(54) 发明名称
一种他唑巴坦的合成方法

(57) 摘要
本发明公开了一种他唑巴坦的合成方法，属于医药技术领域。它包括以下步骤：以 6,6-二氯青霉烷酸甲酯为原料，经热裂解、氨甲基化反应得到 2β-氯甲基青霉烷酸二苯甲酯；再加入氧化剂将其氧化成 2β-氯甲基青霉烷酸二苯甲酯 -1β- 氧化物；再加入氯化钠反应生成 2β-叠氮甲基青霉烷酸二苯甲酯 -1β- 氧化物，再在高锰酸钾与醋酸作用下氧化生成 2β-叠氮甲基青霉烷酸二苯甲酯 -1,1- 二氧化物；然后再经乙炔环合、间甲酚作用下脱保护基得到他唑巴坦。它与以往的 6-APA 路线相比，增加了硫原子单氧化的步骤，从而阻断了硫原子上氯对电子的亲和作用而发生扩散的可能，可有效控制叠氮反应过程中五元环转化成六元环的副产物。
1. 一种他唑巴坦的合成方法，包括以下步骤：(1) 以 6,6-二氯青霉烷亚砜酸二苯甲酯为原料，经热裂解、氯甲基化反应得到中间体 2β-氯甲基青霉烷酸二苯甲酯；(2) 以 2β-氯甲基青霉烷酸二苯甲酯为原料，制备得到 2β-氯甲基青霉烷酸二苯甲酯-1β-氧化物；(3) 2β-氯甲基青霉烷酸-1β-氧化物再经乙炔环合，间甲酚作用下脱保护基制得他唑巴坦；其特征是，所述步骤 (2) 为：将 2β-氯甲基青霉烷酸二苯甲酯溶于有机溶剂中，加入氧化剂将其氧化成 2β-氯甲基青霉烷酸二苯甲酯-1β-氧化物，然后与氯化氢反应生成 2β-氯甲基青霉烷酸二苯甲酯-1β-氧化物，再在高锰酸钾与醋酸作用下氧化生成 2β-氯甲基青霉烷酸二苯甲酯-1,1-二氧化物。

2. 如权利要求 1 所述的一种他唑巴坦的合成方法，其特征是，所述将 2β-氯甲基青霉烷酸二苯甲酯溶于有机溶剂中，加入氧化剂将其氧化成 2β-氯甲基青霉烷酸二苯甲酯-1β-氧化物的过程中，所述涉及的氧化剂的加入量为 1.0~2.0mol/mol；所述涉及的氧化剂是高锰酸钠、过氧化氢或过氧化氢中的任意一种；所述涉及的反应温度为 0~25℃；所述涉及的有机溶剂是二氯甲烷、氯仿、甲酰胺、四氯化碳或乙酸乙酯中的任意一种；所述涉及的有机溶剂的加入量为 1~20mL/g；所述氧化剂和有机溶剂的加入量均以 2β-氯甲基青霉烷酸二苯甲酯计。

3. 如权利要求 2 所述的他唑巴坦的合成方法，其特征是，所述涉及的氧化剂的加入量为 1.2~1.5mol；所涉及的有机溶剂的加入量为 8~15mL/g。

4. 如权利要求 1-3 中任意一项所述的他唑巴坦的合成方法，所述与氨化氢反应生成 2β-氯甲基青霉烷酸二苯甲酯-1β-氧化物的过程中，所述氨化氢的加入量为 0.8~2.0mol/mol；所述涉及的反应温度为 5~30℃；所述涉及的反应溶剂是四氢呋喃、甲酰胺、N-甲基甲酰胺、N, N-二甲基甲酰胺、N, N-二甲基乙酰胺、二甲亚砜中的任意一种；所述涉及的反应溶剂的加入量为 3~25mL/g；所述氨化氢和反应溶剂的加入量均以 2β-氯甲基青霉烷酸二苯甲酯计。

5. 如权利要求 4 所述的他唑巴坦的合成方法，其特征是，所述氨化氢的加入量为 1.2~1.6mol/mol；所涉及的反应溶剂的加入量为 10~15mL/g。

6. 如权利要求 5 所述的他唑巴坦的合成方法，其特征是，所述在高锰酸钾与醋酸作用下氧化生成 2β-氯甲基青霉烷酸二苯甲酯-1,1-二氧化物的过程中，所述高锰酸钾的加入量为 0.8~2.0mol/mol；所述醋酸的加入量为 2~10mL/g；所述涉及的反应溶剂为水，加入量为 5~15mL/g；所述反应温度为 -10~25℃；所述高锰酸钾、醋酸和反应溶剂的加入量均以 2β-氯甲基青霉烷酸二苯甲酯计。

7. 如权利要求 6 所述的他唑巴坦的合成方法，其特征是，所述高锰酸钾的加入量为 1.2~1.6mol/mol；所述醋酸的加入量为 3~5mL/g；所述涉及的反应溶剂水加入量为 8~12mL/g。
一种他唑巴坦的合成方法

技术领域
[0001] 本发明涉及一种他唑巴坦的合成方法，属于医药技术领域。

背景技术
[0002] 他唑巴坦化学名称为：[2S-(2a,3b,5a)]-3- 甲基 -7- 氧代 -3-（1H-1,2,3- 三氮唑 -1- 基甲基）-4- 硫代 -1- 氮杂双环 [3,2,0] 庚烷 -2- 鞘酸 4,4- 二氧化物。
[0003] 分子量:322.27
[0004] 分子式:C\(_{10}\)H\(_{12}\)N\(_4\)O\(_5\)S
[0005] 结构式为：

![结构式](attachment:image)

[0007] 他唑巴坦是日本大鹏制药公司开发的新型青霉素砜类 β- 内酰胺酶抑制剂，是目前临床应用效果最好的 β- 内酰胺酶抑制剂之一，具有稳定性高、活性低、毒性低、抑酶活性强等特点。1992 年，他唑巴坦的复方药物他唑巴坦 / 拉西林 (1 : 8) 首次在法国上市，用于治疗多种细菌感染。
[0008] 他唑巴坦的合成根据所采用的原料不同，主要有三条合成路线，分别以舒巴坦、青霉素 G 钾盐，和 6- 氨基青霉素酸 (6-APA) 为起始原料。
[0009] 以舒巴坦为原料的合成路线，先后经过叠氮化、保护、环合和脱保护合成他唑巴坦，而舒巴坦是以 6-APA 为原料，经重氮化、氧化、氢解、脱溴等几步反应制得的，但从舒巴坦直接进行甲基的叠氮化反应，收率低，工业化难度较大。
[0010] 以青霉素 G 钾盐为原料的合成路线，但该路线除前四步反应外，其余步骤与以 6-APA 为原料的合成路线完全吻合，虽然青霉素 G 钾盐比 6-APA 要便宜，但前四步的合成与 6-APA 路线相比，收率低，工业化难度大。
[0011] 以 6-APA 为原料，先后经过溴化、氧化、酰化、还原、热裂解、氯甲基化、叠氮化、双氧化、环合加成、脱保护等步骤制得他唑巴坦，虽然路线较长，但每个步骤都相当简单，易于工业化生产，目前大部分生产厂家仍采用此路线，如路线 1 所示。
[0012]
[0013] 路线 1

[0014] 路线 1 中，中间体 8 到 9 进行 1,3-偶极环合加成反应过程中，需要通入加压乙炔，而且收率较低，研究人员对其进行了改进，将氯甲基化物与三氯唑直接进行反应（如路线 2 所示）。该路线虽然缩短了步骤，但因三氯唑原料成本相对较高，与路线 1 相比不具成本优势。

[0015]

[0016] 路线 2

[0017] 路线 1 中，中间体 6 经叠氮化合物中间体 7 的过程中，较大一部分生成了六元环的副产物 7′，导致产物的收率较低，专利 CN102020663 公开了一种将脱溴产物直接脱亚烷保护的三氯唑反应，然后再经过氧化、脱保护制得他唑巴坦（如路线 3 所示）。该路线虽然比路线 1 短，但同样存在原料成本高、操作苛刻的问题，工业化难度较大。

[0018]
路线 3

比较 6-APA 三种不同的路线中，各有优缺点，但相比较而言，路线 1 原料简单，操作要求不苛刻，更易于工业化生产，但其不足之处在于：在叠氮化的过程中，有部分五元环产物转化成了六元环副产物（叠氮化反应生成的化合物 7 和化合物 7’ 的摩尔比约为 1：1），从而降低了产品的收率。

发明内容

为了克服叠氮化过程中有部分五元环产物向六元环副产物转化的可能，本发明提供了一种有效的减少五元环产物向六元环副产物转化的方法，该方法操作简单，制得的他唑巴坦收率高、质量好。

本发明的技术方案是：一种他唑巴坦的合成方法，包括以下步骤：(1) 以 6,6-二氢青霉烷亚砜酸二苯甲酯为原料（化合物 4），经热裂解、氯甲基化反应得到中间体 2-氯甲基青霉烷酸二苯甲酯（化合物 6）；(2) 以 2-氯甲基青霉烷酸二苯甲酯为原料，制备得到 2-氯甲基青霉烷酸二苯甲酯-1,1-二氯化物（化合物 8）；(3) 2-氯甲基青霉烷酸二苯甲酯-1,1-二氯化物再经乙炔环合、间甲酚作用下脱保护基制得他唑巴坦；其特征是，所述步骤 (2) 为：将 2-氯甲基青霉烷酸二苯甲酯（化合物 6）溶于有机溶剂中，加入氧化剂将其氧化成 2-氯甲基青霉烷酸二苯甲酯-1-氯化物（化合物 6’），然后再与叠氮化钠反应生成 2-氯甲基青霉烷酸二苯甲酯-1-氯化物（化合物 7’），再在高锰酸钾与醋酸作用下氧化生成 2-氯甲基青霉烷酸二苯甲酯-1,1-二氯化物（化合物 8）。

本发明的反应式如下：

![反应式](image)

其中，所述由化合物 6 制备化合物 6’ 的过程中，所涉及的氧化剂的加入量为 1.0-2.0mol/mol（以化合物 6 计），优选 1.2-1.5mol；所涉及的氧化剂是高锰酸钠、双氧水、过氧乙酸、间氯过氧苯甲酸中的任意一种；所涉及的反应温度为 0-25℃；所涉及的有机溶剂
说明书

是二氯甲烷、三氯甲烷、四氯化碳、乙酸乙酯中的一种或任意两种溶剂的混合物；所涉及的有机溶剂的加入量为 4-20mL/g（以化合物 6 计），优选 8-15mL/g；

其中，所述由化合物 6’制备化合物 7’的过程中，所述叠氮化钠的加入量为 0.8-2.0mol/mol（以化合物 6 计），优选 1.2-1.6mol/mol；所涉及的反应温度 -5 至 30℃；所涉及的反应溶剂是四氢呋喃、乙醚胺、N-甲基甲酰胺、N、N-二甲基甲酰胺、N、N-二甲基乙酰胺、二甲基亚砜中的任意一种；所涉及的反应溶剂的加入量为 3-25mL/g（以化合物 6 计），优选 10-15mL/g；

其中，所述由化合物 7’制备化合物 8 的过程中，所述高锰酸钾的加入量为 0.8-2.0mol/mol（以化合物 6 计），优选 1.2-1.6mol/mol；所述硫酸的加入量为 2-10mL/g（以化合物 6 计），优选 3-5mL/g；所涉及到的反应溶剂为水，加入量为 5-15mL/g（以化合物 6 计），优选 8-12mL/g；反应温度为 -10 至 25℃。

其具体步骤为：

将步骤 (1) 制得的含有化合物 6 的油状物中加入有机溶剂中，搅拌溶解，降温至 0-5℃，加入氧化剂，然后升温至 20-25℃保温 3-5 小时，反应完成后加水搅拌，静置分层，将有机相减压蒸馏得油状物。

然后将上述油状物中加入有机溶剂中，搅拌溶解，保持温度在 -5-5℃，加入叠氮化钠，然后升温至 20-30℃保温 20-30 小时，加水终止反应，加入有机溶剂萃取，静置分层。

将上述分层得到的有机相加水和甲酸，降温至 -10-0℃，加入高锰酸钾，加完后升温至 15-25℃保温 2-5 小时，再降温至 10℃以下，滴加入双氧水至料液澄清后静置分层，有机相依次用碳酸氢钠溶液和水洗涤，将得到的有机相减压蒸馏提纯，得到化合物 8。

本发明的有益效果为：

1. 与以往的 6-APA 路线相比，增加了硫原子的氧化和步骤，从而阻断了硫原子上

2. 该方法制得的他唑巴坦收率高，杂质含量低，更利于工业化的生产。

具体实施方式

下面结合具体实施例对本发明作进一步的说明，但本发明的保护范围并不局限于

实施例 1：β-氯甲基青霉素酰胺二苯甲酯的制备

以 6,6-二氯青霉素酰胺酰酸二苯甲酯为原料，参照文献 (Synthesis, 1986, 4, 292) 的制备方法，得定量棕黄色油状物（按 6,6-二氯青霉素酰胺酰酸二苯甲酯 20g (52.2mmol) 投料，100% 转化率计算）；

实施例 2：β-氯甲基青霉素酰胺二苯甲酯 -1β-氧化物（化合物 6’）的制备

将实施例 1 中得到的油状物中加入 240mL 二氯甲烷，搅拌溶解，降温至 0-5℃，开始缓慢分批加入 10.5g (67.8mmol) 四水合高硼酸钠，加完后缓慢升温至 20-25℃保温 3-5 小时，缓慢加入 200mL 水，搅拌 30 分钟，静置分层，将有机相减压蒸馏得油状物，柱层析分离，得 β-氯甲基青霉素酰胺二苯甲酯 -1β-氧化物，熔点：55-60℃，ESI (m/z): 417;
1HNMR (CDCl₃) δ (ppm): 1.42 (3H, S), 3.04 (1H, dd), 3.25 (1H, dd), 3.52 (1H, d), 3.77 (1H, d), 4.25 (1H, m), 4.4 (1H, s), 6.53 (1H, s), 7.19 (4H, dd), 7.27 (4H, dd), 7.37 (2H, dd).

[0040] 实施例 3:2β-叠氮甲基青霉烷酸二苯甲酯-1β-氧化物（化合物7）的制备

[0041] 将实施例2中得到的油状物中加入240mL N-二甲基甲酰胺，搅拌溶解，保持温度在-5~5℃，加入5.08g (78.4mmol) 碳酸钠，加完后升温至20~30℃保温20~30小时，加入360mL水，加入250mL二氯甲烷萃取，静置分层，有机相减压蒸馏得油状物，柱层析分离，得2β-叠氮甲基青霉烷酸二苯甲酯-1β-氧化物，熔点:70~75℃，ESI (m/z): 426;

[0042] 实施例 4: 2β-叠氮甲基青霉烷酸二苯甲酯-1,1-二氧化物（化合物8）的制备

[0043] 将实施例3中分层得到的有机相中加入200mL水，100mL冰醋酸，降温至-10~0℃，分批缓慢加入12.38g (78.4mmol) 高锰酸钾，加完后升温至15~25℃保温3小时，再降温至10℃以下，滴加入双氧水至料液澄清后静置分层，有机相依次用200mL 5%的碳酸氢钠溶液洗涤，200mL水洗涤，将得到的有机相减压蒸馏除去溶剂得油状物，加入240mL丙酮，升温至40~50℃溶解，降温至15~25℃析晶1小时，过滤，干燥得类白色固体11.4g，收率49.7%（以6,6-二氧青霉素酰胺二苯甲酯计），熔点:206~208℃；ESI (m/z): 440；1HNMR (CDCl₃) δ (ppm): 1.40 (3H, S), 3.34 (1H, d), 3.77 (1H, dd), 4.96 (1H, d), 5.30 (1H, d), 5.26 (1H, S), 7.02 (1H, S), 7.40 (10H, m), 7.78 (1H, d), 7.96 (1H, d).

[0044] 实施例 5: 他唑巴坦二苯甲酯（化合物9）的制备

[0045] 将10g中间体2β-叠氮甲基青霉烷酸二苯甲酯-1,1-二氧化物溶于80mL乙酸乙酯中，放入高压釜中，通入乙炔并保持压力在1.8~2.0Kg/cm²，升温至80~85℃保温48小时，冷却降温至0~5℃析晶2~3小时，过滤，干燥得9g，收率85%，熔点:201~203℃。

[0046] 实施例 6: 他唑巴坦（化合物10）的合成

[0047] 将8g 2β-叠氮甲基青霉烷酸二苯甲酯-1,1-二氧化物加入到250mL三颈瓶中，加入80mL间甲苯，升温至50~60℃溶解后保温2小时，降温至0~5℃，加入180mL甲基异丁烯酮，用200mL饱和碳酸氢钠溶液提取两次，合并水相，加入150mL乙酸乙酯洗涤一次，将水降温至0~10℃滴加盐酸至不再析出固体为止，过滤，滤饼用20mL5~10℃的水洗涤，干燥得白色固体4.6g，含量99.6%，收率90%，熔点:136~138℃；ESI (m/z): 300；1HNMR (CDCl₃) δ (ppm): 1.32 (3H, S), 3.29 (1H, dd), 3.70 (1H, dd), 4.76 (1H, S), 4.9 (1H, dd), 5.16 (1H, m), 5.25 (1H, dd), 7.78 (1H, S), 8.08 (1H, S)。