Stamp device capable of perforating thermal stencil paper.

To eliminate wasteful use of thermal stencil paper and thereby provide an inexpensive stamp device, a single thermal head is employed for both the thermal recording on a reversible thermal recording sheet for confirmation of a stamp image and the thermal perforation through the thermal stencil paper for creation of a stamp original. The stamp image is first thermally recorded on the reversible thermal recording sheet; the stamp image thus recorded is then confirmed; and the thermal stencil paper is thermally perforated in accordance with the stamp image to create the stamp original. The stamp device of the present invention includes a thermal head 19, a thermal stencil paper 24 adapted to be thermally perforated by the thermal head 19 to form a dot image as a stamp image, a reversible thermal recording sheet 101 adapted to be heated by the thermal head 19 to thermally record an image corresponding to the stamp image, so as to confirm the stamp image, and a heating roller pair 90 for erasing the image thermally recorded on the reversible thermal recording sheet 101.
The present invention relates to a stamp device for forming an image on a thermal stencil paper and transferring the image to a recording paper and, more particularly, to a stamp device enabling an operator to confirm the image to be formed on the thermal stencil paper.

A rubber stamp is conventionally used to print various representations such as an address and name of a person or company. Such a rubber stamp is useful and convenient in the case of repeatedly printing the same characters. Another type of printing device is a depression type stamp device employing a thermal stencil paper. This device will now be described with reference to the drawings.

Fig. 9 is a perspective view of a previously proposed stamp device 1. The stamp device 1 includes a keyboard 10, a body 11, a stamp 12, and a liquid mold plastic film to a porous carrier. The stencil paper is fed by the stencil paper feeding rollers 23 in the stencil paper feeding roller pairs 22 and stencil paper feeding roller 21, and is fed by stencil paper feeding roller pairs 22 to between the thermal head 19 and the platen roller 20.

After the stencil paper 24 is thermally perforated by the thermal head 19, it is further fed by the stencil paper feeding roller pairs 22 and stencil paper feeding rollers 23 to under the stamp 12. The stamp body 28 of the stamp 12 is secured to a supporting member of a stencil paper holding section 15, an original creating section 16, a stamp holding section 17, and a head driving section 18. The stamp 12 is constituted of a grip 13, a stamp body 28, a spring 29, and an ink pad 30. The original creating section 16 includes a thermal head 19 as heating means. The thermal head 19 is pressed against a platen roller 20. A thermal stencil paper (which will be hereinafter referred simply to as a "stencil paper") 24 is drawn by a stencil paper drawing roller 21, and is fed by stencil paper feeding roller pairs 22 to between the thermal head 19 and the platen roller 20.

The present invention relates to a control system of the stamp device 1 and a dictionary memory 72 to be used for kana/kanji conversion where Japanese "kana" characters are converted into Chinese "kanji" characters or the like. The RAM 66 includes an input buffer 73 for storing data input from the keyboard 10, a thermal perforation buffer 74 and a shift register 75 for storing data for thermal perforation of the stencil paper 24, and other necessary counters and registers.

The CG-ROM 68 serves to generate dot patterns according to code data of characters input, and the CG-ROM 69 serves to generate dot patterns to be displayed on the display 14.

A head driving circuit 76, a motor driving circuit 77 and a display driving circuit 78 are connected to the output interface 70. The thermal head 19, paper feeding motors 32 and the display 14 are connected to the circuits 76, 77 and 78, respectively.

The operation of creating a stamp original by the stamp device 1 will now be described with reference to the flowchart shown in Fig. 13. When power is applied to the stamp device 1, the buffers, registers, etc. in the RAM 66 are initialized, and the others are also initialized in step S1 (which will be hereinafter referred simply to as "S1", and the other steps will also similarly referred). Then, a string of characters is input from the keyboard 10 with the characters displayed on the display 14. That is, data for thermal perforation is input from the character key 42, and it is stored into the input buffer 73 in S2, S3 and S4. At the same time, in S5, the characters corresponding to the thermal perforation data are displayed on the display 14 through the CG-ROM 69.

When the stamp original creating key is depressed, S7 is executed after S2 and S6, in which the dot patterns generated in the CG-ROM 68 according to the code data input are developed in the thermal generating element array consists of a plurality of heat generating elements, e.g., 96 heat generating elements are arranged in line in the stamp device 1. These heat generating elements are arranged adjacent to each other in a direction perpendicular to a feeding direction of the stencil paper 24. The heat generating element array is driven at a predetermined timing in accordance with feed of the stencil paper 24 to thereby thermally perforate the stencil paper 24 according to data input from the keyboard 10.

A control system of the stamp device 1 will be described with reference to the block diagram shown in Fig. 12. The keyboard 10 is connected to an input interface 58 in a microcomputer 56. The input interface 58 is connected through a bus line 60 to a CPU 62, a ROM 64, a RAM 66, a character generator (CG-ROM) 68 for thermal perforation of the stencil paper 24, a character generator (CG-ROM) 69 for display, and an output interface 70.

The ROM 64 includes a program memory 71 to previously storing a program for controlling the whole operation of the stamp device 1 and a dictionary memory 72 to be used for kana/kanji conversion where Japanese "kana" characters are converted into Chinese "kanji" characters or the like. The RAM 66 includes an input buffer 73 for storing data input from the keyboard 10, a thermal perforation buffer 74 and a shift register 75 for storing data for thermal perforation of the stencil paper 24, and other necessary counters and registers.

The CG-ROM 68 serves to generate dot patterns according to code data of characters input, and the CG-ROM 69 serves to generate dot patterns to be displayed on the display 14.
perforation buffer 74. Then, the program proceeds to S8 in which the dot patterns developed in the thermal perforation buffer 74 are transferred by every row of dots to the shift register 75 to thermally perforate the stencil paper 24 in accordance with the row of dots. In S9, it is determined whether or not all the thermal perforation data have been output to the stencil paper 24, and the steps of S8 and S9 are repeated to finally obtain the result of thermal perforation constituted of 96 dots over the length of the heat generating element array. At this time, the thermally perforated stencil paper 24 is fed by the stencil paper feeding roller pairs 22 and the stencil paper feeding rollers 23 in a direction D shown in Fig. 8.

When the grip 13 of the stamp 12 is depressed toward the stencil paper 24 against the spring 29, the ink pad 30 comes into contact with the stencil paper 24. Owing to the viscosity of ink impregnated in the ink pad 30, the stencil paper 24 adheres to the ink pad 30. Then, the stamp 12 is pulled out of the stamp holding section 17 of the body 11 of the stamp device 1 by holding the grip 13. Thereafter, the grip 13 of the stamp 12 is depressed toward a recording paper 35 in a direction H shown in Fig. 14, and the ink impregnated in the ink pad 30 is supplied to the stencil paper 24. As a result, a part of the ink at a thermally perforated portion only of the stencil paper 24 is allowed to reach the recording paper 35, thus forming an image on the recording paper 35 as shown in Fig. 15.

However, resolution of the liquid crystal display is greatly lower than that of the thermal head. Accordingly, when an operator intends to confirm a stamp image formed after inputting data from the keyboard, the stamp image cannot be clearly confirmed on the liquid crystal display. So, the operator is obliged to actually print the input data as a sample or view the perforation image on the stencil paper attached to the stamp. If the stamp image is not satisfactory in the sample or as viewed in the perforation, the stencil paper is obliged to be wasted.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a stamp device which enables the stamp image to be confirmed without wasting the stencil paper.

To achieve the above and other objects, a stamp device is provided including storing means for storing image data representing an image, first heating means for generating heat based on the image data stored by the storing means, stencil paper feeding means for feeding the first heating means with a thermal stencil paper which is thermally perforated by heat generated by the first heating means, and recording sheet feeding means for feeding the first heating means with a thermal recording sheet which is visibly recorded by heat generated by the first heating means, wherein the thermal recording sheet is used to confirm the image to be perforated on the thermal stencil paper before thermally perforating the thermal stencil paper.

In the stamp device according to the present invention, image data representing an image such as an arbitrary figure or string of characters are stored in the storing means. Then, the thermal recording sheet is fed to the first heating means by the recording sheet feeding means. A dot image corresponding to the stored image data is thermally formed on the thermal recording sheet by the first heating means. After confirming the image thus recorded on the thermal recording sheet, the thermal stencil paper is fed to the first heating means by the stencil paper feeding means. The thermal stencil paper is thermally perforated by the first heating means to form the dot image corresponding to the stored image data. Then, the thermal stencil paper thus perforated to have the image is attached to a stamp. Then, the stamp is depressed on a recording paper to transfer the image from the thermal stencil paper to the recording paper.

A preferred embodiment of the present invention, meant by way of example, will now be described with reference to the figures in which:-

Fig. 1 is a schematic side view in section of a stamp device of an embodiment according to the present invention taken along the line E-E in Fig. 2;
Fig. 2 is a perspective view of the stamp device;
Fig. 3 is a schematic partial sectional view of the reversible thermal recording sheet;
Fig. 4 is a schematic view illustrating a transparent condition and a white opaque condition of the reversible thermal recording sheet;
Fig. 5 is a graph illustrating a heat reversible characteristic of the reversible thermal recording sheet;
Fig. 6 is a block diagram illustrating the control system of the stamp device;
Fig. 7A is a flowchart illustrating part of a program stored in a program memory shown in Fig. 6;
Fig. 7B is a table listing the steps of the flowchart of Fig. 7A;
Fig. 8 is a cross section of a stamp device taken along the line F-F in Fig. 9;
Fig. 9 is a perspective view of the stamp device of Fig. 8;
Fig. 10 is a perspective view of the thermal stencil paper;
Fig. 11 is a cross section taken along the line G-G in Fig. 10;
Fig. 12 is a block diagram illustrating the control system of the stamp device of Fig. 8;
Fig. 13 is a flowchart illustrating an essential part of a program stored in a program memory shown in Fig. 12;
Fig. 14 is a sectional view of the stamp removed
from the stamp device of Fig. 8, illustrating the stamp printing operation; and Fig. 15 is a schematic exploded perspective view of the stamp shown in Fig. 14, illustrating the stamp printing operation.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

First, there will be described a reversible thermal recording sheet (which will be hereinafter referred simply to as a "reversible sheet") 101 with reference to Figs. 3, 4 and 5. Such a reversible sheet is known as a thermo-chromic in Japanese Patent Laid-open No. Sho 63-39377, for example. Referring to Fig. 3 which is a sectional view of the reversible sheet 101, a recording layer 103 is formed on a transparent polyester film 102, and an overcoat layer 105 is formed on the recording layer 103, so as to protect the same. The recording layer 103 is constituted of resin and organic low-molecular substance 104 dispersed in the resin.

Fig. 4 shows a transparent condition and a white opaque condition of the reversible sheet 101. In the transparent condition shown on the left-hand side in Fig. 4, each particle of the organic low-molecular substance 104 in the reversible sheet 101 is formed as a relatively large monocrystal, so that light incident into the reversible sheet 101 passes through the crystal few times and is transmitted through the recording layer 101 without scattering. Therefore, the recording layer looks transparent as a whole. On the other hand, in the white opaque condition shown on the right-hand side in Fig. 4, each particle of the organic low-molecular substance 104 in the reversible sheet 101 is formed as a polycrystal, so that light incident into the reversible sheet 101 is refracted at the interface of the crystal many times and is scattered. Therefore, the recording layer 101 looks white opaque as a whole.

Fig. 5 shows a heat reversible characteristic of the reversible sheet 101. When the reversible sheet 101 in the white opaque condition at a room temperature is heated, a transmittance of the reversible sheet 101 starts to increase at a temperature A and reaches a maximum at a temperature B. Thereafter, even when the reversible sheet 101 is cooled to the room temperature, the transparent condition is maintained. This is due to the fact that the organic low-molecular substance 104 changes from the white opaque condition of the polycrystal to a semi-molten condition during the increase from the temperature A to the temperature B, and the crystal grows to become the transparent condition of the monocrystal upon cooling from the temperature B to the room temperature.

Thereafter, when the reversible sheet 101 in the transparent condition is heated again to a temperature D or higher, an intermediate condition between the maximum transparent condition and the maximum white opaque condition is obtained. When the reversible sheet 101 in the intermediate condition is cooled to the room temperature, the initial white opaque condition is restored. This is due to the fact that the organic low-molecular substance 104 is molten at the temperature D or higher, and the polycrystal is deposited during cooling down to the room temperature. The temperatures A, B and D are preferably set to about 50 degrees, about 56-68 degrees and about 72 degrees, respectively. In this preferred embodiment, the reversible sheet 101 is heated by a thermal head 19 to record an image. The transparent condition and the white opaque condition for every picture element of the image can be set by changing energy to be applied to the picture element which depends on a resolution of the thermal head 19.

Referring back to Fig. 3, a colored layer 106 is located under the transparent polyester film 102, so as to intensify a contrast of the image recorded on the reversible sheet 101. That is, the colored layer 106 functions to make a transparent portion of the reversible sheet 101 contrast with a white opaque portion of the reversible sheet 101. For example, in the case where the colored layer 106 is black and where the image is formed by the transparent portion with the white opaque portion left as the background, the image looks black on the white background as viewed from the upper side. Conversely, the image may be formed by the white opaque portion with the transparent portion left as the background. Further, also in the case of changing the color of the colored layer 106 into red, blue or green, the same effect can be obtained.

Referring to Figs. 1 and 2, there is shown a stamp device 80 employing the above-mentioned reversible sheet 101 according to the preferred embodiment. Fig. 2 is a perspective view of the stamp device 80, and Fig. 1 is a cross section taken along the line E-E in Fig. 2. It is to be noted that the same parts as those described in the background relating to the parent application and shown in Figs. 8-15 are denoted by the same reference numerals and the explanation thereof will be omitted hereinafter.

As shown in Fig. 2, the stamp device 80 includes a keyboard 10, a body 82, a stamp 12 and a display 14. As shown in Fig. 1, the body 82 is constituted of a stencil paper holding section 15a, a reversible sheet holding section 15b, an original creating section 16, a stamp holding section 17, a control section 18 and a heating roller section 84. The stencil paper holding section 15a and the reversible sheet holding section 15b are provided with a stencil paper drawing roller 21a and a reversible sheet drawing roller 21b, respectively. The stencil paper 24 and the reversible sheet 101 are adapted to be drawn by the stencil paper drawing roller 21a and the reversible sheet drawing...
reversible sheet 101 and a heating roller pair 90 having
previously storing a program for controlling the whole op-
tering roller section 84 is substantially the same as that
in the parent application described in the background
and shown in Figs. 8-15, and so the detailed explan-
ation of the same parts will be omitted hereinafter.
the heating roller section 84 is constituted of sheet
guides 86 and 87 for smoothing the feeding of the re-
versible sheet 101 and a heating roller pair 90 having
the heating roller section 84 is substantially the same as that
in the parent application described in the background.

A control system of the stamp device 80 will be
described with reference to the block diagram shown in
Fig. 6. The keyboard 10 is connected to an input in-
terface 58 in a microcomputer 56. The input interface
58 is connected through a bus line 60 to a CPU 62, a
ROM 64, a RAM 66, a character generator (CG-ROM)
68 for thermal perforation of the stencil paper 24, a
character generator (CG-ROM) 69 for display, and an
output interface 98.

The ROM 64 includes a program memory 71 pre-
viously storing a program for controlling the whole op-
eration of the stamp device 80 and a dictionary memory
72 to be used for kana/kanji conversion or the like.
the RAM 66 includes an input buffer 73 for storing data input from the keyboard 10, a thermal perfora-
tion buffer 74 and a shift register 75 for storing data for
thermal perforation of the stencil paper 24, and other
necessary counters and registers.

The CG-ROM 68 serves to generate dot patterns according to code data of characters input, and the
CG-ROM 69 serves to generate dot patterns to be
displayed on the display 14.

A head driving circuit 76, a motor driving circuit
77, a display driving circuit 78, a heating roller driving
circuit 97 and a heating device driving circuit 98 are
connected to the output interface 98. The thermal
head 19, paper feeding motors 32, the display 14, the
heating roller pair 90 and the heating device 88 are
connected to the circuits 76, 77, 78, 97 and 96,
respectively. The paper feeding motors 32 are so pro-
vided as to correspond to the stencil paper drawing
roller 21a, the reversible sheet drawing roller 21b, the
stencil paper feeding roller pairs 22, the stencil paper
feeding rollers 23 and the reversible sheet feeding
rollers 91.

The operation of creating a stamp original by the
stamp device 80 will now be described with reference
to the flowchart shown in Figs. 7A and 7B.

When power is applied to the stamp device 80,
the buffers, registers, etc. in the RAM 66 are initial-
ized, and the others are also initialized in step S1
(which will be hereinafter referred simply to as "S1",
and the other steps will also similarly referred). Then,
a string of characters is input from the keyboard 10
with the characters displayed on the display 14. That
is, data for thermal perforation is input from the char-
acter key 42, and it is stored into the input buffer 73
in S2, S3 and S4. At the same time, in S5, the char-
acters corresponding to the thermal perforation data
are displayed on the display 14 through the CG-ROM
69.

When a confirming key is depressed, so as to
confirm the above edited image by utilizing the rever-
sible sheet 101, the reversible sheet 101 stored in the
reversible sheet holding section 15b is drawn by the
reversible sheet drawing roller 21b, and then, is fed
by the stencil paper feeding roller pairs 22. At the
same time, S31 is executed after S2 and S30, in
which the dot patterns generated in the CG-ROM 68
according to the code data input are developed in the
thermal perforation buffer 74.

Then, the program proceeds to S32 in which the
dot patterns developed in the thermal perforation
buffer 74 are transferred by every row of dots to the
shift register 75 to thermally record the row of dots on
the reversible sheet 101. In S33, it is determined
whether or not all the data have been recorded on the
reversible sheet 101, and the steps of S32 and S33
are repeated to finally obtain the result of thermal re-
cording constituted of 96 dots over the length of the
heat generating element array. At this time, the ther-
mally recorded reversible sheet 101 is fed by the sten-
cil paper feeding roller pairs 22 and the stencil paper
feeding rollers 23 in a direction D shown in Fig. 1. After
passing through the stamp holding section 17, the re-
versible sheet 101 is further fed and discharged from
the discharge opening 92 to the outside of the stamp
device 80 by the reversible sheet feeding rollers 91.
In the above operation, the reversible sheet 101 is
vertically oriented so that the recording layer 103 side
of the reversible sheet 101 may contact the thermal
head 19.

Thereafter, if the image thermally recorded on
the reversible sheet 101 discharged from the dis-
charge opening 92 is satisfactory, the stencil paper
24 as the original for printing is created. That is, when
the original creating key is depressed, the stencil pa-
per drawing roller 21a is driven to draw the stencil pa-
per 24 from the stencil paper holding section 15a, and
the stencil paper 24 is fed by the stencil paper feeding
roller pairs 22. The subsequent operation is the same
as that described in the background with respect to
the parent application and shown in Figs. 8-15, and so the explanation thereof will be omitted hereinafter.

If the image thermally recorded on the reversible sheet 101 is unsatisfactory, the image is erased in the following manner. That is, the reversible sheet 101 is supplied to the sheet guide 86. In this condition, when an erasing key is depressed (S12), the program proceeds through S2 and S12 to S13, in which the heating roller pair 90 starts to be rotated (S13), and the heating device 88 is heated (S14). The reversible sheet 101 is fed by the heating roller pair 90 heated to the temperature D or higher, and passes through the heating roller pair 90. As a result, the image thermally recorded on the reversible sheet 101 is thermally erased owing to the above-mentioned principle (S15). The reversible sheet 101 in which the image previously recorded has been erased is discharged to the reversible sheet holding section 15b. Then, the heating device 88 is turned off (S16), and the heating roller pair 90 stops rotating (S17). In the above operation, the reversible sheet 101 is vertically oriented so that the recording layer 103 side of the reversible sheet 101 may contact the roller of the heating roller pair 90 in which the heating device 88 is provided, that is, the lower roller as viewed in Fig. 1.

Then, the data is edited again by using the keyboard 10 and is similarly thermally recorded on the reversible sheet 101. This operation is repeated many times until a satisfactory stamp image is obtained. The reversible sheet 101 is durable and withstands frequently repeated thermal recording and erasing, so that the stamp image can be surely confirmed before carrying out the thermal perforation of the stencil paper 24, and the stencil paper 24 can be effectively used without waste.

Although the heat generating element array is constituted of 96 heat generating elements in the above preferred embodiment, the number of the heat generating elements may be arbitrarily changed.

In the case where different characters are intended to be printed after the above-mentioned printing operation, the stencil paper 24 attached to the ink pad 30 of the stamp 12 is peeled off, and the stamp 12 is then set in the stamp holding section 17 of the body 82 of the stamp device 80. Thereafter, a new stamp original is created in the same manner as the above. Further, the stencil paper 24 after printing may be preserved for the purpose of reuse at any time. Accordingly, it is unnecessary to re-create a new original having the same stamp image as that of the stencil paper 24 previously created, thus improving the economy of the system.

Further, although the keyboard 10 of the stamp device 80 is employed as the inputting means in the above preferred embodiment, data such as characters or marks may be input from a personal computer or the like to a receiving terminal (not shown) of the stamp device 80. Also in this case, a stamp image may be formed in the same procedure as the above.

Further, although the heating roller pair 90 is used to erase the image thermally recorded on the reversible sheet 101, the thermal head 19 may be used to erase the image so that the energy to be applied to the thermal head 19 is suitably changed.

Further, a conventional thermal recording sheet on which a non-erasable image is recorded by heat may be used instead of the reversible sheet. Conventional thermal recording sheets are cheaper than stencil paper, and therefore the cost of using conventional thermal recording sheets in the device is much lower than using stencil paper.

As is apparent from the above description, according to the stamp device of the present invention, an original for printing can be simply created by inputting data such as characters or figures intended to be printed and thermally perforating the thermal stencil paper. Further, the thermal recording on the reversible thermal recording sheet for confirmation of a stamp image and the thermal perforation through the thermal stencil paper for creation of a stamp original can be carried out by using the single thermal head. Further, the data previously recorded on the reversible thermal recording sheet can be erased by using the heating roller to carry out frequently repeated thermal recording and erasing of data on the recording sheet, thus decreasing a cost for the recording sheet, avoiding wasteful use of the thermal stencil paper, and decreasing cost for the stamp device.

While advantageous embodiments have been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the appended claims.

Claims

1. A stamp device for forming images, comprising:
 input means for inputting image data;
 heating means for thermally forming an image from the image data on a recording sheet and for thermally perforating an image from the image data on a stencil sheet;
 recording sheet feeding or supply means for feeding or supplying a recording sheet to said heating means;
 stencil sheet feeding or supply means for feeding or supplying a stencil sheet to said heating means; and
 control means for controlling said formation or perforation of the image.

2. A stamp device according to claim 1 further comprising storing means for storing the input date and wherein said heating means preferably com-
prises a thermal head having an array of heating elements.

3. A stamp device according to claim 1 or 2 wherein said recording sheet feeding or supply means comprises a recording sheet feeding roller, and said stencil sheet feeding or supply means comprises a stencil sheet feeding roller.

4. A stamp device according to any one of the preceding claims in combination with a thermal recording sheet formed of a re-usable image sheet capable of having a recorded visible image thereon erased by heating, and a thermal stencil sheet.

5. A stamp device according to claim 4 wherein said image sheet is formed of a transparent film and a recording layer made of a resin and an organic low-molecular substance dispersed therein.

6. A stamp device according to any one of the preceding claims, further comprising stamp means for applying ink to a thermally perforated stencil sheet.

7. A stamp device according to any one of the preceding claims, wherein said control means comprises character generation means for generating said image on the basis of the input image data, and preferably further comprising display means for displaying the image generated by said control means.

8. A stamp device according to any one of the preceding claims, wherein said control means further comprises selecting means for selectively controlling the feeding or supply of one of the recording sheet and the stencil sheet to said heating means.

9. A stamp device according to any one of the preceding claims, further comprising confirming means whereby an image formed on a recording sheet prior to forming the perforated image on a stencil sheet may be confirmed, and preferably wherein said confirming means comprises discharge rollers for discharging a recording sheet having the image formed thereon, from the device for confirmation.

10. A stamp device according to any one of claims 1 to 9, further comprising discharge means for discharging one of the recording sheet and the stencil sheet from the device.

11. A stamp device according to any one of the preceding claims, further comprising erasing means for erasing an image formed on a recording sheet, wherein said erasing means preferably comprises second heating means for thermally erasing the image.

12. A stamp device according to claim 11, further comprising introducing means for introducing a recording sheet in to said second heating means, and wherein said erasing means preferably further comprises a heating roller section having said second heating means and said introducing means.

13. A stamp device according to claim 11 or 12, further comprising third feeding means for feeding a recording sheet from said second heating means to said recording sheet supply means.

14. A stamp device according to any one of claims 1 to 10 further comprising a heating section for heating an image sheet of a thermal recording sheet prior to feeding to said heating means.

15. A method for forming a stencil with a stamp device, comprising the steps of:
 inputting image data into the stamp device;
 generating an image based on said image data;
 forming the image on a recording sheet and displaying said recording sheet;
 confirming the image data formed on the recording sheet; and
 creating the stencil by forming the confirmed image on a stencil sheet.

16. A method according to claim 15 further comprising the step of erasing a recorded image from a recording sheet.

17. A method according to claim 16, wherein the steps of forming the image on the recording sheet, forming the stencil on the stencil sheet, and erasing an image from the recording sheet are performed by heating.
Fig. 5

![Graph showing transmittance against temperature with temperature A, B, and D marked on the x-axis. The graph indicates the transmittance changes at high and low levels across different temperatures.]
<table>
<thead>
<tr>
<th>ITEM</th>
<th>INSTRUCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>INITIALIZE</td>
</tr>
<tr>
<td>S2</td>
<td>KEY SCAN</td>
</tr>
<tr>
<td>S3</td>
<td>CHARACTER KEY ?</td>
</tr>
<tr>
<td>S4</td>
<td>DATA INPUT PROCESSING</td>
</tr>
<tr>
<td>S5</td>
<td>DISPLAY INPUT CHARACTERS ON DISPLAY</td>
</tr>
<tr>
<td>S6</td>
<td>ORIGINAL CREATING KEY ?</td>
</tr>
<tr>
<td>S7</td>
<td>DEVELOP INPUT DATA IN THERMAL PERFORATION BUFFER</td>
</tr>
<tr>
<td>S8</td>
<td>TRANSFER DOT ROW TO SHIFT REGISTER AND PERFORM THERMAL PERFORATION</td>
</tr>
<tr>
<td>S9</td>
<td>THERMAL PERFORATION COMPLETED ?</td>
</tr>
<tr>
<td>S12</td>
<td>ERASING KEY ?</td>
</tr>
<tr>
<td>S13</td>
<td>START ROTATION OF HEATING ROLLER PAIR</td>
</tr>
<tr>
<td>S14</td>
<td>START HEATING OF HEATING DEVICE</td>
</tr>
<tr>
<td>S15</td>
<td>ERASING COMPLETED ?</td>
</tr>
<tr>
<td>S16</td>
<td>STOP HEATING OF HEATING DEVICE</td>
</tr>
<tr>
<td>S17</td>
<td>STOP ROTATION OF HEATING ROLLER PAIR</td>
</tr>
<tr>
<td>S19</td>
<td>OTHER KEYS ?</td>
</tr>
<tr>
<td>S20</td>
<td>OTHER PROCESSING</td>
</tr>
<tr>
<td>S30</td>
<td>CONFIRMING KEY ?</td>
</tr>
<tr>
<td>S31</td>
<td>DEVELOP INPUT DATA IN THERMAL PERFORATION BUFFER</td>
</tr>
<tr>
<td>S32</td>
<td>TRANSFER DOT ROW TO SHIFT REGISTER AND HEAT THERMAL HEAD</td>
</tr>
<tr>
<td>S33</td>
<td>HEATING COMPLETED ?</td>
</tr>
<tr>
<td>S34</td>
<td>DISCHARGE REVERSIBLE SHEET</td>
</tr>
</tbody>
</table>
Fig. 10

Fig. 11
Fig. 13

START

S1
INITIALIZE

S2
KEY SCAN

S5
DISPLAY INPUT CHARACTERS ON DISPLAY

S4
DATA INPUT PROCESSING

S3
YES

S3
CHARACTER KEY?

S19
YES
OTHER KEY?

S19
NO
OTHER PROCESSING

S20
YES
OTHER PROCESSING

S20
NO
OTHER PROCESSING

S6
NO

S7
DEVELOP INPUT DATA IN THERMAL PERFORATION BUFFER

S8
TRANSFER DOT ROW TO SHIFT REGISTER AND PERFORM THERMAL PERFORATION

S9
YES
THERMAL PERFORATION COMPLETED?

S9
NO
THERMAL PERFORATION COMPLETED?
Fig. 14
European Search Report

Application Number
EP 93 30 0994

Documents Considered to Be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document with indication, where appropriate, of relevant passages</th>
<th>Relevant to claim</th>
<th>Classification of the Application (Int. Cl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>EP-A-0 493 965 (BROTHER KOGYO K.K.) * column 8, line 24 - column 10, line 23; figures 11-16 *</td>
<td>1-3, 6, 7, 10</td>
<td>B41K1/32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B65H3/44</td>
</tr>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 12, no. 142 (M-692) 30 April 1988 & JP-A-62 264 995 (FUJI XEROX CO. LTD) 17 November 1987 * abstract *</td>
<td>1, 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The present search report has been drawn up for all claims.

Place of Search
THE HAGUE

Date of Completion of the Search
25 MAY 1993

Examiner
THIBAUT E.E.G.C.

Category of Cited Documents

- **T**: theory or principle underlying the invention
- **E**: earlier patent document, but unpublished, or

after the filing date
- **D**: document cited in the application
- **L**: document cited for other reasons
- **A**: member of the same patent family, corresponding document
- **O**: non-written disclosure

Abstract

Applicant requests examination of the application. Claims 1-3, 6, 7, 10.

Classification

- B41K1/32
- B65H3/44
- B41K
- B65H