface card of claim 1, wherein said
shared memory is further configured to directly perform the
read/write operation with a program buffer outside said net
work interface card.

11. A computer device, comprising the network interface
card of claim 1.

12. A method for controlling a read/write operation on a
shared memory of a network interface card, wherein said
shared memory is configured to provide shared storage for
tasks of a distributed application, and said shared memory is
accessed by a plurality of computing nodes executing a same
task, said method comprising:

Aug. 30, 2012

determining whether a local network interface card is con
figured with a shared memory Supporting said read/write
operation; and

performing the read/write operation to the shared memory
on the local network interface card when the local net
work interface card is configured with the shared
memory Supporting said read/write operation.

13. The method of claim 12, wherein the step of determin
ing whether the local network interface card is configured
with the shared memory Supporting said read/write operation
comprises:

determining whether the local network interface card is
configured with the shared memory according to a state
Switch on the network interface card.

14. The method of claim 13, wherein the step of determin
ing whether the local network interface card is configured
with the shared memory Supporting said read/write operation
further comprises:

determining whether the shared memory configured on the
local network interface card supports the read/write
operation according to a task identification code stored
on the shared memory on the local network interface
card if the local network interface card is configured
with the shared memory.

15. The method of claim 12, further comprising:
requesting a shared memory on a remote network interface

card to perform the read/write operation when there is no
shared memory Supporting said read/write operation
configured on the local network interface card.

16. The method of claim 15, wherein if said read/write
operation is a write operation, then said step of requesting a
shared memory on a remote network interface card to perform
the read/write operation further comprises:

transmitting data to be written to the shared memory on the
remote network interface card.

17. The method of claim 15, wherein if the read/write
operation is a read operation, then said step of requesting a
shared memory on a remote network interface card to perform
the read/write operation further comprises:

transmitting a data read request to the shared memory on
the remote network interface card.

18. The method of claim 12, wherein said network inter
face card further comprises a network interface card memory,
and wherein the step of performing the read/write operation
on the shared memory on the local network interface card
further comprises:

performing the read/write operation on the shared memory
on the local network interface card through a buffer of
the memory of the local network interface card.

19. The method of claim 12, wherein the step of performing
the read/write operation on the shared memory on the local
network interface card further comprises:

directly performing said read/write operation between the
shared memory on the local network interface card and
a program buffer outside the local network interface
card.

20. The method of claim 12, further comprises:
performing physical layer encapsulation on the data to be

written if said read/write operation is a write operation.
21. The method of claim 12, further comprises:
performing physical layer encapsulation on a program

buffer address of the program buffer into which the data
to be read out is to be written if said read/write operation
is a read operation.

US 2012/0221 671 A1
11

22. A method for invoking a network interface card, the
method comprising:

providing a program buffer of a distributed application;
invoking a language runtime through a dedicated interface

on the language runtime;
invoking a device driver module to perform physical layer

encapsulation; and
controlling a read/write operation on a shared memory of

the network interface card by a method comprising:
determining whether a local network interface card is

configured with a shared memory Supporting said
read/write operation; and

Aug. 30, 2012

performing the read/write operation to the shared
memory on the local network interface card when the
local network interface card is configured with the
shared memory Supporting said read/write operation;

wherein said shared memory is configured to provide
shared storage for tasks of a distributed application;
and

wherein said shared memory is accessed by a plurality of
computing nodes executing a same task.

c c c c c

