A0 00O O

WO 01/20854 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
22 March 2001 (22.03.2001)

AT OO0 T O

(10) International Publication Number

WO 01/20854 Al

(51) International Patent Classification’:
(21) International Application Number:

(22) International Filing Date:

6 September 2000 (06.09.2000)

(25) Filing Language:

(26) Publication Language:

(30) Priority Data:
60/154,022
09/474,904

(71) Applicant:

Eindhoven (NL).

15 September 1999 (15.09.1999)
30 December 1999 (30.12.1999)

HO04L 12/413

PCT/EP00/08717

(74) Agent: DE JONG, Durk, J.; Internationaal Octrooibureau

B.V,, Prof Holstlaan 6, NL-5656 AA Eindhoven (NL).

(81) Designated States (national): JP, KR.

English

English

KONINKLIJKE PHILIPS ELECTRON-
ICS N.V. [NL/NL]; Groenewoudseweg 1, NL-5621 BA

us
Us

(72) Inventor: SLIVKOFF, William, J.; Prof. Holstlaan 6,

NL-5656 AA Eindhoven (NL).

(84) Designated States (regional): European patent (AT, BE,

CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD FOR AUTOMATICALLY TRANSMITTING AN ACKNOWLEDGE FRAME IN CANOPEN AND

OTHER CAN APPLICATION LAYER PROTOCOLS

/20

T y T

! Core Data bus 2 > YACPUCoe |22 i

i W !

; Program bus :

! a4~ 32K Bytes SFR bus :

; ROM/EPROM NPT R

H %AT / ‘:

' 26~ 1024 Bytes | OUS '
! DATARAM |~ =
: v 287 > URTO [27
i ~51
External M i
Address/ - A 28 3% e SPI *f--—
Data Bus NEUORY | MR bus /7 e
T INTERFACE :.- ----------- _;_3/38 Timer 0 .
3! €l OVA [> Timer 1 fe—
: v |__Engine | ~ 54

: o ' : ;
! ' P > Timer2 je—

: Ell 40 f MMRs 4: —p *

: ' T : :

) ! 1 Waichdog | |

R : =L gé\rN/DLL <> Timer |

Tx : ¢ . 7 ;

: — 77 5 i

«:—————-? Ports 03 e > :

S o SN !

(57) Abstract: A method for use in a CAN device
(e.g., a CAN microcontroller) that includes a processor
core, for automatically transmitting an acknowledge
message. The method includes the steps of receiving
a frame of a multi-frame fragmented message, and
automatically transmitting an acknowledgment message
without requiring any intervention of the processor core,
in response to the receiving step. The automatically
transmitting step is preferably performed by hardware
external to the processor core, e.g., a CAN/CAL module
of the CAN device. In a preferred embodiment, the
method includes the steps of setting up a first message
object having an object number n as a receive message
object, enabling the receive message object, setting
up a second message object having an object number
n+1 as a transmit message object corresponding to the
receive message object, storing the acknowledgment
message in a response message buffer associated with
the transmit message object, receiving a frame of a
multi-frame fragmented message, acceptance filtering
the received frame to determine that the received frame
matches the enabled receive message object, enabling the
transmit message object, and automatically transmitting
the acknowledgment message, without requiring any
intervention of the processor core.

10

15

20

25

WO 01/20854 PCT/EP00/08717

A method for automatically transmitting an acknowledge frame in canopen and other can

application layer protocols

This application claims the full benefit and priority of U.S. Provisional
Application Serial Number 60/154,022, filed on September 15, 1999, the disclosure of which
is fully incorporated herein for all purposes.

BACKGROUND OF THE INVENTION
The present invention relates generally to the field of data communications,
and more particularly, to the field of serial communications bus controllers and

microcontrollers that incorporate the same.

CAN (Control Area Network) is an industry-standard, two-wire serial
communications bus that is widely used in automotive and industrial control applications, as
well as in medical devices, avionics, office automation equipment, consumer appliances, and
many other products and applications. CAN controllers are currently available either as
vstand-alone devices adapted to interface with a microcontroller or as circuitry integrated into
or modules embedded in a microcontroller chip. Since 1986, CAN users (software
programmers) have developed numerous high-level CAN Application Layers (CALs) which
extend the capabilities of the CAN while employing the CAN physical layer and the CAN
frame format, and adhering to the CAN specification. CALSs have heretofore been
implemented primarily in software, with very little hardware CAL support. Consequently,
CALs have heretofore required a great deal of host CPU intervention, thereby increasing the

processing overhead and diminishing the performance of the host CPU.

Thus, there is a need in the art for a CAN hardware implementation of CAL
functions normally implemented in software in order to offload these tasks from the host
CPU to the CAN hardware, thereby enabling a great savings in host CPU processing
resources and a commensurate improvement in host CPU performance. One of the most
demanding and CPU resource-intensive CAL functions is message management, which
entails the handling, storage, and processing of incoming CAL/CAN messages received over

the CAN serial communications bus and/or outgoing CAL/CAN messages transmitted over

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
2

the CAN serial communications bus. CAL protocols, such as DeviceNet, CANopen, and
OSEK, deliver long messages distributed over many CAN frames, which methodology is
sometimes referred to as Afragmented@ or Asegmented@ messaging. The process of
assembling such fragmented, multi-frame messages has heretofore required a great deal of
host CPU intervention. In particular, CAL software running on the host CPU actively
monitors and manages the buffering and processing of the message data, in order to facilitate

the assembly of the message fragments or segments into complete messages.

Based on the above and foregoing, it can be appreciated that there presently
exists a need in the art for a hardware implementation of CAL functions normally
implemented in software in order to offload these tasks from the host CPU, thereby enabling
a great savings in host CPU processing resources and a commensurate improvement in host

CPU performance.

The assignee of the present invention has recently developed a new
microcontroller product, designated "XA-C3", that fulfills this need in the art. The XA-C3 is
the newest member of the Philips XA (eXtended Architecture) family of high performance
16-bit single-chip microcontrollers. It is believed that the XA-C3 is the first chip that
features hardware CAL support.

The XA-C3 is a CMOS 16-bit CAL/CAN 2.0B microcontrolier that
incorporates a number of different inventions, including the present invention. These
inventions include novel techniques and hardware for filtering, buffering, handling, and
processing CAL/CAN messages, including the automatic assembly of multi-frame
fragmented messages with minimal CPU intervention, as well as for managing the storage

and retrieval of the message data, and the memory resources utilized therefor.

The present invention relates to a method for writing a three-state semaphore
code to a given message buffer to indicate an access status of the given message buffer. The
application (software) running on the CPU can then read this three-state semaphore code to
determine whether the given message buffer is ready for the CPU to read, whether the given
message buffer is presently being accessed by the DMA engine (and therefore is not ready

for the CPU to read), or whether the given message buffer is presently being read by the

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
3

CPU. In this manner, the integrity of the data stored in the given message buffer is ensured,

even if the DMA engine accesses the given message buffer while a CPU read is in progress.

SUMMARY OF THE INVENTION

The present invention encompasses a method for use in a CAN device (e.g., a
CAN microcontroller) that includes a processor core, for automatically transmitting an
acknowledge message. The method includes the steps of receiving a frame of a multi-frame
fragmented message, and automatically transmitting an acknowledgment message without
requiring any intervention of the processor core, in response to the receiving step. The
automatically transmitting step is preferably performed by hardware external to the processor

core, e.g., a CAN/CAL module of the CAN device.

In a preferred embodiment, the method includes the steps of setting up a first
message object having an object number n as a receive message object, enabling the receive
message object, setting up a second message object having an object number n+1 as a
transmit message object corresponding to the receive message object, storing the
acknowledgment message in a response message buffer associated with the transmit message
object, receiving a frame of a multi-frame fragmented message, acceptance filtering the
received frame to determine that the received frame matches the enabled receive message
object, enabling the transmit message object, and automatically transmitting the

acknowledgment message, without requiring any intervention of the processor core.

In a specific implementation, the acknowledgment message includes an
acknowledgment byte defined by a governing CAL protocol, e.g., the CANopen protocol,
and the method further includes the step of copying a toggle bit included in the received
frame into a corresponding bit position of the acknowledgment byte prior to the

automatically transmitting step.

The present invention, in another of its aspects, encompasses a CAN device,

e.g., a CAN microcontroller, that implements the above-described methods.

BRIEF DESCRIPTION OF THE DRAWINGS
These and various other aspects, features, and advantages of the present

invention will be

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
4

readily understood with reference to the following detailed description of the invention read
in conjunction with the accompanying drawings, in which:

FIG. 1 is a diagram illustrating the format of a Standard CAN Frame and the
format of an Extended CAN Frame;

FIG. 2 is a diagram illustrating the interleaving of CAN Data Frames of
different, unrelated messages;

FIG. 3 is a high-level, functional block diagram of the XA-C3 microcontroller;

FIG. 4 is a table listing all of the Memory Mapped Registers (MMRs)
provided by the XA-C3 microcontroller;

FIG. 5 is a diagram illustrating the mapping of the overall data memory space
of the XA-C3 microcontroller; v

FIG. 6 is a diagram illustrating the MMR space contained within the overall
data memory space of the XA-C3 microcontroller;

FIG. 7 is a diagram illustrating formation of the base address of the on-chip
XRAM of the XA-C3 microcontroller, with an object n message buffer mapped into off-chip
data memory;

FIG. 8 is a diagram illustrating formation of the base address of the on-chip
XRAM of the XA-C3 microcontroller, with an object n message buffer mapped into the on-
chip XRAM;

FIG. 9 is a diagram illustrating the Screener ID Field for a Standard CAN
Frame, and corresponding Match ID and Mask Fields;

FIG. 10 is a diagram illustrating the Screener ID Field for an Extended CAN
Frame, and corresponding Match ID and Mask Fields;

FIG. 11 is a diagram illustrating the message storage format for fragmented
CAL messages; and,

FIG. 12 is a diagram illustrating the message storage format for fragmented

CAN messages.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention is described below in the context of a particular
implementation thereof, i.e., in the context of the XA-C3 microcontroller manufactured by
Philips Semiconductors. Of course, it should be clearly understood that the present invention
is not limited to this particular implementation, as any one or more of the various aspects and

features of the present invention disclosed herein can be utilized either individually or any

10

15

20

25

30

WO 01/20854

PCT/EP00/08717
5

combination thereof, and in any desired application, e.g., in a stand-alone CAN controller

device or as part of any other microcontroller or system.

The following terms used herein in the context of describing the preferred

embodiment of the present invention (i.e., the XA-C3 microcontroller) are defined as

follows:

Standard CAN Frame:

Extended CAN Frame:

Acceptance Filtering:

Message Object:

CAN Arbitration ID:

The format of a Standard CAN Frame is depicted in FIG. 1.

The format of an Extended CAN Frame is also depicted in
FIG. 1.

The process a CAN device implements in order to determine
if a CAN frame should be accepted or ignored and, if
accepted, to store that frame in a pre-assigned Message
Object.

A Receive RAM buffer of pre-specified size (up to 256 bytes
for CAL messages) and associated with a particular
Acceptance Filter or, a Transmit RAM buffer which the User
preloads with all necessary data to transmit a complete CAN
Data Frame. A Message Object can be considered to be a
communication channel over which a complete message, or

a succession of messages, can be transmitted.

An 11-bit (Standard CAN 2.0 Frame) or 29-bit (Extended
CAN

2.0B Frame) identifier field placed in the CAN Frame
Header.

This ID field is used to arbitrate Frame access to the CAN
bus.

Also used in Acceptance Filtering for CAN Frame reception
and

Transmit Pre-Arbitration.

10

15

20

25

30

WO 01/20854

Screener ID:

Match ID:

Mask:

CAL:

PCT/EP00/08717

A 30-bit field extracted from the incoming message which is
then used in Acceptance Filtering. The Screener ID includes
the CAN Arbitration ID and the IDE bit, and can include up

to 2 Data Bytes. These 30 extracted bits are the information
qualified by Acceptance Filtering.

A 30-bit field pre-specified by the user to which the
incoming Screener ID is compared. Individual Match IDs
for each of 32 Message Objects are programmed by the user

into designated Memory Mapped Registers (MMRs).

A 29-bit field pre-specified by the user which can override
(Mask) a Match ID comparison at any particular bit (or,
combination of bits) in an Acceptance Filter. Individual
Masks, one for each Message Object, are programmed by the
user in designated MMRs.Individual Mask patterns assure
that single Receive Objects can Screen for multiple
acknowledged CAL/CAN Frames and thus minimize the
number of Receive Objects that must be dedicated to such
lower priority Frames. This ability to Mask individual
Message Objects is an important new CAL feature.

CAN Application Layer. A generic term for any high-level
protocol which extends the capabilities of CAN while
employing the CAN physical layer and the CAN frame
format, and which adheres to the CAN specification.
Among other things, CALs permit transmission of Messages
which exceed the 8 byte data limit inherent to CAN Frames.
This is accomplished by dividing each message into
multiple packets, with each packet being transmitted as a
single CAN Frame consisting of a maximum of 8 data bytes.
Such messages are commonly referred to as "segmented" or

"fragmented" messages. The individual CAN Frames

10

15

20

25

30

WO 01/20854

Fragmented Message:

Message Buffer:

MMR:

PCT/EP00/08717
7

constituting a complete fragmented message are not typically
transmitted in a contiguous fashion, but rather, the individual
CAN Frames of different, unrelated messages are interleaved

on the CAN bus, as is illustrated in FIG. 2

A lengthy message (in excess of 8 bytes) divided into data
packets and transmitted using a sequence of individual CAN
Frames. The specific ways that sequences of CAN Frames
construct these lengthy messages is defined within the
context of a specific CAL. The XA-C3 microcontroller
automatically re-assembles these packets into the original,
lengthy message in hardware and reports (via an interrupt)
when the completed (re-assembled) message is available as

an associated Receive Message Object.

A block of locations in XA Data memory where incoming
(received) messages are stored or where outgoing (transmit)

messages are staged.

Memory Mapped Register. An on-chip
command/control/status register whose address is mapped
into XA Data memory space and is accessed as Data
memory by the XA processor. With the XA-C3
microcontroller, a set of eight dedicated MMRs are
associated with each Message Object. Additionally, there
are several MMRs whose bits control global parameters that

apply to all Message Objects.

With reference now to FIG. 3, there can be seen a high-level block diagram of

the XA-C3 microcontroller 20. The XA-C3 microcontroller 20 includes the following

functional blocks that are fabricated on a single integrated circuit (IC) chip packaged in a 44-
pin PLCC or a 44-pin LQFP package:

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
8

an XA CPU Core 22, that is currently implemented as a 16-bit fully static CPU
with 24-bit program and data address range, that is upwardly compatible with the 80C51
architecture, and that has an operating frequency of up to 30 MHz;

a program or code memory 24 that is currently implemented as a 32K
ROM/EPROM, and that is bi-directionally coupled to the XA CPU Core 22 via an internal
Program bus 25. A map of the code memory space is depicted in FIG. 4;

a Data RAM 26 (internal or scratch pad data memory) that is currently
implemented as a 1024 Byte portion of the overall XA-C3 data memory space, and that is bi-
directionally coupled to the XA CPU Core 22 via an internal DATA bus 27,

an on-chip message buffer RAM or XRAM 28 that is currently implemented
as a 512 Byte portion of the overall XA-C3 data memory space which may contain part or all
of the CAN/CAL (Transmit & Receive Object) message buffers;

a Memory Interface (MIF) unit 30 that provides interfaces to generic memory
devices such as SRAM, DRAM, flash, ROM, and EPROM memory devices via an external

address/data bus 32, via an internal Core Data bus 34, and via an internal MMR bus 36;

a DMA engine 38 that provides 32 CAL DMA Channels;

a plurality of on-chip Memory Mapped Registers (MMRs) 40 that are mapped
to the overall XA-C3 data memory space - - a 4K Byte portion of the overall XA-C3 data
memory space is reserved for MMRs. These MMRs include 32 (Message) Object or Address
Pointers and 32 ID Screeners or Match IDs, corresponding to the 32 CAL Message Objects.
A complete listing of all MMRs is provided in the Table depicted in FIG. 5;

a2.0B CAN/DLL Core 42 that is the CAN Controller Core from the Philips
SJA1000 CAN (2.0A/B) Data Link Layer (CDLL) device (hereinafter referred to as the
"CAN Core Block" (CCB)); and,

an array of standard microcontroller peripherals that are bi-directionally

coupled to the XA CPU Core 22 via a Special Function Register (SFR) bus 43. These

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
9

standard microcontroller peripherals include Universal Asynchronous Receiver Transmitter
(UART) 49, an SPI serial interface (port) 51, three standard timers/counters with toggle
output capability, namely, Timer 0 & Timer 1 included in Timer block 53, and Timer 2
included in Timer block 54, a Watchdog Timer 55, and four 8-bit /O ports, namely, Ports 0-3

included in block 61, each of which has 4 programmable output configurations.

The DMA engine 38, the MMRs 40, and the CCB 42 can collectively be
considered to constitute a CAN/CAL module 77, and will be referred to as such at various
times throughout the following description. Further, the particular logic elements within the
CAN/CAL module 77 that perform "message management" and "message handling"
functions will sometimes be referred to as the "message management engine" and the
"message handler”, respectively, at various times throughout the following description.
Other nomenclature will be defined as it introduced throughout the following description.

As previously mentioned, the XA-C3 microcontroller 20 automatically
implements, in hardware, many message management and other functions that were
previously only implemented in software running on the host CPU (or not implemented at
all), including transparent, automatic re-assembly of up to 32 concurrent, interleaved, multi-
frame, fragmented CAL messages. For each application that is installed to run on the host
CPU (i.e., the XA CPU Core 22), the user (software programmer) must set-up the hardware
for performing these functions by programming certain ones of the MMRs and SFRs in the
manner set forth in the XA-C3 Functional Specification and XA-C3 CAN Transport Layer
Controller User Manual. The register programming procedures that are most relevant to an
understanding of the present invention are described below, followed by a description of the
various message management and other functions that are automatically performed by the
CAL/CAN module 77 during operation of the XA-C3 microcontroller 20 after it has been
properly set-up by the user. Following these sections, a more detailed description of the

particular invention to which this application is directed is provided.

Set-up/Programming Procedures

As an initial matter, the user must map the overall XA-C3 data memory space,
as illustrated in FIG. 5. In particular, subject to certain constraints, the user must specify the
starting or base address of the XRAM 28 and the starting or base address of the MMRs 40.
The base address of the MMRs 40 can be specified by appropriately programming Special

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
10

Function Registers (SFRs) MRBL and MRBH. The base address of the XRAM 28 can be
specified by appropriately programming the MMRs designated MBXSR and XRAMB (see
FIG. 4).

The user can place the 4KByte space reserved for MMRs 40 anywhere within
the entire 16 Mbyte data memory space supported by the XA architecture, other than at the
very bottom of the memory space (i.e., the first IKByte portion, starting address of 000000h),
where it would conflict with the on-chip Data RAM 26 that serves as the internal or scratch-
pad memory. The 4KBytes of MMR space will always start at a 4K boundary. The reset
values for MRBH and MRBL are 0Fh and FOh, respectively. Therefore, after a reset, the
MMR space is mapped to the uppermost 4K Bytes of Data Segment 0Fh, but access to the
MMRs 40 is disabled. The first 512 Bytes (offset 000h - 1FFh) of MMR space are the
Message Object Registers (eight per Message Object) for objects n = 0 - 31, as is shown in
FIG. 6.

The base address of the XRAM 28 is determined by the contents of the MMRs
designated MBXSR and XRAMB, as is shown in FIGs. 7 and 8. As previously mentioned,
the 512 Byte XRAM 28 is where some (or all) of the 32 (Rx/Tx) message buffers
(corresponding to Message Objects n =0 - 31) reside. The message buffers can be extended
off-chip to a maximum of 8 KBytes. This off-chip expansion capability can accommodate up
to thirty-two, 256-Byte message buffers. Since the uppermost 8 bits of all message buffer
addresses are formed by the contents of the MBXSR register, the XRAM 28 and all 32
message buffers must reside in the same 64K Byte data memory segment. Since the XA-C3
microcontroller 20 only provides address lines A0-A19 for accessing external memory, all
external memory addresses must be within the lowest 1MByte of address space. Therefore, if
there is external memory in the system into which any of the 32 message buffers will be
mapped, then all 32 message buffers and the XRAM 28 must also be mapped entirely into
that same 64K Byte segment, which must be below the 1MByte address limit.

After the memory space has been mapped, the user can set-up or define up to
32 separate Message Objects, each of which can be either a Transmit (Tx) or a Receive (Rx)
Message Object. A Rx Message Object can be associated either with a unique CAN ID, or
with a set of CAN IDs which share certain ID bit fields. As previously mentioned, each
Message Object has its own reserved block of data memory space (up to 256 Bytes), which is

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
11

referred to as that Message Object's message buffer. As will be seen, both the size and the

base address of each Message Object's message buffer is programmable.

As previously mentioned, each Message Object is associated with a set of
eight MMRs 40 dedicated to that Message Object. Some of these registers function
differently for Tx Message Objects than they do for Rx Message Objects. These eight
MMRs 40 are designated "Message Object Registers" (see FIG. 4).

The names of these eight MMRs 40 are:

MnMIDH Message n Match ID High
MnMIDL Message n Match ID Low
MnMSKH Message n Mask High
MnMSKL Message n Mask Low
MnCTL Message n Control

MnBLR Message n Buffer Location Register
MnBSZ Message n Buffer Size

®© N o v kv D=

MnFCR Message n Fragment Count Register

where n ranges from 0 to 31 (i.e., corresponding to 32 independent Message Objects).

In general, the user defines or sets up a Message Object by configuring
(programming) some or all of the eight MMRs dedicated to that Message Object, as will be
described below. Additionally, as will be described below, the user must configure
(program) the global GCTL register, whose bits control global parameters that apply to all
Message Objects.

In particular, the user can specify the Match ID value for each Message Object
to be compared against the Screener IDs extracted from incoming CAN Frames for
Acceptance Filtering. The Match ID value for each Message Object n is specified in the
MnMIDH and MnMIDL registers associated with that Message Object n. The user can mask
any Screener ID bits which are not intended to be used in Acceptance Filtering, on an object-
by-object basis, by writing a logic '1" in the desired (to-be-masked) bit position(s) in the
appropriate MnMSKH and/or MnMSKL registers associated with each particular Message

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
12

Object n. The user is responsible, on set-up, for assigning a unique message buffer location
for each Message Object n. In particular, the user can specify the least significant 16 bits of
the base address of the message buffer for each particular Message Object n by programming
the MnBLR register associated with that Message Object n. The upper 8 bits of the 24-bit
address, for all Message Objects, are specified by the contents of the MBXSR register, as
previously discussed, so that the message buffers for all Message Objects reside within the
same 64KByte memory segment. The user is also responsible, on set-up, for specifying the
size of the message buffer for each Message Object n. In particular, the user can specify the
size of the message buffer for each particular Message Object n by programming the MnBSZ
register associated with that Message Object n. The top location of the message buffer for
each Message Object n is determined by the size of that message buffer as specified in the

corresponding MnBSZ register.

The user can configure (program) the MnCTL register associated with each
particular Message Object n in order to enable or disable that Message Object n, in order to
define or designate that Message Object n as a Tx or Rx Message Object; in order to enable
or disable automatic hardware assembly of fragmented Rx messages (i.e., automatic
fragmented message handling) for that Message Object n; in order to enable or disable
autornatic generation of a Message-Complete Interrupt for that Message Object n; and, in
order to enable or not enable that Message Object n for Remote Transmit Request (RTR)
handling. In CANopen and OSEK systems, the user must also initialize the MnFCR register

associated with each Message Object n.

As previously mentioned, on set-up, the user must configure (program) the
global GCTL register, whose bits control global parameters that apply to all Message
Objects. In particular, the user can configure (program) the GCTL register in order to specify
the high-level CAL protocol (if any) being used (e.g., DeviceNet, CANopen, or OSEK); in
order to enable or disable automatic acknowledgment of CANopen Frames (CANopen auto-
acknowledge); and, in order to specify which of two transmit (Tx) pre-arbitration
schemes/policies is to be utilized (i.e., either Tx pre-arbitration based on CAN ID, with the
object number being used as a secondary tie-breaker, or Tx pre-arbitration based on object

number only).

Receive Message Obiects and the Receive Process

10

15

20

25

30

WO 01/20854

PCT/EP00/08717
13

During reception (i.e., when an incoming CAN Frame is being received by the

XA-C3 microcontroller 20), the CAN/CAL module 77 will store the incoming CAN Frame in

a temporary (13-Byte) buffer, and determine whether a complete, error-free CAN frame has

been successfully received. If it is determined that a complete, error-free CAN Frame has

been successfully received, then the CAN/CAL module 77 will initiate Acceptance Filtering

in order to determine whether to accept and store that CAN Frame, or to ignore/discard that

CAN Frame.

Acceptance Filtering

In general, because the XA-C3 microcontroller 20 provides the user with the

ability to program separate Match ID and Mask fields for each of the 32 independent

Message Objects, on an object-by-object basis, as described previously, the Acceptance

Filtering process performed by the XA-C3 microcontroller 20 can be characterized as a

"match and mask" technique. The basic objective of this Acceptance Filtering process is to

determine whether a Screener ID field of the received CAN Frame (excluding the "don't

care" bits masked by the Mask field for each Message Object) matches the Match ID of any

enabled one of the 32 Message Objects that has been designated a Receive Message Object.

If there is a match between the received CAN Frame and more than one Message Object,

then the received CAN Frame will be deemed to have matched the Message Object with the

lowest object number (n).

ey

Acceptance Filtering is performed as follows by the XA-C3 microcontroller

20:

A Screener ID field is extracted from the incoming (received) CAN Frame.

In this regard, the Screener ID field that is assembled from the incoming bit
stream is different for Standard and Extended CAN Frames. In particular, as
is illustrated in FIG. 9, the Screener ID field for a Standard CAN Frame is 28
bits, consisting of 11 CAN ID bits extracted from the header of the received
CAN Frame + 2x8 (16) bits from the first and second data bytes (Data Byte 1
and Data Byte 2) of the received CAN Frame + the IDE bit. Thus, the user is
required to set the Msk1 and MskO bits in the Mask Field (MnMSKL register)
for Standard CAN Frame Message Objects, i.e., to "don't care". In addition, in

many applications based on Standard CAN Frames, either Data Byte 1, Data

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
14

Byte 2, or both do not participate in Acceptance Filtering. In those
applications, the user must also mask out the unused Data Byte(s). The IDE
bit is not maskable. As is illustrated in FIG. 10, the Screener ID field for an
Extended CAN Frame is 30 bits, consisting of 29 CAN ID bits extracted from
the header of the incoming CAN Frame + the IDE bit. Again, the IDE bit is

not maskable.

2 The assembled Screener ID field of the received CAN Frame is then
sequentially compared to the corresponding Match ID values specified in the
MnMIDH and MnMIDL registers for all currently enabled Receive Message
Objects. Of course, any bits in the Screener ID field that are masked by a
particular Message Object are not included in the comparison. That is, if
there is a '1' in a bit position of the Mask field specified in the MnMSKH and
Mn MSKL registers for a particular Message Object, then the corresponding
bit position in the Match ID field for that particular Message Object becomes
a "don't care", i.e., always yields a match with the corresponding bit of the

Screener ID of the received CAN Frame.

3) If the above comparison process yields a match with more than one Message
Object, then the received CAN Frame will be deemed to have matched the

Message Object having the lowest object number (n).

Message Storage:

Each incoming (received) CAN Frame that passes Acceptance Filtering, will
be automatically stored, via the DMA engine 38, into the message buffer for the Receive
Message Object that particular CAN Frame was found to have matched. In an exemplary

implementation, the message buffers for all Message Objects are contained in the XRAM 28.

Message Assembly:

In general, the DMA engine 38 will transfer each accepted CAN Frame from
the 13-byte pre-buffer to the appropriate message buffer (e.g., in the XRAM 28), one word at
a time, starting from the address pointed to by the contents of the MBXSR and MnBLR

registers. Every time the DMA engine 38 transfers a byte or a word, it has to request the bus.

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
15

In this regard, the MIF unit 30 arbitrates between accesses from the XA CPU Core 22 and
from the DMA engine 38. In general, bus arbitration is done on an "alternate" policy. After
a DMA bus access, the XA CPU Core 22 will be granted bus access, if requested. After an
XA CPU bus access, the DMA engine 38 will be granted bus access, if requested. (However,
a burst access by the XA CPU Core 22 cannot be interrupted by a DMA bus access).

Once bus access is granted by the MIF unit 30, the DMA engine 38 will write
data from the 13-byte pre-buffer to the appropriate message buffer location. The DMA
engine 38 will keep requesting the bus, writing message data sequentially to the appropriate
message buffer location until the whole accepted CAN Frame is transferred. After the DMA
engine 38 has successfully transferred an accepted CAN Frame to the appropriate message
buffer location, the contents of the message buffer will depend upon whether the message
that the CAN Frame belongs to is a non-fragmented (single frame) message or a fragmented

message. Each case is described below:

Non-Fragmented Message Assembly:

For Message Objects that have been set up with automatic fragmented
message handling disabled (not enabled - - i.., the FRAG bit in the MnCTL register for that
Message Object is set to '0"), the complete CAN ID of the accepted CAN Frame (which is
either 11 or 29 bits, depending on whether the accepted CAN Frame is a Standard or
Extended CAN Frame) is written into the MnMIDH and MnMIDL registers associated with
the Message Object that has been deemed to constitute a match, once the DMA engine 38 has
successfully transferred the accepted CAN Frame to the message buffer associated with that
Message Object. This will permit the user application to see the exact CAN ID which
resulted in the match, even if a portion of the CAN ID was masked for Acceptance Filtering.
As a result of this mechanism, the contents of the MnMIDH and MnMIDL registers can
change every time an incoming CAN Frame is accepted. Since the incoming CAN Frame
must pass through the Acceptance Filter before it can be accepted, only the bits that are
masked out will change. Therefore, the criteria for match and mask Acceptance Filtering will
not change as a result of the contents of the MnMIDH and MnMIDL registers being changed
in response to an accepted incoming CAN Frame being transferred to the appropriate

message buffer.

Fragmented Message Assembly:

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
16

For Message Objects that have been set up with automatic fragmented
message handling enabled (i.e., with the FRAG bit in the MnCTL register for that Message
Object set to '1"), masking of the 11/29 bit CAN ID field is disallowed. As such, the CAN ID
of the accepted CAN Frame is known unambiguously, and is contained in the MnMIDH and
MnMIDL registers associated with the Message Object that has been deemed to constitute a
match. Therefore, there is no need to write the CAN ID of the accepted CAN Frame into the
MnMIDH and MnMIDL registers associated with the Message Object that has been deemed

to constitute a match.

As subsequent CAN Frames of a fragmented message are received, the new
data bytes are appended to the end of the previously received and stored data bytes. This
process continues until a complete multi-frame message has been received and stored in the

appropriate message buffer.

Under CAL protocols DeviceNet, CANopen, and OSEK, if a Message Object
is an enabled Receive Message Object, and its associated MnCTL register has its FRAG bit
set to '1' (i.e., automatic fragmented message assembly is enabled for that particular Receive
Message Object), then the first data byte (Data Byte 1) of each received CAN Frame that
matches that particular Receive Message Object will be used to encode fragmentation
information only, and thus, will not be stored in the message buffer for that particular
Receive Message Object. Thus, message storage for such "FRAG-enabled" Receive Message
Objects will start with the second data byte (Data Byte 2) and proceed in the previously-
described manner until a complete multi-frame message has been received and stored in the
appropriate message buffer. This message storage format is illustrated in FIG. 11. The
message handler hardware will use the fragmentation information contained in Data Byte 1

of each CAN Frame to facilitate this process.

Under the CAN protocol, if a Message Object is an enabled Receive Message
Object, and its associated MnCTL register has its FRAG bit set to '1' (i.e., automatic
fragmented message assembly is enabled for that particular Receive Message Object), then
the CAN Frames that match that particular Receive Message Object will be stored
sequentially in the message buffer for that particular Receive Message Object using the

format shown in FIG. 12.

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
17

When writing message data into a message buffer associated with a Message
Object n, the DMA engine 38 will generate addresses automatically starting from the base
address of that message buffer (as specified in the MnBLR register associated with that
Message Object n). Since the size of that message buffer is specified in the MnBSZ register
associated with that Message Object n, the DMA engine 38 can determined when it has
reached the top location of that message buffer. If the DMA engine 38 determines that it has
reached the top location of that message buffer, and that the message being written into that
message buffer has not been completely transferred yet, the DMA engine 38 will wrap
around by generating addresses starting from the base address of that message buffer again.
Some time before this happens, a warning interrupt will be generated so that the user

application can take the necessary action to prevent data loss.

The message handler will keep track of the current address location of the
message buffer being written to by the DMA engine 38, and the number of bytes of each
CAL message as it is being assembled in the designated message buffer. After an "End of
Message" for a CAL message is decoded, the message handler will finish moving the
complete CAL message and the Byte Count into the designated message buffer via the DMA
engine 38, and then generate an interrupt to the XA CPU Core 22 indicating that a complete

message has been received.

Since Data Byte 1 of each CAN Frame contains the fragmentation
information, it will never be stored in the designated message buffer for that CAN Frame.
Thus, up to seven data bytes of each CAN Frame will be stored. After the entire message has
been stored, the designated message buffer will contain all of the actual informational data
bytes received (exclusive of fragmentation information bytes) plus the Byte Count at location

00 which will contain the total number of informational data bytes stored.

It is noted that there are several specific user set-up/programming procedures
that must be followed when invoking automatic hardware assembly of fragmented OSEK and
CANopen messages. These and other particulars can be found in the XA-C3 CAN Transport
Layer Controller User Manual that is part of the parent Provisional Application Serial No.
60/154,022, the disclosure of which has been fully incorporated herein for all purposes.

Transmit Message Objects and the Transmit Process

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
18

In order to transmit a message, the XA application program must first
assemble the complete message and store it in the designated message buffer for the
appropriate Transmit Message Object n. The message header (CAN ID and Frame
Information) must be written into the MnMIDH, MnMIDL, and MnMSKH registers
associated with that Transmit Message Object n. After these steps are completed, the XA
application is ready to transmit the message. To initiate a transmission, the object enable bit
(OBJ_EN bit) of the MnCTL register associated with that Transmit Message Object n must
be set, except when transmitting an Auto-Acknowledge Frame in CANopen. This will allow
this ready-to-transmit message to participate in the pre-arbitration process. In this
connection, if more than one message is ready to be transmitted (i.e., if more than one
Transmit Message Object is enabled), a Tx Pre-Arbitration process will be performed to
determine which enabled Transmit Message Object will be selected for transmission. There
are two Tx Pre-Arbitration policies which the user can choose between by setting or clearing

the Pre_Arb bit in the GCTL register.

After a Tx Message Complete interrupt is generated in response to a
determination being made by the message handler that a completed message has been
successfully transmitted, the Tx Pre-Arbitration process is "reset", and begins again. Also, if
the "winning" Transmit Message Object subsequently loses arbitration on the CAN bus, the
Tx Pre-Arbitration process gets reset and begins again. If there is only one Transmit
Message Object whose OBJ_EN bit is set, it will be selected regardless of the Tx Pre-
Arbitration policy selected.

Once an enabled Transmit Message Object has been selected for transmission,
the DMA engine 38 will begin retrieving the transmit message data from the message buffer
associated with that Transmit Message Object, and will begin transferring the retrieved
transmit message data to the CCB 42 for transmission. The same DMA engine and address
pointer logic is used for message retrieval of transmit messages as is used for message
storage of receive messages, as described previously. Further, message buffer location and
size information is specified in the same way, as described previously. In short, when a
transmit message is retrieved, it will be written by the DMA engine 38 to the CCB 42
sequentially. During this process, the DMA engine 38 will keep requesting the bus; when
bus access is granted, the DMA engine 38 will sequentially read the transmit message data

from the location in the message buffer currently pointed to by the address pointer logic; and,

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
19

the DMA engine 38 will sequentially write the retrieved transmit message data to the CCB
42. Tt is noted that when preparing a message for transmission, the user application must not
include the CAN ID and Frame Information fields in the transmit message data written into
the designated message buffer, since the Transmit (Tx) logic will retrieve this information

directly from the appropriate MnMIDH, MnMIDL, and MnMSKH registers.

The XA-C3 microcontroller 20 does not handle the transmission of
fragmented messages in hardware. It is the user's responsibility to write each CAN Frame of
a fragmented message to the appropriate message buffer, enable the associated Transmit
Message Object for transmission, and wait for a completion before writing the next CAN
Frame of that fragmented message to the appropriate message buffer. The user application
must therefore transmit multiple CAN Frames one at a time until the whole multi-frame,
fragmented transmit message is successfully transmitted. However, by using multiple
Transmit Message Objects whose object numbers increase sequentially, and whose CAN IDs
have been configured identically, several CAN Frames of a fragmented transmit message can

be queued up and enabled, and then transmitted in order.

To avoid data corruption when transmitting messages, there are three possible

approaches:

1. If the Tx Message Complete interrupt is enabled for the transmit message, the
user application would write the next transmit message to the designated
transmit message buffer upon receipt of the Tx Message Complete interrupt.
Once the interrupt flag is set, it is known for certain that the pending transmit

message has already been transmitted.

2. Wait until the OBJ_EN bit of the MnCTL register of the associated Transmit
Message Object clears before writing to the associated transmit message
buffer. This can be accomplished by polling the OBJ_EN bit of the MnCTL

register of the associated Transmit Message Object.

3. Clear the OBJ_EN bit of the MnCTL register of the associated Transmit
Message Object while that Transmit Message Object is still in Tx Pre-
Arbitration.

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
20

In the first two cases above, the pending transmit message will be transmitted
completely before the next transmit message gets transmitted. For the third case above, the
transmit message will not be transmitted. Instead, a transmit message with new content will

enter Tx Pre-Arbitration.

There is an additional mechanism that prevents corruption of a message that is
being transmitted. In particular, if a transmission is ongoing for a Transmit Message Object,
the user will be prevented from clearing the OBJ_EN bit in the MnCTL register associated
with that particular Transmit Message Object.

CAN/CAL RELATED INTERRUPTS
The CAN/CAL module 77 of the XA-C3 microcontroller 20 is presently
configured to generate the following five different Event interrupts to the XA CPU Core 22:

Rx Message Complete
Tx Message Complete
Rx Buffer Full

Message Error

ARSI S

Frame Error

For single-frame messages, the "Message Complete" condition occurs at the
end of the single frame. For multi-frame (fragmented) messages, the "Message Complete”
condition occurs after the last frame is received and stored. Since the XA-C3 microcontroller
20 hardware does not recognize or handle fragmentation for transmit messages, the Tx
Message Complete condition will always be generated at the end of each successfully

transmitted frame.

As previously mentioned, there is a control bit associated with each Message
Object indicating whether a Message Complete condition should generate an interrupt, or just
set a "Message Complete Status Flag" (for polling) without generating an interrupt. This is
the INT_EN bit in the MnCTL register associated with each Message Object n.

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
' 21

There are two 16-bit MMRs 40, MCPLH and MCPLL, which contain the
Message Complete Status Flags for all 32 Message Objects. When a Message Complete (Tx
or Rx) condition is detected for a particular Message Object, the corresponding bit in the
MCPLH or MCPLL register will be set. This will occur regardless of whether the INT_EN
bit is set for that particular Message Object (in its associated MnCTL register), or whether
Message Complete Status Flags have already been set for any other Message Objects.

In addition to these 32 Message Complete Status Flags, there is a Tx Message
Complete Interrupt Flag and an Rx Message Complete Interrupt Flag, corresponding to bits
[1] and [0], respectively, of an MMR 40 designated CANINTFLG, which will generate the
actual Event interrupt requests to the XA CPU Core 22. When an End-of-Message condition
occurs, at the same moment that the Message Complete Status Flag is set, the appropriate Tx
or Rx Message Complete Interrupt flip-flop will be set provided that INT_EN = 1 for the

associated Message Object, and provided that the interrupt is not already set and pending.

Further details regarding the generation of interrupts and the associated
registers can be found in the XA-C3 Functional Specification and in the XA-C3 CAN
Transport Layer Controller User Manual, both of which are part of the parent Provisional
Application Serial No. 60/154,022, the disclosure of which has been fully incorporated herein
for all purposes.

THE PRESENT INVENTION

Some CAL protocols, most notably the CANopen protocol, require an
acknowledgment message to be transmitted by a receiving CAN device in response to each
CANopen Frame received by the receiving CAN device, even though the CANopen protocol
supports multi-frame, fragmented messages. Interrupting the XA-C3 CPU Core 22
(hereinafter referred to sometimes as simply the "processor core") following reception of
each CANopen Frame of a fragmented, multi-frame CANopen message, in order to permit it
to transmit the required acknowledgment, would seriously undermine the major advantages
that inure from the automatic hardware assembly of multi-frame, fragmented messages
provided by the XA-C3 microcontroller 20. Thus, in accordance with the present invention,
the XA-C3 microcontroller 20 permits the hardware to automatically issue the required
acknowledgments under the CANopen protocol, without interrupting the processor core 22

and with no significant increase in die cost. It should be noted that this so-called "automatic

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
22

(or "auto-") acknowledgment" feature is only advantageous for fragmented messages, and
high-level CAL protocols, such as CANopen, that require such acknowledgments to be
issued. Messages which are completely contained within a single CAN Frame will generate
End-of-Message interrupts to the processor core 22 anyway, so there would be no added

value or benefit in having the hardware automatically issue an acknowledgment.

In overview, the basic scheme for effectuating the auto-acknowledgment
feature involves having the software (i.e., the application running on the processor core 22)
set up a dedicated "Response” Message Object corresponding to each Receive Message
Object requiring acknowledgment. Each such Response Message Object must be designated
as a Transmit Message Object, and must be assigned an object number immediately
following the object number of the associated Receive Message Object. For example, if
Message Object n = 13 is a Receive Message Object for a fragmented message which
requires acknowledgments to be issued, then Message Object n = 14 would be set up by the
software as a Transmit Message Object containing the requisite response code for Message

Object n=13.

More particularly, the auto-acknowledgment feature is implemented in the
following manner in the XA-C3 microcontroller 20. Assuming that the CAL protocol
specified in the Global Control (GCTL) Register is CANopen (by virtue of the [Prtcll and
Prtcl0] bits being set to 00), then the auto-acknowledgment feature can be enabled by virtue
of the user (application) setting the Auto_Ack bit in the GCTL Register to '1".

Assume that an enabled Receive Message Object n has been set up with
automatic hardware assembly of fragmented messages enabled (i.e., with the FRAG bit in the
MnCTL Register associated with that Receive Message Object n set to '1'). The Message
Object n+1 is set up with the OBJ_EN bit in the Mn+1CTL Register associated with that
Message Object n+1 not set to '1', i.e., with the OBJ_EN bit cleared to '0' = disabled. The
user (software) must store the proper "Acknowledgment Byte", as defined by the CALopen
protocol specification, in byte offset 0 of the message buffer associated with the Message
Object n+1. Bit position [4] is a "don't care", because the CAN/CAL module 77 will
automatically insert the toggle bit value from the incoming CANopen Frame into the toggle

bit position [4] of the outgoing auto-acknowledge Frame, as will be described below.

10

15

20

25

WO 01/20854 PCT/EP00/08717
23

Assume that the auto-acknowledge feature has been enabled, and assume that
an incoming CANopen Frame is successfully received, passes through the Acceptance
Filtering process, and is deemed to match the enabled Receive Message Object n. With the
above set-up, the following steps are automatically implemented, in hardware, by the
CAN/CAL module 77.

More particularly, the CAN/CAL module 77 will automatically set the
OBJ_EN and Tx bits in the Mn+1CTL Register associated with the matching Message Object
n+1 to '1", thereby enabling that Message Object as a Transmit Message Object. This will
activate that Transmit Message Object n+1, and cause it to be included in the Transmit Pre-
Arbitration process, as previously described. The acknowledgment Frame stored in the
message buffer associated with that Transmit Message Object n+1 will be automatically
retrieved and transmitted as soon as its priority permits. As previously mentioned, the
CANopen protocol specifies that the state of a control bit, termed the "toggle bit", contained
in the identifier field of the incoming CANopen Frame, must be reflected in the
acknowledgment Frame. In this connection, the CAN/CAL module 77 of the XA-C3
microcontroller 22 includes logic that automatically copies the toggle bit of the incoming
CANopen Frame into the corresponding bit position [4] of the acknowledgment Frame stored
in the message buffer associated with the Transmit Message Object n+1 before it is enabled

for transmit (Tx).

Although the present invention has been described in detail hereinabove in the
context of a specific preferred embodiment/implementation, it should be clearly understood
that many variations, modifications, and/or alternative embodiments/implementations of the
basic inventive concepts taught herein which may appear to those skilled in the pertinent art
will still fall within the spirit and scope of the present invention, as defined in the appended

claims.

10

15

20

25

WO 01/20854 PCT/EP00/08717
24

CLAIMS:

1. In a CAN device (20) that includes a processor core (22), a method for
automatically transmitting an acknowledge message, the method including the steps of:
receiving a frame of a multi-frame fragmented message; and,
automatically transmitting an acknowledgment message without requiring any

intervention of the processor core (22), in response to the receiving step.

2. The method as set forth in Claim 1, wherein the automatically transmitting

step is performed by hardware external to the processor core (22).

3. The method as set forth in Claim 2, wherein the hardware external to the

processor core (22) includes a CAN/CAL module (77).

4. The method as set forth in Claim 1, wherein the CAN device (20) is enabled to

operate under a CAL protocol that requires transmission of the acknowledgment message.

5. The method as set forth in Claim 4, wherein the CAL protocol comprises the
CANopen protocol.
6. The method as set forth in Claim 1, wherein the acknowledgment message is

stored in a response message buffer (28) associated with a designated transmit message

object.

7. The method as set forth in Claim 6, wherein the acknowledgment message
includes an acknowledgment byte defined by a governing CAL protocol.

8. The method as set forth in Claim 7, wherein the acknowledgment byte is

stored in the response message buffer (28) by an application running on the processor core
(22).

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
25

9. The method as set forth in Claim 7, wherein the acknowledgment byte is

stored in the response message buffer (28) by a user during an object set-up procedure.

10. The method as set forth in Claim 7, wherein the governing CAL protocol is the
CANopen protocol.

11. The method as set forth in Claim 10, further including the step of copying a
toggle bit included in the received frame into a corresponding bit position of the

acknowledgment byte.

12. The method as set forth in Claim 6, wherein the transmit message object
comprises a message object having an object number n+1 that is assigned to a receive

message object having an object number n by a user during an object set-up procedure.

13. The method as set forth in Claim 1, further including the steps of:

setting up a first message object having an object number n as a receive
message object;

enabling the receive message object;

setting up a second message object having an object number n+1 as a transmit
message object corresponding to the receive message object; and,

storing the acknowledgment message in a response message buffer associated
with the transmit message object;

wherein each of the above-recited steps is performed prior to the receiving

step.

14. The method as set forth in Claim 13, wherein the acknowledgment message

includes an acknowledgment byte defined by a governing CAL protocol.

15. The method as set forth in Claim 14, wherein the governing CAL protocol is
the CANopen protocol.
16. The method as set forth in Claim 15, further including the step of copying a

toggle bit included in the received frame into a corresponding bit position of the

acknowledgment byte.

10

15

20

25

30

WO 01/20854 PCT/EP00/08717
26

17. The method as set forth in Claim 13, further including the steps of:
acceptance filtering the received frame to determine that the received frame
matches the enabled receive message object; and,
enabling the transmit message object;
wherein the above-recited steps are performed between the receiving and the

automatically transmitting steps.

18. In a CAN device (20) that includes a processor core (22), a method for
automatically transmitting an acknowledge message, the method including the steps of:

setting up a first message object having an object number n as a receive
message object;

enabling the receive message object;

setting up a second message object having an object number n+1 as a transmit
message object corresponding to the receive message object;

storing the acknowledgment message in a response message buffer (28)
associated with the transmit message object;

receiving a frame of a multi-frame fragmented message;

acceptance filtering the received frame to determine that the received frame
matches the enabled receive message object;

enabling the transmit message object; and,

automatically transmitting the acknowledgment message without requiring any

intervention of the processor core (22).

19. The method as set forth in Claim 18, wherein the acknowledgment message

includes an acknowledgment byte defined by a governing CAL protocol.

20. The method as set forth in Claim 19, wherein the governing CAL protocol is
the CANopen protocol.
21. The method as set forth in Claim 20, further including the step of copying a

toggle bit included in the received frame into a corresponding bit position of the

acknowledgment byte prior to the automatically transmitting step.

10

15

WO 01/20854 PCT/EP00/08717
27

22. The method as set forth in Claim 18, wherein the automatically transmitting

step is performed by hardware external to the processor core (22).

23, The method as set forth in Claim 22, wherein the hardware external to the
processor core (22) includes a CAN/CAL module (77).

24, The method as set forth in Claim 23, wherein the CAN device (20) comprises

a CAN microcontroller.
25. A CAN device (20) that implements the method set forth in Claim 1.

26. The CAN device (20) as set forth in Claim 25, wherein the CAN device (20)

comprises a CAN microcontroller.
27. A CAN device (20) that implements the method set forth in Claim 18.

28. The CAN device (20) as set forth in Claim 27, wherein the CAN device (20)

comprises a CAN microcontroller.

WO 01/20854 PCT/EP00/08717
1/7
STANDARD
Bus|Sor | can o (RTRDE| w0 | oLe | DeraField | crc |CRC [ACK|ACK) eor RS Buside
Sl e (o ot omitl it | (01, 8Bytes) | 4o | DEL DEL |1t o
Idle { 1-bit| 11-bits |1-bit {1-bit|1-bit| 4-bit 08 6abis 15-bits oot |10t | 7-bits ~ 3-Dits
Bus |SOF [Base D | SRR |IDE | Extended 1D |RTR| 1 | 10 |OLC| DataField CRC | CAC|ACK[ACK]
idle L -bit | 19-MSRsl-bit 1-bit | 18-LSBs [1-bitt-bit|1-bit{4-bit | (0.1...8Byles) | 15-pis |DEL| {DEL
08.... 6-hits 1-bit[1-bit] -t
EXTENDED
RTR ... RemoteTransmitRequest
SRR ... SubstituteRemoteRequest
IDE ... ID Extension
. 10... “reserved” bits
DLC ... DatalengthCode (0.1, ..., 8)
IFS .. InterFrameSpace
CAN.bus
Byt BBy |-t D e
CAN CAL Message-
Data Frame 8-Byte L Message 8-Byte 8-Byte
A -
BBy CAL Message-D S oy
P L e 3Byt

FIG. 2

WO 01/20854 PCT/EP00/08717

2/7
/20
T ¥
i Core Data bus Zﬂ_ XACPUCore bopo ;
: T) |
E Program bus !
i 24—~_| 32K Bytes SFR DS E
| ROM/EPROM N
! [t))AT ,)
: 26 1024 Bytes us .
| | DATARM [7 |es] umrTo [T
: ! o 51
External > YRAM L
édtdfeBSS/ |- 28/36 «> 5Pl |[e—
a2 BUS | yeyory MMR bus S
47’—’. INTERFACE [T - 38> c—-— 03
! | L imer0 >
% | el OMA [Ol [Timeri fer—
! ! Engine : ~54
| / | l : S |
1 1 ! .‘.:_..
E 0 01 MMRs «—> mer “—
| i I : |
: ! : Watchdog | |
R— o 208 0ANDLL L el EE
Tx<; ; Core 3 > i
| 77 55 !
“* » Ports0-3 j———p !
S Clume R S i

WO 01/20854 PCT/EP00/08717
MIRs 3/7
MMRmame | RAW? | Reset | Access | Address Offset { Description
Message Object Registers {n=0- 31)
MnMIDH RW {x.x00b | Word only 000n4n3non4nq000CD (n0h) | Message n Match 1D High
MnMIDL RMW | Word only 000n4n3non4ng00108 (n2h) | Message n Match 1D Low
MnMSKH RW |x..x000b | Word only 000n4n3non{ng0100b (ndh) | Message h Mask High
MnMSKL RIW fxxxxh Word only 000n4n3non1ng0110b (nBh) | Message n Mask Low
MnCTL RAW | 00000xxxb| Byte/Word 000n4n3non1ng1000b (n8h) | Message n Control
MnBLR RW L Word only 000ngn3npn4ngy1010b (nAR) | Message n Buffer Location
MnBSZ RAW | 00000xxxb | Byte/Word | 000nan3nonqng1100b (nCh) | Message n Buffer Size
MnFCR RMW | O0xxxxxxb | Byte/Word 000ngn3nonqng1110b (nEN) | Message n Fragmentation Count
CIC Registers
MCPLL RIC |0000h | Byteord | 224h Message Complete Low
MCPLH RIC |0000h | Byteord | 226h Message Gomplete High
CANINTFLG | R/C 10000k Byte/Word | 228h CAN Interrupt Flag Register
MCIR RO 0000n ByteWord | 2290 Message Complete [nfo Reg.
MEIR RO 0000h Byte/Word 22A Message Error Info Register
FESTR R/IC 0000k Byte/Word 220h Frame Error Status Register
FEENR RAW 1 0000h ByteWord | 22Eh Frame Error Enable Register
SCP/SP!I Registers
SPICFG RW {00000 | Byteord | 260M SCP/SPI Configuration
SPIDATA RW | 00h Byte/Word | 262h SCP/SPI Data
SPICS R {00h Byte/Word 263h SCP/SPI Control and Status
CCB Registers
CANCMR RIW 01h ByteWord | 270h CAN Command Register
CANSTR R0 00h ByteWord | 271h GAN Status Register
CANBTR R/W 00h Byte/Word 212h CAN Bus Timing Reg. (low)
- RW |00h ByteWord | 273h CAN Bus Timing Reg. (high)
TXERC RAW* 100 ByteWord | 274h Tx Error Counter
RXERC RAW* | 00h Byte/Word 275h Rx Error Gounter
EWLR R/W d6h ByteWord 276h Error Warning Limit Register
ECCR RO 0000h ByteWord 278h Error Code Capture Register
ALCR RO 0000h Byte/Word 21Ah Arbitration Lost Gapture Reg.
RTXDTM W0 0000n Byte/Word 27Ch RTX Data Test Mode
GCTL RW 0000h Byte/Word | 27Eh Global Control Byte
MIF Registers
XRAMB RIW FER Byte/Word | 290N XRAM Base Address
MBXSR RW FFh ByteWord | 291h Msg. Buff /XRAM Seq. Reg.
MIFBTRL RW EFh ByteWord | 2920 MIF Bus Timing Reg. Low
MIFBTRH RIW FFh ByteWord | 293h MIF Bus Timing Reg. High

Legend: R/W = Read & Write, RO = Read Only, WO = Write Only, R/C = Read & Clear, W* =
CAN Reset mode, x = undefined after reset.

Writable only during F I G 4

WO 01/20854 PCT/EP00/08717

417

Data Memory Segment 0
Q0FFFFh T 1T

Off-Chip

4K Bytes MMR Space

T MMR Base Address
Off-Chip

512 BytesT XRAM
rrrrrrrT) XRAM Base Address

Off-Chip

0003FFh III111]
0ff-Chip Data Memaory
(Scratch Pad)
11111711 000000N0

FIG. 5

MMR Space

Offset FFFh —»

Offset 1FFh —»

512 Bytes Object Reqisters

FIG. 6

<—— (Jffset 000h

WO 01/20854 PCT/EP00/08717

5/7
Segment xy in Data
Memory Space
xyFFFFR—— 1
Object 4| Object n Message Buffer aZ3 a16 219 al
Buffer size l <«—| MBXSR[7:0] MnBLR
4 XRAM
512 Bytes 2 a6 415 A
[1<— MBXSRI7:0] || XRAMB(7:1]0 00h
[xy0000h

FIG. 7

Segment xy in Data
Memory Space
XyFFFRR[———]

a23 16 alh)
<—| MBXSR[7:0] MnBLR

Object HT Object n Message Buffer
XRAM | Buffer size I
512 Bytes XRAM 23 alfals Bl o
, <—| MBXSRI7:0] |[XRAMB[7:A]0]f 0On

[| xy0000h

FIG. 8

WO 01/20854

6/7

Object n Match ID Field (MnMIDH and MnMIDL)

PCT/EP00/08717

Mid28 — Mid18

Mid17 — Mid10

Mid9 - Mid2

Mid1

Mid0 | MIDE

Object n Mask Field (MnMSKH and MnMSKL)

Msk28 — Msk18

Msk17 — Msk10

Msk9 — Msk2

Msk0

Screener ID Field (assembled from incomin

Msk

g bit-stream)

CANID.28 — CAN ID.18 | Data Byte 1(7:0] | DataByte 2 [7:0] | x X IDE
Object n Match 1D Field (MnMIDH and MnMIDL)
Mid28 — Mid18 Mid17 —=Mid10 | Mid9-Mid2 | Mid1 | Mid0 | MIDE
Object n Mask Field (MnMSKH and MnMSKL)
Msk28 — Msk18 Msk17 — Msk10 | Msk9—Msk2 | Msk1 | Msk0

Screener ID Field (assembled from incoming bit-stream)

CANID.28 - CANID.0

IDE

FIG.

10

WO 01/20854

7

Byte count

Data Byte 2

Data Byte 3

Data Byte DLC

Data Byte 2 (next)

Data Byte 3 (next)

FIG. 11

Framelnfo

Data Byte 1

Data Byte 2

Data Byte DLC

Framelnfo (next)

Data Byte 1 (next)

Data Byte 2 (next)

FIG. 12

PCT/EP00/08717

DIRECTION OF
INCREASING
ADDRESS

DIRECTION QF
INCREASING
ADDRESS

INTERNATIONAL SEARCH REPORT

inter >nal Application No

PCT/EP 00/08717

CLASSIFICATION OF SUBJECT MATTER

TPC 7 HOAL12/413

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 HOAL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5 574 848 A (THOMSON THOMAS W) 1,2,4-6,
12 November 1996 (1996-11-12) 13,17,
18,22-28

column 2, line 19 -column 6, Tine 8
column 8, line 8 —column 14, Tine 30
figures 3,4

Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : . i X -
T later document published after the international filing date

aw - - or priority date and not in conflict with the application but

A* document defining the general state of the art which is not citgd to anersland the principle or theory u?'n%erlying the
considered to be of particular relevance invention

'E" earlier document but published on or after the international "X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
W{"f.h 1S C“e‘g to estaplllsh the publlcatlon_[fdaée of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"0O* document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled

P document published prior to the international filing date but in the ari.
later than the priority date claimed *&" document member of the same patent family

Date of the actual compietion of the international search Date of mailing of the international search report

11 January 2001 12/02/2001
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, s
Fax: (+31-70) 340-3016 Kalabic, F

Form PCT/ISA/210 {second sheet) (July 1992}

page 1 of 3

INTERNATIONAL SEARCH REPORT

Intet

snal Application No

PCT/EP 00/08717

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category ©

Citation of document, with indication,where appropriate, of the reievant passages

Relevant to claim No.

X,P

SIEMENS MICROELECTRONICS, INC: "Control
area Network"

INTERNET, ‘Online! 1998, XP002156911
Retrieved from the Internet:
<URL:http://www.infineon.com/cmc_upload/mi
grated_files/document_files/Application_No
tes/CANPRES.pdf> ‘retrieved on 2001-01-10!
page 56 -page 58

PHILIPS: "XA-C3 Microcontroller"”
INTERNET, ‘Online!

25 January 2000 (2000-01-25), XP002156912
Retrieved from the Internet:
<URL:http://www-us.semiconductors.philips.
com/can/products/#microcontrollers_can>
‘retrieved on 2001-01-10!

the whole document

SIEMENS: "Connecting C166 and C500
Microcontrollers to CAN"

INTERNET, “Online! June 1997 (1997-06),
XP002157028

Retrieved from the Internet:
<URL:http://www.infineon.com/cmc_upload/mi
grated_files/document_files/Application_No
tes/ap290002.pdf>

‘retrieved on 2001-01-11!

page 16 -page 25

DE 41 29 412 A (NEC ELECTRONICS GERMANY)
18 March 1993 (1993-03-18)
the whole document

CIA: "CAN Data Link Layer"

INTERNET, ‘Online! 1996, XP002156913
Retrieved from the Internet:
<URL:http://www.com.cia.com>
‘retrieved on 2000-12-25!

the whole document

CIA: "CAN Implementation”

INTERNET, “Online! 1996, XP002156914
Retrieved from the Internet:
<URL:http://www.com-cia.com>
‘retrieved on 2001-01-10!

the whole document

1,2,13,
17,18,
25-28

3-12,
14-16,
19-25

1-28

1-28

1-28

1-28

1-28

Form PCT/ISA/210 (continuation of second sheet) {July 1962)

page 2 of 3

INTERNATIONAL SEARCH REPORT

Intet snal Application No

PCT/EP 00/08717

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

STZP: "CAN Application Layer (CAL)"
INTERNET, ‘Online! 1996, XP002156915
Retrieved from the Internet:
<URL:http://www.stzp.de/product/cal/protoc
ol/proto_e.htm1> ‘retrieved on 2000-12-20!
the whole document

1-28

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 3 of 3

INTERNATIONAL SEARCH REPORT

.nformation on patent family members

Inter

anal Application No

PCT/EP 00/08717

Patent document
cited in search report

Publication
date

Patent family
member(s)

Pubiication
date

US 5574848 A 12-11-1996 EP 0668000 A 23-08-1995
WO 9506378 A 02-03-1995
us 5600782 A 04-02-1997
DE 4129412 A 18-03-1993 DE 59208401 D 28-05-1997
WO 9305601 A 18-03-1993
EP 0555456 A 18-08-1993
ES 2100361 T 16-06-1997
JP 2743582 B 22-04-1998
JP 6504172 T 12-05-1994
us 5729755 A 17-03-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

