(54) 発明の名称 多関節連続彫刻用レーザーロボット

(57) Abstract

This invention relates to articulated arm type industrial laser robot equipped with at least two robot arms (24:26, 44:46, 82:84) of a joint coupling type that are held by robot base (21, 41, 81) either directly or through a swivel drum (42) and laser beam emission robot wrists (48, 86) held by the foremost tip (46a) of these robot arms (24:26, 44:46, 82:84). This laser robot further includes laser beam passage means (31, 50, 96) having a hollow ball spline shaft (30, 54, 94) and a ball spline nut (28, 52, 92) and extending and contracting between the two robot arms (24:26, 44:46, 82:84) in accordance with their relative swivel motion so as to guide the laser beam introduced from outside the robot machine body to the robot wrist (48, 86).
直結または旋回胴（42）を介してロボットベース（21、41、81）に保持された関節結合型の少なくとも2つのロボット腕（24：26、44：46、82：84）と、それらロボット腕（24：26、44：46、82：84）の最先端（46a）に保持されたレーザ光出用のロボット手首（48、86）を具備した多関節腕形産業用レーザーロボットは、上記2つのロボット腕（24：26、44：46、82：84）間にその両腕の相対的旋回運動に応じて伸縮する中空ボールスプライン軸（30、54、94）とボールスプラインナット（28、52、92）を有したレーザ光通路手段（31、50、96）を備え、ロボット機体外から導入したレーザ光をロボット手首（48、86）へ導くように構成してある。
明細書

多関節腕型産業用レーザロボット

技術分野

本発明は、産業用ロボットに関し、特に、レーザ光を溶接、切断、パリ取り等の産業用途のエネルギーとして用いる多関節腕型産業用レーザロボットに関する。

従来の技術

レーザ光発振器からレーザ光管路を介して産業用ロボットの機体内にレーザ光を導入し、ロボット機体の先端部を成すロボット手首をレーザ光発出部とする産業用レーザロボット、特に、多関節腕型の産業用レーザロボットは既に種々提供されており、第9図、第10図は、これらの従来の多関節腕型産業用レーザロボットの2例を示している。

第9図のロボット組立体は、最下部のロボットベース1上に立設したロボット旋回胴2を設け、このロボット旋回胴2の上部に設けた顎部2aを跨いでロボット第1腕3の後端3bを関節結合し、更に、このロボット第1腕3の二股状先端3aにロボット第2腕4の後端4bを関節結合し、該ロボット第2腕4の先端4aに2動作自由度を有したロボット手首5を設けた構造をしている。このとき、レーザ光は、ロボット組立体外のレーザ光発
振器6からレーザ光管路6a、6bを介してロボット旋回胴2の旋回中心に導入し、該旋回胴2内のミラー7aで進路変更を行い、更に、点線路で示すレーザ光路を上記顕部2aに設けたミラー7b、ロボット第1腕後端3aに設けたミラー7c、ロボット第1腕先端3aに設けたミラー7d、ロボット第2腕4の後端4bに設けたミラー7eにより、進路変更を行ってロボット手首5のレーザ光発出部5aに導くようにした構成を有している。

この構成は、ロボット可動部材の関節部分毎にミラーを設けてレーザ光を進路変更しているため、合計5つの比較的高価格なミラー7a〜7eを使用する必要があり、しかもこれらのミラーで、レーザ光が反射される都度、レーザエネルギーは徐々に減衰し、レーザ光発出部5aに達する時点では、かなりのエネルギー減衰を生じている不利が有る。また、ミラーの利用個数の多いことは、ミラーの磨き、角度調整等の種々の調整作業や保守作業を煩瑣にする不利も有る。

また、第10図に示した従来のロボット組立方体は、同じく最下部のロボットベース11上にロボット旋回胴12を立設し、このロボット旋回胴12の側面位置にロボット第1腕13の後端13bを樞着し、また、このロボット第1腕13の先端13aの側部にロボット第2腕14の後端14bを樞着し、該ロボット第2腕14の先端14aにロボット手首15を取付けた構造を有し、レーザ光はレーザ光発振器16からレーザ光路16a、
16bを経て、前述の第9図のロボット組立体と同様に、旋回胴12の旋回中心上でレーザ光を導入し、ミラー17a、17b、17c及び17dの4つのミラーにより進路変更を行ってロボット手首15のレーザ光発出部15aへ誘導している。このレーザロボット組立体は、ミラー数が第9図のレーザロボットが5個を用いた構成であるのに比較して個数が1つ減少しているが、ロボット第1、第2の腕13、14が旋回胴12の両側面に一方の側面へ関節結合で取り付けたオフセット構造を備えているため、旋回胴12の側面領域をロボット腕手段の取付け領域として確保する必要が有り、ロボット組立体の全体的な横幅寸法が増加するのを避け得ず、上記旋回胴12の旋回時には、それに伴うロボット腕13、14の振り動作範囲が、相当に大きくになってしまう。この結果、ロボット機体周囲に配置された機器類との接触を避けるためにロボット組立体周囲に大きな空間を確保して置く必要が有ると言う不利がある。

更に、ロボット旋回胴12の旋回（θ軸旋回）に伴ってロボット第1腕13又は第2腕14と固定配置されたレーザ光路16aとの接触干渉の危惧もあり、レーザ光路16aの配置を予め上記接触干渉が起きないように配置しなければならない不利もある。

他方、上記の2つの従来技術によるレーザロボットに共通して、ロボット組立体内部にレーザ光の管路を形成し、レーザ光進路を変更するためのミラーを配置してい
るため、第１、第２のロボット腕を駆動し、制御するための駆動モータや回転角度検出器等を設け、これらに配線する場合やレーザミラーへの冷却流体の供給と回収の配管、レーザ加工用の補助ガスの配管等を設けるとき、これら配線、配管をレーザ光管路と一体にしてロボット組立体内部に設ける方法では、内部構造が非常に複雑化し、また、配線、配管を行う作業も煩雑になる。

又、配線や配管を外部に設ける構造は、ロボット使用中に配線、配管類の損傷を来す危険がある不利もある。

発明の開示

依って、本発明の主たる目的は、上述した従来の多関節形産業用レーザロボットにおける上述した従来の課題を解決することにある。

本発明の他の目的は、ロボット組立体内に用いられるレーザ光反射ミラーの個数を可及的に低減して、レーザロボットにおけるレーザエネルギーを高レベルに維持し得る高性能のレーザロボットを提供することにある。

本発明によれば、上述の目的に鑑みて、直結または旋回胴を介してロボットベースに保持された関節結合型の少なくとも2つのロボット腕手段と、それらロボット腕手段の最先端に保持されたレーザ光発出用のロボット手首を具備した多関節腕形産業用レーザーロボットであって、

前記２つのロボット腕間に該両腕の相対的旋回運動に
応じて伸縮する中空ボールスプライン軸と中空ボールス
プラインナットとを具備し、ロボットの外部のレーザ光
源から導入したレーザ光を前記ロボット手首に到達させ
るレーザ光通路手段と、

前記レーザ光通路手段内に介在された最少数のレーザ
光反射ミラー手段とを具備した多関節腕形産業用レーザ
ロボットが提供される。

上記の多関節腕形産業用レーザロボットの構成にすれ
ば、ロボット旋回部、ロボット腕とは別にレーザ光路手
段及びミラー手段を設けることができるため、保守作業
性は極めて良くなり、又、非常にコンパクトな構造とな
るため、周囲との接触干渉領域が増大することが無く、
しかもレーザ光のエネルギーレベルを高度に維持できる
のである。また、ロボット可動部の駆動源や回転検出器
類に対する配線は、ロボット本体内に内蔵させて配置す
ることができると。

図面の簡単な説明

本発明の他の目的、特徴、利点を添付図面に示す実施
例に基づき、更に詳細に説明するが、添付図面におき、

第1図は、本発明の1実施例に係る垂直多関節腕形産
業用レーザロボットの基本構成を示す斜視図、

第2図は、第1図に示した実施例を更に具体化したレ
ーザロボットの側面図、

第3図は、第2図のレーザロボットの背面図、
第4図は、同レーザロボットの第2図と反対側の一部断面した側面図。

第5図は、第2図のレーザロボットの正面から見た一部断面した正面図。

第6図は、同じく第1図の実施例で第2図から第5図に示したレーザロボットのもと駆動方式を変えた具体的多関節腕形産業用レーザロボット側断面図。

第7図は、第6図に示した多関節腕形産業用レーザロボットの正面断面図。

第8図は本発明の他の実施例に係る水平多関節腕形産業用レーザロボットの基本構成を示す斜視図。

第9図と第10図は従来のレーザロボットの構成例を示す斜視図。

発明を実施するための最良の態様

第1図を参照すると、本発明の1実施例に依る多関節腕形産業用レーザロボットの組立ては、ロボットベース21を備え、このロボットベース21に設置したロボット胴部22、このロボット胴部22の上端22aの側面に、水平軸線（W軸）回りに旋回可能に後端側24bが枢着された第1のロボット腕24、この第1のロボット腕24の先端24aに、水平旋回軸（U軸）回りに旋回可能に後端26bが枢着された第2のロボット腕26、該第2のロボット腕26の先端26aに取付られた図示されていないロボット手首等をロボット可動部として具備
して構成されている。また、上記ロボット胴部２２の上端２２aの他の側面２２cに、周知のボールスプラインナット２８が内蔵されている中空筒２９が、前記水平軸線（W軸）の回りに旋回可能に枢着可能に取付けされている。

このボールスプラインナット２８の前方側に中空構造を有した周知のボールスプライン軸３０の自由端側３０aが矢印Sで示すように直線方向に伸縮自在に嵌合し、該ボールスプライン軸３０の外端３０bは、第２ロボット腕２６の略先端部位から突出した短い中空ポスト部材３２の先端に結合されている。これらのボールスプライナット２８とボールスプライン軸３０とは、機械的剛性の大きい直線構造部材として形成され、その上、上記第１、第２のロボット腕２４、２６のW軸、U軸回りの旋回動作時にはボールスプライン機構による円滑な伸縮動作を行って、当該旋回動作に追従し、しかも両ロボット腕２４、２６に隣接して配置されたレーザ光の通路手段３１を形成する構造要素として設けられている。即ち、レーザ光は、レーザ光発振器（図示略）から点線で略示したレーザ光管路２５を経て、ロボット胴部２２の上端２２aに導入され、ここで傾斜ミラー３４aで進路変更されてボールスプラインナット２８が固定されている中空筒２９の一端部に設けられた傾斜ミラー３４bに達し、ここで再び進路変更を受け、中空ボールスプラインナット２８と中空ボールスプライン軸３０の略中心部に形成
されたレーザ光路（点線図示）36を進行して中空ポスト部材32の先端に達し、ここで再度、傾斜ミラー34cで進路変更され、光路38を経て第2ロボット腕26の先端26部位に到達する。更に、同先端部位26に設けられた傾斜ミラー34dにより進路をロボット手首方向に向けられ、該手首（図示略）から外部の作業点に向けレーザ光出力として発出される構成に成っている。

従って、レーザ光は、前述したロボット胴部22、第1、第2ロボット腕24、26等のロボット可動部を経由することはない。つまり、ロボット可動部以外のロボット組立体内を通じてロボット手首のレーザ光発出部へ誘導され、しかも、レーザ光の進路変更用の高価なミラーは傾斜ミラー34a～34dと可及的に少ない個数に節減、配置されている構成となっている。

上記ボールスプラインナット28、ボールスプライン軸30から成る中空部材の内部に直線管路として専用のレーザ光通路手段31を形成することにより、他の配線、配管類に邪魔されること無い、レーザ光路を確保し得るから、レーザ光の伝達が高精度で遂行され、その上、第1、第2ロボット腕24、26のW軸、U軸回りの旋回動作を駆動する駆動源、例えば、電動モータや旋回量を検出するエンコーダ等の回転検出器は、先々、ロボット腕24、26内や胴部22内等に余裕を持って配置することが可能であり、また、これらのロボット可動部の内部空間を上記駆動源用電動モータや回転検出器等に対す
る配線空間、レーザ加工用補助ガスの配管空間として充分に利用することができます。

第2図～第5図は、上述した第1図の基本構成を踏襲した多関節腕形レーザロボットの実用形態を示しており、ロボットベース41上に旋回胴42を有し、この旋回胴42の上端から前側にオフセットした胸部42aと第1ロボット腕44の後端44bが摺着され、該第1ロボット腕44の先端44aに第2ロボット腕46の後端46bが摺着されている。また、旋回胴42の上記胸部42aと第2ロボット腕46の後端46bとの間には、リンク47aとリンク47bとが結合されている。更に、該第2ロボット腕46の先端46aにレーザ光発出部を形成するロボット手首48が取付けられている。そして、旋回胴42の前記胸部42aの両側には第1、第2ロボット腕44、46のW軸回り、U軸回りの旋回駆動源を成す電動モータMwとMuとが設けられている。

また、旋回胴42の頂部42bと第2ロボット腕46の後端46bとの間には前述した中空ボールスプライナット52とボールスプライナ軸54とから構成され、ボールスプライナット52は、中空筒50に固定され、この中空筒50の下端は、レーザ光の進路変更のための反射を行うミラーを内蔵したレーザ光路接続器58を介して旋回胴42に結合されている。又、中空ボールスプライナ軸54の上端は、レーザ光路接続器50を介して第2ロボット腕46に結合されている。
レーザ光は、レーザ光発振器（図示なし）を発して、外部管路62a、外部光路ミラー62b、外部管路62cを通って旋回経42の上端に導入され、第3図、第4図にレーザ光進路を矢印①～⑦で示す如く、ミラーユニット64aで反射、進路変更され、レーザ光路接続器58内のミラーユニット64bで再び反射、進路変更されて上記レーザ光通路手段50のレーザ光路56に導入され、次いでレーザ光路接続器60内のミラーユニット64cで反射、進路変更され、第2ロボット腕46の後端46bに設けられたミラーユニット64dで再度、反射、進路変更後に該第2ロボット腕46内を直進して、ロボット手首48に達する構成を有している。このような構造とすることにより、第1、第2腕の関節部にミラー等をなくすことができ、そのため、モーター等の駆動系の配置及び配管や電気配線70のスペースを充分に確保することができ、また、両持ち構造の機械的剛性の高い構造も実現可能となっている。参照番号64eはロボット手首48内に設けたレーザミラーで、手首が2軸動作構造の場合のみ必要となる進路変更用ミラーであり、1軸系の場合は必要ない。

第6図と第7図は、前述の第2図～第5図に示した実施例における第2ロボット腕46の駆動をリンク機構でなく、直接駆動とした構造を有した多関節腕形産業用レーザロボットの実施例であり、同様のロボット部材、又は要素は先の実施例と同じ参照番号で示してある。
本実施例では、旋回胴42の内部に該胴部42の旋回駆動用モータMθが設けられ、θ軸運動の駆動源を成していることを示し、また、同旋回胴部42の内部と胴部42の上端の胸部42aのW軸中心とを経由して第1ロボット腕44の先端44aのU軸中心まで配線70が進行している様子を示している。また、駆動モータMwは胸部42aの側部に設けられ、駆動モータMuは第1ロボット腕44の上端44aの側部に設けられている。レーザ光は、外部管路62a、外部ミラー62b、外部管路62cを経てロボット機体に導入され、ミラーユニット64a〜64dで反射、進路変更され、ボールスプライインナットとボールスプライイン軸とから成るレーザ光通路を主通路として矢印で示すように①から⑦の光路により進行して第2ロボット腕46の内部に入り、この第2ロボット腕46の内部を最終のレーザ光路としてロボット手首48に到達している。つまり、ロボット機体の可動部を通過する間には4つのミラー64a〜64dのみを使用する構成となっている。この実施例からは、ボールスプライインを用いたレーザ光の通路手段50により、レーザ光専用の光路が確保されたことにより、ロボット可動部の旋回胴42や第1ロボット腕44の内部空間が余裕の有る配線用空間として有効に利用でき、しかもレーザ光の進路変更用反射ミラーは必要最少限の設置個数に削減されているから、レーザエネルギーがロボット機体内で発生する割合を極力、低減させているのである。
また、上記のボールスプライナット52とボールスプライ
ライン軸54より成るレーザ光路はコンパクトな構造で
あるために、ロボットの横幅の増大はほとんど無く、外
周囲の配置物等と干渉を起こす危険は回避されているの
である。

第8図は、本発明に係る多関節腕形産業用レーザロボ
ッ塀が水平多関節腕形レーザロボットとして実現された
実施例を示している。同レーザロボットはロボットベー
ス81の上端に後端82bが枢着された第1ロボット腕
82、その第1ロボット腕82の先端82aの後端に後
端84bが枢着された第2のロボット腕84、第2のロ
ボット腕84の先端84aに装着されたロボット手首
86を具備して構成され、第1、第2のロボット腕82、
84は共に垂直方向を向き、互いに平行なW軸、U軸を
旋回中心軸に有して旋回動作するレーザロボットとして
形成されている。ここで、本発明によれば、第1ロボッ
ト腕82の後端82bの頂部に取り付けたレーザ光路接
続器88と第2ロボット腕84の先端84aの頂部に設
けたレーザ光路接続器90との間にボールスプライナ
ット92と中空ボールスプライライン軸94とより形成さ
れた伸縮摺動自在なレーザ光通路手段96が架け渡され
ている。そして、レーザ光発振器（図示なし）を発して
から外部レーザ光管路を経由してロボット機体に導入さ
れたレーザ光は、レーザ光路接続器88内のミラーユニ
ット98aとレーザ光路接続器90内のミラーユニット
98bとで進路変更され、且つ、上記レーザ光通路手段96、両レーザ光路接続器88、90内を通ってロボット手首86から所定の作業点に向けて発出される構成と成っている。従って、前述の第1図の実施例の基本構成と同様にレーザ光の専用の通路が確保され、最少数のミラーユニットだけで使用したレーザロボットが構成されるのである。このとき、第1、第2のロボット腕82、84はその内部を例えば、配線やレーザ加工補助ガスの配管路に確保することができる。また、これらのロボット腕82、84の内部をレーザ光通路には全く利用することは無いかから、レーザ通路と配線、配管路との混用による構造上の複雑さ、配線、配管作業の煩雑、レーザ光反射ミラー的角度調節やミラー面を清浄にする保守作業はロボット可動部とは別異のレーザ光専用の通路部分を対象にして遂行されるから、これらの調節、保守等の作業が大幅に簡易化されるのである。

以上の本発明の基本構成及び具体的実施例の記載を介して理解できるように、本発明によれば、ボールスプラインナットとボールスプライン軸とかから成る伸縮摺動要素を構成要素としたレーザ光の通路手段をロボット可動部の運動領域内部に設け、レーザ光の専用光路を形成し、しかも、レーザ光の進路変更用ミラーユニットは極力、設置数を削減する構造を採用したから、ミラーによるレーザ光エネルギーの損失を低減し、レーザ光をエネルギーソ源とする溶接、切断、シーム、パリ取り等のレーザ加
工作業用ロボットに必須の高レーザエネルギーの確保、維持と高精度のレーザ光伝達を可能にし、しかもミラーの調節や保守をロボット可動部とは別に形成したレーザ光通路手段やレーザ光路接続器を主として対象に、又、ロボット可動部の比較的短い部の屈折易い部位を対象にして遂行し得るから、レーザロボットの性能維持に肝要な定期的保守作業を極力簡易化し得る効果を奏するのである。

しかも、ロボット可動部の駆動源や回転検出器に対する電気配線類、レーザ加工に必要な製造ガスの配管路等はロボット胴部、ロボット腕等の機体内にスペースを確保し得るのである。

また、上記レーザ光通路手段はコンパクトで、ロボット旋回部、ロボット腕等の運動範囲内に配置できる構造を有しているから、ロボット使用現場で、ロボット周囲の配置物や関連機器と作用上で干渉を起こす等の不利は完全に回避することができる。

また、各関節部にミラー等が無いため、モータ等の動作駆動源の配置のスペースが充分に有り、両持ち構造等の機械的剛性の高い構造を得ることができ、また、周知のダイレクトドライブモータ等を配置することも容易に可能となる有利を得ることができる。
請求の範囲

1. ロボットベースに関して可動に保持され、互いに関節結合された少なくとも2つのロボット腕手段と、それら2つのロボット腕手段の最先端に保持されたレーザ光発出部を有したロボット手首とを具備した多関節腕形産業用レーザーロボットであって、

前記2つのロボット腕手段間に該当腕手段の相対的旋回運動に応じて伸縮する中空ボールスプライン軸と中空ボールスプラインナットとを具備し、ロボットの外部のレーザ光源から導入したレーザ光を前記ロボット手首に到達させるレーザ光通路手段と、

前記レーザ光通路手段内に挿入された最少数のレーザ光反射ミラー手段とを具備したことを特徴とする多関節腕形産業用レーザロボット。

2. 前記2つのロボット腕は、1つの旋回軸を介して前記ロボットベースに可動に結合されている請求の範囲1. に記載の多関節腕形産業用ロボット。

3. 前記2つのロボット腕手段は、前記ロボットベースに直接、関節結合されている請求の範囲1. に記載の多関節腕形産業用ロボット。

4. 前記2つのロボット腕手段は、前記ロボット手首に結合されるロボット下腕と、該ロボット下腕に関節結合されたロボット上腕とである請求の範囲1. に記載の多関節腕形産業用ロボット。
5. 前記レーザ光通路手段の最先端は、前記ロボット下腕に取り付けた中空レーザ光路接続手段を介して該ロボット下腕にレーザ光を導入する請求の範囲4. に記載の多関節腕形産業用レーザロボット。

6. 前記レーザ光通路手段の最後端は、前記ロボットベースにレーザ光路接続器を介して枢着、結合されている請求の範囲5. に記載の多関節腕形産業用レーザロボット。

7. 前記レーザ光通路手段の最後端は、前記ロボットベースに対して取付けられたロボット胴に1つのレーザ光路接続手段を介して枢着、結合されている請求の範囲5. に記載の多関節腕形産業用レーザロボット。

8. 前記ロボット胴が旋回胴である請求の範囲7. に記載の多関節腕形産業用レーザロボット。

9. 前記ロボット胴が前記ロボットベースに固定的に立設された静止胴である請求の範囲7. に記載の多関節腕形産業用レーザロボット。
Fig. 3
Fig. 4
Fig. 5
Fig. 8
Fig. 9
PRIOR ART
Fig. 10
PRIOR ART
参照番号・事項の一覧表

1 ・・・ロボットベース、
2 ・・・ロボット旋回胴、
3 ・・・ロボット第1腕、
顕部 2a、
3a ・・・二股状先端、
3b ・・・後端、
4 ・・・ロボット第2腕、
4a ・・・先端、
4b ・・・後端、
5 ・・・ロボット手首、
5a ・・・レーザ光発出部、
6 ・・・レーザ光発振器、
6a 〜 6b ・・・レーザ光光路、
7a 〜 7e ・・・ミラー、
11 ・・・ロボットベース、
12 ・・・ロボット旋回胴、
13 ・・・ロボット第1腕、
13a ・・・先端、
13b ・・・後端、
14 ・・・ロボット第2腕、
14a ・・・先端、
14b ・・・後端、
15 ・・・ロボット手首、
15 a …レーザ光出器、
16 …レーザ発振器、
16 a ~ 16 b …レーザ光路、
17 a ~ 17 d …ミラー、
21 …ロボットベース、
22 …ロボット胴部、
22 a …上端、
22 c …側面、
24 …第1のロボット腕、
24 a …先端、
24 b …後端、
26 …第2のロボット腕、
26 a …先端、
26 b …後端、
28 …ボールスプライナット、
29 …中空筒、
30 …ボールスプライ軸、
30 a …自由端、
30 b …外端、
31 …レーザ光通路手段、
32 …中空ポスト部材、
34 a ~ 34 d …傾斜ミラー、
36 …レーザ光路、
38 …光路、
41 …ロボットベース、
４２…旋回胴、
４２ａ…胸部、
４４…第１ロボット腕、
４４ａ…先端、
４４ｂ…後端、
４６…第２ロボット腕、
４６ａ…先端、
４６ｂ…後端、
４７ａ～４７ｂ…リンク、
４８…ロボット手首、
５０…中空筒、
５２…ボールスプライナット、
５４…中空ボールスプライナ軸、
５６…レーザ光路、
５８…レーザ光路接続器、
６０…レーザ光路接続器、
６２ａ…外部管路、
６２ｂ…外部光路ミラー、
６２ｃ…外部管路、
６４ａ～６４ｄ…ミラーユニット、
６４ｅ…レーザミラー、
M θ、M u、M w…駆動モータ、
７０…電気配線、
８１…ロボットベース、
８２…第１ロボット腕、
INTERNATIONAL SEARCH REPORT

International Application No PCT/JP90/00104

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

<table>
<thead>
<tr>
<th>Int. Cl 5</th>
<th>B23K26/08</th>
</tr>
</thead>
</table>

II. FIELDS SEARCHED

Minimum Documentation Searched

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>B23K26/00 - 26/18</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched

<table>
<thead>
<tr>
<th>Jitsuyu Shinan Koho</th>
<th>1926 – 1989</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kokai Jitsuyu Shinan Koho</td>
<td>1971 – 1989</td>
</tr>
</tbody>
</table>

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP, A, 62-134192 (Toshiba Corp.), 17 June 1987 (17. 06. 87), Column 4, line 10 to column 9, line 5 (Family: none)</td>
<td>1 – 9</td>
</tr>
</tbody>
</table>

IV. CERTIFICATION

Date of the Actual Completion of the International Search: February 28, 1990 (28. 02. 90)

Date of Mailing of this International Search Report: March 5, 1990 (05. 03. 90)

International Searching Authority: Japanese Patent Office

Signature of Authorized Officer:

Form PCT/ISA/218 (second sheet) (January 1985)
国際調査報告
国際出願番号PCT/JP90/00104

I. 発明の属する分野の分類
国際特許分類（IPC）Int.C2*
B23K26/08

II. 国際調査を行った分野
調査を行った分類資料

<table>
<thead>
<tr>
<th>分類体系</th>
<th>分類記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>B23K26/00-26/18</td>
</tr>
</tbody>
</table>

最小限資料以外の資料で調査を行ったもの
日本国実用新案公報 1926-1989
日本国公知実用新案公報 1971-1989

III. 関連する技術に関する文献
引用文献のカテゴリー	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X | J.P. A. 62-134192（株式会社 東芝）, 17.6月, 1987（17.06.87）, 第4欄第10行－第9欄第5行（ファミリーなし） | 1-9

引用文献のカテゴリー
[A] 特に関連のある文献ではなく、一般的な技術水準を示すもの
[B] 先行文献ではあるが、国際出願日以後に公表されたもの
[C] 規範相当に類似を提起する文献又は他の文献の発行日若しくは他の特別な理由を理由拡張のために引用する文献（理由付す）
[D] 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
[E] 特に関連のある文献であって、当該文献と他の1以上の文献との、当該文書等の目的である組み合わせによって進歩性がないと考えられるもの
[F] 同一パテントファミリーの文献

IV. 認証
国際調査を完了した日 28.02.90
国際調査報告の発送日 05.03.90

国際調査機関 日本国特許庁（ISA/JP）
特許庁審査官 松本 賢

株式PCT／ISA／210(第2ページ)（1981年10月）