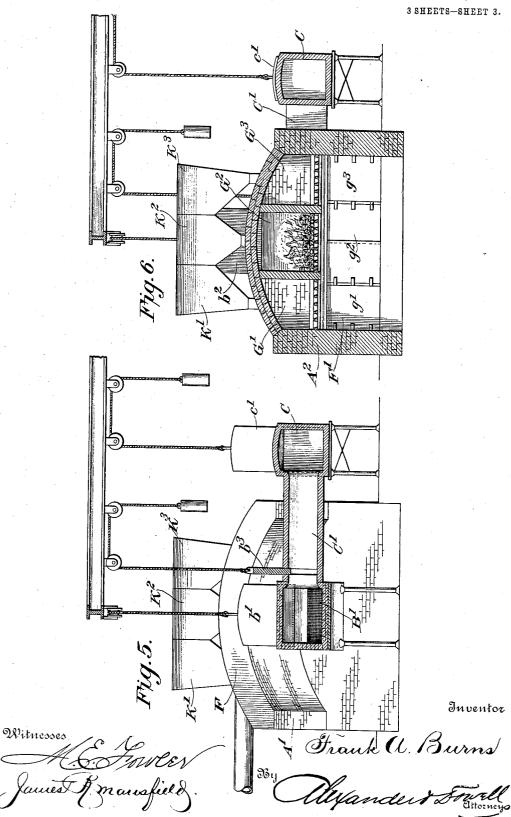

F. A. BURNS.
REVERBERATORY FURNACE,

APPLICATION FILED MAR. 10, 1910. 960,499. Patented June 7, 1910. 3 SHEETS-SHEET 1. S le ⊡ Witnesses

F. A. BURNS.
REVERBERATORY FURNACE.
APPLICATION FILED MAR. 10, 1910.

960,499.


Patented June 7, 1910

F. A. BURNS. REVERBERATORY FURNACE. APPLICATION FILED MAR. 10, 1910.

960,499.

Patented June 7, 1910.

UNITED STATES PATENT OFFICE.

FRANK A. BURNS, OF ANACONDA, MONTANA.

REVERBERATORY FURNACE.

960,499.

Specification of Letters Patent.

Patented June 7, 1910.

Application filed March 10, 1910. Serial No. 548,383.

To all whom it may concern:

Be it known that I, Frank A. Burns, of Anaconda, in the county of Deerlodge and State of Montana, have invented certain new 5 and useful Improvements in Reverberatory Furnaces; and I hereby declare that the following is a full, clear, and exact description thereof, reference being had to the accompanying drawings, which form part of this

10 specification.

This invention is an improvement in smelting furnaces, and has particular reference to reverberatory furnaces used in matte smelting; and the object of the invention is to so arrange a number of matte smelting furnaces in a battery, or series, and so connect them that the, at present, waste hot gases derived from the smelting operation in one furnace is utilized for heating another furnace or furnaces, and the ore therein, in the series, so that by the consumption of a small amount of fuel in such latter furnace, or furnaces, I can complete the smelting of the matte therein; thereby greatly economizing fuel, and saving much time, in reducing the ores, and increasing the output of the furnaces in a given time.

In the smelting of copper sulfid and like ores in a reverberatory furnace a temperature of about 2800 degrees Fabrenheit is required, and the temperature of the waste gases leaving such furnace is about 2200 Fahrenheit. An ordinary reverberatory smelting furnace having a capacity of say 35 300 tons burns approximately 60 tons of coal in every 24 hours while in operation. By my invention when two or more furnaces are used approximately one-half of this amount of coal or other fuel will be saved; and in a 40 battery of three furnaces such saving would amount to about 90 tons of coal per day; while with larger batteries of furnaces the saving in fuel would be proportionately increased

My invention in brief consists in arranging a plurality of ordinary smelting furnaces in a battery or series and connecting them in such manner that the hot heretofore waste gases issuing from one furnace may be passed through any one, or more, of the other furnaces in the battery, so as to heat the same and its contents; and at the same time any one or more of such furnaces in which ore is to be smelted may be additionally and independently heated, by using a comparatively small amount of fuel there-

in, to the temperature requisite to smelt the ore, and the waste gases from such furnace can be in turn utilized in other furnaces in the battery to preliminarily heat the same. 60

Means are provided for passing the gases from one furnace to another, and for introducing additional hot gases from the firebox or burner in the latter furnace, or furnaces; and for introducing additional air 65 thereto to maintain combustion therein and raise the temperature thereof to that requisite for smelting ore in such furnace.

The furnaces may be heated by any suitable fuel such as coal, oil, gas or wood. 70 Preferably I locate four or more reverberatory furnaces in a direct line and so connect them that the waste heat and gases from one furnace can be passed directly to and through the next without checking the draft; and for 75 this purpose the flue passages connecting the successive furnaces are gradually increased in cross sectional area so that the draft through the flues and furnaces shall not be checked by reason of the increase in the 80 volume of gases therein.

I will now describe the invention with reference to the accompanying drawings in

which-

Figure 1 represents in side elevation a battery of four smelting furnaces arranged and connected so as to embody the invention. Fig. 2 is a plan view of Fig. 1. Fig. 3 is an enlarged sectional view showing the construction of the draft flues and connections between the furnaces; intermediate parts of the furnaces being broken away so as to enable the connections to be more clearly shown. Fig. 4 is a horizontal section on line 4—4, Fig. 3. Fig. 5 is a transverse section on line 5—5, Fig. 3. Fig. 6 is a section on line 6—6, Fig. 3 showing the preferred construction of the fire-box when hard fuel is used.

In the accompanying drawings A¹, A², A² 100 and A⁴, designate four reverberatory furnaces, each of any approved type and construction, arranged in a series or battery, in accordance with my invention. Each of said furnaces is provided with a fire-chamber G which is preferably constructed as hereinafter described with reference to Fig. 6 when hard fuel is used; but when gas or oil is used for fuel the furnace may be piped with burners of any suitable construction, many 110 such being well known,

The outlet of furnace A¹ is connected by

a flue B1 with the inlet or fire-chamber of furnace A2; similarly the outlet of furnace A² is connected with the inlet or fire-chamber of furnace A3 by a flue B2; similarly the 5 outlet of furnace A3 is connected with the inlet or fire-chamber of furnace A4 by a flue B³. The flue B² is made of larger cross sectional area than the flue B¹; and the flue B3 is similarly larger than flue B2, for a The out-10 purpose hereinafter explained. let of the furnace A4, or the last furnace of the series, is connected by a flue E with an

uptake or chimney D.

Extending from a point adjacent the first furnace A¹ directly to the uptake D is a conduit C which should be of sufficient cross sectional area to accommodate all the hot waste gases which may be admitted thereto from the successive furnaces. This conduit is connected with the flues B¹, B², B³ by branches C¹, C², C³, and dampers or valves are provided, as hereinafter explained, so that the gases issuing from one furnace may be either passed directly into the next furnace, or diverted therefrom into the conduit C and passed through said conduit into any other of the furnaces, or direct to the

A fire-box or burner F1 is located at the 30 inlet end of each furnace A1, A2, A3, so that the necessary amount of fresh hot gases can be produced therein to raise the temperature of the waste furnace gases entering such furnace up to a smelting temperature.

35 Fresh air can be admitted into the furnaces A^2 , A^3 , A^4 , through apertures f in the roof of the furnaces, above the fire-chambers,-or at other convenient desired point—or points—said apertures connecting with wind boxes F to which air may be supplied by a pump or blower (not shown). This air pump or blower (not shown). This air furnishes a sufficient amount of oxygen to burn sulfur in the charge of ore in such furnaces, and to oxidize the gases admitted 45 thereinto. Each of the furnaces A^2 , A^3 , A^4 . is similarly constructed and connected to the preceding furnace-like parts being similarly lettered in the drawings.

It is an important feature of the construc-50 tion, that the flues B1, B2, B3, be of such relative cubical capacity that the gases passing into or through said flues will not be checked. The conduit C may be arranged at either side of, or above, the furnaces as may be

55 most convenient.

The flues B^1 , B^2 , B^3 , are each provided at opposite sides of the branches C^1 , C^2 , C^3 , with valves b^1 , b^2 . The branches C^1 , C^2 , C^3 of conduit C are each provided with a valve 60 b3 adjacent the flues B1, B2, B3. The conduit C is provided between the connections C¹, C², with a valve c¹; and between the connections C², C³, with a valve c²; and between the connections C³ and the flue E 65 with a valve c³. By this arrangement of

dampers or valves it will be observed that the waste gases from the furnace A1 can be passed directly into any one of the other furnaces, or directly to the uptake D. The waste gases from furnace A² can be simi- 70 larly made to traverse all the subsequent furnaces; and similarly the waste gases from furnace A3 can be made to traverse furnace A⁴. Also that any one of the battery of furnaces may be cut out of operation and 75 no waste gases passed therethrough; each furnace being capable of use independently of the others, or may be cut out of operation

for repairs.

To illustrate the method of using the fur- 80 naces, assuming that furnace A^1 is in operation, and that furnace A^2 , for example, is to be shut down for repairs; valve b^2 in flue B^1 , valve b^1 in flue B^2 , and valve c^2 in conduit C are closed, and the other valves 85 left open. The gases from furnace Λ^1 will then pass into the flue B1, thence through branch C¹ into the conduit C, and thence through branch C² and flue B² into furnace A³. After furnace A³ is heated a fire is started in its fire-box (or burners) and fresh air is admitted at the points f and smelting is carried on in furnace Λ^3 . In a similar manner any furnace can be put in operation or cut out without interfering with the smelting operations in the other furnaces. The gases from furnace A¹ could also be passed around furnace A³ by closing valve b^3 in connection C^2 , opening valve c^2 , closing valve c^3 and valve b^1 in flue B^3 and c^3 opening valve b2 in flue B3 and valve b3 in

connection C³, and opening valve c².

The number of furnaces used can be varied, and increased if desired, and a like series of furnaces could be arranged beside 105 the first series, and connected with conduit C as indicated in dotted broken lines in

To take down or repair a smelting furnace usually requires several weeks time and costs several thousands of dollars and ordinarily necessitates the shutting down of all that part of the plant; but by my invention after properly adjusting the various valves, any unit of the battery of furnaces can be torn down, and the other furnaces can be run as usual, up to practically normal capacity.

When starting up a new furnace, or one having been shut down, it is necessary to bring such furnace up to smelting heat before it can be put into operation. This is now done at great expense and loss of fuel. With my invention the waste heat from another furnace unit of the battery (except 125 the first) can be turned into the cold furnace, and it will be brought up to nearly smelting temperature without any expense for fuel.

Another advantage of my invention is the 180

reduction of flue and fuel dust which results from passing waste gases from one furnace into another; as by so doing a great deal of the dust which would ordinarily be car-5 ried to the uptake is deposited in the succeeding furnaces and reduced therein, which results in a great saving.

While I have described a battery of four furnaces it is obvious the number may be 10 varied as may be found most economical in operation, and according to the requirements

and capacity of the plant desired.

By my invention the largest smelting plants containing a number of reverberatory 15 furnaces can be operated with economy and conservation of heat and fuel as above set forth; while each furnace may have a direct draft to one main stack, and may be put into or out of operation at will.

As shown in Fig. 6 the fire-box of the fur-20 naces may be divided into three compartments G1, G2, G3, to each of which fuel may be supplied from hoppers K1, K2, K3, as shown. The flues B1, B2, B3, may be con-25 nected with the central compartment G2 of the fire-boxes of the respective furnaces A2, A^3 , A^4 . On the first furnace A^1 all three compartments can be fired; on the following furnaces A², A³, A⁴, only the compartments G² need ordinarily be fired; and the doors g^2 under said compartments may be left open on the furnaces A², A³, A⁴, when such furnaces are being used for smelting.

What I claim is:

1. In a smelting plant, the combination of a plurality of smelting furnaces, an uptake, a flue connecting the outlet of one furnace with the inlet of the next following furnace, a conduit connected with the uptake and 40 with the flues intermediate the furnaces, and dampers or valves whereby the waste gases from one furnace may be directed into the next furnace or through said conduit into another furnace in the series or to 45 the uptake.

2. In a smelting plant, the combination of a series of smelting furnaces, an uptake connected with the outlet of the last furnace in the series, a flue connecting the outlet of 50 each preceding furnace with the inlet of the next, a conduit connected with the uptake and with the said flues, and valves whereby the waste gases from one furnace may be directed into the next furnace or through said 55 conduit into another furnace in the series

or to the uptake.

3. In a smelting plant, the combination of a plurality of smelting furnaces, an uptake, a flue connecting the outlet of one fur-60 nace with the inlet of the next following furnace, a conduit connected with the uptake and with the flues intermediate the furnaces, and dampers or valves whereby the waste gases from one furnace may be di-65 rected into the next furnace or through said

conduit into another furnace in the series or to the uptake; and means for reheating and for reoxygenating the waste gases introduced into the following furnaces.

· 4. In a smelting plant, the combination of 70 a series of smelting furnaces, a flue connecting the outlet of a preceding furnace with the inlet of the next succeeding furnace, an uptake, a conduit connected with said uptake and with each connecting flue between 75 adjacent furnaces, and valves whereby the waste gases from a preceding furnace may be directed to or through any of the following furnaces in the series, the flues between the furnaces being of successively greater 80 capacity to prevent checking of the gases passing from one furnace to the next.

5. In a smelting plant, the combination of a plurality of smelting furnaces arranged in a series, a flue connecting the outlet of a 85 preceding furnace in the series with the inlet of a succeeding furnace, an uptake, a conduit connected with said uptake and with each of the connecting flues between adjacent furnaces, valves whereby the waste 90 gases from a preceding furnace may be directed to or through any one or more of the following furnaces in the series, and means for reheating and for reoxygenating the waste gases introduced into such furnaces, 95 the flues between the furnaces being of successively greater capacity to prevent checking of the gases passing from one furnace to the next.

6. In a smelting plant, the combination 100 of a series of smelting furnaces, a flue connecting the outlet of a preceding furnace with the inlet of a succeeding furnace, an uptake connected with the outlet of the last furnace of the series, a conduit connected 105 with said uptake and by branches with each of the connecting flues between adjacent furnaces, valves in said conduit and flues whereby the waste gases from a preceding furnace may be directed to or through any one or 110 more of the following furnaces in the series; means for introducing fresh fuel gases into the secondary furnaces to raise the temperature therein to the smelting point, and means for introducing air into said fur- 115 naces.

7. In a smelting plant, the combination of a series of smelting furnaces, a flue connecting the outlet of a preceding furnace with the inlet of the net succeeding furnace, the flues 120 between the furnaces being of successively greater capacity to prevent checking of the gases passing from one furnace to the next; an uptake connected with the outlet of the last furnace of the series, a conduit con- 125 nected with said uptake and with each of the connecting flues between adjacent furnaces, valves or dampers in said conduit, and flues whereby the waste gases from a preceding furnace may be directed to or through any 130

one or more of the following furnaces in the series; means for introducing fresh fuel gases into the secondary furnaces to raise the temperature therein to the smelting 5 point, and means for supplying air to said furnaces.

8. In a smelting plant, the combination of a plurality of furnaces, a flue connecting the outlet of one furnace with the fire-cham-10 ber of the next furnace, the latter furnace having its fire-chamber divided into three

compartments, and the said flue being connected with the central compartment thereof, substantially as and for the purpose described.

In testimony that I claim the foregoing as my own, I affix my signature in presence of two witnesses.

FRANK A. BURNS.

Witnesses:
John Weiss, ALFRED S. MINES.