An apparatus for guiding pipe, the apparatus comprising a base (240), a first extendible member (342, 344) extending from said base (240) and a second extendible member (302, 304) pivotally secured (322, 328) to the first extendible member (344) and a
pipe holder (400) attached to the first extendible member (344). A method for drilling a wellbore, the method comprising the steps of guiding a pipe or stand of pipe (206) into a continuous circulation system (240) by extending a first extendible member (342, 344) extending from said base (240) and extending a second extendible member (302, 304) pivotally secured (322, 328) to the first extendible member (344) to move a pipe holder (400) towards a pipe or stand of pipe (206) to be connected to a drill string, the pipe holder (400) holding on to the pipe and pulling the pipe over the continuous circulation system (240) and lowering the pipe (206) into the continuous circulation system (240).
Title: APPARATUS AND METHOD FOR GUIDING PIPE

Abstract: An apparatus for guiding pipe, the apparatus comprising a base (240), a first extendible member (342, 344) extending from said base (240) and a second extendible member (302, 304) pivotally secured (322, 328) to the first extendible member (344) and a pipe holder (400) attached to the first extendible member (344). A method for drilling a wellbore, the method comprising the steps of guiding a pipe or stand of pipe (206) into a continuous circulation system (240) by extending a first extendible member (342, 344) extending from said base (240) and extending a second extendible member (302, 304) pivotally secured (322, 328) to the first extendible member (344) to move a pipe holder (400) towards a pipe or stand of pipe (206) to be connected to a drill string, the pipe holder (400) holding on to the pipe and pulling the pipe over the continuous circulation system (240) and lowering the pipe (206) into the continuous circulation system (240).
Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
APPARATUS AND METHOD FOR GUIDING PIPE

The present invention relates to an apparatus and method for guiding pipe, and particularly but not exclusively, for guiding pipes to facilitate connection of the pipe to a string of pipe in a wellbore. One particular but not exclusive use for the apparatus is for moving pipe from off-line to the well centre to guide the pipe into a Continuous Circulation System or Continuous Circulation whilst Drilling System.

In the construction of an oil or gas well, a borehole is drilled. A drill bit is arranged on the end of a drill string and is rotated to bore the borehole. A drilling fluid known as “drilling mud” is pumped through the drill string to the drill bit to lubricate the drill bit. The drilling mud is also used to carry the cuttings produced by the drill bit and other solids to the surface through an annulus formed between the drill string and the borehole and/or casing lining the borehole.

In one prior art method of drilling a borehole a kelly bar, connected to a top joint of the drill string, is used to rotate the drill string. A rotary table at the derrick floor level rotates the kelly bar while simultaneously the kelly bar can move vertically through a drive bushing within the rotary table at the rig floor.

In another prior art method, a top drive drilling unit is suspended in a derrick grips and rotates the drill string and a kelly bar is not used.

It is important to be able to control pressure in the borehole in relation to the pressure in the formation. In certain circumstances the driller may deem that under-balanced drilling is required, wherein the pressure exerted on a formation exposed in a wellbore is below the internal fluid pressure of that formation.
Thus, if sufficient porosity and permeability exist, formation fluids enter the wellbore. The drilling rate typically increases as an under-balanced condition is approached. However, the driller may deem that over-balanced drilling is required, wherein the amount of pressure in the wellbore exceeds the pressure of fluids in the formation. This excess pressure is required to prevent reservoir fluids (oil, gas or water) from entering the wellbore. However, excessive overbalance can dramatically slow the drilling process by effectively strengthening the near-wellbore rock and limiting removal of drilled cuttings under the bit. In addition, high overbalance pressures coupled with poor drilling mud properties can cause differential sticking problems.

Because reservoir pressures vary from one formation to another, while the drilling mud is relatively constant density, overbalance varies from one zone to another. The driller is able to vary the drilling condition from under-balanced to over-balanced by altering the density of the drilling mud by using weighting agents to increase or decrease the density of the drilling mud.

If the pressure in the well is not controlled properly, the speed of drilling is not maximised. In a worst case scenario, the well may collapse due to lack of pressure in the borehole. This is more likely to happen when drilling through particular types of formation.

In the past, circulation of drilling fluid is stopped during make-up or break-out of a single joint or stand of drill pipe. A fill valve or mud saver valve is used to contain pressure in the drill string during the make-up or break-out procedure. However, the valve has to be connected and disconnected each time. Thus there is discontinuous circulation, although pressure is
substantially maintained in the well, a pulse of pressure change is noted.

It is often preferable to maintain drilled cuttings in suspension in the drilling fluid to facilitate moving them away from the drill bit and to prevent them from falling back down in a wellbore. Cessation of drilling mud circulation can cause the drilled cuttings to sink. To counter this in many prior art systems additional fluid weighting is attempted, often increasing the viscosity of the fluid. This results in the need for more pumping power at the surface to move the thicker fluid; but such an increase in pump force can result in over pressuring of a downhole which can cause formation damage or loss of fluids downhole.

A continuous circulation system has been developed and is disclosed in PCT Publication No. WO 98/16716, which allows circulation of drilling mud to be carried out throughout the making-up and breaking-out of pipe to the pipe string. WO 98/16716 discloses, inter alia the use of an upper set of pipe rams to apply and seal about the pipe to be connected to the string, a lower set of pipe rams to apply and seal about the pipe at the top of the string in the well to create a chamber therebetween and a blind ram to seal off the chamber between the end pin of the pipe to be connected and the box of the pipe at the top of the string to form upper and lower chambers. A drilling mud inlet is arranged in the lower chamber between the set of blind rams and the second set of pipe rams. A drilling mud supply is also connected to the top end of the pipe to be connected, thus to make a connection, the lower pipe rams are activated and seal about the top end of the string of pipe in the wellbore and the blind rams are activated to form a lower chamber
about the top of the drill string. Drilling mud is allowed to flow into the lower chamber and circulate into the top of the drill string. The drilling mud passes through the drill string to the drill bit and returns through an annulus formed by the drill string and the borehole. The drilling mud is processed by shale shakers, centrifuges and the like to remove cuttings therefrom, additives added if needed and then circulated to the lower chamber. Meanwhile, a pipe or stand of pipe is lowered into the top of the continuous circulation system. The upper pipe rams are activated to seal about the pipe. The upper end of the pipe or stand of pipe is attached to the supply of drilling mud and drilling mud flows into the upper chamber by activation of a valve.

The pressure is now substantially equal in the drilling mud in the upper and lower chambers. The blind ram is opened and the pin end of the pipe or stand of pipe is stabbed into the box in the top end of the string of pipe and spun and torqued to make the connection. The drilling mud in the chamber may be drained and the upper and lower pipe rams opened to allow the pipe string with the added pipe or stand of pipe to be lowered into the well. Thus a circulation is continuous through the pipe string and annulus whilst the connection is made and broken.

Various improvements to the continuous circulation system have been made, including conducting continuous circulation whilst drilling. Thus allowing continuous drilling to continue whilst pipe is connected or disconnected from the string. This is useful for drilling with drill pipe or when drilling with casing.

Elevators are used in these operations to selectively support pipe and to facilitate moving tubular members from one location to another.
Certain prior art continuous circulation systems are proposed in US-A-6,412,554 which attempt continuous fluid circulation during the drilling operation, but in these systems rotation of the drill string is stopped and restarted in order to make and break tubular connections. This involves significant loss of drilling time. Also, starting rotation of the drill string can result in damaging over torque portions of the drill string.

United States Published Patent Application Publication No. 2003-0221519 published December 4, 2003 (USSN 382080, filed: March 5, 2003) discloses an apparatus that permits sections of tubulars to be connected to or disconnected from a string of pipe during a drilling operation. The apparatus further permits the sections of drill pipe to be rotated and to be axially translated during the connection or disconnection process. The apparatus further allows for the continuous circulation of fluid to and through the tubular string during the makeup or breakout process. The apparatus defines a rig assembly comprising a top drive mechanism, a rotary drive mechanism, and a fluid circulating device. Rotation and axial movement of the tubular string is alternately provided by the top drive and the rotary drive. Additionally, continuous fluid flow into the tubular string is provided through the circulation device and alternately through the tubular section once a connection is made between an upper tubular connected to the top drive mechanism and the tubular string. This application also discloses a method for connecting an upper tubular to a top tubular of a tubular string while continuously drilling, the method including steps of: operating a rotary drive to provide rotational and axial movement of the tubular string in the wellbore;
positioning the upper tubular above the top tubular of the tubular string, the upper tubular configured to have a bottom threaded end that connects to a top threaded end of the top tubular; changing a relative speed between the upper tubular and the top tubular to threadedly mate the bottom threaded end of the upper tubular and the top threaded end of the top tubular such that the upper tubular becomes a part of the tubular string; releasing the tubular string from engagement with the rotary drive; and operating a top drive to provide rotational and axial movement of the tubular string in the wellbore.

In some prior art systems in which a top drive is used for drilling, a stand of drill pipe (e.g. a 90 feet stand comprising three interconnected pieces of drill pipe) is threadedly connected to and below a saver sub. The saver sub is connected to part of a top drive drilling unit and, once drilling has proceeded down to the extent of the length of a stand, the saver sub has entered into and is located within a chamber of a continuous fluid circulation system. In order to add a new stand with this type of prior art system, a connection is broken within a fluid circulating system, the top drive drilling unit is raised and, along with it, the saver sub is raised and exits from the top of the continuous circulation system. In order, then, to connect a new stand of drill pipe, a portion of a top drive drilling unit (e.g. an elevator) is, in some prior art methods, moved away from the wellbore. Typically an elevator is associated with the top drive drilling unit, but this elevator often cannot be used to receive and support the new stand because a saver sub interferes with the operation.

In many cases, as a top drive drilling unit is
raised, it is desirable to backream to circulate fluid and rotate the string coming out of the hole (the wellbore) as the top drive drilling unit is raised, e.g. to smooth out the hole and prevent the formation of keyseats.

Another problem with such drilling systems is that it is desirable to drill down as far as possible with each new stand of drill pipe; but items and apparatuses (e.g. elevators) suspended below a top drive drilling unit prevent further downward progress of the top drive drilling unit unless they are moved out of the way away from the wellbore centreline so that the top drive drilling unit can continue to rotate the drill string as the top drive drilling unit's saver sub enters the continuous circulation system (and the top drive approaches the continuous circulation system). Typically, the elevator etc. are moved in one direction away from the wellbore centreline (and prior art elevators that only open to one side are used).

According to the present invention, there is provided an apparatus for guiding pipe, the apparatus comprising a base, a first extendible member extending from the base and a second extendible member pivotally secured to the first extendible member and a pipe holder attached to the first extendible member.

The apparatus for guiding pipe is also suitable for guiding tools which may be incorporated in strings of pipe. The string of pipe may comprise drill pipe, casing, liner or any other form of tubular.

Preferably, the extendible members are piston and cylinders and are operated hydraulically from a hydraulic fluid supply. Alternatively, the extendible members are pneumatic or more preferably, electrically operable
sliders. Preferably, the first extendible member is fixed to the base on a pivot. Advantageously, the pivot allows movement in one plane. Advantageously, the second extendible member comprises a stop to inhibit maximum movement of the pipe holder. The stop is preferably located at such a position that when the stop is hit, the pipe holder is over well centre, such that the pipe or stand of pipe in the pipe holder is substantially in line with well centre. Advantageously, the pipe holder is pivotably connected to the first extension member. Preferably, the pipe holder is pivotably connected to the first extension member so that the pipe holder apparatus maintains a substantially horizontal orientation. During extension or contraction of the first and second extension members. Advantageously, the pipe holder is free floating.

Preferably, the pipe holder is from the group consisting of open throat tong, closed tong and gripper. Advantageously, the apparatus further comprises a mount, a second end of the lower extension member pivotably connected thereto. The mount preferably attached to the base.

Preferably, the base is at least part of a continuous circulation system. Preferably, the top surface of the continuous circulation system. Advantageously, the continuous circulation system has a centre alignable with a well centre of a wellbore and the pipe holder is aligned with the system centre. Preferably, the apparatus has a pipe guide centre and the pipe holder is movable to and from the pipe guide centre and wherein the pipe holder is movable to a position at which the pipe holder is not above the continuous circulation system.
Preferably, the pipe holder has an opening for receiving a pipe. Advantageously, the pipe holder has at least one movable arm for releasably holding a pipe. Advantageously, the apparatus further comprises at least one spring connected to the at least one arm for urging the at least one arm into the opening. Preferably, toward each other to releasably grip a pipe or stand of pipe. Advantageously, the apparatus further comprises adjustment apparatus connected to at least one arm for adjusting the position of at least one arm. Preferably, the adjustment apparatus comprises a nut and bolt apparatus. Advantageously, the at least one arm is two arms, each arm rotatable about a pin, wherein one end of each of the arms projects into the opening and the other end is pivotally attached to a spring, a rod passing through each spring and pivotally linked to each other and to an adjustable shaft. Each spring acts as a shock absorber for its corresponding arm. Preferably, the at least one arm is movable to a position so that no part of the arms project into the opening.

Advantageously, apparatus further comprises two first extension member and two second extension member, the pipe holder arranged between and preferably pivotally attached to the two first extension members.

The present invention also provides a drilling rig comprising the apparatus of the present invention, the drilling rig comprising a derrick and a platform over a well centre, the apparatus arranged such that the first extendible member is located about the well centre.

The present invention also provides a continuous circulation apparatus having an upper seal to seal about a pipe to be made-up to or broken-out from a string of pipes in a wellbore and a lower seal to seal about the
pipe string to allow continuous circulation of drilling mud through the drill string during make-up or break-out, characterised in that, the continuous circulation apparatus comprises an apparatus for guiding the pipe into the upper seal.

The present invention also provides a method for drilling a wellbore, the method comprising the steps of guiding a pipe or stand of pipe into a continuous circulation system by extending a first extendible member extending from the base and extending a second extendible member pivotally secured to the first extendible member to move a pipe holder towards a pipe or stand of pipe to be connected to a drill string, the pipe holder holding on to the pipe and pulling the pipe over the continuous circulation system and lowering the pipe into the continuous circulation system.
For a better understanding of the present invention, reference will now be made, by way of example, to the accompanying drawings, in which:

Figure 1A shows a front elevation of a part of a prior art drilling rig incorporating a top drive;

Figure 1B shows a side elevation taken from line 1B-1B of Figure 1A but showing the top drive swung to a position over a mouse-hole to pick up a stand of pipe;

Figure 1C shows a fragmentary front elevation of part of the drilling rig shown in Figure 1A showing the top drive swung to its retracted position permitting the top drive to be raised and lowered to trip the stand of pipe into the well or to pull the string out of the well;

Figure 2 is a perspective view of part of a drilling rig comprising a top drive and a continuous circulation apparatus;

Figure 3A is a side view of part of the drilling rig shown in Figure 2, showing part of a top drive, a saver sub extending downwardly from a rotor of the top drive, bails, a connection tool depending from the bails and an elevator depending on movable arms, the arms in a horizontal position such that the elevator is out of line with the top drive rotor with the top part of a stand of drill pipe;

Figure 3B is a top view of the connection tool, the elevator and the stand of drill pipe shown in Figure 3A.

Figure 4 is a front view of the part of the drilling rig shown in Figure 3A, with the stand of drill pipe engaged in the elevator and the movable arms moved to a vertical position in which the elevator is in line with the saver sub;

Figure 5 is a front view of the part of the drilling rig shown in Figure 3A, with the stand of drill pipe is
made-up to the saver sub;

Figures 6A, 6B and 6C are side views of a continuous circulation incorporating an apparatus in accordance with the present invention in three stages of operation;

Figure 7 is a side view of part of a drilling rig incorporating a top drive and a connection tool as shown in Figure 3 with the continuous circulation tool as shown in Figure 6A;

Figure 8A is a perspective view of an apparatus for guiding pipe;

Figure 8B is an exploded view of the apparatus for guiding pipe shown in Figure 8A;

Figure 8C is a perspective view of a second embodiment of an apparatus for guiding pipe in accordance with the present invention;

Figure 9A is a perspective view of a pipe holder of the apparatus shown in Figure 8A;

Figure 9B is a partially cutaway perspective view of the pipe holder shown in Figure 9A;

Figure 9C is a top view of the pipe holder shown in Figure 9A;

Figure 9D is a perspective view of parts of the pipe holder of Figure 9A; and

Figure 9E is an exploded view of the parts shown in Figure 9D.

Figures 1A to 1C show a prior art rig and top drive system 10 as disclosed in U.S. 4,458,768 (incorporated fully herein for all purposes).

The prior art drilling rig 10 illustrated in Figures 1A to 1C includes a derrick 11 arranged over a well bore 12 being drilled by a drill bit (not shown) arranged on the end of a drill string 13 formed in conventional manner in a series of drill pipe stands connected
together in end to end fashion in threaded connections 14. The drill string 13 is rotated about its vertical axis 15 by a top drive drilling motor 16 connected to the upper end of the string. The drill string and top drive drilling motor 16 are supported and adapted to be moved up and down by a hoisting mechanism 17 including a crown block 18, travelling block 19, line 20, supporting block 19 from block 18, and power driven draw works for reeling the line 20 in or out to raise or lower the travelling block. A hook 21 depends from the travelling block 19 from which the top drive drilling motor 16 is suspended, and which has a gate 121 adapted to be opened for connecting and disconnecting the top drive drilling motor 16. The top drive drilling motor 16 and hook 21 are guided during their upward and downward movement by two parallel elongate guide rails 22 and 23, which engage and guide a carriage 24 on which the top drive drilling motor 16 is arranged and a carriage 25 on which the travelling block is arranged.

The two guide rails 22 and 23 are preferably of H section that continues from the upper extremity of each guide rail to its lower extremity. The guide rails 22 and 23 have upper sections which extend from the upper end of derrick 11 to a mid-derrick location and are attached rigidly to the derrick 11 for retention in positions of extension directly vertically and parallel to one another and to well axis 15. Beneath the mid-derrick location the two guide rails 22 and 23 have second portions or sections extending parallel to one another, continuing downwardly and to location 27, and mounted by two pivotal connections for swinging movement relative to upper sections and about a horizontal axis. An inclined mousehole 30 is used (Figure 1B).
The guide rails 22 and 23 have a third lowermost section which are carried by the second sections for swinging movement therewith between the vertical and inclined positions and which also are mounted by connections 31 and 32 for horizontal swinging movement about two axes 33 and 34 which are parallel to one another and to the longitudinal axes of the second sections.

The two pivotal connections 31 and 32 include two parallel mounting pipes or tubes 37 and 38 connected rigidly to the second sections. The two second guide rail sections are adapted to be power actuated between the vertical and inclined positions by a piston and cylinder mechanism 45 whose cylinder is connected to a horizontally extending stationary portion of the derrick, and whose piston rod acts against the tube 37 of pivotal connection 31.

Carriage 25 to which travelling block 19 is connected includes two frames 56 and 57 extending partially about the rails 22 and 23 respectively and rotatably carrying rollers 58 which are received between and engage the front and rear flanges 59 of the various rail sections in a manner effectively locating carriage 25 against movement transversely of the longitudinal axis of the rail structure, and guiding the carriage for movement only longitudinally of the rails.

The top drive drilling motor 16 is arranged on a carriage structure 24, a power unit 61 for turning the string, and a conventional swivel 62 for delivering drilling fluid to the string.

The power unit 61 of the drilling assembly includes a pipe section having a lower tapered external thread forming a pin and threadedly connectable to the upper end
of drill string 13 to drive it. In most instances, a conventional crossover sub 72 and a short "pup joint" 73 are connected into the string directly beneath the power unit 61. At its upper end, pipe section 70 has a tapered internal thread connectable to the rotary stem 75 of swivel 62. This stem 75 turns with the drill string relative to the body 76 of the swivel 62, which body is supported in non rotating relation by a bail 77 engaging hook 21 of the travelling block 19. Drilling fluid is supplied to the swivel through a flexible inlet hose 78, whose second end is connected to the derrick at an elevated location 79 well above the level of the rig floor. For driving the tubular shaft 70, power unit 61 includes an electric motor.

Figure 2 shows a top drive drilling apparatus 100 which includes a top drive drilling unit 120 suspended in a derrick 112 (like the rig and derrick in Figure 1A with the various parts etc. as shown in Figure 1A). A continuous circulation system (CCS) 130 rests on a rig floor 114.

The CCS 130 is any known continuous circulation system and is, in one aspect, a CCS system commercially available from Varco International, Inc. Alternatively, the CCS may be of the type shown in Figure 6A to 7.

An elevator 140 is suspended below the top drive drilling unit 120. Optionally, a connection tool apparatus 200 is suspended underneath the top drive 120. The connection tool apparatus 200 comprises a pipe gripper 150 and the elevator 140 is suspended from the pipe gripper 150. Any suitable known pipe gripper may be used for the pipe gripper 150 or, alternatively, a pipe gripper may be used as disclosed in the co-pending PCT application no. co-owned with the applicants for the
present case and based on U.S. Patent Application entitled "Pipe Gripper And Top Drive Systems," U.S. Ser. No. 10/999,815 filed 30th November 2004. The pipe gripper 150 is suspended from the top drive drilling unit 120 with links known as bails 118 and the elevator 40 is suspended from the pipe gripper 150 with movable arms 124.

The pipe gripping apparatus may simply grip and inhibit the pipe for rotating or may be an active pipe gripping apparatus and may have a drive mechanism for gripping the pipe and rotating the pipe either as a spinner and/or have a high torque capacity to complete torquing of the screw joint between section of pipe to perfect the connection. A torque-turns monitoring apparatus which is well known in the art, such as the Franks system, may be provided to ensure the connection is completed properly and that binding in the threads has not occurred.

The elevator 140 may be of the type disclosed in co-pending PCT application no. co-owned with the applicants for the present case and based on U.S. Patent Application entitled "Method and apparatus for wellbore operations" and assigned U.S. Provisional application No. 60/631,954 filed 30th November 2004 and U.S. Ser. No. 11/176,976 filed 7th July 2005.

The elevator 140 is preferably of the type having dual opposed doors which have dual interactive connection apparatuses so that either side of the elevator can be opened. Thus, the elevator can be opened on one side to permit the elevator unit to be moved away from the wellbore centre line so that the top drive drilling unit can drill the drill string down as far as possible before adding a new piece or stand of drill pipe; and then the
elevator can be opened from the other side for receiving a new piece or stand of drill pipe (and in a backreaming operation in accordance with the present invention the reverse is true). In certain aspects, such an elevator has dual opposed selectively releasable latch mechanisms and dual opposed handling projections.

Figures 3A and 3B show part of the drilling rig shown in Figure 2, showing a connection tool apparatus 200 underneath a the top drive 120. A saver sub 260 extends downwardly from a rotor (not shown) of the top drive 120. The connection tool apparatus 200 comprises the gripper unit 150, which depends from bails 118 from ears 139. The elevator 140 depends on the movable arms 24 from the pipe gripper 150. The movable arms 24 are shown in a horizontal position such that the elevator 140 is out of line with the top drive rotor. A top part of a stand of drill pipe 206 is shown out of line with the rotor of the top drive 120. Each movable arm 24 has a lower portion 25 which passes through corresponding eyes 45 of the elevator 140 and has a piston and cylinder arrangement 141 to move movable arms about pin 142. The gripper unit 150 depends from bails 118 which are provided with piston and cylinders (not shown) to move about ears 139 to swing the gripper unit 150 out of alignment with the rotor (not shown) of the top drive 120.

The saver sub 260 is threadedly connected to a top drill pipe 206 of a drill string 108, as shown in Figure 5. The saver sub 260 is positioned for being gripped and rotated by the pipe gripper 150.

Connection tool apparatus 200 has a support apparatus 202 which supports the gripper apparatus 150. A front end 233 of the elevator 140 has opposed elevator
doors 231, 232 in an open position for receiving, encompassing, and supporting a piece or stand of drill pipe 206. In one embodiment, to initiate the sequence of steps, a driller at a driller's console (see Figure 2, console DC) presses a selected button and the sequence is begun.

As shown in Figure 3, the drill pipe 206 has been moved (manually by a derrickman or by a machine) into the elevator 140 and the elevator 140 has been closed shut around the drill pipe 206 (e.g. a derrickman uses an hydraulic system to close the elevator).

Figure 4 illustrates the drill pipe 206 being lifted into position off a rig floor to a location above a continuous circulation system 240 (see Figure 6A) which may be any continuous circulation system referred to herein. As shown in Figure 4 as compared to Figure 3, the elevator 140 has moved below the gripper apparatus 150 and the drill pipe 206 is lined up generally with a longitudinal axis of a saver sub 260. Such alignment is facilitated by an over centre connection of ends 143 of piston and cylinder arrangement 141 to pin 142. The piston and cylinder arrangement 141 urge the elevator 140 toward the position shown in Figure 4. Other ends 144 of the piston and cylinder arrangement 141 are connected to the gripper apparatus 150. The elevator 140 is lowered into the position shown in Figure 4 by its own weight and by the weight of the drill pipe. The movable arms 24 abut stops 145 which prevent the movable arms 24 from moving past the position shown in Figure 4 and the over centre connection of the ends 143 facilitates maintaining the elevator 140 and the drill pipe 206 in the position shown in Figure 4.

As the driller lifts the drill pipe 206 as shown in
Figure 4 in the elevator 140, a pipe holder 244 of a pipe guide 242 is offered up to the drill pipe 206, using the arrangement of piston and cylinders, as shown in Figure 7A to move the pipe holder 244 closer to the pipe 206. Optionally a roughneck facilitates moving the drill pipe 206 into the pipe holder 244. The pipe guide 242 is mounted on top of the continuous circulation system (CCS) 240 as shown in Figure 6A. The CCS 240 is positioned on the rig floor in the same position as the CCS 30 is shown in Figure 2.

A lower set of pipe rams 269, as shown in Figure 6C, are in a closed position sealing about the top of the string of pipe 209 in the wellbore. A blind set of rams 268 seals off above the top of the string of pipe to form a lower chamber (not shown). The chamber (not shown) is provided with a drilling mud line (not shown) supplying clean drilling mud from shale shakers, centrifuges and the like, which was obtained from solids laden drilling mud returned from the annulus of the wellbore formed between the wellbore and the pipe running therethrough. Thus drilling mud is circulated through the lower chamber into the top of the string of drill pipe.

Figure 6B illustrates the driller lowering the top drive and hence the elevator 140 and pipe 206 to stab the drill pipe 206 into the CCS 240 after the pipe has been correctly aligned with the CCS 240 using the pipe guide 242. A snubber 246 of the CCS 240 selectively grips the pipe. As shown in Figure 6C optionally, jaws (not shown) in the snubber 246 close on and grip the drill pipe 206 whose bottom end 206a is not yet connected to a drill string 209 whose upper end is held within the system 240. An upper set of pipe rams 270 close and seal about the pipe 206. The bottom end 206a of the drill pipe 206 rests
on top of a set of closed blind ram blocks (shown by a horizontal dotted line 241), or is held slightly thereabove of a middle pressure chamber of the system 240.

Figures 4 and 5 illustrate steps in connecting the lower end of the saver sub 260 to an upper end 206b of the drill pipe 206. As shown in Figure 4 the saver 260 is positioned for lowering down to the drill pipe 206. The top drive 120 and the connection tool apparatus 200 are lowered to stab a lower end 260a of the saver sub 260 into the top end 206b of the drill pipe 206. In the position shown in Figure 5 the jaws of the gripper apparatus 150 are not gripping this splined portion 260c.

The top drive 120 rotates the saver sub 260 while the snubber 246 holds the drill pipe 206 thereby making-up by spinning and torquing the connection between the saver sub 260 and the drill pipe 206.

Drilling mud returned is then switched to flow through the swivel (not shown, but like swivel 62 in Figure 1C), through the saver sub 260 and into the pipe 206 and into an upper chamber (not shown) between the upper pipe rams 270 and the blind rams 268.

The blind rams 268 are opened, there being equal mud pressure in the upper and lower chambers. The pipe 206 is lowered on the top drive 120 and the top drive 120 rotates the pipe 206 to spin the connection and to torque the connection. Alternatively, a tong is provided on top of the CCS 240 above the upper pipe ram 270 or the gripper unit 150 is used to spin and/or torque the connection. The upper and lower chambers may be drained of surplus drilling mud and the upper and lower pipe rams 270, 269 are opened and drilling is recommenced. If the pipe 206 consists of a stand of three pipes, drilling can
continue for approximately 10m before the procedure is repeated by first activating the lower pipe rams 269 to seal about the top end of the string in the well.

Elevator doors 231 and 232 are opened and the elevator 140 is swung on movable arms 24 away and out of disengagement with the pipe 206 and thus away from the wellbore centreline by activating the piston and cylinder arrangements 141. The elevator doors 231 and 232 may be opened remotely or a roughneck may open the elevator doors 231 and 232 manually. The elevator doors 231 and 232 may then be closed about a tugger line 250 which passes over a block in the top of the derrick and on to a winch (not shown). The connection apparatus 200 depending from the bails 118 is swung out on the wellbore centreline by winching the tugger line 250, whereupon the elevator 140 seats itself on a seat 254 attached to the end of the tugger line 250 and pulls connection tool apparatus 200 out of line with the wellbore centreline, as shown in Figure 7, allowing the pipe to be lowered into the CCS 240 to locate the top of the drill string above the lower pipe rams but below the blind rams. The saver sub 260 is now disconnected from the drill string by activating the top drive.

The drill string is preferably inhibited from turning during make-up and break-out by using a spider in the rig floor which can resist turning of the drill string.

The CCS 240 maintains fluid circulation in the wellbore during connection make-up (e.g. connection of saver sub to drill pipe). A curved or slanted portion 239a of a body 239 to which the links 214 are connected facilitates contact of the body 239 by the CCS 240 and movement of the body 239 past the CCS 240 in the event of
such contact. The lower end of the tugger cable 250 is connected to an anchor 252 with a lower part 254 that is located beneath the elevator 140 and which has a portion larger in diameter than the elevator 140 so that the tugger cable 250 is secured to and held in position with respect to the elevator 230. Optionally, a power system 104b moves the connection tool apparatus 200 out of the way and the tugger cable is not used.

For pulling drill pipe out of a hole. In order to latch the elevator 140 onto the drill pipe 206 (top piece in a stand) the back side of the elevator 140 is opened, the elevator is lowered against the force of the devices 208, and the elevator is then moved onto the drill pipe 206 (e.g. by a derrickman and/or by venting the devices 208).

Jaws 211, 212 of the gripper apparatus 150 have closed around and are not gripping the splined portion 260c of the saver sub 260 while the snubber 246 of the system 240 holds the drill pipe 206. The jaws 211, 212 are then moved to break the connection between the saver sub 260 and the drill pipe 206. The gripper apparatus 150 is lowered so that its jaws grip the drill pipe 206 and then its jaws 211, 212 break the saver-sub/drill-pipe connection. Hydraulic cylinder devices 248 move the gripper apparatus 150 down. Once the connection is broken, the top drive 120 rotates the saver sub 260 to totally disconnect the saver sub 260 from the drill pipe 206. The drill pipe 206 is released from the snubber 246, the top drive 20a and the connection tool system 200 is raised away from the drill pipe 206 with the drill pipe 206 still within the elevator 140 and with the bottom end 206a in a position as shown in Figure 6C. The driller then picks up the stand of drill pipe with the
top drive system, deploys the pipe guide 242 over the centre of the CCS 240, and grasps the drill pipe with the holder 244 of the pipe guide 242, then the stand of drill pipe is moved away from the CCS 240 using the pipe guide 242. The drill pipe stand is then lowered so its bottom end rests on a rig floor 114. The front end of the elevator 230 is opened by the derrickman who pulls the drill pipe 206 out of the elevator 230 for racking back in a fingerboard of the derrick.

Figure 8A and 8B illustrate the pipe guide 242 in accordance with the present invention which is suitable for being arranged on the top surface of CCS 140. The pipe guide 242 has two spaced-apart lower power cylinders 302, 304 with shafts 306, 308 that move with respect to the cylinders 302, 304, respectively. Mounts 312, 314 connected to the shafts 306, 308 are pivotably connected with screws 316, 318 with bearings 322, 324 to bases 326, 328. Screws 332 secure the bases 326, 328 to a bracket 310.

Upper slider mechanisms 342, 344 have shafts 346, 348 in tubes 356, 358 that move in a generally non-horizontal direction. Lower ends of the shafts 346, 348 are connected with screws 366 to a housing 354. The bracket 310 is secured to the blocks 326, 328 with bolts 332. The housing 354 is mountable to another apparatus (e.g. a CCS unit or iron roughneck) with mounting brackets 362 through which extend shafts 364 of the housing 354 for pivotable movement of the housing 354 with respect to the brackets 362. Bearings 374 facilitate movement of the shafts 364 in the brackets 362. Mechanical stops 368 which prevent the base 310 and structure connected thereto from moving below horizontal, are secured to the housing 354 by screws 366. Screws 376
secure the brackets 362 to another apparatus or structure (e.g. the top surface of a CCS unit or iron roughneck). Shear pins 378 take side loads and prevent side loads on bolts 376 which bolt the brackets 362 to another apparatus. The shear pins 378 will shear if a sideways force is applied sufficient to shear the shear pins 378. The shear pins 378 are shearable at a value of force, which is less than that of upsetting the apparatus or structure on which the pipe guide 242 is mounted.

In order to stop movement of the pipe guide 242 at certain predetermined locations, e.g. at well centre to stab a pipe into a CCS or at a point spaced-apart from a well center at which pipe is handed off to a pipe handler apparatus, a proximity switch 500 on the cylinder 302 is positioned so that it can sense pre-positioned target members 501, 502 on a tube 334. A rod 503 connected to the cylinder 302 moves telescopically in the tube 334 which is secured to the mount 312. In the embodiment shown in Figures 8A and 8B, the target member 501 is positioned at a point at which the gripper assembly 400 (with a pipe therein) is at well centre. The target member 502 is positioned at a point at which the gripper assembly 400 is at a pipe pick-up/set-down area. A nut 336 can serve as a target to indicate that the gripper assembly 400 is in a stored (flat) position. The proximity switch 500 communicates and is controlled by a control system CS for the pipe guide which controls the hydraulic cylinders.

Figure 8C illustrates that a mounting/supporting structure as in Figure 8A may be used to support an item 505 shown schematically in Figure 8C which may be any holder for receiving a tubular, receiver for receiving a tubular, a tong (central opening, open throat - see
dotted lines - or closed), gripper, or grabber.

Referring to Figures 9a to 9E, the holder 244, in one aspect, is a gripper assembly 400 pivotabaly mounted with heads 402, 404 to upper ends of the tubes 356, 358. Preferably the holder 244 or gripper assembly 400 is balanced so it remains in a substantially horizontal orientation. The heads 402, 404 are secured to the tubes 356, 358 with screws 384 which extend through flanges 382 of the tubes 356, 358 into the heads 402, 404. Bolts 406 extending through bearings 408, 410 and through the heads 402, 404 to the gripper assembly 400.

The gripper assembly 400 has a housing 420 with an interior 421 and a removable top cover plate 422 secured with bolts 424 to the housing 420. Two gripping arms 432, 434 are each pivotably connected with a pin 426 extending through holes 438 to a rod 428. The rod 428 is secured with nuts 436 to the housing 420. Moving the rod 428 adjusts tension on springs 494 and allows adjustment so that ends 432a, 434a of the arms 432, 434 are within the housing 420 or projecting out from it as in Figure 8A. To the extent of the force of the springs 494, the arms 432, 434 can hold a pipe within the housing 420.

Each arm 432, 434 is connected to a corresponding link 452, 454, respectively with pins 456, 458 which are disposed partially and captured within corresponding recesses 462, 464 in members 466, 468 (of the arm 434) and recesses 486, 488 in members 472, 474 (of the arm 432) and partially within recesses 476 of caps 478 (recess 488 not shown in Figure 9E; located in a location corresponding to the location of the recess 468). The caps 478 are held in place with screws 482 that pass through the caps 478 and are screwed into corresponding holes 484 in the members 466, 468, 472, 474. The pins
456, 458 move on bearings 492. The springs 494 are compression springs whose force can be overcome by personnel removing a pipe from between the arms 432, 434.

The arms 432, 434 can pivot about pins 456, 458 and are also pivotable with respect to the housing 420 about pins 496 that pin the arms to the housing.

The springs 494 and connectors 492 (to which the springs 494 are connected) can both move on the shafts 497 providing a shock absorbing function.
CLAIMS:

1. An apparatus for guiding pipe, the apparatus comprising a base (240), a first extendible member (342,344) extending from said base (240) and a second extendible member (302,304) pivotally secured (322,328) to the first extendible member (344) and a pipe holder (400) attached to the first extendible member (344).

2. An apparatus as claimed in Claim 1, wherein the first extendible member (344) is fixed to the base (240) on a pivot (364).

3. An apparatus as claimed in Claim 2, where in said pivot (364) allows movement in one plane.

4. An apparatus as claimed in any of Claims 1 to 3, wherein the second extendible member (302,304) comprises a stop to inhibit maximum movement of said pipe holder (400).

5. An apparatus as claimed in any preceding claim, wherein the pipe holder (400) is pivotally connected (406) to the first extension member.

6. An apparatus as claimed in any preceding claim, wherein the pipe holder (400) is pivotally connected to the first extension member (302,304) so that the pipe holder apparatus maintains a substantially horizontal orientation.

7. An apparatus as claimed in any preceding claim, wherein the pipe holder (400) is from the group consisting of open throat tong, closed tong and gripper.

8. An apparatus as claimed in any preceding claim, further comprising a mount (362), a second end of the lower extension member (304) pivotally connected thereto.

9. An apparatus as claimed in any preceding claim, wherein the base (240) is at least part of a continuous circulation system (240).
10. An apparatus as claimed in Claim 9, wherein the continuous circulation system (240) has a centre alignable with a well centre of a wellbore and the pipe holder (400) is aligned with the system centre.

5 11. An apparatus as claimed in Claim 9, wherein the pipe guide has a pipe guide centre and the pipe holder (400) is movable to and from the pipe guide centre and wherein the pipe holder (400) is movable to a position at which the pipe holder (400) is not above the continuous circulation system (240).

10 12. An apparatus as claimed in any preceding claim, wherein the pipe holder (400) has an opening for receiving a pipe.

15 13. An apparatus as claimed in Claim 12, wherein the pipe holder (400) has at least one movable arm (432) for releasably holding a pipe.

14. An apparatus as claimed in Claim 13, further comprising at least one spring (454) connected to the at least one arm (432) for urging the at least one arm (432) into the opening.

20 15. An apparatus as claimed in Claim 14, further comprising adjustment apparatus (436) connected to the at least one arm (432) for adjusting the position of the at least one arm (432).

25 16. An apparatus as claimed in Claim 15, wherein the adjustment apparatus (436) comprises a nut and bolt apparatus.

17. An apparatus as claimed in any of Claims 13 to 17, wherein the at least one arm is two arms (432,434), each arm (432,434) rotatable about a pin (496), wherein one end of each of said arms (432,434) projects into said opening and the other end is pivotally attached to a spring (452,454), a rod (497) passing through each spring
(452,454) and pivotally linked to each other and to an adjustable shaft (428).

18. An apparatus as claimed in any of Claims 13 to 17, wherein the at least one arm (432) is movable to a position so that no part of the arms project into the opening.

19. An apparatus as claimed in any preceding claim, further comprising another first extension member (342,344) and another second extension member (302,304), the pipe holder (400) arranged between the first extension member and the another first extension member.

20. A drilling rig comprising the apparatus as claimed in any preceding claim, the drilling rig comprising a derrick and a platform over a well centre, the apparatus arranged such that the first extendible member is located about the well centre.

21. A continuous circulation apparatus having an upper seal to seal about a pipe to be made-up to or broken-out from a string of pipes in a wellbore and a lower seal to seal about the pipe string to allow continuous circulation of drilling mud through the drill string during make-up or break-out, characterised in that, the continuous circulation apparatus comprises an apparatus for guiding the pipe into said upper seal.

22. A method for drilling a wellbore, the method comprising the steps of guiding a pipe or stand of pipe (206) into a continuous circulation system (240) by extending a first extendible member (342,344) extending from said base (240) and extending a second extendible member (302,304) pivotally secured (322,328) to the first extendible member (344) to move a pipe holder (400) towards a pipe or stand of pipe (206) to be connected to a drill string, the pipe holder (400) holding on to the
pipe and pulling the pipe over the continuous circulation system (240) and lowering the pipe (206) into the continuous circulation system (240).