
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0332937 A1

US 2013 0332937A1

GASTER et al. (43) Pub. Date: Dec. 12, 2013

(54) HETEROGENEOUS PARALLEL PRIMITIVES Publication Classification
PROGRAMMING MODEL

(51) Int. Cl.
(71) Applicant: Advanced Micro Devices, Inc., G06F 9/50 (2006.01)

Sunnyvale, CA (US) (52) U.S. Cl.
CPC .. G06F 9/50 (2013.01)

(72) Inventors: Benedict R. GASTER, Santa Cruz, CA USPC .. 71.8/104
(US); Lee W. Howes, Santa Clara, CA
(US) (57) ABSTRACT

(73) Assignee: Advanced Micro Devices, Inc., With the Success of programming models such as OpenCL
Sunnyvale, CA (US) and CUDA, heterogeneous computing platforms are becom

ing mainstream. However, these heterogeneous systems are
(21) Appl. No.: 13/904,791 low-level, not composable, and their behavior is often imple

1-1. mentation defined even for standardized programming mod
(22) Filed: May 29, 2013 els. In contrast, the method and system embodiments for the

O O heterogeneous parallel primitives (HPP) programming model
Related U.S. Application Data disclosed herein provide a flexible and composable program

(60) Provisional application No. 61/652,772, filed on May ming platform that guarantees behavior even in the case of
29, 2012.

Coord
Scheduler

:

Coord
8.8 8:

Scheduler :

Kerre - fir

LO & 3 8.

developing high-performance code.

memory O) :

US 2013/0332937 A1 Dec. 12, 2013 Sheet 1 of 3 Patent Application Publication

? "

*** --~~~~~--~~~~~~~~~~~~~~.~~~~~ ~~~~*******************
æ:æ æææ æææ æææ æææ æææ ???????? 2 * * *.*.*.*.*.*.* • • • • •*.*…·**********&&&&&&&*****************

--~~~~~~);
----------------------------------~--~~~~~~~••••••••••*

E
D
O

Yosses&

US 2013/0332937 A1 Dec. 12, 2013 Sheet 2 of 3 Patent Application Publication

·~~~~~ ~~~~ ~~~~ ~~~~); *?,

× × × ×

xxxy---->Mx-xx-xxxx's assssss SSS Ya.
s

&&ssss

US 2013/0332937 A1

HETEROGENEOUS PARALLEL PRMITIVES
PROGRAMMING MODEL

RELATED APPLICATIONS

0001. This application is related to the U.S. Provisional
Patent Application No. 61/652,772, filed on May 29, 2012,
which is incorporated by reference herein in its entirety.

BACKGROUND

0002 1. Field of the Invention
0003. The present invention relates generally to a pro
gramming model for a heterogeneous processor System.
0004 2. Background Art
0005 With the success of programming models such as
OpenCL and CUDA, heterogeneous computing platforms are
becoming mainstream. However, these heterogeneous sys
tems are low-level, not composable, and their behavior is
often implementation defined even for standardized program
ming models.
0006 Thus what is needed are system and method for a
heterogeneous parallel primitives (HPP) programming model
that provides a flexible and composable programming plat
form that guarantees behavior even in the case of developing
high-performance code.

SUMMARY OF EMBODIMENTS

0007 According to an embodiment, a method and system
for executing an asynchronous task on a heterogeneous com
puting platform are provided. An asynchronous task config
ured to execute on a grid is initialized. An initially unknown
result that becomes available during execution is encapsu
lated. The asynchronous task is executed on the grid. The
result is assigned to the asynchronous task when the result
becomes available during execution.
0008 According to another embodiment, system for man
aging memory is provided. A heterogeneous parallel primi
tives (HPP) platform generates an unbound distributed in a
plurality of memories of different types. Once generated, the
distributed array is bound to a kernel that executes a work
group on a processor in a heterogeneous computing platform.
During execution, the bound distributed array is accessed by
the workgroup.
0009 Further embodiments, features, and advantages of
the present invention, as well as the structure and operation of
the various embodiments of the present invention, are
described in detail below with reference to the accompanying
drawings.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

0010. The accompanying drawings, which are incorpo
rated in and constitute part of the specification, illustrate
embodiments of the invention and, together with the general
description given above and the detailed description of the
embodiment given below, serve to explain the principles of
the present invention. In the drawings:
0011 FIG. 1 is a block diagram of a heterogeneous paral

lel primitives execution model, according to an embodiment.
0012 FIG. 2 is a block diagram that shows bound and
unbound distributed arrays access, according to an embodi
ment.

0013 FIG. 3 is a block diagram of a channel usage flow,
according to an embodiment.

Dec. 12, 2013

0014. The invention will now be described with reference
to the accompanying drawings. In the drawings, generally,
like reference numbers indicate identical or functionally
similar elements. Additionally, generally, the left-most digit
(s) of a reference number identifies the drawing in which the
reference number first appears.

DETAILED DESCRIPTION

(0015 While the present invention is described herein with
illustrative embodiments for particular applications, it should
be understood that the invention is not limited thereto. Those
skilled in the art with access to the teachings provided herein
will recognize additional modifications, applications, and
embodiments within the scope thereofand additional fields in
which the invention would be of significant utility.
0016. The embodiment(s) described, and references in the
specification to “one embodiment”, “an embodiment”, “an
example embodiment, etc., indicate that the embodiment(s)
described may include a particular feature, structure, or char
acteristic, but every embodiment may not necessarily include
the particular feature, structure, or characteristic. Moreover,
Such phrases are not necessarily referring to the same
embodiment. Further, when a particular feature, structure, or
characteristic is described in connection with an embodi
ment, it is understood that it is within the knowledge of one
skilled in the art to effect such feature, structure, or charac
teristic in connection with other embodiments whether or not
explicitly described.
0017 Graphics processing units (GPU) generally com
prise multiple processing elements that are ideally Suited for
executing the same instruction on parallel data streams, as in
the case of a single instruction multiple data (SIMD) device,
or in data-parallel processing. In many computing models, a
central processing unit (CPU) functions as the host or con
trolling processor and hands-off specialized functions. Such
as graphics processing, to other processors such as GPUs.
(0018. Multi-core CPUs, where each CPU has multiple
processing cores, offer processing capabilities for specialized
functions (e.g., graphics processing) similar to those avail
able on the GPU. One or more of the computation cores of
multi-core CPUs or GPUs can be part of the same die (e.g.,
AMD FusionTM) or, alternatively, in different dies (e.g., Intel
XeonTM with NVIDIA GPU). Recently, hybrid cores having
characteristics of both CPU and GPU (e.g., CellSPETM, Intel
LarrabeeTM) have been proposed for general purpose GPU
(GPGPU) style computing. The GPGPU style of computing
advocates using the CPU to primarily execute control code
and to offload performance critical data-parallel code to the
GPU. The GPU is primarily used as an accelerator. The com
bination of multi-core CPUs and GPGPU computing model
encompasses both CPU cores and GPU cores as accelerator
targets. Many of the multi-core CPU cores have performance
that is comparable to GPUs in many areas.
0019. Several programming models have been developed
for heterogeneous computing platforms that have CPUs and
GPUs. These programming models include BrookGPU by
Stanford University, the compute unified device architecture
(CUDA) by NVIDIA, and OpenCL by an industry consor
tium named Khronos Group. The OpenCL framework offers
a C-like development environment which users can create
applications for the GPU. OpenCL enables the user, for
example, to specify instructions for offloading some compu
tations, such as data-parallel computations, to a GPU.
OpenCL also provides a compiler and a runtime environment

US 2013/0332937 A1

in which code can be compiled and executed within a hetero
geneous, or other, computing system.
0020 Heterogeneous computing platforms can include
multiple CPUs and GPUs. For performance reasons CPUs
and GPUs in a heterogeneous computing platform are
designed differently and perform different functions. For
example, GPUs support wide vectors and substantial register
files to optimize throughput computing goals. CPUs are opti
mized for latency, dedicating logic to caches and out-of-order
dependence control.
0021. Because of those different functions, heterogeneous
computing platforms are difficult to develop efficiently. Par
ticularly, given different functions of CPU and GPU cores, a
difficulty arises in developing an efficient programming
model for the heterogeneous computing platform.
0022 Existing programming models attempt to efficiently
program the heterogeneous computing platforms using sev
eral programming models. For example, GPU programming
models have expanded over recent years to higher levels of
flexibility. Both OpenCL and CUDA support heterogeneous
computing platforms to some degree. For example, by struc
turing the programming model as a data-parallel methodol
ogy with weak communication guarantees, these program
ming models ensure that code may execute on varied target
platforms. However, conventional programming models have
fundamental problems. They lack composability of opera
tions and flexibility in the execution.
0023 To ease the composability burden for the heteroge
neous computing platform development, conventional pro
gramming models concentrate on the application program
interface (API) simplifications. CUDA, for example, includes
a simplified API interface compared to the previous graphics
oriented programming environments. Microsoft's C++ AMP
design is another example that eases composability by linking
the benefits of C++ type safety with GPU programming, as do
pragma-based models such as OpenACC.
0024. Additionally, conventional programming models
follow an inflexible single program multiple data ("SPMD)
model. Example conventional programming models that fol
low SPMD are OpenGL, CUDA and other low-level GPU
intermediate languages. On a GPU, those programming mod
els execute in an SPMD-on-SIMD fashion. This technique is
Sometimes known as a single instruction multiple thread
(“SIMT) implementation. However, the SIMD model limits
the developer's ability to flexibly use the heterogeneous com
puting platform. For example, OpenCL’s memory model
does not allow any communication between work groups
without the use of atomic operations. OpenCL also does not
provide methods that guarantee that memory writes commit
to global visibility and provides little or no control of memory
ordering. In another example, CUDA offers a partial solution
to this issue with a “threadfence' operation. The “thread
fence' operation ensures that the workitems within a work
group have completed operating on their allocated sections in
memory.

0025. The SIMD nature of execution leads to other prob
lems. For example, in the SIMD model a workitem is mapped
to an individual SIMD lane in a largerhardware thread. SIMD
model then uses execution masks to Switch execution
between the workitem subsets when control flow diverges.
No guarantees of progress can be made in the presence of
dependencies between lanes. CUDA's limited hardware
space allows programmers to make assumptions about how
wide a hardware thread is and how many SIMD lanes are

Dec. 12, 2013

included in the hardware thread. OpenCL, on the other hand,
does not allow programmers to make such an assumption.
0026 Conventional programming models also place
restrictions on the synchronization barriers. For example,
restricting barriers within the divergent control flow is not
necessarily a hardware limitation, but a factor of a conven
tional programming model. In one example, Titanium pro
gramming language by NVIDIA prohibits barriers inside any
divergent control flows. In another example, SPMD imple
mentations for modern CPUs use the notion of maximum
convergence to avoid barriers in a control flow altogether. The
notion of maximum convergence guarantees that when two
program instances follow the same control path, the programs
are guaranteed to execute each program Statement concur
rently.
0027. Further, conventional programming models fail to
utilize braided parallelism. Braided parallelism is a combina
tion of data parallelism and task parallelism. Conventional
programming models, such as OpenCL and CUDA imple
ment data parallelism. However in addition to data parallel
ism, task parallelism can also be implemented in a heteroge
neous computing platform, as described below.
0028. For example, a game engine that implements a het
erogeneous computing platform displays many types of par
allelism. It includes parallel AI tasks, concurrent workitems
for user interfaces, and massive data-parallel particle simula
tions, to name a few examples. However, even when the
components in the game engine exhibit parallelism, the video
engine fails to exhibit parallelism in its entirety. In fact, the
entire video engine is not parallel as many of its tasks are
generated dynamically.
0029. A need for implementing task-graph executions on a
GPU is shown by existence of persistent threads. Persistent
threads may be used for building scheduling systems within
threads and thus circumventing the hardware scheduler. This
approach is commonly used to reduce overhead that arises
from massively parallel data executions. Persistent threads,
however, also demonstrate a need and limitation in conven
tional programming models for implementing braided paral
lelism.
0030 Conventional heterogeneous computing platforms
also lack in composability. Conventionally, workitems that
process work on a GPU are divided into synchronizable work
groups. Those work groups share data. One way to synchro
nize work groups is by using a barrier that enforces memory
consistency and workitem ordering. The conventional barri
ers however, are defined to work across only work groups and
do not enable global synchronization. As a result, conven
tional barriers are precluded from Synchronizing workitems
in most divergent control flows.
0031 Additionally, many conventional GPGPU program
ming models expose distinct memory address spaces (also
referred to as domains). Prior to processing data by a GPGPU,
the data must be moved explicitly in and out of these domains.
This poses several issues. First, when loading third-party
libraries in and out of the domains, a GPU developer must be
aware of the memory spaces of the library’s parameters, and
may be required to write additional data movement code
when the library has unexpected parameters and memory
requirements. Second, there is little to no way to enforce how
library functions are called and over what width in a work
group. This results in an assumption that libraries either
execute across an entire work group or on a single workitem.
When the library is being executed on the entire work group,

US 2013/0332937 A1

the work group may be synchronized using barrier synchro
nization and share state internally. However, the conventional
programming platforms do not Support a library that is being
executed on a single workitem and explicitly do not support
Such state sharing.

1. Introduction to Heterogeneous Parallel Primitives
Programming Model
0032. A heterogeneous parallel primitives (HPP) pro
gramming model is designed to solve the above described
limitations of conventional heterogeneous computing plat
forms. HPP is a braided parallel programming model that
Supports task and data parallelism, and Solidifies flexibility
and composability concepts that have been lacking in the
conventional programming models.
0033. In an embodiment, HPP programming model may
be a combination of OpenCL, C++11 and Concurrency Runt
ime by Microsoft. For example, HPP adopts the execution
model of OpenCL and extends the OpenCL’s execution
model with braided parallelism, the hosting of object oriented
C++11 language and a stricter and more controllable memory
model. In an embodiment, HPP may be embedded into
C++11 as a library and a device kernel language, that is
designed to target both CPU and massively multi-threaded
GPU devices.
0034 HPP includes three components, a platform model,
an execution model and a memory model.
0035 Platform model specifies an abstract hardware
model, consisting of the host processor coordinating execu
tion and one or more compute units capable of dispatching
and executing HPP kernels. To enable support for both data
and task parallelism HPP evolves the device model of
OpenCL from a single threaded device to a set of explicitly
programmable work coordinators capable of launching units
of work on the compute cores as seen in FIG. 1, according to
an embodiment of the present invention.
0036) Execution model defines how HPP programming
model is configured on the host and how kernels are executed
on the device. Unlike the conventional GPU programming
models described above, HPP supports both data-parallelism
and task-parallelism as first class execution models.
0037. In the execution model, coordinators are single
thread scalar programs. Coordinators perform reads and
writes into globally visible memory. The read and writes
include atomic operations. Coordinators also perform condi
tional flows. The conditional flows include iteration. Addi
tionally, coordinators dispatch kernels on the compute units.
0038. In an embodiment, coordinators execute on the
Coord Schedulers of FIG. 1.
0039. In one example, kernels execute on compute units
(CUs) and assume an explicitly parallel execution. The term
"kernel, as used herein, refers to a program and/or process
ing logic that is executed as one or more workitems in parallel
having the same code base. Each kernel describes the execu
tion of a single lane of execution called a workitem. When
coordinators dispatch a kernel, multiple workitems may
execute sharing the same kernel code.
0040. In one example, coordinators (scheduling program
runs on coord1 scheduler entities, so that programs run con
currently) execute concurrently with kernels. This enables
coordinators to dispatch new kernels while other kernels are
concurrently executing.
0041. In one example, workitems are organized into work
groups of size 1 or more. Collections of workitems within a

Dec. 12, 2013

workgroup are executed in lock-step as part of a vector, called
an mvector (machine vector), potentially using predication.
The specific length of an mvector is implementation defined
and is exposed as a symbolic constant (MVECTOR SIZE).
0042. In one example, memory model defines an abstract
memory hierarchy that kernels use. The abstract memory
hierarchy works regardless of the actual underlying memory
architecture. Unlike the conventional GPGPU models the
memory hierarchy is closer to a more traditional shared
memory system. For example, Scratch pad memories are not
exposed explicitly.
0043. In one example, HPP programming model also
adopts the C++11 memory model for workitems communi
cations. The code snippet in Table 1 shows an HPP applica
tion that atomically increments its input in parallel:

TABLE 1

#include <atomic
void inc(atomic int&input, intinum Of Times)
{

parallelFor(Range:1D-(numOfTimes,
input (Index.<1>) device(hpp) {
input.add(1):
});

2. Task and Data Parallelism in a Heterogeneous Parallel
Primitives Programming Model

0044 HPP programming model enables developers to
introduce data and task parallelism. The example below dem
onstrates in pseudo code how HPP programming model
enables programmers to introduce data and task parallelism.
Table 2A is a function for multiplying two matrices.

TABLE 2A

void matixMul
intsize,
double * inputA,
double * inputB,
double * output)

for (int i = 0; i < size; ++i) {
for (int j = 0: j < size; ++j) {

double sum = 0;
for (int k = 0; k < size; ++k) {

double a = inputAi size + k);
double b = inputBk * size +j):
sum += a b:

Ci size + j = sum:

0045. In Table 2A, the iteration spaces of the outer two
“for” loops are independent of each other. Because the “for”
loops are independent of each other, they can be executed in
parallel. One conventional way to parallelize the pseudo code
Table 2A in a data parallel execution is to use size size
number of workitems, where each workitem executes the
inner loop with a corresponding index from the 2D iteration
Space.

0046. In a data programming model, the algorithm in
Table 2A can be parallelized using a parallelFor function. The
pseudo code for the parallelFor function is shown in Table2B.

US 2013/0332937 A1

TABLE 2B

void matixMul
intsize,
Pointer<double> inputA,
Pointer<double> inputB,
Pointer<double> output)

{
parallelFor(
Ranges2>(size, size),
inputAinputBoutput (

Index<2> index) device(hpp) {
unsigned inti = index. getX();
unsigned int= index. getY();
double sum = 0;
for (unsigned int k = 0; k < size; ++k) {

double a = inputAi size + k);
double b = inputBk * size +j):
sum += a b:

{
outputi size + j = Sum;

});

0047. The implementation in Table 2B is not dissimilar
from the data parallel model popularized by OpenMP and the
GPGPU programming models. However, unlike conven
tional programming models, where task parallelisms is
implemented on CPUs, HPP programming model includes
task parallel runtime (TPR) that supports data parallelism as
a first class citizen.
0048 Similar to popular TPR's designed specifically for
the CPU, HPP programming models tasks can be data-par
allel. The difference is that in HPP programming model, tasks
maintain data-parallel representations much later in the
execution process and hence more efficiently map to highly
data parallel architectures.
0049. In an embodiment, the pseudo code in Table 2B is
rewritten into an HPP version in Table 2C. Table 2C uses
parallel tasks and a notion of the future, to execute the matrix
multiplication described in Table 2B. The future represents
data that will be present at some point in the future and hence
is a proxy for synchronizing the asynchronous tasks.

TABLE 2C

void matixMul(
intsize,
Pointer<double> inputA,
Pointer<double> inputB,
Pointer<double> output)

{
Taskvoid, Index<2> matMul

inputAinputB,output
(Index<2> index) device(hipp) {
unsigned int i = index. getX();
unsigned int= index. getY();
double sum = 0;
for (unsigned int k = 0; k < size; ++k) {

double a = inputAi size + k);
double b = inputBk * size +j):
sum += a *b:

outputi size + j = Sum;
});
Future-void future = matMul.enqueue(
Ranges2>(size, size));
future.wait();

3. Tasks

0050. In one example, HPP programming model provides
asynchronous tasks that execute on the grid. The difference

Dec. 12, 2013

between HPP tasks and the conventional OpenCL tasks is that
HHP tasks encode the behavior of an asynchronous agent that
can execute like a ConcRT style task or an OpenCL-style
dispatch.
0051 Table 3A below includes example pseudo code that
defines an HPP task as a template class.

TABLE 3A

template
typename ReturnType ,
typename IndexType >

class Task

public:
typedef std::vector-ReturnType - ReturnData Type:
templatex typename FunctionType >
Task(FunctionType f);
template

typename T ,
typename RangeType >

auto enqueue(
RangeType r,
Future-T >)

-> Future-ReturnData Type :

0052. In one example, as HPP is an asynchronous tasking
model, a developer configures inter-task dependencies. The
Futures.TS type controls dependencies by encapsulating an
initially unknown result that will become available at some
later point in the future, as demonstrated in an example in
Table 2C, above. Waiting on or assigning from a future waits
on completion and gives access to the now-available value.
0053 Table 3B is an example source code that shows
execution of two tasks. The functionality of the two tasks, fl
and f22 is elided for space, and represented as (. . .). The
futures of tasks fl and f2 are combined into a single future
task f3, that is waited upon, which is implemented by an
f2.wait() function.

TABLE 3B

Futures into fl = Taskints (...).enqueue(...);
Future-float f2 = Taskfloats (...).enqueue(...);
auto f3 = fl && f2:

4. Distributed Arrays

0054 The memory hierarchy of modern computer archi
tectures is complex and explicitly or implicitly exposes dif
ferent memory levels and localities. An example of explicitly
managed scratchpad memory structure is the memory visible
in a conventional OpenCL programming model. Another
example is an SMP system that has similar properties, such as
a NUMA locality. However, without knowledge of cache
layout, false sharing is an issue for multi-threaded applica
tions.

0055. A class of programming languages called parti
tioned global address space (PGAS) assumes a single global
address space that can be logically partitioned into regions.
Each region may be allocated to a particular local processor.
In PGAS a window is mapped over parts of the global
memory creating local memory regions. Explicit loads and
stores move data in and out of those local memory regions.
Global memory provides a shared and coherent view of all

US 2013/0332937 A1

memory, while scratchpad memories provide “local disjoint
views, internally shared and coherent, on to subsets of the
global view.
0056. In practice, devices have multiple memories.
Example memories are cache memories and on chip global
memories. Distributed arrays in HPP programming model
generalize the multiple memories into a PGAS abstraction of
persistent user managed memory regions. The regions Sub
divide memory (i.e., a single unified global memory or
regions themselves). Visibility of the memory regions, i.e.,
memory sharing and coherence, is defined with respect to a
region node and its ancestors.
0057. One example use case is to abstractly manage
OpenCL’s workgroup local memory, as shown in FIG. 2, and
described in detail below. However, the invention is not lim
ited to this embodiment.
0058. In an embodiment, distributed arrays are defined in
terms of regions and segments. Regions are accessible enti
ties that may be placed into memory and accessed. A region
defines a memory visibility constraint as a layer in hierarchy.
Segments are leaf memory allocations. Leafs are created by
distributing a region across a set of nodes in the execution
graph. A region may be divided into segments based on the
number of subtasks created at the appropriate level of the
hierarchy. Unlike a conventional global memory, distributed
arrays that are bound to executions are segmented. A bound
segment can be accessed from a particular workgroup, but
may or may not be accessed by other workgroups.
0059 FIG. 2 is a block diagram 200 that shows memory
management using distributed arrays, according to an
embodiment of the present invention.
0060 Table 4A below includes example pseudo code that
defines a distributed array as a template class.

TABLE 4A

template
typename T = void
bool Persistent = true,
template <class Type - AccessPattern =

ScatterGather
DistArray

0061. When an instance of distributed array is created, the
distributed array is unbound, as illustrated by an unbound
distributed array in FIG. 2. Once created, abstract regions and
Sub-regions in unbound distributed array may be allocated.
0062. When the unbound array is passed to a kernel it
becomes a bound array, as illustrated by bound distributed
array in FIG. 2. In an embodiment, the pseudo code for
binding unbound distributed array and matching it with a
corresponding kernel argument is shown in Table 4B below:

TABLE 4B

template
typename T = void
template <class Type AccessPattern > =
ScatterGather

Bound DistArray
{

getRegion(Regions.T >);
}:

Dec. 12, 2013

0063. Once the bound distributed array is within a kernel,
a specific region within bound distributed array can be
accessed, using a getRegion() function. The getRegion()
function returns a region in bound distributed array. The
example pseudo code for the returned region is show in Table
4C below.

TABLE 4C

template <
typename T ,
templates.typename Type - class AccessPattern =
Structured Array Access.>
class Region : public AccessPattern sType -

size t getRegionSize();

0064. In the example pseudo code in Table 4C, a regions
access interface is defined by the parameter AccessPattern.
For example, Structured Array Access defines a Fortran array
style interface exposing an array class (designated as in
Fortran), along with its members to Support array slicing and
transformations.
0065. Example pseudo code for using distributed arrays is
shown in FIG. 4D below.

TABLE 4D

DistArray-float darray:
Regions float region;
region = darray.allocRegion (darray.getMaxRegionSize());
parallelFor(

Ranges 1.1 (
darray.getTotalSize(),

Ranges 1 >(region.getSize())),
darray,
region (

Index<1 > i,
Bound DistArray-floats a) device(hipp) {
a (region)index.getLocalX() += index.getX();

0066. In this example, a single region in the distributed
array is allocated using darray.allocRegion (darray.get
MaxRegionSize()) function. Once allocated, the region is
bound in the execution of the kernel, using a device(hpp)
function included in pseudo code in Table 4D. The region is
accessed within the kernel using the local workgroup ID
index for each workitem. This example highlights a key fea
ture of distributed arrays in the HPP programming model.
Namely, because coherence is described in terms of ances
tors, it is safe to allocate an independent region to each work
group.
0067. In an embodiment, the memory implementation
moves regions into on-chip Scratchpad memories on the GPU
on demand. The memory implementation also performs
cache memory prefetching on the CPU. In an embodiment,
the memory implementation also moves regions, depending
on location in the region tree, into Scratch pad memories, or
moves a family of regions whose access is known to be
limited to a particular CPU or GPU.

5. Channels

0068 Although GPU cores may be used for general pur
pose computing, GPUs are primarily used to processing
graphics workloads. In an embodiment, graphics workloads

US 2013/0332937 A1

are data-flow pipes. For example, graphics workload may
include hull shading, tessellation and domain shading which
can be implemented as a pipe that amplifies or consumes
work at each stage. The hull shader specifies tessellation
factors for edges of a triangle Such that the tessellator might
divide that triangle into many other triangles. An example use
case may be varying the viewing of an object based on the
distance from the camera—the closer the distance to the
viewer, more detail being needed near the viewer.
0069. The conventional hardware scheduling and memory
buffers may efficiently handle these workloads and are opti
mized for maintaining a high level of utilization. The hard
ware scheduler schedules just enough work for a GPU at each
stage to keep the pipeline busy without starvation. However,
conventional programming models for GPUs do not have
Such capability.
0070. As the hardware is designed to manage pipelines of

this sort, HPP programming model exposes this feature to the
developer. To this end HPP programming model adopted the
concept of communication channels and applied it to
dynamic scheduling systems. Given the massively data-par
allel nature of GPU dispatches the usual approach is that the
hardware scheduler will issue more work as resources
become available. It is this approach HPP programming
model maintains through channels, such that rather than ulti
lizing blocking reads the consumer is created at the point of
read in a fine-grained fashion. A similar approach is used in
various CPU task-oriented runtime systems such as the agents
library that runs on top of Microsoft's concurrency runtime.
(0071 FIG. 3 is a block diagram 300 of a flowchart for a
data-flow in a channel, according to an embodiment of the
present invention. In block 1, the basic structure of a kernel,
command queue, channel and scheduling hardware (control
processor) is displayed. In block 2 the kernel is enqueued, and
launches workitems in block 3. The launched workitems
write into the channel in block 4. The written data is displayed
in the work channel in block 5. The control processor detects
a launch condition for the channel in block 6 and launches
consumer workitems in 7. Consumer workitems consume the
contents of the channel in block 8. At block 9, the process
continues as the next set of workitems is written into the
channel.
0072 The implementation approach differs from a con
ventional approach that exposes fixed-function and program
mable processing stages that are linked via data queues. How
ever, the conventional approach fails to describe coordination
language and Scheduling of the HPP programming model.
0073. The channel interface may be defined by the pseudo
code in Table 5A below, according to one embodiment.

TABLE 5A

templates.<class T -
class Channel
{
public:

Channel(size t):
template-typename F -
void executeWith.(

Coordinator const& coord,
Ranges 1 > r,
F f);

size tsize();
void write(const T & v);

Dec. 12, 2013

(0074 The executeWith() method in Table 5A associates a
coordinator predicate that returns true if the corresponding
consumer kernel should be dispatched. Additionally, the
channel write() method blocks if the channel is full, thus
allowing consumers to reduce the amount of data stored in the
channel before continuing. In the HPP programming plat
form, channel data store are locked into on-chip cache and
thus are limited in size. An advantage is that good data
between producer/consumer can be locally seen.
0075. In an embodiment, coordinators are control pro
grams describing when to trigger consumers, as described
above. They are expressed as a restricted domain specific
language, embedded into C++.
0076. The following example in Table 5B, for calculating
a global reduction ties together the distributed arrays and
channels. For simplicity the example assumes that the input
size is a multiple of MVECTOR SIZE variable. A single
distributed array is used with two disjoint regions. A single
channel is used to store the results of each work-group's
reduction, with a trigger executing a second kernel to reduce
the resulting channel data, once full.

TABLE 5B

int channelSize = 32:
vectorint input = ... ;
Channel-int results(channelSize):
DistArray-int darray:
Regions float region1; if used in the 1st pass
Regions float region2; used in the 2nd pass
Region<floats;
region1 = darray.allocRegion(MVECTOR SIZE);
region2 = darray.allocRegion(channelSize);
int result:
results.executeWith(

= (Channel-int-* c) -> bool device(coord) {
return c->size() == numWorkGroups;

},
Ranges 1,1-(channelSize, channelSize), darray, &result, region2 (

Index.<11 index,
Bound DistArray-float a)
vector-int v) device(hpp) {

int accumulator = 0;
int id = index.getLocalX();
Segment<float seg = a(region);
Segid= wid:
Seg.barrier();

for(int offset = get local size(O) 2;
offset = offset (2)

offset > 0;

{
if (id < offset) {

intother = segid + offset:
int mine = Segid;
Segid= mine + other;

Seg.barrier();

if (id == 0) {
*result = seqO);

}});
parallelFor(Range-1,1->(input.size(), MVECTOR-SIZE), darray
&results, input (

Index.<11 index,
Bound DistArray-floats a) device(hpp) {
fi parallel reduce kernel body here

(0077. The example in Table 5B demonstrates the use of
distributed army for localized communication, and the use of
channels for global communication, in the HPP programming
model.

US 2013/0332937 A1

6. Barriers

0078 Coordinating shared data is critical in the develop
ment of parallel programs that scale. The conventional
GPGPU solutions limit the synchronization via barrier opera
tions to memory consistency and workitems reaching the
same PC. The conventional GPGPU solutions are also limited
to cases that do not include divergent control flow, or cases
that do include the divergent control flow that guarantee that
all workitems enter a conditional branch if any one workitem
enters the conditional branch.
0079 HPP addresses these limitations by introducing bar
riers that can be used in a control flow and can be used across
work groups.
0080. The source code in Table 6A below defines the bar
rier class and the relevant methods, in one embodiment.

TABLE 6A

class Barrier

public:
Barrier(size t count);
void skip();
void wait();
void arrive();

0081. In the example above, a barrier is initialized with a
count that represents the number of participants in the barrier.
In one embodiment, the participants may be workitems. The
barrier class also includes skip() wait() and arrive() methods.
0082. The wait() method blocks any workitem that per
forms the wait() method from continuing execution until the
other participants (i.e., workitems) have also taken part. In an
embodiment, the wait() method may be performed by a
COSU.

0083. The arrive() method may be performed by a wor
kitem that participates in the barrier, but does not wait for
other workitems. In an embodiment, the arrive()method may
be performed by a producer.
0084. The skip() method may be performed by a workitem
that withdraws from further participation in the barrier. The
withdrawn workitem does not count against the other partici
pants that have executed a waiting method. In an embodi
ment, the skip() method may be used by a workitem who has
left the execution loop. Such that the remaining workitems
may continue synchronizing on the barrier after the workitem
leaves.
0085. The methods above allow for the use of barriers in a
control flow. For example, workitems that enter the else or
exit branch in the control flow, can call the skip() method and
be removed from execution. The remaining workitems can
then continue iterating and communicating through scratch
memory and wait on the barrier.
I0086. The example source code for using barriers in a
control flow is shown in Table 6B:

TABLE 6B

Barrier b(8);
parallel For(Ranges 1-, &b, scratch (Index<1> i) {

Scratchi...getX() = i.getX();
if i.getX() < 4) {

for(intj = 0; j < i.getX(); ++j) {
b.wait();
Xi.getX() += Scratch+1 ;

Dec. 12, 2013

TABLE 6B-continued

b. Skip();
else {

b. Skip();
xi.getX() = 17:

});

I0087. By passing barrier objects to functions and skipping
elsewhere those functions are safe to synchronize on the
barrier without dependencies on external workitems. For
example, consider the function in Table 6C, below:

TABLE 6C

void someOpaqueLibrary Function(constint i, Barrier &b);
Barrier b(8);
parallel For(Ranges 1-, &b, scratch (Index<1> i) {

Scratchi = val;
if i.getX() < 4) {

SomeOpaqueLibrary Function (i, b);
else {

b.skip();
xi.getX() = 17:

});

I0088. In addition to using barrier objects in the control
flow, HPP programming model controls the use of barriers to
maintain proper execution of a workgroup. For example,
replacing the call to a skip() method in the else branch, in
Table 6C, with wait() may be invalid. For example, it may not
be possible to know the number of times someOpaquelibary
Function() may use the barrier. However, instead of replacing
a skip() method with a wait() method, two barriers may be
used in the HPP programming model. The embodiment, is
shown as Table 6D below:

TABLE 6D

Barrier b(8);
Barrier b2(8):
parallel For(Ranges 1-, &b, &b2, scratch Index<1> i) {

Scratchi = val;
if i < 4) {

SomeOpaqueLibrary Function (i, b);
b2.wait();

else {
b. Skip();
b2.wait();
xi = 17:

I0089. In an embodiment, barrier objects may also be used
to synchronize dependent kernels. For example, the host may
delegate to multiple CPU devices to process the function, as
shown in Table 6E below:

TABLE 6E

for(...) {
parallelFor(Range-1d (N), foo);

0090. In Table 6E, implicit synchronization occurs follow
ing each invocation of the parallelFor() function, with an
intention of pushing the “for loop' on to a respective GPU.

US 2013/0332937 A1

The goal is to reduce the cost of synchronization between the
host and device, as shown in Table 6G, below:

TABLE 6G

void foo(Index<1 > index, ...) device(hipp)
{

for(...) {
foo(index, ...);

gpu Sync();

0091. In Table 6G, the function gpu sync() is an inter
work-group barrier operation.
0092. In an embodiment, the cross work-group variant of
HPP's barrier may be implemented using the Global Data
Share(GDS) in AMD's HD7970, GPU. GDS is a 64K on chip
global memory with barrier functionality across the whole
device. Additionally the gpu Sync() function may be imple
mented using the algorithm described above.
0093. The Summary and Abstract sections may set forth
one or more but not all exemplary embodiments of the present
invention as contemplated by the inventor(s), and thus, are not
intended to limit the present invention and the appended
claims in any way.
0094. The present invention has been described above
with the aid of functional building blocks illustrating the
implementation of specified functions and relationships
thereof. The boundaries of these functional building blocks
have been arbitrarily defined hereinfor the convenience of the
description. Alternate boundaries can be defined so long as
the specified functions and relationships thereof are appro
priately performed.
0095. The foregoing description of the specific embodi
ments will so fully reveal the general nature of the invention
that others can, by applying knowledge within the skill of the
art, readily modify and/or adapt for various applications such
specific embodiments, without undue experimentation, with
out departing from the general concept of the present inven
tion. Therefore, Such adaptations and modifications are
intended to be within the meaning and range of equivalents of
the disclosed embodiments, based on the teaching and guid
ance presented herein. It is to be understood that the phrase
ology or terminology herein is for the purpose of description
and not of limitation, such that the terminology or phraseol
ogy of the present specification is to be interpreted by the
skilled artisan in light of the teachings and guidance.
0096. The breadth and scope of the present invention
should not be limited by any of the above-described exem
plary embodiments, but should be defined only in accordance
with the following claims and their equivalents.
What is claimed is:
1. A method comprising:
encapsulating an initially unknown result that will become

an available result after an asynchronous task is
executed;

executing the asynchronous task on a grid; and
assigning the available result to the asynchronous task in

response to the result becoming available during the
executing.

2. The method of claim 1, further comprising:
using the asynchronous task to enable task and data paral

lelism in a heterogeneous computing platform.

Dec. 12, 2013

3. The method of claim 1, further comprising:
declaring the asynchronous task using an object oriented
programming language.

4. A system for executing an asynchronous task, compris
1ng:

a heterogeneous computing platform including at least one
GPU processor and configured to:
encapsulate an initially unknown result that will become

an available result after the asynchronous task is
executed;

execute the asynchronous task on a grid; and
assign the available result to the asynchronous task in

response to the result becoming available during the
execution.

5. The system of claim 4, further comprising a task parallel
runtime configured to use the asynchronous task to enable
task and data parallelism its the heterogeneous computing
platform.

6. The system of claim 4, wherein the heterogeneous com
puting platform is further configured to declare the asynchro
nous task using an object oriented programming language.

7. A method comprising:
generating an unbound distributed array in a plurality of

memories of different types associated with a heteroge
neous computing platform;

binding the distributed array for a kernel configured to
execute a workgroup on a processor in the heteroge
neous computing platform; and

accessing the distributed array bound to the kernel as the
kernel executes the workgroup.

8. The method of claim 7, further comprising:
generalizing the plurality of memories of different types

into a persistent global address space (PGAS) abstrac
tion; and

receiving an indication from the kernel for managing a
region in the PGAS abstraction.

9. The method of claim 7, wherein a memory in the plural
ity of memories is a global chip memory.

10. The method of claim 7, wherein the memory is a cache
memory.

11. The method of claim 7, further comprising:
allocating a plurality of regions and a plurality of segments

within the distributed array.
12. The method of claim 11, wherein the accessing further

comprises:
accessing a region in a plurality of regions using a work

group ID index associated with the workgroup.
13. The method of claim 12, wherein:
the workgroup further comprises a plurality of workitems,

and
the workgroup ID index identifies a workitem in the plu

rality of workitems.
14. The method of claim 11, further comprising:
moving the plurality of regions in the distributed array to

the scratch pad memory on the GPU device.
15. The method of claim 7, further comprising:
performing a cache memory prefetching for the distributed

array on a CPU.
16. A system comprising:
a heterogeneous parallel primitives (HPP) platform con

figured to:
generate an unbound distributed array in a plurality of

memories of different types;

US 2013/0332937 A1

bind the distributed array to a kernel configured to
execute a workgroup on a processor in a heteroge
neous computing platform; and

access the distributed array bound to the kernel as the
kernel executes the workgroup.

17. The system of claim 16, wherein the HPP platform is
further configured to:

generalize the plurality of memories of different types into
a persistent global address space (PGAS) abstraction;
and

receive an indication from the kernel for managing a region
in the PGAS abstraction.

18. The system of claim 16, wherein a memory in the
plurality of memories is a global chip memory.

19. The system of claim 16, wherein the memory is a cache
memory.

20. The system of claim 16, wherein the HPP platform is
further configured to:

Dec. 12, 2013

allocate a plurality of regions and a plurality of segments
within the distributed array.

21. The system of claim 20, wherein the HPP platform is
further configured to:

access a region in the plurality of regions using a work
group ID index associated with the workgroup.

22. The system of claim 21, wherein:
the workgroup further comprises a plurality of workitems,

and
the workgroup ID index identifies a workitem in the plu

rality of workitems.
23. The system of claim 20, wherein the HPP platform is

further configured to:
move the plurality of regions in the distributed array to the

scratch pad memory on the CPU device.
24. The system of claim 16, wherein the HPP platform is

further configured to:
perform a cache memory prefetching for the distributed

array on a CPU.
k k k k k

