（54）发明名称
一种多类型果蔬采摘的磁流变型夹持器及机器人

（57）摘要
本发明公开了一种多类型果蔬采摘的磁流变型夹持器及机器人。所述磁流变型夹持器包括夹持柄，磁流变液袋，外壳和夹持柄平移机构；夹持柄端部的内侧上安装有磁流变液袋，磁流变液袋的里面装有磁流变液，并与控制电路连接，通过磁流变调节来实现最适合果蔬夹持的外形轮廓。多类型果蔬采摘机器人，包括工作台、机械手以及设置于机械手末端的末端执行器，所述末端执行器由磁流变型夹持器和剪切机构组成。本发明的磁流变型夹持器及机器人，在采摘不同类型的果蔬时，不用更换夹持器械即能适应多种水果的采摘，采摘效率高；而且可以满足空间任何不同位置的采摘需求，其运动灵活，伺服电机比传统的采摘机械手使用的步进电机控制也更加精确。
1. 一种多类型果蔬采摘的磁流变适型夹持器，其特征在于：包括夹持柄、磁流变液袋、外壳和夹持柄平移机构；夹持柄平移机构由步进电机、同步带和滚珠丝杆组成，步进电机通过同步带带动滚珠丝杆的平移运动，夹持柄的一端设于夹持器外壳的内部，并与夹持柄平移机构的滚珠丝杆相连接；夹持柄的另一端的内侧上安装有磁流变液袋；磁流变液袋的里面装有磁流变液，并与控制电路连接，通过电磁激励调节来实现适合果蔬夹持的外形轮廓功能。

2. 根据权利要求1所述的多类型果蔬采摘的磁流变适型夹持器，其特征在于：所述外壳由两个以上的连接板构成盒状结构，相邻两个连接板之间通过螺栓连接。

3. 一种多类型果蔬采摘机器人，其特征在于：包括工作台、机械手以及设置于机械手末端的末端执行器，所述末端执行器由权利要求1或2所述的磁流变适型夹持器和剪切机构组成；剪切机构由切割器和执行器电机组成，切割器设于夹持器外壳的内侧，执行器电机与切割器直接连接，实行切割动作。

4. 根据权利要求3所述的多类型果蔬采摘机器人，其特征在于：所述末端执行器设有双目视觉单元或单目视觉单元。

5. 根据权利要求3所述的多类型果蔬采摘机器人，其特征在于：所述机械手包括机械手大臂和机械手小臂；机械手大臂的一端通过带有谐波减速器的伺服电机（3），传动齿轮组、旋转关节（5）固定安装在工作台上，伺服电机（3）产生的动力经过谐波减速器输出后由传动齿轮组传递到旋转关节（5），从而带动机械手大臂的转动；机械手大臂的另一端通过旋转关节（7），伺服电机与机械手小臂的一端相连接；机械手小臂的另一端通过旋转关节（9），伺服电机连接有末端执行器。

6. 根据权利要求3所述的多类型果蔬采摘机器人，其特征在于：所述工作台是履带式小车。
一种多类型果菜采摘的磁流变适型夹持器及机器人

技术领域
[0001] 本发明涉及农业采摘领域，特别涉及一种多类型果菜采摘的磁流变适型夹持器及机器人。

背景技术
[0002] 中国作为农业大国，果菜产业是农业中的重要产业之一。水模型采摘机器人是发展现代化果菜产业的重要手段之一，但与当前水模型采摘业的迅速发展相比，国内外对采摘机器人研究较少，主要是一些简易的采摘机械手，功能单一且通用性较差，通常只针对某一果菜的单一采摘，这样不仅定做机械手的成本较高，而且还会因采摘对象的变化而发生不便实施应用的问题。由于果菜采摘对象是具有多样性和不确定性的有机生物体，大多数果菜的表皮和果实本身都比较脆弱和柔软，容易造成损伤，并且果菜形状各异，大小不一，这对果菜采摘时的夹持控制提出了很高要求。

发明内容
[0003] 本发明的目的在于克服现有技术中存在的缺点，提供一种可采摘多种类型果菜、夹持定位准确，对果菜损伤小的多类型果菜采摘的磁流变适型夹持器。
[0004] 本发明的另一目的在于提供一种带有上述磁流变适型夹持器的机器人。
[0005] 本发明的目的通过下述技术方案实现：
[0006] 一种多类型果菜采摘的磁流变适型夹持器，包括夹持手 13，磁流变液袋 16，外壳 15 和夹持手平移机构；夹持手平移机构由步进电机 11，同步带 12 和滚珠丝杆 14 组成，步进电机 11 通过同步带 12 来带动滚珠丝杆 14 的平移运动；夹持手 13 的一端设有夹持器外壳 15 的内侧，并与夹持手平移机构的滚珠丝杆 14 相连接，通过滚珠丝杆 14 的平移运动实现夹持手 13 对目标果菜的靠近和远动；夹持手 13 的另一端的内侧安装有磁流变液袋 16；磁流变液袋 16 的内部装有磁流变液，与控制电路连接，通过电磁激励调节来实现最适合果菜夹持的外形轮廓功能。
[0007] 所述外壳 15 由两个以上的连接板构成盒状结构，相邻两个连接板之间通过螺栓连接。
[0008] 一种多类型果菜采摘机器人，包括工作台、机械手以及设置于机械手末端的末端执行器 10，所述末端执行器 10 由上述磁流变适型夹持器和剪切机构组成；剪切机构由切割器 18 和执行器电机 17 组成，切割器 18 设于夹持器外壳 15 的内侧，执行器电机 17 与切割器 18 直接连接，实行切割动作。
[0009] 所述末端执行器 10 还设有双目视觉单元或单目视觉单元，以及实现果菜采摘的精确性，可以与基于数字信号处理（DSP）与现场可编程门阵列（FPGA）的控制系统构成基于视觉系统的果菜采摘机器人。
[0010] 所述机械手包括机械手大臂 6 和机械手小臂 8，机械手大臂 6 的一端通过带有谐波减速器的伺服电机 3，传动齿轮组 4，旋转关节 5 固定安装在工作台上，伺服电机 3 产生的
动力经过谐波减速器输出后由传动齿轮组 4 传递到旋转关节 5，从而带动机械手大臂 6 的转动，机械手大臂 6 的另一端通过旋转关节 7，伺服电机与机械手小臂 8 的一端相连接；机械手小臂 8 的另一端通过旋转关节 9，伺服电机连接有末端执行器 10。

【0011】所述工作台通过旋转活动关节 1 和伺服电机 2 实现其旋转动作；所述工作台是履带式小车，可以满足随时移动的要求，实现采摘的方便性。

【0012】本发明的多类型果蔬采摘机器人进行果蔬采摘时，步进电机 11 通电工作，通过同步带 12 的传动带动滚珠丝杆 14 进行平移运动，使得夹持柄 13 靠近果蔬；同时，分别固定在两个夹持柄 13 上的电磁激励产生电磁场，在磁场力的作用下磁流变波液 16 开始变形，由于磁流变液柔软灵活可变的特性，磁流变液波 16 可形成任意外形轮廓大小以适应不同外形的果蔬，然后通过执行器电机 17 带动切割器 18 旋转并切割果蔬，从而实现多种类型的果蔬采摘。

【0013】而且，为了满足不同类型果蔬的不同空间位置要求，共采用 4 台伺服电机和旋转关节对多类型果蔬采摘机器人实行联合控制。机械手固定安装在工作台上，伺服电机 3 通过控制旋转关节 5 的角度来调节机械手第一旋转角；机械手大臂 6 与工作台之间的连接是采用两个大小不相等的同轴传动齿轮组 4，从而达到减速增矩的功能及对机械手大臂 6 的位姿角度的调节控制；对机械手小臂 8 的位姿角度的控制同样采取伺服电机和旋转关节 9 调节；末端执行器 10 与机械手小臂 8 连接，末端执行器位姿角度控制采用伺服电机、旋转关节 9 调节。该机械手通过 4 个伺服电机联合控制工作，实现末端执行器 10 多空间位姿角度，进而满足空间任何不同位置的采摘需要。

【0014】本发明与现有技术相比具有如下优点和效果：

【0015】（1）本发明的磁流变装置型夹持器，在采摘不同类型的果蔬时，通过激活在夹持器上的电磁体使接触果实侧的磁流变液屈服应力增加，形成适应果实的轮廓从而起到夹持功能，该采摘方式对果实的损伤较小，不用更换夹持器械即能适应多种水果的采摘，采摘效率高；采用的剪切结构，结构简单可行，切割机构在电机的带动下，驱动刀片进行剪切，其采摘速度快，采摘效率高。

【0016】（2）本发明的多类型果蔬采摘机器人，采用 4 个伺服电机和 4 个旋转关节联合控制，使得末端执行器可以满足空间任何不同位置的采摘需求，其运动灵活，伺服电机比传统的采摘机械手使用的步进电机控制也更加精确。

附图说明

【0017】图 1 为本发明多类型果蔬采摘机器人的结构示意图。

【0018】图 2 为本发明磁流变装置型夹持器的结构示意图。

【0019】图 3 为本发明末端执行器的原理示意图。

【0020】图中，1、旋转活动关节；2、伺服电机；3、伺服电机；4、传动齿轮组；5、旋转关节；6、机械手大臂；7、旋转关节；8、机械手小臂；9、旋转关节；10、末端执行器；11、步进电机；12、同步带；13、夹持柄；14、滚珠丝杆；15、外壳；16、磁流变波液；17、执行器电机；18、切割器。

具体实施方式

【0021】下面结合实施例对本发明做进一步详细的描述，但本发明的实施方式不限于此。
实施例

如图1所示，多类型果蔬采摘机器人，包括工作台、机械手以及设置于机械手末端的末端执行器10。

末端执行器10由磁流变型夹持器和剪切机构组成。如图2所示，磁流变型夹持器，包括两个夹持柄13，磁流变液液16，外壳15和夹持柄平移机构；夹持柄平移机构由步进电机11、同步带12和滚珠丝杆14组成，步进电机11通过同步带12带动滚珠丝杆14的平移运动；夹持柄13的一端设于夹持器外壳15的内部，并与夹持柄平移机构的滚珠丝杆14相连接，通过滚珠丝杆14的平移运行实现夹持器13对目标果蔬的近动；夹持柄13的另一端的内侧上安装有磁流变液液16；磁流变液液16的里面装有磁流变液，并与控制电路连接，通过磁流变液液16的平移运行实现夹持器13对目标果蔬的近动；夹持器外壳15由两个以上的连接板构成盒状结构，相邻两个连接板之间通过螺栓连接。

如图3所示，剪切机构由切割器18和执行器电机17组成，切割器18设于夹持器外壳15的内侧，执行器电机17与切割器18直接连接，实行剪切动作。

末端执行器10上设有双目视觉单元，从而实现果蔬采摘的精确性，可以与基于DSP+FPGA的控制系统构成基于视觉系统的果蔬采摘机器人。

机械手包括机械手大臂6和机械小臂8；机械手大臂6的一端通过带有谐波减速器的伺服电机3、传动齿轮组4、旋转关节5固定安装工作台上，伺服电机3产生的动力经过谐波减速器输出后由传动齿轮组4传递到旋转关节5，从而带动机械手大臂6的转动；机械手大臂6的另一端通过旋转关节7、伺服电机与机械手小臂8的一端相连接；机械手小臂8的另一端通过旋转关节9、伺服电机连接有末端执行器10。

工作台是履带式小车，可以满足随时移动的要求，实现摘采的方便性。工作台安装于固定机构上，工作台与固定机构的连接处设有相连接的旋转活动关节1和伺服电机2，实现其旋转动作。

机器人中各部分结构（外壳、大臂、小臂等）均采用轻质的材料设计制造，以求有效减轻机器人的自身重量。

采摘过程：本实施例是使用4台伺服电机进行联合控制的四自由度采摘机器人。机械手本底安装在工作平台上，工作平台与底座间可实现转动（第一旋转关节），该关节采用齿轮联接，旋转的角度由第一伺服电机控制；大臂与工作平台的连接处为第二旋转关节，第二伺服电机输出的动力通过谐波齿轮减速器的减速增矩后传递到关节处，从而实现对大臂的位姿角度的控制；小臂与大臂的连接处为第三旋转关节，此处小臂的位姿角度由第三伺服电机控制；末端执行器的位姿角度由与安装在小臂末端的第四伺服电机相连的同步带轮控制。该机械手通过改变4个伺服电机的工作状态即能对末端执行器的空间位置进行调整，实现采摘果蔬的功能。具体采摘时，进行果蔬采摘时，步进电机11通电工作，通过同步带12的传动带动滚珠丝杆14运行平移运动，使得夹持柄13靠近果蔬；同时，分别固定在两个夹持柄13上的电磁激励产生电磁场，磁场力的作用下磁流变液液16开始变形，由于磁流变液液柔软灵活可变的特性，磁流变液液16可形成任意外形轮廓大小以适应不同外形的果蔬，然后通过执行器电机17带动切割器18旋转并切割果蔬，从而实现多种类型果蔬采摘。

如上所述，便较好地实现本发明，上述实施例仅为本发明的较佳实施例，并非用
来限定本发明的实施范围；即凡依本发明内容所作的均等变化与修饰，都为本发明权利要求所要求保护的范围所涵盖。
图 1