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HETEROGENEOUS PARALLEL PRMITIVES 
PROGRAMMING MODEL 

RELATED APPLICATIONS 

0001. This application is related to the U.S. Provisional 
Patent Application No. 61/652,772, filed on May 29, 2012, 
which is incorporated by reference herein in its entirety. 

BACKGROUND 

0002 1. Field of the Invention 
0003. The present invention relates generally to a pro 
gramming model for a heterogeneous processor System. 
0004 2. Background Art 
0005 With the success of programming models such as 
OpenCL and CUDA, heterogeneous computing platforms are 
becoming mainstream. However, these heterogeneous sys 
tems are low-level, not composable, and their behavior is 
often implementation defined even for standardized program 
ming models. 
0006 Thus what is needed are system and method for a 
heterogeneous parallel primitives (HPP) programming model 
that provides a flexible and composable programming plat 
form that guarantees behavior even in the case of developing 
high-performance code. 

SUMMARY OF EMBODIMENTS 

0007 According to an embodiment, a method and system 
for executing an asynchronous task on a heterogeneous com 
puting platform are provided. An asynchronous task config 
ured to execute on a grid is initialized. An initially unknown 
result that becomes available during execution is encapsu 
lated. The asynchronous task is executed on the grid. The 
result is assigned to the asynchronous task when the result 
becomes available during execution. 
0008 According to another embodiment, system for man 
aging memory is provided. A heterogeneous parallel primi 
tives (HPP) platform generates an unbound distributed in a 
plurality of memories of different types. Once generated, the 
distributed array is bound to a kernel that executes a work 
group on a processor in a heterogeneous computing platform. 
During execution, the bound distributed array is accessed by 
the workgroup. 
0009 Further embodiments, features, and advantages of 
the present invention, as well as the structure and operation of 
the various embodiments of the present invention, are 
described in detail below with reference to the accompanying 
drawings. 

BRIEF DESCRIPTION OF THE 
DRAWINGS/FIGURES 

0010. The accompanying drawings, which are incorpo 
rated in and constitute part of the specification, illustrate 
embodiments of the invention and, together with the general 
description given above and the detailed description of the 
embodiment given below, serve to explain the principles of 
the present invention. In the drawings: 
0011 FIG. 1 is a block diagram of a heterogeneous paral 

lel primitives execution model, according to an embodiment. 
0012 FIG. 2 is a block diagram that shows bound and 
unbound distributed arrays access, according to an embodi 
ment. 

0013 FIG. 3 is a block diagram of a channel usage flow, 
according to an embodiment. 
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0014. The invention will now be described with reference 
to the accompanying drawings. In the drawings, generally, 
like reference numbers indicate identical or functionally 
similar elements. Additionally, generally, the left-most digit 
(s) of a reference number identifies the drawing in which the 
reference number first appears. 

DETAILED DESCRIPTION 

(0015 While the present invention is described herein with 
illustrative embodiments for particular applications, it should 
be understood that the invention is not limited thereto. Those 
skilled in the art with access to the teachings provided herein 
will recognize additional modifications, applications, and 
embodiments within the scope thereofand additional fields in 
which the invention would be of significant utility. 
0016. The embodiment(s) described, and references in the 
specification to “one embodiment”, “an embodiment”, “an 
example embodiment, etc., indicate that the embodiment(s) 
described may include a particular feature, structure, or char 
acteristic, but every embodiment may not necessarily include 
the particular feature, structure, or characteristic. Moreover, 
Such phrases are not necessarily referring to the same 
embodiment. Further, when a particular feature, structure, or 
characteristic is described in connection with an embodi 
ment, it is understood that it is within the knowledge of one 
skilled in the art to effect such feature, structure, or charac 
teristic in connection with other embodiments whether or not 
explicitly described. 
0017 Graphics processing units (GPU) generally com 
prise multiple processing elements that are ideally Suited for 
executing the same instruction on parallel data streams, as in 
the case of a single instruction multiple data (SIMD) device, 
or in data-parallel processing. In many computing models, a 
central processing unit (CPU) functions as the host or con 
trolling processor and hands-off specialized functions. Such 
as graphics processing, to other processors such as GPUs. 
(0018. Multi-core CPUs, where each CPU has multiple 
processing cores, offer processing capabilities for specialized 
functions (e.g., graphics processing) similar to those avail 
able on the GPU. One or more of the computation cores of 
multi-core CPUs or GPUs can be part of the same die (e.g., 
AMD FusionTM) or, alternatively, in different dies (e.g., Intel 
XeonTM with NVIDIA GPU). Recently, hybrid cores having 
characteristics of both CPU and GPU (e.g., CellSPETM, Intel 
LarrabeeTM) have been proposed for general purpose GPU 
(GPGPU) style computing. The GPGPU style of computing 
advocates using the CPU to primarily execute control code 
and to offload performance critical data-parallel code to the 
GPU. The GPU is primarily used as an accelerator. The com 
bination of multi-core CPUs and GPGPU computing model 
encompasses both CPU cores and GPU cores as accelerator 
targets. Many of the multi-core CPU cores have performance 
that is comparable to GPUs in many areas. 
0019. Several programming models have been developed 
for heterogeneous computing platforms that have CPUs and 
GPUs. These programming models include BrookGPU by 
Stanford University, the compute unified device architecture 
(CUDA) by NVIDIA, and OpenCL by an industry consor 
tium named Khronos Group. The OpenCL framework offers 
a C-like development environment which users can create 
applications for the GPU. OpenCL enables the user, for 
example, to specify instructions for offloading some compu 
tations, such as data-parallel computations, to a GPU. 
OpenCL also provides a compiler and a runtime environment 
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in which code can be compiled and executed within a hetero 
geneous, or other, computing system. 
0020 Heterogeneous computing platforms can include 
multiple CPUs and GPUs. For performance reasons CPUs 
and GPUs in a heterogeneous computing platform are 
designed differently and perform different functions. For 
example, GPUs support wide vectors and substantial register 
files to optimize throughput computing goals. CPUs are opti 
mized for latency, dedicating logic to caches and out-of-order 
dependence control. 
0021. Because of those different functions, heterogeneous 
computing platforms are difficult to develop efficiently. Par 
ticularly, given different functions of CPU and GPU cores, a 
difficulty arises in developing an efficient programming 
model for the heterogeneous computing platform. 
0022 Existing programming models attempt to efficiently 
program the heterogeneous computing platforms using sev 
eral programming models. For example, GPU programming 
models have expanded over recent years to higher levels of 
flexibility. Both OpenCL and CUDA support heterogeneous 
computing platforms to some degree. For example, by struc 
turing the programming model as a data-parallel methodol 
ogy with weak communication guarantees, these program 
ming models ensure that code may execute on varied target 
platforms. However, conventional programming models have 
fundamental problems. They lack composability of opera 
tions and flexibility in the execution. 
0023 To ease the composability burden for the heteroge 
neous computing platform development, conventional pro 
gramming models concentrate on the application program 
interface (API) simplifications. CUDA, for example, includes 
a simplified API interface compared to the previous graphics 
oriented programming environments. Microsoft's C++ AMP 
design is another example that eases composability by linking 
the benefits of C++ type safety with GPU programming, as do 
pragma-based models such as OpenACC. 
0024. Additionally, conventional programming models 
follow an inflexible single program multiple data ("SPMD) 
model. Example conventional programming models that fol 
low SPMD are OpenGL, CUDA and other low-level GPU 
intermediate languages. On a GPU, those programming mod 
els execute in an SPMD-on-SIMD fashion. This technique is 
Sometimes known as a single instruction multiple thread 
(“SIMT) implementation. However, the SIMD model limits 
the developer's ability to flexibly use the heterogeneous com 
puting platform. For example, OpenCL’s memory model 
does not allow any communication between work groups 
without the use of atomic operations. OpenCL also does not 
provide methods that guarantee that memory writes commit 
to global visibility and provides little or no control of memory 
ordering. In another example, CUDA offers a partial solution 
to this issue with a “threadfence' operation. The “thread 
fence' operation ensures that the workitems within a work 
group have completed operating on their allocated sections in 
memory. 

0025. The SIMD nature of execution leads to other prob 
lems. For example, in the SIMD model a workitem is mapped 
to an individual SIMD lane in a largerhardware thread. SIMD 
model then uses execution masks to Switch execution 
between the workitem subsets when control flow diverges. 
No guarantees of progress can be made in the presence of 
dependencies between lanes. CUDA's limited hardware 
space allows programmers to make assumptions about how 
wide a hardware thread is and how many SIMD lanes are 
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included in the hardware thread. OpenCL, on the other hand, 
does not allow programmers to make such an assumption. 
0026 Conventional programming models also place 
restrictions on the synchronization barriers. For example, 
restricting barriers within the divergent control flow is not 
necessarily a hardware limitation, but a factor of a conven 
tional programming model. In one example, Titanium pro 
gramming language by NVIDIA prohibits barriers inside any 
divergent control flows. In another example, SPMD imple 
mentations for modern CPUs use the notion of maximum 
convergence to avoid barriers in a control flow altogether. The 
notion of maximum convergence guarantees that when two 
program instances follow the same control path, the programs 
are guaranteed to execute each program Statement concur 
rently. 
0027. Further, conventional programming models fail to 
utilize braided parallelism. Braided parallelism is a combina 
tion of data parallelism and task parallelism. Conventional 
programming models, such as OpenCL and CUDA imple 
ment data parallelism. However in addition to data parallel 
ism, task parallelism can also be implemented in a heteroge 
neous computing platform, as described below. 
0028. For example, a game engine that implements a het 
erogeneous computing platform displays many types of par 
allelism. It includes parallel AI tasks, concurrent workitems 
for user interfaces, and massive data-parallel particle simula 
tions, to name a few examples. However, even when the 
components in the game engine exhibit parallelism, the video 
engine fails to exhibit parallelism in its entirety. In fact, the 
entire video engine is not parallel as many of its tasks are 
generated dynamically. 
0029. A need for implementing task-graph executions on a 
GPU is shown by existence of persistent threads. Persistent 
threads may be used for building scheduling systems within 
threads and thus circumventing the hardware scheduler. This 
approach is commonly used to reduce overhead that arises 
from massively parallel data executions. Persistent threads, 
however, also demonstrate a need and limitation in conven 
tional programming models for implementing braided paral 
lelism. 
0030 Conventional heterogeneous computing platforms 
also lack in composability. Conventionally, workitems that 
process work on a GPU are divided into synchronizable work 
groups. Those work groups share data. One way to synchro 
nize work groups is by using a barrier that enforces memory 
consistency and workitem ordering. The conventional barri 
ers however, are defined to work across only work groups and 
do not enable global synchronization. As a result, conven 
tional barriers are precluded from Synchronizing workitems 
in most divergent control flows. 
0031 Additionally, many conventional GPGPU program 
ming models expose distinct memory address spaces (also 
referred to as domains). Prior to processing data by a GPGPU, 
the data must be moved explicitly in and out of these domains. 
This poses several issues. First, when loading third-party 
libraries in and out of the domains, a GPU developer must be 
aware of the memory spaces of the library’s parameters, and 
may be required to write additional data movement code 
when the library has unexpected parameters and memory 
requirements. Second, there is little to no way to enforce how 
library functions are called and over what width in a work 
group. This results in an assumption that libraries either 
execute across an entire work group or on a single workitem. 
When the library is being executed on the entire work group, 
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the work group may be synchronized using barrier synchro 
nization and share state internally. However, the conventional 
programming platforms do not Support a library that is being 
executed on a single workitem and explicitly do not support 
Such state sharing. 

1. Introduction to Heterogeneous Parallel Primitives 
Programming Model 
0032. A heterogeneous parallel primitives (HPP) pro 
gramming model is designed to solve the above described 
limitations of conventional heterogeneous computing plat 
forms. HPP is a braided parallel programming model that 
Supports task and data parallelism, and Solidifies flexibility 
and composability concepts that have been lacking in the 
conventional programming models. 
0033. In an embodiment, HPP programming model may 
be a combination of OpenCL, C++11 and Concurrency Runt 
ime by Microsoft. For example, HPP adopts the execution 
model of OpenCL and extends the OpenCL’s execution 
model with braided parallelism, the hosting of object oriented 
C++11 language and a stricter and more controllable memory 
model. In an embodiment, HPP may be embedded into 
C++11 as a library and a device kernel language, that is 
designed to target both CPU and massively multi-threaded 
GPU devices. 
0034 HPP includes three components, a platform model, 
an execution model and a memory model. 
0035 Platform model specifies an abstract hardware 
model, consisting of the host processor coordinating execu 
tion and one or more compute units capable of dispatching 
and executing HPP kernels. To enable support for both data 
and task parallelism HPP evolves the device model of 
OpenCL from a single threaded device to a set of explicitly 
programmable work coordinators capable of launching units 
of work on the compute cores as seen in FIG. 1, according to 
an embodiment of the present invention. 
0036) Execution model defines how HPP programming 
model is configured on the host and how kernels are executed 
on the device. Unlike the conventional GPU programming 
models described above, HPP supports both data-parallelism 
and task-parallelism as first class execution models. 
0037. In the execution model, coordinators are single 
thread scalar programs. Coordinators perform reads and 
writes into globally visible memory. The read and writes 
include atomic operations. Coordinators also perform condi 
tional flows. The conditional flows include iteration. Addi 
tionally, coordinators dispatch kernels on the compute units. 
0038. In an embodiment, coordinators execute on the 
Coord Schedulers of FIG. 1. 
0039. In one example, kernels execute on compute units 
(CUs) and assume an explicitly parallel execution. The term 
"kernel, as used herein, refers to a program and/or process 
ing logic that is executed as one or more workitems in parallel 
having the same code base. Each kernel describes the execu 
tion of a single lane of execution called a workitem. When 
coordinators dispatch a kernel, multiple workitems may 
execute sharing the same kernel code. 
0040. In one example, coordinators (scheduling program 
runs on coord1 scheduler entities, so that programs run con 
currently) execute concurrently with kernels. This enables 
coordinators to dispatch new kernels while other kernels are 
concurrently executing. 
0041. In one example, workitems are organized into work 
groups of size 1 or more. Collections of workitems within a 
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workgroup are executed in lock-step as part of a vector, called 
an mvector (machine vector), potentially using predication. 
The specific length of an mvector is implementation defined 
and is exposed as a symbolic constant (MVECTOR SIZE). 
0042. In one example, memory model defines an abstract 
memory hierarchy that kernels use. The abstract memory 
hierarchy works regardless of the actual underlying memory 
architecture. Unlike the conventional GPGPU models the 
memory hierarchy is closer to a more traditional shared 
memory system. For example, Scratch pad memories are not 
exposed explicitly. 
0043. In one example, HPP programming model also 
adopts the C++11 memory model for workitems communi 
cations. The code snippet in Table 1 shows an HPP applica 
tion that atomically increments its input in parallel: 

TABLE 1 

#include <atomic 
void inc(atomic int&input, intinum Of Times) 
{ 

parallelFor(Range:1D-(numOfTimes, 
input (Index.<1>) device(hpp) { 
input.add(1): 
}); 

2. Task and Data Parallelism in a Heterogeneous Parallel 
Primitives Programming Model 

0044 HPP programming model enables developers to 
introduce data and task parallelism. The example below dem 
onstrates in pseudo code how HPP programming model 
enables programmers to introduce data and task parallelism. 
Table 2A is a function for multiplying two matrices. 

TABLE 2A 

void matixMul 
intsize, 
double * inputA, 
double * inputB, 
double * output) 

for (int i = 0; i < size; ++i) { 
for (int j = 0: j < size; ++j) { 

double sum = 0; 
for (int k = 0; k < size; ++k) { 

double a = inputAi size + k); 
double b = inputBk * size +j): 
sum += a b: 

Ci size + j = sum: 

0045. In Table 2A, the iteration spaces of the outer two 
“for” loops are independent of each other. Because the “for” 
loops are independent of each other, they can be executed in 
parallel. One conventional way to parallelize the pseudo code 
Table 2A in a data parallel execution is to use size size 
number of workitems, where each workitem executes the 
inner loop with a corresponding index from the 2D iteration 
Space. 

0046. In a data programming model, the algorithm in 
Table 2A can be parallelized using a parallelFor function. The 
pseudo code for the parallelFor function is shown in Table2B. 
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TABLE 2B 

void matixMul 
intsize, 
Pointer<double> inputA, 
Pointer<double> inputB, 
Pointer<double> output) 

{ 
parallelFor( 
Ranges2>(size, size), 
inputAinputBoutput ( 

Index<2> index) device(hpp) { 
unsigned inti = index. getX(); 
unsigned int= index. getY(); 
double sum = 0; 
for (unsigned int k = 0; k < size; ++k) { 

double a = inputAi size + k); 
double b = inputBk * size +j): 
sum += a b: 

{ 
outputi size + j = Sum; 

}); 

0047. The implementation in Table 2B is not dissimilar 
from the data parallel model popularized by OpenMP and the 
GPGPU programming models. However, unlike conven 
tional programming models, where task parallelisms is 
implemented on CPUs, HPP programming model includes 
task parallel runtime (TPR) that supports data parallelism as 
a first class citizen. 
0048 Similar to popular TPR's designed specifically for 
the CPU, HPP programming models tasks can be data-par 
allel. The difference is that in HPP programming model, tasks 
maintain data-parallel representations much later in the 
execution process and hence more efficiently map to highly 
data parallel architectures. 
0049. In an embodiment, the pseudo code in Table 2B is 
rewritten into an HPP version in Table 2C. Table 2C uses 
parallel tasks and a notion of the future, to execute the matrix 
multiplication described in Table 2B. The future represents 
data that will be present at some point in the future and hence 
is a proxy for synchronizing the asynchronous tasks. 

TABLE 2C 

void matixMul( 
intsize, 
Pointer<double> inputA, 
Pointer<double> inputB, 
Pointer<double> output) 

{ 
Taskvoid, Index<2> matMul 

inputAinputB,output 
(Index<2> index) device(hipp) { 
unsigned int i = index. getX(); 
unsigned int= index. getY(); 
double sum = 0; 
for (unsigned int k = 0; k < size; ++k) { 

double a = inputAi size + k); 
double b = inputBk * size +j): 
sum += a *b: 

outputi size + j = Sum; 
}); 
Future-void future = matMul.enqueue( 
Ranges2>(size, size)); 
future.wait(); 

3. Tasks 

0050. In one example, HPP programming model provides 
asynchronous tasks that execute on the grid. The difference 
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between HPP tasks and the conventional OpenCL tasks is that 
HHP tasks encode the behavior of an asynchronous agent that 
can execute like a ConcRT style task or an OpenCL-style 
dispatch. 
0051 Table 3A below includes example pseudo code that 
defines an HPP task as a template class. 

TABLE 3A 

template 
typename ReturnType , 
typename IndexType > 

class Task 

public: 
typedef std::vector-ReturnType - ReturnData Type: 
templatex typename FunctionType > 
Task(FunctionType f); 
template 

typename T , 
typename RangeType > 

auto enqueue( 
RangeType r, 
Future-T > ) 

-> Future-ReturnData Type : 

0052. In one example, as HPP is an asynchronous tasking 
model, a developer configures inter-task dependencies. The 
Futures.TS type controls dependencies by encapsulating an 
initially unknown result that will become available at some 
later point in the future, as demonstrated in an example in 
Table 2C, above. Waiting on or assigning from a future waits 
on completion and gives access to the now-available value. 
0053 Table 3B is an example source code that shows 
execution of two tasks. The functionality of the two tasks, fl 
and f22 is elided for space, and represented as (. . . ). The 
futures of tasks fl and f2 are combined into a single future 
task f3, that is waited upon, which is implemented by an 
f2.wait() function. 

TABLE 3B 

Futures into fl = Taskints (...).enqueue(...); 
Future-float f2 = Taskfloats (...).enqueue(...); 
auto f3 = fl && f2: 

4. Distributed Arrays 

0054 The memory hierarchy of modern computer archi 
tectures is complex and explicitly or implicitly exposes dif 
ferent memory levels and localities. An example of explicitly 
managed scratchpad memory structure is the memory visible 
in a conventional OpenCL programming model. Another 
example is an SMP system that has similar properties, such as 
a NUMA locality. However, without knowledge of cache 
layout, false sharing is an issue for multi-threaded applica 
tions. 

0055. A class of programming languages called parti 
tioned global address space (PGAS) assumes a single global 
address space that can be logically partitioned into regions. 
Each region may be allocated to a particular local processor. 
In PGAS a window is mapped over parts of the global 
memory creating local memory regions. Explicit loads and 
stores move data in and out of those local memory regions. 
Global memory provides a shared and coherent view of all 
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memory, while scratchpad memories provide “local disjoint 
views, internally shared and coherent, on to subsets of the 
global view. 
0056. In practice, devices have multiple memories. 
Example memories are cache memories and on chip global 
memories. Distributed arrays in HPP programming model 
generalize the multiple memories into a PGAS abstraction of 
persistent user managed memory regions. The regions Sub 
divide memory (i.e., a single unified global memory or 
regions themselves). Visibility of the memory regions, i.e., 
memory sharing and coherence, is defined with respect to a 
region node and its ancestors. 
0057. One example use case is to abstractly manage 
OpenCL’s workgroup local memory, as shown in FIG. 2, and 
described in detail below. However, the invention is not lim 
ited to this embodiment. 
0058. In an embodiment, distributed arrays are defined in 
terms of regions and segments. Regions are accessible enti 
ties that may be placed into memory and accessed. A region 
defines a memory visibility constraint as a layer in hierarchy. 
Segments are leaf memory allocations. Leafs are created by 
distributing a region across a set of nodes in the execution 
graph. A region may be divided into segments based on the 
number of subtasks created at the appropriate level of the 
hierarchy. Unlike a conventional global memory, distributed 
arrays that are bound to executions are segmented. A bound 
segment can be accessed from a particular workgroup, but 
may or may not be accessed by other workgroups. 
0059 FIG. 2 is a block diagram 200 that shows memory 
management using distributed arrays, according to an 
embodiment of the present invention. 
0060 Table 4A below includes example pseudo code that 
defines a distributed array as a template class. 

TABLE 4A 

template 
typename T = void 
bool Persistent = true, 
template <class Type - AccessPattern = 

ScatterGather 
DistArray 

0061. When an instance of distributed array is created, the 
distributed array is unbound, as illustrated by an unbound 
distributed array in FIG. 2. Once created, abstract regions and 
Sub-regions in unbound distributed array may be allocated. 
0062. When the unbound array is passed to a kernel it 
becomes a bound array, as illustrated by bound distributed 
array in FIG. 2. In an embodiment, the pseudo code for 
binding unbound distributed array and matching it with a 
corresponding kernel argument is shown in Table 4B below: 

TABLE 4B 

template 
typename T = void 
template <class Type AccessPattern > = 
ScatterGather 

Bound DistArray 
{ 

getRegion(Regions.T >); 
}: 
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0063. Once the bound distributed array is within a kernel, 
a specific region within bound distributed array can be 
accessed, using a getRegion() function. The getRegion( ) 
function returns a region in bound distributed array. The 
example pseudo code for the returned region is show in Table 
4C below. 

TABLE 4C 

template < 
typename T , 
templates.typename Type - class AccessPattern = 
Structured Array Access.> 
class Region : public AccessPattern sType - 

size t getRegionSize(); 

0064. In the example pseudo code in Table 4C, a regions 
access interface is defined by the parameter AccessPattern. 
For example, Structured Array Access defines a Fortran array 
style interface exposing an array class (designated as in 
Fortran), along with its members to Support array slicing and 
transformations. 
0065. Example pseudo code for using distributed arrays is 
shown in FIG. 4D below. 

TABLE 4D 

DistArray-float darray: 
Regions float region; 
region = darray.allocRegion (darray.getMaxRegionSize()); 
parallelFor( 

Ranges 1.1 ( 
darray.getTotalSize(), 

Ranges 1 >(region.getSize())), 
darray, 
region ( 

Index<1 > i, 
Bound DistArray-floats a) device(hipp) { 
a (region)index.getLocalX() += index.getX(); 

0066. In this example, a single region in the distributed 
array is allocated using darray.allocRegion (darray.get 
MaxRegionSize()) function. Once allocated, the region is 
bound in the execution of the kernel, using a device(hpp) 
function included in pseudo code in Table 4D. The region is 
accessed within the kernel using the local workgroup ID 
index for each workitem. This example highlights a key fea 
ture of distributed arrays in the HPP programming model. 
Namely, because coherence is described in terms of ances 
tors, it is safe to allocate an independent region to each work 
group. 
0067. In an embodiment, the memory implementation 
moves regions into on-chip Scratchpad memories on the GPU 
on demand. The memory implementation also performs 
cache memory prefetching on the CPU. In an embodiment, 
the memory implementation also moves regions, depending 
on location in the region tree, into Scratch pad memories, or 
moves a family of regions whose access is known to be 
limited to a particular CPU or GPU. 

5. Channels 

0068 Although GPU cores may be used for general pur 
pose computing, GPUs are primarily used to processing 
graphics workloads. In an embodiment, graphics workloads 
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are data-flow pipes. For example, graphics workload may 
include hull shading, tessellation and domain shading which 
can be implemented as a pipe that amplifies or consumes 
work at each stage. The hull shader specifies tessellation 
factors for edges of a triangle Such that the tessellator might 
divide that triangle into many other triangles. An example use 
case may be varying the viewing of an object based on the 
distance from the camera—the closer the distance to the 
viewer, more detail being needed near the viewer. 
0069. The conventional hardware scheduling and memory 
buffers may efficiently handle these workloads and are opti 
mized for maintaining a high level of utilization. The hard 
ware scheduler schedules just enough work for a GPU at each 
stage to keep the pipeline busy without starvation. However, 
conventional programming models for GPUs do not have 
Such capability. 
0070. As the hardware is designed to manage pipelines of 

this sort, HPP programming model exposes this feature to the 
developer. To this end HPP programming model adopted the 
concept of communication channels and applied it to 
dynamic scheduling systems. Given the massively data-par 
allel nature of GPU dispatches the usual approach is that the 
hardware scheduler will issue more work as resources 
become available. It is this approach HPP programming 
model maintains through channels, such that rather than ulti 
lizing blocking reads the consumer is created at the point of 
read in a fine-grained fashion. A similar approach is used in 
various CPU task-oriented runtime systems such as the agents 
library that runs on top of Microsoft's concurrency runtime. 
(0071 FIG. 3 is a block diagram 300 of a flowchart for a 
data-flow in a channel, according to an embodiment of the 
present invention. In block 1, the basic structure of a kernel, 
command queue, channel and scheduling hardware (control 
processor) is displayed. In block 2 the kernel is enqueued, and 
launches workitems in block 3. The launched workitems 
write into the channel in block 4. The written data is displayed 
in the work channel in block 5. The control processor detects 
a launch condition for the channel in block 6 and launches 
consumer workitems in 7. Consumer workitems consume the 
contents of the channel in block 8. At block 9, the process 
continues as the next set of workitems is written into the 
channel. 
0072 The implementation approach differs from a con 
ventional approach that exposes fixed-function and program 
mable processing stages that are linked via data queues. How 
ever, the conventional approach fails to describe coordination 
language and Scheduling of the HPP programming model. 
0073. The channel interface may be defined by the pseudo 
code in Table 5A below, according to one embodiment. 

TABLE 5A 

templates.<class T - 
class Channel 
{ 
public: 

Channel(size t): 
template-typename F - 
void executeWith.( 

Coordinator const& coord, 
Ranges 1 > r, 
F f); 

size tsize(); 
void write(const T & v); 
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(0074 The executeWith() method in Table 5A associates a 
coordinator predicate that returns true if the corresponding 
consumer kernel should be dispatched. Additionally, the 
channel write() method blocks if the channel is full, thus 
allowing consumers to reduce the amount of data stored in the 
channel before continuing. In the HPP programming plat 
form, channel data store are locked into on-chip cache and 
thus are limited in size. An advantage is that good data 
between producer/consumer can be locally seen. 
0075. In an embodiment, coordinators are control pro 
grams describing when to trigger consumers, as described 
above. They are expressed as a restricted domain specific 
language, embedded into C++. 
0076. The following example in Table 5B, for calculating 
a global reduction ties together the distributed arrays and 
channels. For simplicity the example assumes that the input 
size is a multiple of MVECTOR SIZE variable. A single 
distributed array is used with two disjoint regions. A single 
channel is used to store the results of each work-group's 
reduction, with a trigger executing a second kernel to reduce 
the resulting channel data, once full. 

TABLE 5B 

int channelSize = 32: 
vectorint input = ... ; 
Channel-int results(channelSize): 
DistArray-int darray: 
Regions float region1; if used in the 1st pass 
Regions float region2; used in the 2nd pass 
Region<floats; 
region1 = darray.allocRegion(MVECTOR SIZE); 
region2 = darray.allocRegion(channelSize); 
int result: 
results.executeWith( 

= (Channel-int-* c) -> bool device(coord) { 
return c->size() == numWorkGroups; 

}, 
Ranges 1,1-(channelSize, channelSize), darray, &result, region2 ( 

Index.<11 index, 
Bound DistArray-float a) 
vector-int v) device(hpp) { 

int accumulator = 0; 
int id = index.getLocalX(); 
Segment<float seg = a(region); 
Segid= wid: 
Seg.barrier(); 

for(int offset = get local size(O) 2; 
offset = offset ( 2) 

offset > 0; 

{ 
if (id < offset) { 

intother = segid + offset: 
int mine = Segid; 
Segid= mine + other; 

Seg.barrier(); 

if (id == 0) { 
*result = seqO); 

}}); 
parallelFor( Range-1,1->(input.size(), MVECTOR-SIZE), darray 
&results, input ( 

Index.<11 index, 
Bound DistArray-floats a) device(hpp) { 
fi parallel reduce kernel body here 

(0077. The example in Table 5B demonstrates the use of 
distributed army for localized communication, and the use of 
channels for global communication, in the HPP programming 
model. 
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6. Barriers 

0078 Coordinating shared data is critical in the develop 
ment of parallel programs that scale. The conventional 
GPGPU solutions limit the synchronization via barrier opera 
tions to memory consistency and workitems reaching the 
same PC. The conventional GPGPU solutions are also limited 
to cases that do not include divergent control flow, or cases 
that do include the divergent control flow that guarantee that 
all workitems enter a conditional branch if any one workitem 
enters the conditional branch. 
0079 HPP addresses these limitations by introducing bar 
riers that can be used in a control flow and can be used across 
work groups. 
0080. The source code in Table 6A below defines the bar 
rier class and the relevant methods, in one embodiment. 

TABLE 6A 

class Barrier 

public: 
Barrier(size t count); 
void skip(); 
void wait(); 
void arrive(); 

0081. In the example above, a barrier is initialized with a 
count that represents the number of participants in the barrier. 
In one embodiment, the participants may be workitems. The 
barrier class also includes skip() wait() and arrive() methods. 
0082. The wait() method blocks any workitem that per 
forms the wait() method from continuing execution until the 
other participants (i.e., workitems) have also taken part. In an 
embodiment, the wait() method may be performed by a 
COSU. 

0083. The arrive() method may be performed by a wor 
kitem that participates in the barrier, but does not wait for 
other workitems. In an embodiment, the arrive()method may 
be performed by a producer. 
0084. The skip() method may be performed by a workitem 
that withdraws from further participation in the barrier. The 
withdrawn workitem does not count against the other partici 
pants that have executed a waiting method. In an embodi 
ment, the skip() method may be used by a workitem who has 
left the execution loop. Such that the remaining workitems 
may continue synchronizing on the barrier after the workitem 
leaves. 
0085. The methods above allow for the use of barriers in a 
control flow. For example, workitems that enter the else or 
exit branch in the control flow, can call the skip() method and 
be removed from execution. The remaining workitems can 
then continue iterating and communicating through scratch 
memory and wait on the barrier. 
I0086. The example source code for using barriers in a 
control flow is shown in Table 6B: 

TABLE 6B 

Barrier b(8); 
parallel For(Ranges 1-, &b, scratch (Index<1> i) { 

Scratchi...getX() = i.getX(); 
if i.getX() < 4) { 

for( intj = 0; j < i.getX(); ++j) { 
b.wait(); 
Xi.getX() += Scratch+1 ; 
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TABLE 6B-continued 

b. Skip(); 
else { 

b. Skip(); 
xi.getX() = 17: 

}); 

I0087. By passing barrier objects to functions and skipping 
elsewhere those functions are safe to synchronize on the 
barrier without dependencies on external workitems. For 
example, consider the function in Table 6C, below: 

TABLE 6C 

void someOpaqueLibrary Function(constint i, Barrier &b); 
Barrier b(8); 
parallel For(Ranges 1-, &b, scratch (Index<1> i) { 

Scratchi = val; 
if i.getX() < 4) { 

SomeOpaqueLibrary Function (i, b); 
else { 

b.skip(); 
xi.getX() = 17: 

}); 

I0088. In addition to using barrier objects in the control 
flow, HPP programming model controls the use of barriers to 
maintain proper execution of a workgroup. For example, 
replacing the call to a skip() method in the else branch, in 
Table 6C, with wait() may be invalid. For example, it may not 
be possible to know the number of times someOpaquelibary 
Function() may use the barrier. However, instead of replacing 
a skip() method with a wait() method, two barriers may be 
used in the HPP programming model. The embodiment, is 
shown as Table 6D below: 

TABLE 6D 

Barrier b(8); 
Barrier b2(8): 
parallel For(Ranges 1-, &b, &b2, scratch Index<1> i) { 

Scratchi = val; 
if i < 4) { 

SomeOpaqueLibrary Function (i, b); 
b2.wait(); 

else { 
b. Skip(); 
b2.wait(); 
xi = 17: 

I0089. In an embodiment, barrier objects may also be used 
to synchronize dependent kernels. For example, the host may 
delegate to multiple CPU devices to process the function, as 
shown in Table 6E below: 

TABLE 6E 

for(...) { 
parallelFor(Range-1d (N), foo); 

0090. In Table 6E, implicit synchronization occurs follow 
ing each invocation of the parallelFor() function, with an 
intention of pushing the “for loop' on to a respective GPU. 
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The goal is to reduce the cost of synchronization between the 
host and device, as shown in Table 6G, below: 

TABLE 6G 

void foo(Index<1 > index, ...) device(hipp) 
{ 

for(...) { 
foo(index, ...); 

gpu Sync(); 

0091. In Table 6G, the function gpu sync() is an inter 
work-group barrier operation. 
0092. In an embodiment, the cross work-group variant of 
HPP's barrier may be implemented using the Global Data 
Share(GDS) in AMD's HD7970, GPU. GDS is a 64K on chip 
global memory with barrier functionality across the whole 
device. Additionally the gpu Sync() function may be imple 
mented using the algorithm described above. 
0093. The Summary and Abstract sections may set forth 
one or more but not all exemplary embodiments of the present 
invention as contemplated by the inventor(s), and thus, are not 
intended to limit the present invention and the appended 
claims in any way. 
0094. The present invention has been described above 
with the aid of functional building blocks illustrating the 
implementation of specified functions and relationships 
thereof. The boundaries of these functional building blocks 
have been arbitrarily defined hereinfor the convenience of the 
description. Alternate boundaries can be defined so long as 
the specified functions and relationships thereof are appro 
priately performed. 
0095. The foregoing description of the specific embodi 
ments will so fully reveal the general nature of the invention 
that others can, by applying knowledge within the skill of the 
art, readily modify and/or adapt for various applications such 
specific embodiments, without undue experimentation, with 
out departing from the general concept of the present inven 
tion. Therefore, Such adaptations and modifications are 
intended to be within the meaning and range of equivalents of 
the disclosed embodiments, based on the teaching and guid 
ance presented herein. It is to be understood that the phrase 
ology or terminology herein is for the purpose of description 
and not of limitation, such that the terminology or phraseol 
ogy of the present specification is to be interpreted by the 
skilled artisan in light of the teachings and guidance. 
0096. The breadth and scope of the present invention 
should not be limited by any of the above-described exem 
plary embodiments, but should be defined only in accordance 
with the following claims and their equivalents. 
What is claimed is: 
1. A method comprising: 
encapsulating an initially unknown result that will become 

an available result after an asynchronous task is 
executed; 

executing the asynchronous task on a grid; and 
assigning the available result to the asynchronous task in 

response to the result becoming available during the 
executing. 

2. The method of claim 1, further comprising: 
using the asynchronous task to enable task and data paral 

lelism in a heterogeneous computing platform. 
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3. The method of claim 1, further comprising: 
declaring the asynchronous task using an object oriented 
programming language. 

4. A system for executing an asynchronous task, compris 
1ng: 

a heterogeneous computing platform including at least one 
GPU processor and configured to: 
encapsulate an initially unknown result that will become 

an available result after the asynchronous task is 
executed; 

execute the asynchronous task on a grid; and 
assign the available result to the asynchronous task in 

response to the result becoming available during the 
execution. 

5. The system of claim 4, further comprising a task parallel 
runtime configured to use the asynchronous task to enable 
task and data parallelism its the heterogeneous computing 
platform. 

6. The system of claim 4, wherein the heterogeneous com 
puting platform is further configured to declare the asynchro 
nous task using an object oriented programming language. 

7. A method comprising: 
generating an unbound distributed array in a plurality of 

memories of different types associated with a heteroge 
neous computing platform; 

binding the distributed array for a kernel configured to 
execute a workgroup on a processor in the heteroge 
neous computing platform; and 

accessing the distributed array bound to the kernel as the 
kernel executes the workgroup. 

8. The method of claim 7, further comprising: 
generalizing the plurality of memories of different types 

into a persistent global address space (PGAS) abstrac 
tion; and 

receiving an indication from the kernel for managing a 
region in the PGAS abstraction. 

9. The method of claim 7, wherein a memory in the plural 
ity of memories is a global chip memory. 

10. The method of claim 7, wherein the memory is a cache 
memory. 

11. The method of claim 7, further comprising: 
allocating a plurality of regions and a plurality of segments 

within the distributed array. 
12. The method of claim 11, wherein the accessing further 

comprises: 
accessing a region in a plurality of regions using a work 

group ID index associated with the workgroup. 
13. The method of claim 12, wherein: 
the workgroup further comprises a plurality of workitems, 

and 
the workgroup ID index identifies a workitem in the plu 

rality of workitems. 
14. The method of claim 11, further comprising: 
moving the plurality of regions in the distributed array to 

the scratch pad memory on the GPU device. 
15. The method of claim 7, further comprising: 
performing a cache memory prefetching for the distributed 

array on a CPU. 
16. A system comprising: 
a heterogeneous parallel primitives (HPP) platform con 

figured to: 
generate an unbound distributed array in a plurality of 

memories of different types; 
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bind the distributed array to a kernel configured to 
execute a workgroup on a processor in a heteroge 
neous computing platform; and 

access the distributed array bound to the kernel as the 
kernel executes the workgroup. 

17. The system of claim 16, wherein the HPP platform is 
further configured to: 

generalize the plurality of memories of different types into 
a persistent global address space (PGAS) abstraction; 
and 

receive an indication from the kernel for managing a region 
in the PGAS abstraction. 

18. The system of claim 16, wherein a memory in the 
plurality of memories is a global chip memory. 

19. The system of claim 16, wherein the memory is a cache 
memory. 

20. The system of claim 16, wherein the HPP platform is 
further configured to: 
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allocate a plurality of regions and a plurality of segments 
within the distributed array. 

21. The system of claim 20, wherein the HPP platform is 
further configured to: 

access a region in the plurality of regions using a work 
group ID index associated with the workgroup. 

22. The system of claim 21, wherein: 
the workgroup further comprises a plurality of workitems, 

and 
the workgroup ID index identifies a workitem in the plu 

rality of workitems. 
23. The system of claim 20, wherein the HPP platform is 

further configured to: 
move the plurality of regions in the distributed array to the 

scratch pad memory on the CPU device. 
24. The system of claim 16, wherein the HPP platform is 

further configured to: 
perform a cache memory prefetching for the distributed 

array on a CPU. 
k k k k k 


