The present invention relates to towel holders or racks by means of which towels may readily be kept separate from one another and also designated for particular individuals where a number of persons are in the habit of using a bathroom or washroom where their individual towels are kept available on towel racks or bars.

The present invention provides a simple, attractive useful and sanitary towel separator which is readily installed on standard towel racks which may already be fixtures in bathrooms or the invention may include its own rack bar forming one of the features of the present invention.

One of the advantages and purpose of the present invention is to provide means for separating each towel from the next adjacent towel on the rack so that one will not come in contact with the other. A further feature of the present invention is to provide individual compartments or enclosures for each towel which, if desired, may be removed and another substituted for it. Various different color combinations may be used in the present invention and the individual compartments or enclosures may be arranged in such a way that a new one may be substituted for one of the group or the individual enclosures may be rearranged at will. The whole space on the bar may be filled so that adjoining enclosures interlock by a simple dove-tailing means.

A single rack bar which is independent of the compartments passes through all of the compartments serving as the means over which the towel hangs. The rack bar, when used in conjunction with the compartments designed for it, will fit into slots in the side walls of the compartments in such a way that the compartments or enclosures will wedge between the rack bar and the building wall so that the compartment or housing for each towel will be firmly and tightly positioned and have no tendency to be loose and come free when the towel is removed. Each towel casing or compartment may contain indices properly framed by means of which individual compartments may be distinguished and identified as being used by a certain individual.

The individual housings or compartments of the present invention are preferably molded of plastic either by injection or compression molding in a simple manner preferably in such a way that simple mold constructions may be employed. However, other more complicated types of moldings may be used where it is felt advantages may be gained in the particular construction as will be noted in some of the modifications as set forth below.

A further object of the present invention is to provide a device of the nature described molded of suitable plastic material in which the construction is extremely light but sturdy and strong. By this expedient, together with simple molding, it is possible to keep the cost of the article down extremely low. The cost of any such plastic article has a direct relation to its weight and to the difficulty of assembly. In the present instance, the article may be produced as a single unit and will, therefore, when molded by injection moldings, only require labor for degating and packing which as will be seen from the article itself requires very little time.

The present invention will be more fully described in the specification as set forth below when read in connection with the drawings forming a part thereof in which—

Figure 1 shows the invention in elevation with a part having a fragmentary view.

Figure 2 shows a plan view looking down on one section.

Figure 3 shows a fragmentary perspective view looking at the inside of a compartment or enclosure.

Figure 4 shows a fragmentary perspective view looking at the outside of an enclosure.

Figure 5 shows a side elevation of a modification viewed in relation to the building wall.

Figure 6 shows a further modification of the invention in the same position as shown in Figure 5; and Figure 7 shows a sectional view taken on the line 1—1 of Figure 5.

In Figures 1 to 4 inclusive, 1 indicates a towel rack on which a group of towel enclosures or compartments, 2, 2, 2, may be supported. These may extend the length of the towel rack and be assembled in such a way that they completely fill the whole length and thereby are not readily moved from side to side or separated. However, if desired, the compartments may be separated one from the other and be slidable along the towel rack in which case the towel when folded over the rack will always slide with the rack and be in its proper position. Each compartment or enclosure 2 is formed with a back wall 3 which preferably should lie flat or in contact with the room wall from which the rack is supported, and two outwardly inclined side walls 4 and 5 which extend outward at an angle a little greater than 90° substantially as shown in the drawing with the back wall 3, so that each compartment will be spaced from its adjoining compartment except at the forward contacting ends of the side walls.

The shape of the enclosure is shown in Figure 2 as having straight sides but these of course may be formed as desired in straight or somewhat curved sides with material removed from the center of the various walls so that the enclosure will be materially lightened.

As indicated more clearly in Figure 2, the forward end surfaces of the side walls 4 and 5 at 6 lie in a plane substantially perpendicular to the surface against which the back wall 3 is to rest. Under these circumstances, any two adjacent side walls will fit with one another at their ends giving a continuous appearance to the group of enclosures as indicated in Figure 1.

As shown more clearly in Figure 4, an interlocking V-shaped joint 7 may be provided in each of the surfaces 6 and in addition thereto the cor-
ners at 8 where the side walls and end walls join may be somewhat increased in thickness. It will be noted, however, that the surface in the short section 9 near the corner is substantially parallel to the surface 5 which makes it simple for retraction of the enclosure in an injection mold.

As illustrated clearly in Figure 3, the rear wall 3 is provided with a slot 10 extending horizontally across the whole back and joined with a slot 11 of equal width in the side walls 4 and 5. The slot 11 terminates in an upwardly inclined section 12 in which section the rack or bar 1 is ultimately positioned when the compartments are put in place. A square or rectangular shaped rack or bar is preferably used with the diagonals horizontal and vertical and of a size so that the inclined end 12 will make a somewhat close fit over the bar. Each of the compartments may rest against the room wall and if the distance between the bar 1 and the room wall is the same as the distance of the inclined slot 12 and the back wall 3 of the enclosure then the enclosure will wedge into position and hug the wall quite closely. As shown in Figure 1, small corner pieces 13 may be used for reinforcement. These may be positioned near the top of each compartment, and at the bottom similar corner pieces 14 may be provided in which slots 15 may be formed with an opening 16 at the front of each slot so that a toothbrush may be inserted and kept in each compartment. At the back of each compartment there is a small frame as indicated at 17. These frames may contain the name, a picture, a letter, number, or whatever may be desired. The frame may be pressed into the material of the back or may as indicated in Figure 2 be formed with an outward flange.

In the modification shown in Figure 5 which corresponds fairly closely to the modification of Figures 1 to 4, the side wall 15 of the compartment has formed therein a slot with a section 19 extending outward horizontally from the wall and a section 20 extending upward substantially at an angle of 45°. The slots 15 and 20 should be substantially of the same width but it is desired to round the upper wall of the slot in the section 21 where the two sections 19 and 20 are joined together. This makes it possible to provide a slot of a width equal to the thickness of the square rod and still permit the compartment to be removed from the rod without any difficulty. As indicated in Figure 5 each compartment rests against the room wall 22 in such a manner that a slight space 23 is left at the top of the section 20. This insures a continuous contact between the back wall 24 of the compartment with the room wall 22.

In the modification of Figure 5, the side wall 15 may be considerably lightened and a heavy rounded rim 25 provided about the edge of the wall. This will lend strength to the structure making a better appearance than with a uniform thickness of wall, and at the same time, secure a remarkable lightness of the compartments without perforating the walls as may be done if desired.

In the arrangement indicated in Figure 6, the structure is similar to Figure 5 in every respect, except as will be mentioned, and the same numerals will be employed for similar elements. In the arrangement of Figure 6, the slot 26 in the side wall 23 extends downward in the same direction to the back wall 24 in the back wall 25 at 26 is spaced from the rod 1 because of the fact that the back wall 24 of the compartment rests against the room wall 22. The advantage of us-