Computer simulation control system, comprising:

- at least one control module (1, 2) for controlling a computer simulator program;
- a seat comprising a seat part (3) and a back support;
- at least one mechanism (5) for coupling the seat and the at least one control module (1, 2) to each other in such a way, that a user can be seated on the seat part (3) of the seat for handling the at least one control module (1, 2) there-from;

wherein the back support of the seat is movable between a first position, in which first position the back support extends at an operating angle (α) upwardly from said seat part (3) for supporting at least part of the back of a user, and a second position, in which second position the back support does not extend at said operating angle (α) upwardly from the seat part (3), for example for transportation and/or storage of the control system.
COMPUTER SIMULATION CONTROL SYSTEM

[0001] The present invention relates to a computer simulation control system, comprising:

[0002] at least one control module for controlling a computer simulator program;

[0003] a seat comprising a seat part and a back support;

[0004] at least one mechanism for coupling the seat and the at least one control module to each other in such a way, that a user can be seated on the seat part of the seat for handling the at least one control module there-from;

[0005] Such a computer simulation control system is known from the racing car industry. After assembly, said at least one control module and the seat are coupled to each other by said coupling mechanism. The control module comprises, for example, a steering wheel which is positioned in front of the seat—in a suitable driving position—for a race simulation. The computer may be, for instance, an external home computer, personal computer, game computer and the like. Control modules for controlling computer simulator programs are known and marketed by, for instance, Logitech™.

[0006] During use, a user takes place in the seat for handling said at least one control module. Furthermore, during use, the control module is usually connected to a computer which runs said simulator program, for controlling that program. The assembled control system provides a high reality simulation environment and particularly a relatively real feel of the simulation environment during the control of the simulator program.

[0007] A disadvantage of the known computer simulation control system is, that it requires relatively much space. Therefore, the transportation and/or storage of the known system is relatively complex and expensive. Particularly, only a relatively small number of control systems can be packed in one loading volume, for instance in one shipping container or in one trailer compartment, leading to high transportation costs per control system. Besides, the handling of a relatively large control system during transport thereof is relatively difficult, and may lead to collisions which might damage sensitive parts of the system. Furthermore, it may be desired to move the control system from one place to another by an end-user, so that the system can be used in different locations. This is also relatively difficult to accomplish in view of said handling problems of the system.

[0008] The present invention aims to improve the computer simulation control system. Particularly, the invention aims to provide a computer simulation control system, wherein the system can be transported, stored and handled relatively safe and easy.

[0009] To this aim, the computer simulation system of the present invention is characterized by the features of claim 1.

[0010] According to the present invention, the back support of the seat is movable between a first position, in which first position the back support extends at an operating angle upwardly from said seat part for supporting at least part of the back of a user, and a second position, in which second position the back support does not extend at said operating angle upwardly from the seat part, for example for transportation and/or storage of the control system.

[0011] During normal use of the control system, said back support is in the first position, for creating a relatively real simulator control environment. When the control system is not in use, the back support can simply be moved to the second position, for instance a substantially horizontal position, particularly for reducing the overall dimensions of the control system, and more particularly for reducing the height of the system. When the back support is in said second position, the control system can be transported, stored and/or handled relatively easy, for example in a relatively small area. This further leads to a substantial reduction of transporting and/or storing costs. Until the present invention, no one has come up with this simple inventive idea that the seat of the computer simulation control system can simply be arranged as described above, leading to said advantages.

[0012] In one embodiment of the invention, the back support and the seat part of the seat are detachably connected, for instance with a hinge system, to each other when the back support is in the first position, for moving the back support to the second position. The back support can simply be removed from the seat part, to further reducing the overall dimensions of the system.

[0013] According to an other aspect of the invention, the back support and the seat part of the seat are pivotally connected to each other, such that the back support is pivotable, about a pivot axis, between said first and second position. Therefore, the back support can be folded up towards the seat part of the seat. This results in the overall system dimensions being reduced substantially.

[0014] According to a further embodiment of the invention, the seat of the control system has a maximum first height when the back support of the seat is in the first position, wherein the control system has a second maximum height when the back support is in the second position, wherein said second maximum height is less than half said first maximum height.

[0015] Thus, a large reduction of the dimensions of the system is achieved, when the back support of the seat is in the second position. Particularly, the height of the system can be reduced by half or even more, preferably also leading to a reduction of transport volume by a factor 2 or more. Therefore, transportation and/or handling costs of each computer simulation control system may also be reduced by about the same amount, of a factor 2 or more.

[0016] According to a preferred embodiment of the invention, the back support and the seat part are arranged to at least partially enclose a storage space when the back support is in the second position.

[0017] Such a storage space can be used for safely storing various objects and the like, wherein the back support and seat part of the seat can serve to protect such objects from being damaged. In that case, it is advantageous when the storage space is arranged for receiving said control module or at least part thereof, particularly during transportation and/or storage of the control system. Thus, the overall computer simulation control system can be stored and/or transported in a very compact manner, wherein—furthermore—said at least part of said control module is being protected well within said storage space. Such protection is further improved when the seat part and back support are provided with one or more relatively soft upholstering materials.
The present invention also provides a seat which is characterized by the features of claim 19. Such a seat provides one or more of the above-mentioned advantages to the control system.

The present invention also provides a use of a control system according to any of the claims 1-18, wherein said back support is moved from said first position to said second position and/or vice-versa. For instance, said back support is moved to said second position when the control system is to be stored and/or transported safely and with ease. The back support is simply moved to the first position when the control system is to be used for controlling a computer simulation program. Then, the assembled system can provide a relatively real feeling of, for example, the driving seat of a simulated racing car, for the case that the system is used in combination with a racing simulator program.

The present invention further provides a method for handling a computer simulation control system according to any of claims 1-18, wherein said back support is being moved to said second position for transportation and/or storage of the control system. This also provides at least some of the above-mentioned advantages. Preferable, at least part of said control module, for example at least a steering wheel and/or at least one foot pedal, is being arranged between said seat part and said back support. Thus, a relatively compact system can be obtained, wherein said at least part of the control module can be protected by the seat part and the back support. For operation, wherein said back support is being moved from said second position to said first position for supporting at least part of the back of a user.

The present invention also provides a container, for example a box, which is characterized by the features of claim 25.

The container advantageously comprises a computer simulation control system according to any of claims 1-18, wherein the back support of the seat is positioned in said second position, wherein the back support preferably extends substantially opposite the seat part of the seat. Therefore, the container can be relatively compact, requiring little storage and/or transportation space. Also, such container can be handled relatively easily, preferably by a single person, and for example stored in a relatively compact trunk of a private car. Besides, it is advantageous when at least part of said control module is located in a storage space, which storage space is at least partially enclosed by said seat part and said back support of the seat. Therefore, the seat of the control system serves as an inner container for storing said control module or control module part.

Further embodiments of the present invention are described in the accompanying claims.

An embodiment of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts.

FIG. 1 is a perspective front view of an embodiment of the invention;

FIG. 2 is a side view of the embodiment shown in FIG. 1;

FIG. 3 is a perspective rear view of a frame of the seat of the embodiment shown in FIG. 1, wherein the back support is in a first position;

FIG. 4 is a side view of the seat frame in the position of FIG. 3;

FIG. 5 is a rear view of the seat frame in the position of FIG. 3.

FIG. 6 is a perspective rear view of the frame of the seat of the embodiment shown in FIG. 1, wherein the back support is in a second position;

FIG. 7 is a detail B of FIG. 6;

FIG. 8 is a side view of the seat frame in the position of FIG. 6.

FIGS. 1 and 2 shows an assembled computer simulation control system, comprising:

at least one control module 1, 2 for controlling a computer simulation program;

a seat comprising a seat part 3 and a back support 4,

at least one mechanism 5 for coupling the seat part 3 and the at least one control module 1, 2 to each other, such that a user can be seated on the seat part 3 for handling the at least one control module 1, 2 there from.

In the present embodiment, said control module for controlling a computer simulation program comprises a steering column with a steering wheel 1 and two foot pedals 2. Said mechanism for coupling the seat and the control module 1, 2 comprises an elongated element 5, for example a rigid bar, extending from a lower part 15 of the seat towards the at least one control module 1, 2. Said lower seat part 15 comprises seat support members 15 which extend below said seat part 3. Said seat part 3 also comprises substantially upwardly extending side parts 16, particularly for forming a bucket seat. Besides, the back support 4 comprises shoulder supports 25.

During use, said control module 1, 2 is connected to computing means or the like for controlling one or more computer programs being run thereon. In particular, the present embodiment of the control system is arranged for controlling a computer racing simulation. Also, during use, one or more displays are provided for displaying a virtual simulator environment. Said computing means and display are not shown in the present figures.

As is shown in FIGS. 3-8, said seat part of the present embodiment comprises a seat frame 6, and said back support comprises a back support frame 8. The frames 6, 8 may be assembled, for instance, from suitable metal tubes or the like. Each of said frames 6, 8 is provided with support springs 17. The back support frame comprises shoulder support frame parts 25a.

From FIGS. 1 and 2 further follows, that the seat is also provided with a suitable upholstering comprising a cover 13, extending over the seat part 3 as well as over the back support 4. Preferably, the seat also comprises a suitable filling, padding, and the like, extending between the covering 13, said frames 6, 8 and said support springs 17 for providing comfort. Said cover 3 is preferably arranged, to cover substantially all outer surfaces of the seat, including or
excluding the downwardly facing side of the seat part. Thus, the cover 13 can provide a good protection of the seat parts enclosed thereby, as well as provide a aesthetically pleasant and finished look.

[0041] As is clearly visible in FIGS. 3-8, the seat frame 6 comprises a substantially horizontal extending bottom frame part 6a, viewed when the control system is the assembled operating position. The seat frame 6 comprises a rear frame part 6b extending substantially at a certain operating angle a upwardly with respect to the bottom frame part 6a. Said angle may comprise various angles, for example an angle α in the range of about 90-135° or an other suitable angle. In a first position of the back support 4, shown in FIGS. 1-5, the back support frame 8 extends substantially in line with the rear frame part 6b of the seat frame 6, so that the back support 4 extends substantially at the same operating angle α upwardly with respect to said seat part 3. In that first position, the back support is available for supporting at least part of the back of a user. Besides, the seat frame 6 comprises side support frame parts 16a for providing rigid bucket seat side parts 16.

[0042] In the present embodiment, the seat frame 6 and back support frame 8 comprise frame connectors 7 for movably connecting these frames 6, 8 to each other. In particular, the back support 4 of the seat is at least movable between said first position and a second position. This second position of the back support 4 is shown in FIGS. 7-8. In this second position, the back support 4 does not extend at said operating angle a upwardly from the seat part 3, but substantially opposite the seat part 3. In the FIGS. 7-8, the back support 4 is laying substantially horizontally in said second position. When the back support 4 is in the second position, the control system is relatively compact, which is advantageous for transportation and/or storage thereof.

[0043] In the present embodiment, the back support 4 and the seat part 3 of the seat are pivotally connected to each other, such that the back support 4 is pivotal about a pivot axis 10 between said first and second position. To this aim, the frame connectors comprise suitable hinges 7 which connect the back support frame 8 to the rear frame part 6b of the seat part 3.

[0044] Alternatively, the back support 4 and the seat part 3 of the seat may be, for example, detachably connected to each other when the back support 4 is in the first position, for moving the back support 4 to a suitable second position. Such a detachable connection can be provided in various ways. For instance, opposite ends of the frames 6, 8 of the back support 4 and the seat part 3 of the seat may be arranged to be clamped, slid and/or clicked detachably onto each other. For example, the rear frame of the seat part may comprise upwardly extending tubes or bushes which receive downwardly extending pins of the back support frame 4 for providing such detachable connection.

[0045] Besides, the present embodiment comprises locking mechanisms 11, 12 for locking the back support 4 of the seat to the seat part 3 when the back support 4 is in said first position. As is visible in FIGS. 3-8, each locking mechanism comprises a bush 11 and a bolt 12. Said bush 11 and the respective bolt 12 are arranged to cooperate with each other for locking the back support 4 in its first position. In the present embodiment, each bush 11 is attached to said seat frame 6. Each bolt 12 is movably connected to said back support frame 8 by a guiding bush 31 which is connected to that frame 8.

[0046] In FIG. 5, the bolts 12 have been moved downwardly into the bushes 11 for locking the back support. When the bolts 12 are moved out of the bushes 11, as has been shown in FIGS. 3, 6-8, the locking is undone and the back support 4 can be moved to its second position. Clearly visible in FIGS. 3 and 7, retainers 30 are provided on the back frame 8 for retaining the bolts 12 in these withdrawn positions. In the present embodiment, each bolt 12 comprises an extending gripping member 12a for alleviating the manual handling thereof, and for retaining the bolt in said upper, withdrawn, position in cooperation with a retainer 30. To the skilled person, it is clear that the locking mechanism may be arranged in various ways, comprising for example one or more controllable locking parts, pins, spring means and the like.

[0047] As follows from FIGS. 6 and 8, the back support 4 and the seat part 3 are advantageously arranged to at least partially enclose a storage space S when the back support 4 is in the second position. The storage space S is preferably arranged and suitable for receiving said control module 1, 2 or at least part thereof when the control system has been disassembled, particularly during transportation and/or storage of the control system. In that case, a very compact configuration can be achieved, particularly for transport and/or storage.

[0048] Preferably, the cover part 13a extending over the rear side of the seat is at least partially detachably connected to said seat part 3. For example, the cover 13 may comprise one or more sections, extending at the rear side of the seat, which are detachably connected to the seat part. Such detachable connection can be provided by various means, for example Velcro™ material, push buttons, elastic material, wire material, strings and/or other suitable means. When the back support is to be moved to the second position, said cover part 13a is simply detached at least partially from the seat part of the seat, to avoid the cover obstructing said movement.

[0049] As has been shown in FIG. 4, the seat of the control system has a maximum first height H1 when the back support 4 of the seat is in the first position. As shown in FIG. 8, the second position of the back support 4 is such that the seat of the control system has a second maximum height H2 when the back support 4 is in the second position. Advantageously, according to the invention, the second maximum height H2 is less than half said first maximum height H1, as follows from FIGS. 4 and 8.

[0050] Also, preferably, —when seen in the side view of the seat as in FIG. 4 or FIG. 8—the length L2 of the back support 4 of the seat is about the same as the length L1 of the seat part 3 of the seat. For instance, the length L2 of the back support 4 of the seat is may be only about 0 to 10% larger or smaller than length L1 of the seat 3. Other length ratios—although less preferably—may also be used. Therefore, the seat of the control system can be made relatively compact by bringing the back support to its second position, as shown in FIGS. 6-8.

[0051] Besides, preferably, the seat serves as an inner container for containing and protecting sensitive parts of the
control system, for instance said control module 1, 2. Also, a computer for running simulator software may be stored in said storage space S, provided that the computer has suitable dimensions with respect to the volume of that space S. As has been indicated in FIG. 8 by dashed lines, a relatively small box B may then be used for storing the closely packed control system, providing advantages in view of transport and storage safety, simplicity and cost. The inner dimensions of such box B are preferably about the same as, or only slightly larger, for instance about 10% or 20%, larger than the maximum outer dimensions of the seat with the back support 4 in the second position, measured in Cartesian x-, y-, and z-directions. Other ratios of said dimensions—although less preferably—may also be used. Such box B may also be arranged to contain other objects in combination with the folded-in seat, for example said coupling mechanism 3, said seat support members 15 and the like.

[0052] While specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. The description is not intended to limit the invention.

[0053] For instance, the computer simulation control system can be suitable for use in combination with a driving simulator program, a racing simulator program, a flying simulator program or the like. The system may comprise one or more control modules, wherein each module may be provided with one or more controls, for instance a wheel, pedal, force-feed-back controls and/or the like.

[0054] Said mechanism for coupling the seat and the at least one control module to each other may be arranged in various ways. For instance, such mechanism may be attached to or be detachably connected to the seat. Also, such mechanism may be attached to or be detachably connected to said control module. For instance, the mechanism may be adjustable to adjust the position of the seat and said control module with respect to each other, particularly for providing a comfortable control environment to a user.

1. Computer simulation control system, comprising:

a seat comprising a seat part and a back support;

at least one mechanism for coupling the seat and the at least one control module to each other in such a way, that a user can be seated on the seat part of the seat for handling the at least one control module therefrom;

wherein the back support of the seat is movable between a first position, in which first position the back support extends at an operating angle upwardly from said seat part for supporting at least part of the back of a user, and a second position, in which second position the back support does not extend at said operating angle upwardly from the seat part, for example for transportation and/or storage of the control system.

2. Control system according to claim 1, wherein said back support extends substantially opposite the seat part when the back support is in the second position.

3. Control system according to claim 1, wherein the back support and the seat part are arranged to at least partially enclose a storage space when the back support is in the second position.

4. Control system according to claim 3, wherein the storage space is arranged for receiving said at least part of said control module, particularly during transportation and/or storage of the control system.

5. Control system according to claim 1, wherein said seat part comprises substantially upwardly extending side parts, particularly for forming a bucket seat.

6. Control system according to claim 1, wherein said seat part comprises a seat frame, wherein said back support comprises a back support frame, wherein the seat frame and back support frame comprise frame connectors for movably connecting these frames to each other.

7. Control system according to claim 6, wherein the seat frame comprises a substantially horizontal extending bottom frame part, wherein the seat frame comprises a rear frame part extending substantially at said operating angle upwardly from the bottom frame part, wherein the back support frame is movably connected to said rear frame part of the seat frame.

8. Control system according to claim 1, wherein the back support and the seat part of the seat are pivotally connected to each other, such that the back support is pivotable, about a pivot axis, between said first and second position.

9. Control system according to claim 1, wherein the back support and the seat part of the seat are detachably connected to each other when the back support is in the first position, for moving the back support to the second position.

10. Control system according to claim 1, comprising at least one locking mechanism for locking the back support of the seat to the seat part when the back support is in said first position.

11. Control system according to claim 10, wherein:

said seat part comprises a seat frame, wherein said back support comprises a back support frame, wherein the seat frame and back support frame comprise frame connectors for movably connecting these frames to each other; and

said locking mechanism comprises at least one bush and at least one bolt, wherein at least one bush and said at least one bolt are arranged to cooperate with each other for locking the back support in its first position.

12. Control system according to claim 11, wherein:

said seat part comprises a seat frame, wherein said back support comprises a back support frame, wherein the seat frame and back support frame comprise frame connectors for movably connecting these frames to each other; and

each bush is attached to said seat frame, wherein each bolt is movably connected to said back support frame.

13. Control system according to claim 1, wherein at least said back support comprises a cover, wherein the cover of the back support is at least partially detachably connected to said seat part, wherein said cover preferably also extends over said seat part after assembly of the system.

14. Control system according to claim 1, wherein said control module for controlling a computer simulator program comprises a steering wheel.

15. Control system according to claim 1, wherein said control module for controlling a computer simulator program comprises at least one foot pedal.

16. Control system according to claim 1, wherein the at least one mechanism for coupling the seat part and the at
least one control module to each other comprises at least one elongated element, for example a rigid bar, extending from the seat towards the at least one control module.

17. Control system according to claim 1, wherein the seat of the control system has a maximum first height when the back support—of the seat is in the first position, wherein the control system has a second maximum height when the back support—is in the second position, wherein said second maximum height is less than half said first maximum height.

18. Control system according to claim 1, wherein—when seen in side view of the seat—the length of the back support—of the seat is about the same as the length of the seat part—of the seat.

19. Computer simulation control system, comprising:

at least one control module for controlling a computer simulator program;

a seat comprising a seat part and a back support;

at least one mechanism for coupling the seat and the at least one control module to each other in such a way, that a user can be seated on the seat part of the seat for handling the at least one control module there-from; wherein the seat of the control system is adjustable to change the height of the system.

20. Computer simulation control system, comprising:

at least one control module for controlling a computer simulator program;

a seat comprising a seat part and a back support;

at least one mechanism for coupling the seat and the at least one control module to each other in such a way, that a user can be seated on the seat part of the seat for handling the at least one control module there-from; wherein the system has a maximum first height when the back support of the seat is in a first position, wherein the control system has a second maximum height when the back support is in a second position.

21. Use of a control system according to, claim 1 wherein said back support is moved from said first position to said second position and/or vice-versa.

22. Use of a control system according to claim 1 wherein said seat is adjusted for changing the maximum height of the control system.

23. Method for handling a computer simulation control system according to claim 1, wherein said back support is being moved to said second position for transportation and/or storage of the control system.

24. Method according to claim 23, wherein at least part of said control module, for example at least a steering wheel and/or at least one foot pedal, is being arranged between said seat part and said back support.

25. Method according to claim 23, wherein said back support is being moved from said second position to said first position for supporting at least part of the back of a user.

26. Container, for example a box, comprising a computer simulation control system according to claim 1, wherein the back support of the seat is positioned in said second position, wherein the back support preferably extends substantially opposite the seat part of the seat.

27. Container according to claim 25, wherein at least part of said control module is located in a storage space, which storage space is at least partially enclosed by said seat part and said back support of the seat.

28. Container according to claim 26, wherein the inner dimensions of the container (B) are about the same as, or only slightly larger, for instance about 10% or 20% larger, than the maximum outer dimensions of the seat with the back support in the second position, measured in Cartesian x-, y- and z-directions.

29. Control system according to claim 2, wherein the back support and the seat part are arranged to at least partially enclose a storage space when the back support is in the second position.

30. Control system according to claim 29, wherein:

the storage space is arranged for receiving said at least part of said control module, particularly during transportation and/or storage of the control system;

said seat part comprises substantially upwardly extending side parts, particularly for forming a bucket seat;

said seat part comprises a seat frame, wherein said back support comprises a back support frame, wherein the seat frame and back support frame comprise frame connectors for movably connecting these frames to each other;

the seat frame comprises a substantially horizontal extending bottom frame part, wherein the seat frame comprises a rear frame part extending substantially at said operating angle upwardly from the bottom frame part, wherein the back support frame is movably connected to said rear frame part of the seat frame;

the back support and the seat part of the seat are one of pivotally connected to each other, such that the back support is pivotal, about a pivot axis, between said first and second position and detachably connected to each other when the back support is in the first position, for moving the back support to the second position;

wherein at least one locking mechanism is provided for locking the back support of the seat to the seat part when the back support is in said first position.

31. Control system according to claim 30, wherein:

at least said back support comprises a cover, wherein the cover of the back support is at least partially detachably connected to said seat part, wherein said cover preferably also extends over said seat part after assembly of the system;

said control module for controlling a computer simulator program comprises a steering wheel;

said control module for controlling a computer simulator program comprises at least one foot pedal;

the at least one mechanism for coupling the seat part and the at least one control module to each other comprises at least one elongated element, for example a rigid bar, extending from the seat towards the at least one control module;

the seat of the control system has a maximum first height when the back support of the seat is in the first position, wherein the control system has a second maximum height when the back support is in the second position, wherein said second maximum height is less than half said first maximum height;
when seen in side view of the seat—the length of the back support of the seat is about the same as the length of the seat part of the seat.

32. Control system according to claim 11, wherein:

at least said back support comprises a cover, wherein the cover of the back support is at least partially detachably connected to said seat part, wherein said cover preferably also extends over said seat part after assembly of the system;

said control module for controlling a computer simulator program comprises a steering wheel;

said control module for controlling a computer simulator program comprises at least one foot pedal;

the at least one mechanism for coupling the seat part and the at least one control module to each other comprises at least one elongated element, for example a rigid bar, extending from the seat towards the at least one control module;

the seat of the control system has a maximum first height when the back support of the seat is in the first position, wherein the control system has a second maximum height when the back support is in the second position, wherein said second maximum height is less than half said first maximum height;

when seen in side view of the seat—the length of the back support of the seat is about the same as the length of the seat part of the seat.

33. Control system according to claim 12, wherein:

at least said back support comprises a cover, wherein the cover of the back support is at least partially detachably connected to said seat part, wherein said cover preferably also extends over said seat part after assembly of the system;

said control module for controlling a computer simulator program comprises a steering wheel;

said control module for controlling a computer simulator program comprises at least one foot pedal;

the at least one mechanism for coupling the seat part and the at least one control module to each other comprises at least one elongated element, for example a rigid bar, extending from the seat towards the at least one control module;

the seat of the control system has a maximum first height when the back support of the seat is in the first position, wherein the control system has a second maximum height when the back support is in the second position, wherein said second maximum height is less than half said first maximum height;

when seen in side view of the seat—the length of the back support of the seat is about the same as the length of the seat part of the seat.

34. Use of a control system according to claim 30, wherein said back support is moved from said first position to said second position and vice-versa.

35. Use of a control system according to claim 31, wherein said back support is moved from said first position to said second position and vice-versa.

36. Use of a control system according to claim 19 wherein said seat is adjusted for changing the maximum height of the control system.

37. Use of a control system according to claim 20 wherein said seat is adjusted for changing the maximum height of the control system.

38. Use of a control system according to claim 30 wherein said seat is adjusted for changing the maximum height of the control system.

39. Method for handling a computer simulation control system according to claim 30, wherein:

said back support is being moved to said second position for transportation and/or storage of the control system;

at least part of said control module, for example at least a steering wheel and/or at least one foot pedal, is being arranged between said seat part and said back support;

said back support is being moved from said second position to said first position for supporting at least part of the back of a user.

40. Method for handling a computer simulation control system according to claim 31, wherein:

said back support is being moved to said second position for transportation and/or storage of the control system;

at least part of said control module, for example at least a steering wheel and/or at least one foot pedal, is being arranged between said seat part and said back support;

said back support is being moved from said second position to said first position for supporting at least part of the back of a user.

41. Container, for example a box, comprising a computer simulation control system according to claim 19, wherein the back support of the seat is positioned in said second position, wherein the back support preferably extends substantially opposite the seat part of the seat.

42. Container, for example a box, comprising a computer simulation control system according to claim 20, wherein the back support of the seat is positioned in said second position, wherein the back support preferably extends substantially opposite the seat part of the seat.

43. Container, for example a box, comprising a computer simulation control system according to claim 30, wherein the back support of the seat is positioned in said second position, wherein the back support preferably extends substantially opposite the seat part of the seat.

44. Container, for example a box, comprising a computer simulation control system according to claim 31, wherein the back support of the seat is positioned in said second position, wherein the back support preferably extends substantially opposite the seat part of the seat.

45. Container according to claim 19, wherein:

at least part of said control module is located in a storage space, which storage space is at least partially enclosed by said seat part and said back support of the seat;

the inner dimensions of the container (B) are about the same as, or only slightly larger, for instance about 10% or 20% larger, than the maximum outer dimensions of the seat with the back support in the second position, measured in Cartesian x-, y- and z-directions.
46. Container according to claim 20, wherein:

at least part of said control module is located in a storage space, which storage space is at least partially enclosed by said seat part and said back support of the seat;

the inner dimensions of the container (B) are about the same as, or only slightly larger, for instance about 10% or 20% larger, than the maximum outer dimensions of the seat with the back support in the second position, measured in Cartesian x-, y- and z-directions.

47. Container according to claim 26, wherein:

at least part of said control module is located in a storage space, which storage space is at least partially enclosed by said seat part and said back support of the seat;

the inner dimensions of the container (B) are about the same as, or only slightly larger, for instance about 10% or 20% larger, than the maximum outer dimensions of the seat with the back support in the second position, measured in Cartesian x-, y- and z-directions.

48. Container according to claim 30, wherein:

at least part of said control module is located in a storage space, which storage space is at least partially enclosed by said seat part and said back support of the seat;

the inner dimensions of the container (B) are about the same as, or only slightly larger, for instance about 10% or 20% larger, than the maximum outer dimensions of the seat with the back support in the second position, measured in Cartesian x-, y- and z-directions.

49. Container according to claim 31, wherein:

at least part of said control module is located in a storage space, which storage space is at least partially enclosed by said seat part and said back support of the seat;

the inner dimensions of the container (B) are about the same as, or only slightly larger, for instance about 10% or 20% larger, than the maximum outer dimensions of the seat with the back support in the second position, measured in Cartesian x-, y- and z-directions.

* * * * *