A tool-carrying device includes a toolbox with corners and armors each embedded in corresponding one of the corners. The toolbox includes a recess defined in each of the corners in order to receive corresponding one of the armors. Each of the corners includes a plurality of holes located within the recess thereof. Each of the armors includes a plurality of holes. A screw can be driven to each of the holes of the corners through corresponding one of the holes of the armors in order to secure the armors to the corners.
Fig. 6
PRIOR ART
LIGHT AND ROBUST TOOL-CARRYING DEVICE

FIELD OF INVENTION

[0001] The present invention relates to a light and robust tool-carrying device.

BACKGROUND OF INVENTION

[0002] Referring to FIG. 5, in account of both weight and strength, a typical toolbox 50 is made of plastic by means of blowing. Because of blowing, the wall 52 of the toolbox 50 includes a very limited thickness. In use of the conventional toolbox 50, corners such as the one given a number “54” easily wears out because of contact with the ground, a floor or a table.

[0003] To reinforce the corners 54 of the toolbox 50, there are provided armors such as the one given a number “56” in FIG. 6. Each of the armors 56 is attached to corresponding one of the corners 54 by means of plurality of screws 58. For standing out from the corners 54, the armors 56 and can easily be torn from the corners 54. If this happens, the corners 54 will be vulnerable to wearing out.

[0004] The present invention is therefore intended to obviate or at least alleviate the problems encountered in prior art.

SUMMARY OF INVENTION

[0005] It is the primary objective of the present invention to provide a light and robust tool-carrying device.

[0006] According to the present invention, a tool-carrying device includes a toolbox with corners and armors each embedded in corresponding one of the corners.

[0007] Other objects, advantages and novel features of the invention will become more apparent from the following detailed description in conjunction with the attached drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0008] The present invention will be described via detailed illustration of the preferred embodiment referring to the drawings.

[0009] FIG. 1 is a perspective view of a robust tool-carrying device according to the preferred embodiment of the present invention.

[0010] FIG. 2 is an exploded view of the robust tool-carrying device shown in FIG. 1.

[0011] FIG. 3 is a cutaway top view of the robust tool-carrying device shown in FIG. 1.

[0012] FIG. 4 is an enlarged partial cross-sectional view of the robust tool-carrying device shown in FIG. 3.

[0013] FIG. 5 is an enlarged partial cross-sectional view of a conventional toolbox shown in FIG. 3.

[0014] FIG. 6 is an enlarged partial cross-sectional view of the conventional toolbox shown in FIG. 5 equipped with armors.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

[0015] FIG. 1 shows a light and robust tool-carrying device 10 according to the preferred embodiment of the present invention. The light and robust tool-carrying device 10 includes a toolbox 12 and a plurality of armors 14 attached to the toolbox 12.

[0016] Referring to FIG. 2, the toolbox 12 is similar to conventional toolboxes that are made of plastic by means of blowing. The toolbox 12 includes corners 16. Unlike the conventional toolboxes, the toolbox 12 includes a recess 18 defined in each of the corners 16. Each of the recesses 18 receives corresponding one of the armors 14. The depth of each of the recesses 18 is identical to or marginally greater than the thickness of each of the armors 14. Thus, the armors 14 are flush with the toolbox 12 as more clearly shown in FIGS. 3 and 4. In other words, the armors 14 do not stand out from the corners 16 and therefore will not easily be torn from the corners 16.

[0017] Each of the corners 16 includes a plurality of holes 20 located within the recess 18 thereof. Each of the armors 14 includes a plurality of holes 22. Referring to FIGS. 3 and 4, a screw 24 is driven to each of the holes 20 through corresponding one of the holes 22 in order to secure each of the armors 14 to corresponding one of the corners 16. The holes 22 are countersink holes. Thus, the heads of the screws 24 are substantially in the holes 22 when the screws 24 are driven in the holes 20. That is, the screws 24 do not stand out from the armors 14. Hence, the screws 24 will not easily be removed from the corners 16.

[0018] The present invention has been described via detailed illustration of the preferred embodiment. Those skilled in the art can derive variations from the preferred embodiment without departing from the scope of the present invention. Therefore, the preferred embodiment shall not limit the scope of the present invention defined in the claims.

1. A tool-carrying device comprising:
 a toolbox made via blowing plastic, wherein the toolbox comprises corners and recesses each defined in related one of the corners; and armors each put in related one of the recesses.

2. The tool-carrying device according to claim 1 wherein each of the corners includes a plurality of holes located within the recess thereof, and each of the armors includes a plurality of holes, so that a screw can be driven to each of the holes of the corners through corresponding one of the holes of the armors in order to secure the armors to the corners.

3. The tool-carrying device according to claim 2 wherein the holes of the armors are countersink holes.

4. The tool-carrying device according to claim 1 wherein the depth of the recesses is substantially identical to the thickness of the armors.

5. The tool-carrying device according to claim 1 wherein the toolbox is made of plastic by means of blowing.

* * * * *