基于远场的变形反射面天线相位中心修正方法

摘要

本发明公开了一种确定变形反射面天线相位中心修正的方法，主要解决现有技术对结构变形仿真不准确，馈源调整依靠经验等不足。其技术方案是：(1) 用最佳吻合参数表示变形反射面口径面的相位差；(2) 将相位差带入远场计算公式中，基于一阶泰勒级数展开，推导出天线远场场强与最佳吻合参数组成一个线性方程组；(3) 根据法线信息，将远场场强与最佳吻合参数组成一个线性方程组；(4) 根据法线信息，将远场场强与最佳吻合参数组成一个线性方程组；(5) 根据线性方程组，得到最佳吻合参数的最小二乘解；(6) 根据最小二乘解计算相位中心修正量，指导馈源调整。本发明能有效计算变形反射面天线的相位中心调整量，可用于对变形反射面天线馈源的调整。
1. 一种基于远场的变形反射面天线的相位中心修正方法，具体包括如下步骤：
   （1）给定变形反射面天线的最佳合参p，建立最佳合抛物面的口径面总光程差 δ；
   （2）用步骤（1）中的口径面总光程差 δ，建立最佳合抛物面的口径面相位差 φ；
   （3）根据相位场方法，利用步骤（2）中的口径面相位差 φ，建立变形反射面天线远场电场 E′ (θ, φ) 计算公式：
   \[ E′(θ, φ) = \int_\mathbb{A} O(ρ′, φ′)e^{ikρ′sinθcos(φ-φ′)}dρ′dφ′. \]

   式中，θ 为球坐标系的仰角，φ 为球坐标系的方位角，该球坐标系的原点处于口径面中心 o_0，对应的笛卡尔坐标系为 o_0x_0y_0z_0，ρ′ 为 x_0y_0 平面内极坐标系的极径分量，φ′ 为 x_0y_0 平面内极坐标系的极角分量，Q(ρ′, φ′) 为口径场分布函数，j 为虚数符号，
   \[ k = 2\pi \cdot \frac{f'}{c} \]
   为波数，f' 为工作频率，c 为光速，A 为反射面天线在 x_0y_0 平面上的投影面积

   （4）对步骤（3）中指数项 e^{jφ} 进行一阶泰勒级数展开，用最佳合参数 p 表示近似远场电场 E′_a (θ, φ)：
   \[ E′_a(θ, φ) = E(θ, φ) + c^t(θ, φ) \cdot p, \]
   其中，c (θ, φ) 为远场测量点 (θ, φ) 处的电场对最佳合参数 p 的敏度列向量，E (θ, φ) 为远场测量点 (θ, φ) 处的理想电场，上标 T 为矩阵转置运算符。

   （5）在主波束附近选择 m 个远场测量点 (θ_i, φ_i), i = 1, 2, …, m, m ≦ 6，分别带来入步骤（4）近似远场电场 E′_a (θ, φ) 中，组成以最佳合参数 p 为变量的线性方程组
   \[ \vec{E}_a(θ, φ) = \vec{E}(θ, φ) + B \cdot p \]
   式中，E′_a (θ, φ) = [E′_a(θ_1, φ_1), …, E′_a(θ_m, φ_m)]_T 是变形反射面天线在 m 个远场测量点 (θ_i, φ_i) 处的近似电场 E′_a (θ_i, φ_i) 组成的列向量，E (θ, φ) = [E(θ_1, φ_1), …, E(θ_m, φ_m)]_T 是理想反射面天线在 m 个远场测量点 (θ_i, φ_i) 处的理想电场 E (θ_i, φ_i) 组成的列向量，B = [c (θ_1, φ_1), …, c (θ_m, φ_m)] 是 m 个远场测量点 (θ_i, φ_i) 处的电场对最佳合参数 p 的敏度列向量 c (θ_i, φ_i) 组成的 m 行 6 列矩阵。

   （6）根据步骤（4）的敏度列向量 c (θ, φ)，生成 m 个远场测量点 (θ_i, φ_i) 处的电场对最佳合参数 p 的敏度数据 c^t (θ_i, φ_i)，将敏度数据按测量点顺序整理成矩阵 B 的形式存储起来；

   （7）根据口径场方法，生成 m 个远场测量点 (θ_i, φ_i) 处理想电场数据 E^d (θ_i, φ_i)，将理想电场数据按测量点顺序整理成列向量的形式存储起来；

   （8）测量 m 个远场测量点 (θ_i, φ_i) 处的实际电场数据 E^t (θ_i, φ_i)，将测量的实际电场数据按测量点顺序整理成列向量的形式存储起来；

   （9）调用步骤（6）、（7）、（8）存储的数据文件，求解步骤（5）的线性方程组，得到最佳合参数 p 的最小二乘解；

   （10）将步骤（9）中最佳合参数 p 的最小二乘解带入下面三式，求得变形反射面天线的相位中心修正量：

2
\[ \Delta f_1 = u_o + f \cdot \sin(\beta) \approx u_o + f \cdot \beta, \]
\[ \Delta f_2 = v_o - f \cdot \sin(a) \approx v_o - f \cdot a, \]
\[ \Delta f_3 = w_o - [2f - f \cdot \cos(a) - f \cdot \cos(\beta)] + h \approx w_o + h. \]

其中，\( \Delta f_1 \) 为相位中心沿 X' 轴的修正量，\( \Delta f_2 \) 为相位中心沿 Y' 轴的修正量，\( \Delta f_3 \) 为相位中心沿 Z' 轴的修正量；

(11) 根据相位中心修正量 \( \Delta f_1, \Delta f_2 \) 和 \( \Delta f_3 \)，将馈源沿 X' 轴移动 \( \Delta f_1 \)，沿 Y' 轴移动 \( \Delta f_2 \)，沿 Z' 轴移动 \( \Delta f_3 \)，实现变形反射面天线相位中心的修正。

2. 根据权利要求 1 所述的基于远场的变形反射面天线相位中心修正方法，其特征在于，所述步骤(1) 中用变形反射面天线的最佳吻合参数 \( p \)，建立最佳吻合抛物面的口径面光程差 \( \delta \)，按如下步骤进行：

(1a) 设最佳吻合参数 \( p = [u_o, v_o, w_o, a, \beta, h] \)，其中，\( u_o \) 为最佳吻合抛物面在 X' 轴的刚体平动位移，\( v_o \) 为最佳吻合抛物面在 Y' 轴的刚体平动位移，\( w_o \) 为最佳吻合抛物面在 Z' 轴的刚体平动位移，\( a \) 为最佳吻合抛物面绕 X' 轴的刚体转角位移，\( \beta \) 为最佳吻合抛物面绕 Y' 轴的刚体转角位移，\( h \) 为最佳吻合抛物面与理想反射面焦距的差值；

(1b) 在 OX'Y'Z' 坐标系下，分别计算最佳吻合抛物面节点 X' 轴坐标、Y' 轴坐标、Z' 轴坐标与理想反射面节点 X' 轴坐标、Y' 轴坐标、Z' 轴坐标的差值 u, v, w:

\[ u = u_o + \beta z, \]
\[ v = v_o - a z, \]
\[ w = w_o + a y - \beta x - h z / f. \]

式中，\( z \) 为理想反射面节点 Z' 轴坐标，\( x \) 为理想反射面节点的 X' 轴坐标，\( y \) 为理想反射面节点的 Y' 轴坐标，\( f \) 为理想反射面的焦距；

(1c) 分别计算 X' 轴坐标差值 \( u \), Y' 轴坐标差值 \( v \), Z' 轴坐标差值 \( w \) 引起的光程差 \( \Delta_1, \Delta_2, \Delta_3 \):

\[ \Delta_1 = \frac{u z}{f + z}, \]
\[ \Delta_2 = \frac{v y}{f + z}, \]
\[ \Delta_3 = -\frac{2 f w}{f + z}. \]

(1d) 根据步骤(1c) 得到的三个坐标轴坐标差值引起的光程差 \( \Delta_1, \Delta_2, \Delta_3 \)，计算最佳吻合抛物面的口径面总光程差 \( \delta \):

\[ \delta = \Delta_1 + \Delta_2 + \Delta_3 = \frac{1}{f + z} a^T \cdot p. \]

式中，\( a \) 为中间列向量，\( a = [x, y, -2 y, 2 z, -y z - 2 f y, x z + 2 f x] \)

3. 根据权利要求 1 所述的基于远场的变形反射面天线相位中心修正方法，其特征在于，步骤(2) 所述的用步骤(1) 中的口径面总光程差 \( \delta \)，建立最佳吻合抛物面的口径面相位差 \( \varphi \)，按如下公式进行：
\[ \varphi = k \delta = \frac{k}{f + z} u^r \cdot p, \]

式中，\( k = 2\pi \cdot f' / c \) 为波常数，\( f' \) 为工作频率，\( c' \) 为光速。

4. 根据权利要求1所述的基于远场的变形反射面天线相位中心修正方法，其特征在于，所述步骤(4)中对步骤(3)中指数项 \( e^{j \rho} \) 作一阶泰勒级数展开，用最佳吻合参数 \( p \) 表示近似后的远场电场 \( E'_{\scriptscriptstyle \infty}(0, \phi) \)。按如下步骤进行：

(4a) 将步骤(3)中指数项 \( e^{j \rho} \) 作一阶泰勒级数展开，近似远场电场 \( E'_{\scriptscriptstyle \infty}(0, \phi) \) 计算公式为：

\[ E'_a(\theta, \phi) = \int_A Q(\rho', \phi') e^{j k r' \sin \theta \cos (\theta' \cdot \phi')} (1 + j \rho) \rho' d \rho' d \phi' \]

(4b) 将口径面相位差 \( \varphi \) 和理想电场 \( E(0, \phi) \) 带入上式中，用最佳吻合参数 \( p \) 表示近似后的远场电场 \( E'_{\scriptscriptstyle \infty}(0, \phi) \)：

\[ E'(0, \phi) = E(0, \phi) + c^t(0, \phi) \cdot p, \]

式中：

\[ c(\theta, \phi) = \int_A \frac{j k}{f+z} a Q(\rho', \phi') e^{j k r' \sin \theta \cos (\theta' \cdot \phi')} \rho' d \rho' d \phi', \]

\[ E(\theta, \phi) = \int_A Q(\rho', \phi') e^{j k r' \sin \theta \cos (\theta' \cdot \phi')} \rho' d \rho' d \phi'. \]

5. 根据权利要求1所述的基于远场的变形反射面天线相位中心修正方法，其特征在于，步骤(6)所述的将相位数据按照测量点顺序整理成矩阵B的形成存储起来，按如下步骤进行：

(6a) 将m个远场测量点 \( (\theta_1, \phi_1) \) 的相位坐标 \( \theta_1 \) 和 \( \phi_1 \) 分别带入步骤(4)的相位列向量 \( c(0, \phi) \) 中，采用数值积分运算，可得到m个远场测量点 \( (\theta_1, \phi_1) \) 处的电场对最佳吻合参数 \( p \) 的相位数据 \( c^t(\theta_1, \phi_1) \)；

(6b) 将相位数据 \( c^t(\theta_1, \phi_1) \) 按照测量点顺序整理成矩阵B的形成B^t，存入文本文件中：

\[ B^t = [c^t(\theta_1, \phi_1), \ldots, c^t(\theta_m, \phi_m)]. \]

6. 根据权利要求1所述的基于远场的变形反射面天线相位中心修正方法，其特征在于，步骤(7)所述的将理想电场数据按照测量点顺序整理成列向量的形成存储起来，按如下步骤进行：

(7a) 将m个远场测量点 \( (0, \phi) \) 带入步骤(3)中的口径面积分公式 \( E(0, \phi) \) 中，采用数值积分运算，得到m个远场测量点 \( (\theta_1, \phi_1) \) 处的电场 \( E^t(0, \phi) \)；

(7b) 将理想电场 \( E^t(\theta, \phi) \) 按照测量点顺序整理成列向量 \( E^t(\theta, \phi) \) 的形式 \( E^t(\theta_1, \phi_1) \)，存入文本文件中：

\[ \bar{E}^t(\theta_1, \phi_1) = [E^t(\theta_1, \phi_1), \ldots, E^t(\theta_m, \phi_m)]^T. \]

7. 根据权利要求1所述的基于远场的变形反射面天线相位中心修正方法，其特征在于，所述步骤(9)中调用步骤(6)、(7)、(8)存储的数据文件，求解步骤(5)的线性方程组。
得到最佳吻合参数 $p$ 的最小二乘解，按如下步骤进行：

(9a) 调用步骤(6)存储的数据文件，带入步骤(5)线性方程组的矩阵 $B$ 中；

(9b) 调用步骤(7)存储的数据文件，带入步骤(5)线性方程组的向量 $\vec{E}(\theta, \phi)$ 中；

(9c) 调用步骤(8)存储的数据文件，带入步骤(5)线性方程组的向量 $\vec{E}_a^*(\theta, \phi)$ 中；

(9d) 将步骤(5)线性方程组变换为如下形式：

$$
\begin{bmatrix}
R(\vec{E}_a^*(\theta, \phi)) \\
I(\vec{E}_a^*(\theta, \phi))
\end{bmatrix} = \begin{bmatrix}
R(\vec{E}(\theta, \phi)) \\
I(\vec{E}(\theta, \phi))
\end{bmatrix} + \begin{bmatrix}
R(B) \\
I(B)
\end{bmatrix} \cdot p,
$$

式中，$R$ 为实部运算符，$I$ 为虚部运算符；

(9e) 求解步骤(9d)的线性方程组，得到最佳吻合参数 $p$ 的最小二乘解：

$$
p = \begin{bmatrix}
R(B) \\
I(B)
\end{bmatrix} \backslash \begin{bmatrix}
R(\vec{E}_a^*(\theta, \phi)) \\
I(\vec{E}_a^*(\theta, \phi))
\end{bmatrix} - \begin{bmatrix}
R(\vec{E}(\theta, \phi)) \\
I(\vec{E}(\theta, \phi))
\end{bmatrix},
$$

式中，符号“\”为数值仿真软件 MATLAB 中的左除运算符。
基于远场的变形反射面天线相位中心修正方法

技术领域
[0001] 本发明涉及天线技术领域，具体是一种基于远场的变形反射面天线相位中心修正方法。应用于对变形反射面天线的相位修正或馈源调整。

背景技术
[0002] 微波天线是一种典型的机电结合装备，反射面天线是其中应用最为广泛的一种。随着科学技术的发展，软天线向着高频率、高增益、大口径的方向发展，外载荷，如热、重力、风等引起的变形严重恶化了天线的电性能。

[0003] 为了保证天线电性能，必须采取一定措施减小反射面变形对电性能的影响。最简单的一种折中方法是寻找合理的平面安装调整角，使重力作用下的天线在各个仰角处的型面加权精度最高。面对抛物面天线，简单有效的补偿方法是找到最佳吻合抛物面，将馈源调整到最佳吻合抛物面的焦点以减小系统误差。针对赋形卡式天线的重力变形，可对变形主反射面进行分段吻合，找到新的副面位置来补偿主面变形。目前也有相关文献从机电耦台的角度出发，以电性能为目标对馈源位置进行优化，寻求变形反射面天线的最优相位中心。

[0004] 上述现有的方法，有一个共同前提就是已知反射面的变形信息，即天线真实变形需实测或者由有限元模型仿真得到。实际上天线所处环境复杂，风荷、太阳照射、结构及环境因素在有限元模型中很难准确模拟，结构有限元分析结果的准确性值得商榷，长期服役的天线也可能发生永久的变形，因此根据有限元模型仿真得到的反馈信息对馈源进行调整存在着较大误差。采用测量工具，如摄影测量，微波全息测量等，虽可真实反映反射面的真实变形信息，但在天线工作过程中进行测量是不很方便的，且随着大口径天线的发展，测量天线反射面变形的工作量比较大，耗时比较长，过程中应用非常不便。工程中测试人员采用的方法则是，测量天线远场方向图，根据远场方向图剖面的对称性能，根据经验判断副面或馈源如何调整，通常调整次数较多，耗时较长。

发明内容
[0005] 本发明的目的在于克服上述现有方法的不足，提出一种基于远场的变形反射面天线相位中心修正方法，以在反射面变形未知的情况下实现对馈源或副面的调整，实现对主面变形的补偿。

[0006] 实现本发明目的的技术方案是：基于口径场方法，用变形反射面的最佳吻合参数描述最佳吻合抛物面的口径面总光程差，将光程差转换为相位差，带入远场计算公式中，基于一阶泰勒级数展开，推导出天线远场场强对最佳吻合参数的敏感度，将远场场强与最佳吻合参数形成一个线性方程组，根据测得的远场场强，基于MATLAB的求解运算，求解上述线性方程组中最佳吻合参数的最小二乘解，根据最佳吻合参数的最小二乘解计算馈源空间位置的调整量。具体步骤包括如下：

[0007] (1) 用变形反射面天线的最佳吻合参数 p，建立最佳吻合抛物面的口径面总光程差
式中，$o$ 为球坐标系的原点，$p$ 为球坐标系的方位角，该球坐标系的圆心处于口径面中心 $O_0$，对应的笛卡尔坐标系为 $O_xO_yO_z$，$\rho'$ 为 $x_0y_0$ 平面内极坐标的极径分量，$\phi'$ 为 $x_0y_0$ 平面内极坐标的极角分量，$Q(\rho', \phi')$ 为口径面分布函数，$j$ 为虚数符号，

$$k = 2\pi \cdot \frac{j}{f}$$

为波数常数，$f'$ 为工作频率，$c'$ 为光速，$A$ 为反射面天线在 $x_0y_0$ 平面上的投影面积。

式中，$E'(\theta, \phi) = E(\theta, \phi) + c(\theta, \phi) \cdot p$，

$E(\theta, \phi)$ 为远场测量点 $(\theta, \phi)$ 处的电场，$c(\theta, \phi)$ 为近似远场电场 $E''(\theta, \phi)$ 处的电场对最佳吻合参数 $p$ 的敏感度向量，$E''(\theta, \phi)$ 为近似远场电场 $E''(\theta, \phi)$ 处的电场，$p$ 为矩阵 $T$ 为矩阵转置运算符；

$E''(\theta, \phi) = E(\theta, \phi) + B \cdot p$

式中，$E''(\theta, \phi) = [E''(\theta, \phi_1), \ldots, E''(\theta, \phi_m)]^T$ 是变形反射面天线在 $m$ 个远场测量点 $(\theta, \phi_i)$ 处的近似电场 $E''(\theta, \phi_i)$ 组成的列向量，$E''(\theta, \phi)$ 是变形反射面天线在 $m$ 个远场测量点 $(\theta, \phi_i)$ 处的电场，$B = [c(\theta, \phi_1), \ldots, c(\theta, \phi_m)]$ 是 $m$ 个远场测量点 $(\theta, \phi_i)$ 处的电场对最佳吻合参数 $p$ 的敏感度向量 $c(\theta, \phi_i)$ 的组成矩阵 $B$ 的部分。

根据步骤 (4) 的敏感度向量 $c(\theta, \phi)$，生成 $m$ 个远场测量点 $(\theta, \phi_i)$ 处的电场对最佳吻合参数 $p$ 的敏感度数据 $c(\theta, \phi_i)$，将敏感度数据按照测量点顺序整理成矩阵 $B$ 的形式存储起来。

根据口径场方法，生成 $m$ 个远场测量点 $(\theta, \phi_i)$ 处理想电场数据 $E''(\theta, \phi_i)$，将理想电场数据按照测量点顺序整理成列向量的形式存储起来。

测量 $m$ 个远场测量点 $(\theta, \phi_i)$ 处的实际电场数据 $E''(\theta, \phi_i)$，将测量的实际电场数据按照测量点顺序整理成列向量的形式存储起来。

调用步骤 (6)、(7)、(8) 存储的数据文件，求解步骤 (5) 的线性方程组，得到最佳吻合参数 $p$ 的最小二乘解。

将步骤 (9) 中最佳吻合参数 $p$ 的最小二乘解带入下面三式，求得变形反射面天线的相位中心修正量。
附图说明
[0031] 图 1 为本发明的实现流程图；
[0032] 图 2 为反射面天线最佳吻合抛物面 OX' Z' 平面示意图；
[0033] 图 3 为反射面天线绕 Y' 轴转动示意图；
[0034] 图 4 为反射面天线焦距增量示意图；
[0035] 图 5 为反射面天线表面节点位移示意图；
[0036] 图 6 为反射面天线的几何关系图；
[0037] 图 7 为本发明使用的 7.3 米反射面天线的有限元模型图；
[0038] 图 8 为本发明使用的 7.3 米反射面天线的仰视图及 E 面归化方向图。
[0039] 图 9 为本发明使用的 7.3 米反射面天线的俯视图及 E 面归化方向图；

具体实施方式
[0040] 下面结合附图及实施例对本发明做进一步说明。
[0041] 参照图 1，本发明基于远场的变形反射面天线相位中心修正方法，其实现步骤如下：
[0042] 步骤一，用变形反射面的最佳吻合参数，建立最佳吻合抛物面的口径面总光程差。
[0043] 图 2 给出了反射面天线最佳吻合抛物面 OX' Z' 平面示意图，图中，OZ' 是原点位于理想反射面点的坐标系，OZ' 是原点位于最佳吻合抛物面点的坐标系，o_0 是理想反射面的焦点，o_1 是天线变形后的馈源位置，o_2 是最佳吻合抛物面的焦点，u_0 是最佳吻合抛物面顶点沿 Z' 轴的刚体平动位移，w' 是最佳吻合抛物面顶点沿 Z' 轴的刚体平动位移，β 是最佳吻合抛物面弯 Y' 轴的刚体转角位移。将馈源由 o_1 移动到 o_2 可有效改善天线电性能。o_0 位置由测量得到，o_0 位置由天线设计参数得到，馈源由 o_1 移动到 o_2 等效为求取向量 

[0044] 参照图 2，用变形反射面的最佳吻合参数，建立最佳吻合抛物面的口径面总光程差。
的具体步骤如下：

[0045] 1a) 设变形反射面天线的最佳吻合参数为 \( p = [u_0, v_0, w_0, \alpha, \beta, h]^T \)。其中，\( v_0 \) 为最佳吻合抛物面在 \( Y' \) 轴的刚体平动位移，\( \alpha \) 为最佳吻合抛物面绕 \( X' \) 轴的刚体转角位移，\( h \) 为最佳吻合抛物面与理想反射面焦距的差值；

[0046] 1b) 根据最佳吻合参数 \( p \) 的取值，计算最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面坐标对应坐标的差值 \( u, v, w \)；

[0047] 当最佳吻合参数 \( p \) 均为零时，最佳吻合抛物面与理想反射面重合，此时最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面坐标对应坐标的差值 \( u, v, w \) 均为零；

[0048] 当各项参数 \( p \) 中的任何一项不为零时，最佳吻合抛物面与理想反射面不重合，例如，当各项参数 \( \beta \) 不为零时，反射面绕 \( Y' \) 轴发生转动，如图 3 所示；当各项参数 \( h \) 不为零时，反射面的曲率发生变化，如图 4 所示，此时需要分别计算最佳吻合参数 \( u_0, v_0, w_0, \alpha, \beta \) 和 \( h \) 对反射面节点位移的影响，即分为六种情况：

[0049] 当 \( u_0 \) 为 0，而 \( v_0, w_0, \alpha, \beta, h \) 均为 0 时，最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值分别为 \( u_0 = 0, v_0 = 0, w_0 = 0 \)；

[0050] 当 \( v_0 \) 为 0，而 \( u_0, w_0, \alpha, \beta, h \) 均为 0 时，最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值分别为 \( u_0 = 0, v_0 = w_0 \)；

[0051] 当 \( w_0 \) 为 0，而 \( u_0, v_0, \alpha, \beta, h \) 均为 0 时，最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值分别为 \( u_0 = 0, v_0 = w_0 \)；

[0052] 当 \( \alpha \) 为 0，而 \( u_0, v_0, w_0, \beta, h \) 均为 0 时，最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值分别为 \( u_0 = 0, v_0 = \pm \alpha z, w_0 = \pm \beta z \)；

[0053] 当 \( \beta \) 为 0，而 \( u_0, v_0, w_0, \alpha, h \) 均为 0 时，最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值分别为 \( u_0 = \pm \beta z \)；

[0054] 当 \( h \) 不为 0，而 \( u_0, v_0, w_0, a, \beta \) 均为 0 时，最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值分别为 \( u_0 = 0, v_0 = w_0 = -hz / f \)；

[0055] 由上述六种情况，得到在最佳吻合参数 \( u_0, v_0, w_0, \alpha, \beta, h \) 共同影响下，最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值 \( u, v, w \)；

[0056] \( u = u_0 + u_1 + u_2 + u_3 + u_4 + u_5 = u_0 + \beta z \),

[0057] \( v = v_0 + v_1 + v_2 + v_3 + v_4 + v_5 = v_0 + \alpha z \),

[0058] \( w = w_0 + w_1 + w_2 + w_3 + w_4 + w_5 = w_0 + \alpha y - \beta x - hz / f \)；

[0059] 式中，\( z \) 为理想反射面节点 \( Z' \) 轴坐标，\( x \) 为理想反射面节点的 \( X' \) 轴坐标，\( y \) 为理想反射面节点的 \( Y' \) 轴坐标，\( f \) 为理想反射面的焦距；

[0060] 1c) 根据最佳吻合抛物面节点 \( X' \) 轴坐标，\( Y' \) 轴坐标，\( Z' \) 轴坐标与理想反射面节点对应坐标的差值 \( u, v, w \)，建立最佳吻合抛物面口径面总光程差 \( \delta \)；

[0061] 图 5 画出反射面节点 \( Z' \) 轴位移 w 和 \( X' \) 轴位移 u 引起口径面光程差的几何示意图，由图 5 可见，电磁波由点 \( O_0 \) 传输至点 \( G_0 \) 经过反射面反射，又由点 \( G \) 传输至点 \( P \)，由于节点 \( G \) 的 \( X' \) 轴位移 u，电磁波传播路程由点 \( O_0 \) 传输至点 \( H \) 经反射面反射，又由点 \( H \) 传输至点 \( L \)，则 \( X' \) 轴位移 u 引起的光程差 \( \Delta_1 \) 为线段 \( RG \)，其计算公式为：
Δ₁ = \frac{ux}{f+z};

Δ₂ = \frac{vy}{f+z};

Δ₃ = -\frac{2wv}{f+z};

δ = Δ₁ + Δ₂ + Δ₃ = \frac{1}{f+z}a^r \cdot p,

式中，a 为中间列向量，a = [x, 2, y, 2z, -yz - 2f, xz + 2fx] \cdot p.

步骤二，利用口径面总光程差 δ，计算最佳吻合抛物面的口径面相位差 φ:

φ = kδ = \frac{k}{f+z}a^r \cdot p,

式中，k = \frac{2\pi \cdot f'}{c'} 为波长常数，f' 为工作频率，c' 为光速。

步骤三，用口径面相位差 φ，建立变形反射面天线的远场电场计算公式。

3a）根据图 6 所示的反射面天线的几何关系示意图，建立反射面天线理想远场电场的口径场积分公式:

E(θ, φ) = \int Q(ρ', Φ') e^{ik(ρ' \sin θ \cos(φ - φ'))} ρ' dρ' dφ'.

式中，θ 为球坐标系的仰角，φ 为球坐标系的方位角，该球坐标系的圆心位于口径面中心 o₀, Q(ρ', Φ') 为口径场分布函数，j 为虚数符号，A 为反射面天线在 x₀o₀y₀ 平面上的投影面积。

3b）根据口径面相位差 φ，建立变形反射面天线的远场电场计算公式:

将口径面相位差 φ 以指数项 e^{iφ} 的形式写入步骤 3a）中理想远场电场的口径场积分公式中，得到变形反射面天线的远场电场 E'(θ, φ) 的计算公式:
$$E'(\theta, \phi) = \int_A Q(\rho, \phi') e^{i k \rho' \sin \theta \cos (\phi - \phi')} \cdot e^{i \phi} \cdot \rho' d \rho' d \phi'$$

[0081] 步骤四，用最佳吻合参数线性表示变形反射面天线的远场电场。

[0082] 4a) 将步骤三中变形反射面天线远场电场 $E'(\theta, \phi)$ 中的指数项 $e^{i \phi}$ 作一阶泰勒级数展开，得到近似后的远场电场 $E'(\theta, \phi)$ 为：

$$E'(\theta, \phi) = \int_A Q(\rho, \phi') e^{i k \rho' \sin \theta \cos (\phi - \phi')} \cdot (1 + j \phi') \rho' d \rho' d \phi'$$

[0083] 4b) 将口径面相位差 $\phi$ 和理想远场电场 $E(\theta, \phi)$ 带入近似后的远场电场 $E'(\theta, \phi)$ 中，使近似后的远场电场 $E'(\theta, \phi)$ 可改写为：

$$E'(\theta, \phi) = E(\theta, \phi) + c'(\theta, \phi) \cdot p,$$

[0084] 其中，$E(\theta, \phi)$ 为远场测量点 $(\theta, \phi)$ 处的理想电场，上标 T 为矩阵转置运算符；

$$c'(\theta, \phi) = \int_A \rho' d \rho' d \phi'$$

[0085] 表示远场测量点 $(\theta, \phi)$ 处的电场对最佳吻合参数 $p$ 的微分列向量。

[0086] 步骤五，建立联系远场与最佳吻合参数的线性方程组。

[0087] 在主波束附近选择 $m$ 个远场测量点 $(\theta_i, \phi_i), i = 1, 2, \ldots, m, m \geq 6$ 个 $(\theta_i, \phi_i)$ 表示第 $i$ 个远场测量点的方位坐标，分别带入步骤四的近似远场电场 $E'(\theta, \phi)$ 中，组成以最佳吻合参数 $p$ 为变量的线性方程组：

$$\bar{E}'(\theta, \phi) = \bar{E}(\theta, \phi) + B \cdot p,$$

[0088] 式中，$\bar{E}'(\theta, \phi) = [E'_1(\theta, \phi), \cdots, E'_m(\theta, \phi)]^T$ 是变形反射面天线在 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 处的近似电场 $E'(\theta_i, \phi_i)$ 组成的列向量；

$$\bar{E}(\theta, \phi) = [E_1(\theta, \phi), \cdots, E_m(\theta, \phi)]^T$$

[0089] 是理想反射面天线在 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 处的理想电场 $E(\theta_i, \phi_i)$ 组成的列向量；

[0090] $B = [c_1(\theta_1, \phi_1), \cdots, c_m(\theta_m, \phi_m)]^T$ 是 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 处的电场对最佳吻合参数 $p$ 的微分列向量化 $c(\theta, \phi)$ 中，采用数值积分运算，得到 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 处的电场对最佳吻合参数 $p$ 的微分数据 $c_i(\theta_i, \phi_i)$，上标 d 仅作为区分标记，无含义。

[0091] 步骤六，计算远场测量点处电场对最佳吻合参数的微分。

[0092] 6a) 将 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 的方位坐标 $(\theta_i, \phi_i)$ 分别带入步骤四的微分列向量 $c(\theta, \phi)$ 中，采用数值积分运算，得到 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 处的电场对最佳吻合参数 $p$ 的数值微分数据 $c_i(\theta_i, \phi_i)$，上标 d 仅作为区分标记，无含义。

[0093] 6b) 将数值微分数据 $c_i(\theta_i, \phi_i)$ 按照测量点顺序整理成矩阵 $B$ 的形式 $B'$，存入文本文件中：

| $B'$ = $[c_i(\theta_1, \phi_1), \cdots, c_i(\theta_m, \phi_m)]^T$. |

[0094] 步骤七，计算远场测量点处的电场强度。

[0095] 7a) 将 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 带入步骤三中理想远场电场的口径积分公式 $E(\theta, \phi)$ 中，采用数值积分运算，得到 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 处的理想电场
$E^d(\theta, \phi)$;

(0100) 将理想电场 $E^d(\theta, \phi)$ 按照测量点顺序整理成列向量 $\vec{E}(\theta, \phi)$ 的形式 $E^d(\theta, \phi)$,存入文本文件中。

(0101) $E^d(\theta, \phi)=[E^d(\theta_1, \phi_1), \cdots, E^d(\theta_m, \phi_m)]^T$。

(0102) 步骤八, 测量 $m$ 个远场测量点 $(\theta_i, \phi_i)$ 处的实标场数据 $E'(\theta, \phi)$, 将测量的实标场数据按照测量点顺序整理成列向量的形式存入文本文件中。

(0103) 步骤九, 调用步骤六、七、八存储的数据文件, 求解步骤五中的线性方程组。

(0104) 9a) 调用步骤六存储的数据文件, 带入步骤五中线性方程组的矩阵 $B$ 中。

(0105) 9b) 调用步骤七存储的数据文件, 带入步骤五中线性方程组的向量 $\vec{E}(\theta, \phi)$ 中。

(0106) 9c) 调用步骤八存储的数据文件, 带入步骤五中线性方程组的向量 $\vec{E}(\theta, \phi)$ 中。

(0107) 9d) 将带入数据后的线性方程组变换为如下形式:

$$\begin{bmatrix}
R(\vec{E}_\theta(\theta, \phi)) \\
I(\vec{E}_\theta(\theta, \phi))
\end{bmatrix} = \begin{bmatrix}
R(\vec{E}(\theta, \phi)) \\
I(\vec{E}(\theta, \phi))
\end{bmatrix} + \begin{bmatrix}
R(B) \\
I(B)
\end{bmatrix} \cdot P,$$

(0109) 式中, R 为取实部运算符, I 为取虚部运算符。

(0110) 9c) 求解步骤 9d) 中的线性方程组, 得到最佳吻合参数 $p$ 的最小二乘解:

$$P = \begin{bmatrix}
R(B) \\
I(B)
\end{bmatrix} \cdot \left( \begin{bmatrix}
R(\vec{E}_\theta(\theta, \phi)) \\
I(\vec{E}_\theta(\theta, \phi))
\end{bmatrix} - \begin{bmatrix}
R(\vec{E}(\theta, \phi)) \\
I(\vec{E}(\theta, \phi))
\end{bmatrix} \right),$$

(0112) 式中, 符号“\"为数值仿真软件 MATLAB 中的左除运算符。

(0113) 步骤十, 计算变形反射面天线的相位中心修正量。

(0114) 将步骤九中得到的最佳吻合参数 $p = [u_0, v_0, w_0, \alpha, \beta, h]$ 的最小二乘解带入下面三式, 求得变形反射面天线的相位中心修正量:

(0115) $\Delta f_1 = u_0 + f \cdot \sin(\beta) \approx u_0 + f \cdot \beta$，

(0116) $\Delta f_2 = v_0 - f \cdot \sin(\alpha) \approx v_0 - f \cdot \alpha$，

(0117) $\Delta f_3 = w_0 - [2f \cdot \cos(\alpha) - f \cdot \cos(\beta)] + h \approx w_0 + h$，

(0118) 其中, $\Delta f_1$ 为相位中心沿 $X^\prime$ 轴的修正量, $\Delta f_2$ 为相位中心沿 $Y^\prime$ 轴的修正量, $\Delta f_3$ 为相位中心沿 $Z^\prime$ 轴的修正量。

(0119) 步骤十一, 根据相位中心修正量 $\Delta f_1$, $\Delta f_2$ 和 $\Delta f_3$, 将馈源沿 $X^\prime$ 轴移动 $\Delta f_1$, 沿 $Y^\prime$ 轴移动 $\Delta f_2$, 沿 $Z^\prime$ 轴移动 $\Delta f_3$, 实现变形反射面天线相位中心的修正。

(0120) 本发明的效果可通过以下仿真实验进一步说明:

(0121) 1. 仿真对象及工况

(0122) 针对如图 7 所示的某标准抛物面天线, 对本发明方法进行仿真验证, 该天线口径 7. 3m, 焦距 2. 463m, 面板为铝材, 其余均为铜材。其工况设为以下两种:

(0123) 1. 仰天工况: 将天线仰天, 中心体底端节点自由度全约束, 最外圈环梁各节点沿铅垂方向施加力 10000N, 天线最大变形为 3. 26mm, 工作频率 12. 5GHz。

(0124) 2. 指平工况: 将天线指平, 中心体底端节点自由度全约束, 最外圈环梁各节点沿铅垂
方向施加载荷10000N，天线最大变形为12.17mm，工作频率2.5GHz。

[0125] 上述两种工况的口径场函数Q(ρ′，φ′)均取1.5，即等幅值等相位分布。本仿真案例中，在φ=0平面、φ=π/4平面、φ=π/2平面和φ=3π/4平面的3倍半功率波瓣宽度区域内各取10个远场测量点，共40个远场测量点。

[0126] 2. 仿真内容与结果

[0127] (2a) 仰天工况

[0128] 仿真计算仰天工况时变形反射面天线的远场，根据测量点的方位坐标，得到40个测量点的远场电场。根据仿真得到的测量点的远场电场，利用本发明所述方法反求出仰天工况时变形反射面天线的相位中心修正量，对馈源进行调整，如图8所示。图8中，实线为理想反射面天线远场归一化方向图，虚线为仰天工况时变形反射面天线的远场归一化方向图，符号×为根据本发明得到的相位中心修正量调整馈源后的变形反射面天线远场归一化方向图。

[0129] 从图8可见，与馈源调整前的变形反射面天线电性能相比，馈源调整后的变形反射面天线的电性能更接理想反射面天线的电性能，馈源调整后的第一副瓣基本上与理想方向图的第一副瓣重合。

[0130] (2b) 指平工况

[0131] 仿真计算指平工况时变形反射面天线的远场，根据测量点的方位坐标，得到40个测量点的远场电场。根据仿真得到的测量点的远场电场，利用本发明所述方法反求出指平工况时变形反射面天线的相位中心修正量，对馈源进行调整，如图9所示。图9中，实线为理想反射面天线远场归一化方向图，虚线为指平工况时变形反射面天线的远场归一化方向图，符号×为根据本发明得到的相位中心修正量调整馈源后的变形反射面天线远场归一化方向图。

[0132] 从图9可见，与馈源调整前的变形反射面天线电性能相比，馈源调整后的变形反射面天线的电性能更加接近理想反射面天线的电性能，馈源调整后的第一副瓣、波束指向基本上与理想方向图重合。

[0133] 仿真结果表明，本发明的方法可以用于计算变形反射面天线相位中心修正量，实现馈源调整以补偿主面变形对电性能的影响。
图 1
图 4

图 5
图 6

图 7