wo 2011/066236 A2 I IO 0O OO RR O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. TN
1 rld Intellectual Property Organization 2 ey
(19) World Intellectual Property Organization /gy [) IM)F 00N 000 080N 00 A
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
3 June 2011 (03.06.2011) PCT WO 2011/066236 A2
(51) International Patent Classification: SON, Timothy, W. [US/US]; 3922 Northridge Circle,
G11B 5/09 (2006.01) Mesa, AZ 85215 (US).
(21) International Application Number: (74) Agent: MARKISON, Timothy, W.; Garlick Harrison &
PCT/US2010/057675 Markison, P.o. Box 160727, Austin, TX 78716-0727
(22) International Filing Date: (US).
22 November 2010 (22.11.2010) (81) Designated States (unless otherwise indicated, for every
re . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, /{T, AU, Ai BA, BB, BG, BH), BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
L. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
61/264,316 25 November 2009 (25.11.2009) us KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
12/845,590 28 July 2010 (28.07.2010) us ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(71) Applicant (for all designated States except US): NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
CLEVERSAFE, INC. [US/US]; 222 S. Riverside Plaza, SE, 8G, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
Chicago, IL 60606 (US), TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and 84) Designateq States (unlgss othemise indicated, for every
(75) Inventors/Applicants (for US only): GLADWIN, §., kind of regional protection available): ARIPO (BW, GH,

Christopher [US/US]; 2244 N. Bissell Street, Chicago,
IL 60614 (US). GRUBE, Gary, W. [US/US]; 2 Ridge-
croft Lane, Barrington Hills, IL 60010 (US). MARKI-

GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

[Continued on next page]

(54) Title: LOCALIZED DISPERSED STORAGE MEMORY SYSTEM

data 109
(900 bytes)

h 4

DS processing 34
(4/3 system)

500M 750M

memory space

r —_—

| 4" pillar slices 116

|

| 3" pillar

| "slices 114

: W 300 300
byte byte

I g slice slice

: V122 V124

|

|

|

|

|

memory A-1

(57) Abstract: A method begins by a processing
module receiving data to store and determining er-
ror coding dispersal storage function parameters.
The method continues with the processing module
encoding at least a portion of the data in accordance
with the error coding dispersal storage function pa-
rameters to produce a set of data slices. The method
continues with the processing module defining ad-
dressable storage sectors within the single hard
drive based on a number of data slices within the set
of data slices to produce a set of addressable storage
sectors. The method continues with the processing
module storing data slices of the set of data slices in
corresponding addressable storage sectors of the set
of addressable storage sectors.

WO 2011/066236 A2 I 000) AT 0N AN A

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Published:

LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, 8K, __ without international search report and to be republished
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, . 5 ® lp 482 P

GW. ML, MR, NE, SN, TD, TG). upon receipt of that report (Rule 48.2(g))

Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(i1))

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

TITLE OF THE INVENTION
LOCALIZED DISPERSED STORAGE MEMORY SYSTEM

CROSS REFERENCE TO RELATED PATENTS
This patent application is claiming priority under 35 USC § 119(e) to a provisionally filed
patent application entitled DISTRIBUTED STORAGE NETWORK MEMORY SYSTEM,
having a provisional filing date of 11/25/2009, and a provisional serial number of 61/264,316.

BACKGROUND OF THE INVENTION

TECHNICAL FIELD OF THE INVENTION
This invention relates generally to computing systems and more particularly to data

storage solutions within such computing systems.

DESCRIPTION OF RELATED ART

Computers are known to communicate, process, and store data. Such computers range
from wireless smart phones to data centers that support millions of web searches, stock trades, or
on-line purchases every day. In general, a computing system generates data and/or manipulates
data from one form into another. For instance, an image sensor of the computing system
generates raw picture data and, using an image compression program (e.g., JPEG, MPEG, etc.),
the computing system manipulates the raw picture data into a standardized compressed image.

With continued advances in processing speed and communication speed, computers are
capable of processing real time multimedia data for applications ranging from simple voice
communications to streaming high definition video. As such, general-purpose information
appliances are replacing purpose-built communications devices (e.g., a telephone). For example,
smart phones can support telephony communications but they are also capable of text messaging
and accessing the internet to perform functions including email, web browsing, remote
applications access, and media communications (e.g., telephony voice, image transfer, music
files, video files, real time video streaming. etc.).

Each type of computer is constructed and operates in accordance with one or more
communication, processing, and storage standards. As a result of standardization and with
advances in technology, more and more information content is being converted into digital
formats. For example, more digital cameras are now being sold than film cameras, thus
producing more digital pictures. As another example, web-based programming is becoming an
alternative to over the air television broadcasts and/or cable broadcasts. As further examples,

1

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

papers, books, video entertainment, home video, etc. are now being stored digitally, which
increases the demand on the storage function of computers.

A typical computer storage system includes one or more memory devices aligned with
the needs of the various operational aspects of the computer’s processing and communication
functions. Generally, the immediacy of access dictates what type of memory device is used. For
example, random access memory (RAM) memory can be accessed in any random order with a
constant response time, thus it is typically used for cache memory and main memory. By
contrast, memory device technologies that require physical movement such as magnetic disks,
tapes, and optical discs, have a variable response time as the physical movement can take longer
than the data transfer, thus they are typically used for secondary memory (e.g., hard drive,
backup memory, etc.).

A computer’s storage system will be compliant with one or more computer storage
standards that include, but are not limited to, network file system (NFS), flash file system (FFS),
disk file system (DFS), small computer system interface (SCSI), internet small computer system
interface (iSCSI), file transfer protocol (FTP), and web-based distributed authoring and
versioning (WebDAYV). These standards specify the data storage format (e.g., files, data objects,
data blocks, directories, etc.) and interfacing between the computer’s processing function and its
storage system, which is a primary function of the computer’s memory controller.

Despite the standardization of the computer and its storage system, memory devices fail;
especially commercial grade memory devices that utilize technologies incorporating physical
movement (e.g., a disc drive). For example, it is fairly common for a disc drive to routinely
suffer from bit level corruption and to completely fail after three years of use. One solution is to
a higher-grade disc drive, which adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant disc drives to replicate the data
into two or more copies. One such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID controller adds parity data to the original
data before storing it across the array. The parity data is calculated from the original data such
that the failure of a disc will not result in the loss of the original data. For example, RAID 5 uses
three discs to protect data from the failure of a single disc. The parity data, and associated
redundancy overhead data, reduces the storage capacity of three independent discs by one third
(e.g., n-1 = capacity). RAID 6 can recover from a loss of two discs and requires a minimum of

four discs with a storage capacity of n-2.

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

While RAID addresses the memory device failure issue, it is not without its own failures
issues that affect its effectiveness, efficiency and security. For instance, as more discs are added
to the array, the probability of a disc failure increases, which increases the demand for
maintenance. For example, when a disc fails, it needs to be manually replaced before another
disc fails and the data stored in the RAID device is lost. To reduce the risk of data loss, data on a
RAID device is typically copied on to one or more other RAID devices. While this addresses the
loss of data issue, it raises a security issue since multiple copies of data are available, which
increases the chances of unauthorized access. Further, as the amount of data being stored grows,

the overhead of RAID devices becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

Figure 1 is a schematic block diagram of an embodiment of a computing system in
accordance with the invention;

Figure 2 is a schematic block diagram of an embodiment of a computing core in
accordance with the invention;

Figure 3 is a schematic block diagram of an embodiment of a distributed storage
processing unit in accordance with the invention;

Figure 4 is a schematic block diagram of an embodiment of a grid module in accordance
with the invention;

Figure 5 is a diagram of an example embodiment of error coded data slice creation in
accordance with the invention;

Figure 6 is a schematic block diagram of an embodiment of a dispersed storage unit in
accordance with the invention;

Figure 7 is a schematic block diagram of another embodiment of a dispersed storage unit
in accordance with the invention;

Figure 8 is a flowchart illustrating an example of storing slices in accordance with the
invention;

Figure 9 is a flowchart illustrating an example of retrieving slices in accordance with the
invention;

Figure 10 is a flowchart illustrating an example of rebuilding memory in accordance with
the invention;

Figure 11 is a schematic block diagram of another embodiment of a dispersed storage

unit in accordance with the invention;

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

Figure 12 is another flowchart illustrating another example of storing slices in accordance
with the invention;

Figure 13 is a schematic block diagram of another embodiment of a computing system in
accordance with the invention;

Figure 14 is a flowchart illustrating an example of distributing slices in accordance with
the invention;

Figure 15 is a schematic block diagram of another embodiment of a computing system in
accordance with the invention; and

Figure 16 is a flowchart illustrating an example of determining memory utilization in

accordance with invention.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 is a schematic block diagram of a computing system 10 that includes one or
more of a first type of user devices 12, one or more of a second type of user devices 14, at least
one distributed storage (DS) processing unit 16, at least one DS managing unit 18, at least one
storage integrity processing unit 20, and a distributed storage network (DSN) memory 22
coupled via a network 24. The network 24 may include one or more wireless and/or wire lined
communication systems; one or more private intranet systems and/or public internet systems;
and/or one or more local area networks (LAN) and/or wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed storage (DS) units 36 for storing
data of the system. Each of the DS units 36 includes a processing module and memory and may
be located at a geographically different site than the other DS units (e.g., one in Chicago, one in
Milwaukee, etc.). The processing module may be a single processing device or a plurality of
processing devices. Such a processing device may be a microprocessor, micro-controller, digital
signal processor, microcomputer, central processing unit, field programmable gate array,
programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing module may have an associated
memory and/or memory element, which may be a single memory device, a plurality of memory
devices, and/or embedded circuitry of the processing module. Such a memory device may be a
read-only memory, random access memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory, and/or any device that stores digital
information. Note that if the processing module includes more than one processing device, the

processing devices may be centrally located (e.g., directly coupled together via a wired and/or
4

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect
coupling via a local area network and/or a wide area network). Further note that when the
processing module implements one or more of its functions via a state machine, analog circuitry,
digital circuitry, and/or logic circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded within, or external to, the circuitry
comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still
further note that, the memory element stores, and the processing module executes, hard coded
and/or operational instructions corresponding to at least some of the steps and/or functions
illustrated in Figures 1 —16.

Each of the user devices 12 — 14, the DS processing unit 16, the DS managing unit 18,
and the storage integrity processing unit 20 may be a portable computing device (e.g., a social
networking device, a gaming device, a cell phone, a smart phone, a personal digital assistant, a
digital music player, a digital video player, a laptop computer, a handheld computer, a video
game controller, and/or any other portable device that includes a computing core) and/or a fixed
computing device (e.g., a personal computer, a computer server, a cable set-top box, a satellite
receiver, a television set, a printer, a fax machine, home entertainment equipment, a video game
console, and/or any type of home or office computing equipment). Such a portable or fixed
computing device includes a computing core 26 and one or more interfaces 30, 32, and/or 33.
An embodiment of the computing core 26 will be described with reference to Figure 2.

With respect to the interfaces, each of the interfaces 30, 32, and 33 includes software
and/or hardware to support one or more communication links via the network 24 and/or directly.
For example, interfaces 30 support a communication link (wired, wireless, direct, via a LAN, via
the network 24, etc.) between the first type of user device 14 and the DS processing unit 16. As
another example, DSN interface 32 supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit 16, the first type of user device 12,
and/or the storage integrity processing unit 20. As yet another example, interface 33 supports a
communication link between the DS managing unit 18 and any one of the other devices and/or
units 12, 14, 16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the system 10 supports three primary
functions: distributed network data storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with these three primary functions, data
can be distributedly stored in a plurality of physically different locations and subsequently

retrieved in a reliable and secure manner regardless of failures of individual storage devices,

5

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

failures of network equipment, the duration of storage, the amount of data being stored, attempts
at hacking the data, etc.

The DS managing unit 18 performs distributed network data storage management
functions, which include establishing distributed data storage parameters, performing network
operations, performing network administration, and/or performing network maintenance. The
DS managing unit 18 establishes the distributed data storage parameters (e.g., allocation of
virtual DSN memory space, distributed storage parameters, security parameters, billing
information, user profile information, etc.) for one or more of the user devices 12-14 (e.g.,
established for individual devices, established for a user group of devices, established for public
access by the user devices, etc.). For example, the DS managing unit 18 coordinates the creation
of a vault (e.g., a virtual memory block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing unit 18 also determines the distributed
data storage parameters for the vault. In particular, the DS managing unit 18 determines a
number of slices (e.g., the number that a data segment of a data file and/or data block is
partitioned into for distributed storage) and a read threshold value (e.g., the minimum number of
slices required to reconstruct the data segment).

As another example, the DS managing module 18 creates and stores, locally or within the
DSN memory 22, user profile information. The user profile information includes one or more of
authentication information, permissions, and/or the security parameters. The security parameters
may include one or more of encryption/decryption scheme, one or more encryption keys, key
generation scheme, and data encoding/decoding scheme.

As yet another example, the DS managing unit 18 creates billing information for a
particular user, user group, vault access, public vault access, etc. For instance, the DS managing
unit 18 tracks the number of times user accesses a private vault and/or public vaults, which can
be used to generate a per-access bill. In another instance, the DS managing unit 18 tracks the
amount of data stored and/or retrieved by a user device and/or a user group, which can be used to
generate a per-data-amount bill.

The DS managing unit 18 also performs network operations, network administration,
and/or network maintenance. As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors performance of the devices and/or units of the
system 10 for potential failures, determines the devices and/or unit’s activation status, determines
the devices’ and/or units’ loading, and any other system level operation that affects the

performance level of the system 10. For example, the DS managing unit 18 receives and

6

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

aggregates network management alarms, alerts, errors, status information, performance
information, and messages from the devices 12-14 and/or the units 16, 20, 22. For example, the
DS managing unit 18 receives a simple network management protocol (SNMP) message
regarding the status of the DS processing unit 16.

The DS managing unit 18 performs the network maintenance by identifying equipment
within the system 10 that needs replacing, upgrading, repairing, and/or expanding. For example,
the DS managing unit 18 determines that the DSN memory 22 needs more DS units 36 or that
one or more of the DS units 36 needs updating.

The second primary function (i.e., distributed data storage and retrieval) begins and ends
with a user device 12 - 14. For instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it send the data file 38 and/or data block 40
to the DS processing unit 16 via its interface 30. As will be described in greater detail with
reference to Figure 2, the interface 30 functions to mimic a conventional operating system (OS)
file system interface (e.g., network file system (NFS), flash file system (FFS), disk file system
(DFS), file transfer protocol (FTP), web-based distributed authoring and versioning (WebDAV),
etc.) and/or a block memory interface (e.g., small computer system interface (SCSI), internet
small computer system interface (iISCSI), etc.). In addition, the interface 30 may attach a user
identification code (ID) to the data file 38 and/or data block 40.

The DS processing unit 16 receives the data file 38 and/or data block 40 via its interface
30 and performs a distributed storage (DS) process 34 thereon (e.g., an error coding dispersal
storage function). The DS processing 34 begins by partitioning the data file 38 and/or data block
40 into one or more data segments, which is represented as Y data segments. For example, the
DS processing 34 may partition the data file 38 and/or data block 40 into a fixed byte size
segment (e.g., 2! to 2" bytes, where n =>2) or a variable byte size (e.g., change byte size from
segment to segment, or from groups of segments to groups of segments, etc.).

For each of the Y data segments, the DS processing 34 error encodes (e.g., forward error
correction (FEC), information dispersal algorithm, or error correction coding) and slices (or
slices then error encodes) the data segment into a plurality of error coded (EC) data slices 42 -
48, which is represented as X slices per data segment. The number of slices (X) per segment,
which corresponds to a number of pillars n, is set in accordance with the distributed data storage
parameters and the error coding scheme. For example, if a Reed-Solomon (or other FEC

scheme) is used in an n/k system, then a data segment is divided into n slices, where k number of

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

slices is needed to reconstruct the original data (i.e., k is the threshold). As a few specific
examples, the n/k factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each slice 42 — 48, the DS processing unit 16 creates a unique slice name and
appends it to the corresponding slice 42 - 48. The slice name includes universal DSN memory
addressing routing information (e.g., virtual memory addresses in the DSN memory 22) and
user-specific information (e.g., user ID, file name, data block identifier, etc.).

The DS processing unit 16 transmits the plurality of EC slices 42 — 48 to a plurality of DS
units 36 of the DSN memory 22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via the network 24. For example, the
DSN interface 32 may utilize an internet protocol (e.g., TCP/IP, etc.) to packetize the slices 42 —
48 for transmission via the network 24.

The number of DS units 36 receiving the slices 42 — 48 is dependent on the distributed
data storage parameters established by the DS managing unit 18. For example, the DS managing
unit 18 may indicate that each slice is to be stored in a different DS unit 36. As another example,
the DS managing unit 18 may indicate that like slice numbers of different data segments are to
be stored in the same DS unit 36. For example, the first slice of each of the data segments is to
be stored in a first DS unit 36, the second slice of each of the data segments is to be stored in a
second DS unit 36, etc. In this manner, the data is encoded and distributedly stored at physically
diverse locations to improved data storage integrity and security. Further examples of encoding
the data segments will be provided with reference to one or more of Figures 2 — 16.

Each DS unit 36 that receives a slice 42 — 48 for storage translates the virtual DSN
memory address of the slice into a local physical address for storage. Accordingly, each DS unit
36 maintains a virtual to physical memory mapping to assist in the storage and retrieval of data.

The first type of user device 12 performs a similar function to store data in the DSN
memory 22 with the exception that it includes the DS processing. As such, the device 12
encodes and slices the data file and/or data block it has to store. The device then transmits the
slices 11 to the DSN memory via its DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file or data block from memory, it
issues a read command via its interface 30 to the DS processing unit 16. The DS processing unit
16 performs the DS processing 34 to identify the DS units 36 storing the slices of the data file
and/or data block based on the read command. The DS processing unit 16 may also
communicate with the DS managing unit 18 to verify that the user device 14 is authorized to

access the requested data.

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

Assuming that the user device is authorized to access the requested data, the DS
processing unit 16 issues slice read commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a 16/10 error coding scheme). Each of
the DS units 36 receiving the slice read command, verifies the command, accesses its virtual to
physical memory mapping, retrieves the requested slice, or slices, and transmits it to the DS
processing unit 16.

Once the DS processing unit 16 has received a read threshold number of slices for a data
segment, it performs an error decoding function and de-slicing to reconstruct the data segment.
When Y number of data segments has been reconstructed, the DS processing unit 16 provides the
data file 38 and/or data block 40 to the user device 14. Note that the first type of user device 12
performs a similar process to retrieve a data file and/or data block.

The storage integrity processing unit 20 performs the third primary function of data
storage integrity verification. In general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data block of a user device to verify that
one or more slices have not been corrupted or lost (e.g., the DS unit failed). The retrieval
process mimics the read process previously described.

If the storage integrity processing unit 20 determines that one or more slices is corrupted
or lost, it rebuilds the corrupted or lost slice(s) in accordance with the error coding scheme. The
storage integrity processing unit 20 stores the rebuild slice, or slices, in the appropriate DS
unit(s) 36 in a manner that mimics the write process previously described.

Figure 2 is a schematic block diagram of an embodiment of a computing core 26 that
includes a processing module 50, a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (I0) controller 56, a peripheral component interconnect (PCI)
interface 58, at least one IO device interface module 62, a read only memory (ROM) basic input
output system (BIOS) 64, and one or more memory interface modules. The memory interface
module(s) includes one or more of a universal serial bus (USB) interface module 66, a host bus
adapter (HBA) interface module 68, a network interface module 70, a flash interface module 72,
a hard drive interface module 74, and a DSN interface module 76. Note the DSN interface
module 76 and/or the network interface module 70 may function as the interface 30 of the user
device 14 of Figure 1. Further note that the IO device interface module 62 and/or the memory
interface modules may be collectively or individually referred to as IO ports.

The processing module 50 may be a single processing device or a plurality of processing

devices. Such a processing device may be a microprocessor, micro-controller, digital signal

9

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

processor, microcomputer, central processing unit, field programmable gate array, programmable
logic device, state machine, logic circuitry, analog circuitry, digital circuitry, and/or any device
that manipulates signals (analog and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may have an associated memory and/or
memory element, which may be a single memory device, a plurality of memory devices, and/or
embedded circuitry of the processing module 50. Such a memory device may be a read-only
memory, random access memory, volatile memory, non-volatile memory, static memory,
dynamic memory, flash memory, cache memory, and/or any device that stores digital
information. Note that if the processing module 50 includes more than one processing device,
the processing devices may be centrally located (e.g., directly coupled together via a wired
and/or wireless bus structure) or may be distributedly located (e.g., cloud computing via indirect
coupling via a local area network and/or a wide area network). Further note that when the
processing module 50 implements one or more of its functions via a state machine, analog
circuitry, digital circuitry, and/or logic circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded within, or external to, the circuitry
comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still
further note that, the memory element stores, and the processing module 50 executes, hard coded
and/or operational instructions corresponding to at least some of the steps and/or functions
illustrated in Figures 1- 16.

Figure 3 is a schematic block diagram of an embodiment of a dispersed storage (DS)
processing module 34 of user device 12 and/or of the DS processing unit 16. The DS processing
module 34 includes a gateway module 78, an access module 80, a grid module 82, and a storage
module 84. The DS processing module 34 may also include an interface 30 and the DSnet
interface 32 or the interfaces 68 and/or 70 may be part of user 12 or of the DS processing unit 14.
The DS processing module 34 may further include a bypass/feedback path between the storage
module 84 to the gateway module 78. Note that the modules 78-84 of the DS processing module
34 may be in a single unit or distributed across multiple units.

In an example of storing data, the gateway module 78 receives an incoming data object
that includes a user ID field 86, an object name field 88, and the data field 40 and may also
receive corresponding information that includes a process identifier (e.g., an internal
process/application ID), metadata, a file system directory, a block number, a transaction

message, a user device identity (ID), a data object identifier, a source name, and/or user

10

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

information. The gateway module 78 authenticates the user associated with the data object by
verifying the user ID 86 with the managing unit 18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78 obtains user information from the
management unit 18, the user device, and/or the other authenticating unit. The user information
includes a vault identifier, operational parameters, and user attributes (e.g., user data, billing
information, etc.). A vault identifier identifies a vault, which is a virtual memory space that
maps to a set of DS storage units 36. For example, vault 1 (i.e., user 1’s DSN memory space)
includes eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s DSN memory space)
includes sixteen DS storage units (X=16 wide). The operational parameters may include an error
coding algorithm, the width n (number of pillars X or slices per segment for this vault), a read
threshold T, a write threshold, an encryption algorithm, a slicing parameter, a compression
algorithm, an integrity check method, caching settings, parallelism settings, and/or other
parameters that may be used to access the DSN memory layer.

The gateway module 78 uses the user information to assign a source name 35 to the data.
For instance, the gateway module 60 determines the source name 35 of the data object 40 based
on the vault identifier and the data object. For example, the source name may contain a file
identifier (ID), a vault generation number, a reserved field, and a vault identifier (ID). As
another example, the gateway module 78 may generate the file ID based on a hash function of
the data object 40. Note that the gateway module 78 may also perform message conversion,
protocol conversion, electrical conversion, optical conversion, access control, user identification,
user information retrieval, traffic monitoring, statistics generation, configuration, management,
and/or source name determination.

The access module 80 receives the data object 40 and creates a series of data segments 1
through Y 90-92 in accordance with a data storage protocol (e.g., file storage system, a block
storage system, and/or an aggregated block storage system). The number of segments Y may be
chosen or randomly assigned based on a selected segment size and the size of the data object.
For example, if the number of segments is chosen to be a fixed number, then the size of the
segments varies as a function of the size of the data object. For instance, if the data object is an
image file of 4,194,304 eight bit bytes (e.g., 33,554,432 bits) and the number of segments Y =
131,072, then each segment is 256 bits or 32 bytes. As another example, if segment sized is
fixed, then the number of segments Y varies based on the size of data object. For instance, if the

data object is an image file of 4,194,304 bytes and the fixed size of each segment is 4,096 bytes,

11

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

the then number of segments Y = 1,024. Note that each segment is associated with the same
source name.

The grid module 82 receives the data segments and may manipulate (e.g., compression,
encryption, cyclic redundancy check (CRC), etc.) each of the data segments before performing
an error coding function of the error coding dispersal storage function to produce a pre-
manipulated data segment. After manipulating a data segment, if applicable, the grid module §2
error encodes (e.g., Reed-Solomon, Convolution encoding, Trellis encoding, etc.) the data
segment or manipulated data segment into X error coded data slices 42-44.

The value X, or the number of pillars (e.g., X = 16), is chosen as a parameter of the error
coding dispersal storage function. Other parameters of the error coding dispersal function
include a read threshold T, a write threshold W, etc. The read threshold (e.g., T = 10, when X =
16) corresponds to the minimum number of error-free error coded data slices required to
reconstruct the data segment. In other words, the DS processing module 34 can compensate for
X-T (e.g., 16-10 = 6) missing error coded data slices per data segment. The write threshold W
corresponds to a minimum number of DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module indicates proper storage of the encoded
data segment. Note that the write threshold is greater than or equal to the read threshold for a
given number of pillars (X).

For each data slice of a data segment, the grid module 82 generates a unique slice name
37 and attaches it thereto. The slice name 37 includes a universal routing information field and a
vault specific field and may be 48 bytes (e.g., 24 bytes for each of the universal routing
information field and the vault specific field). As illustrated, the universal routing information
field includes a slice index, a vault ID, a vault generation, and a reserved field. The slice index is
based on the pillar number and the vault ID and, as such, is unique for each pillar (e.g., slices of
the same pillar for the same vault for any segment will share the same slice index). The vault
specific field includes a data name, which includes a file ID and a segment number (e.g., a
sequential numbering of data segments 1-Y of a simple data object or a data block number).

Prior to outputting the error coded data slices of a data segment, the grid module may
perform post-slice manipulation on the slices. If enabled, the manipulation includes slice level
compression, encryption, CRC, addressing, tagging, and/or other manipulation to improve the
effectiveness of the computing system.

When the error coded data slices of a data segment are ready to be outputted, the grid

module 82 determines which of the DS storage units 36 will store the EC data slices based on a

12

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

dispersed storage memory mapping associated with the user’s vault and/or DS storage unit
attributes. The DS storage unit attributes may include availability, self-selection, performance
history, link speed, link latency, ownership, available DSN memory, domain, cost, a
prioritization scheme, a centralized selection message from another source, a lookup table, data
ownership, and/or any other factor to optimize the operation of the computing system. Note that
the number of DS storage units 36 is equal to or greater than the number of pillars (e.g., X) so
that no more than one error coded data slice of the same data segment is stored on the same DS
storage unit 36. Further note that EC data slices of the same pillar number but of different
segments (e.g., EC data slice 1 of data segment 1 and EC data slice 1 of data segment 2) may be
stored on the same or different DS storage units 36.

The storage module 84 performs an integrity check on the outbound encoded data slices
and, when successful, identifies a plurality of DS storage units based on information provided by
the grid module 82. The storage module 84 then outputs the encoded data slices 1 through X of
each segment 1 through Y to the DS storage units 36. Each of the DS storage units 36 stores its
EC data slice(s) and maintains a local virtual DSN address to physical location table to convert
the virtual DSN address of the EC data slice(s) into physical storage addresses.

In an example of a read operation, the user device 12 and/or 14 sends a read request to
the DS processing unit 14, which authenticates the request. When the request is authentic, the
DS processing unit 14 sends a read message to each of the DS storage units 36 storing slices of
the data object being read. The slices are received via the DSnet interface 32 and processed by
the storage module 84, which performs a parity check and provides the slices to the grid module
82 when the parity check was successful. The grid module 82 decodes the slices in accordance
with the error coding dispersal storage function to reconstruct the data segment. The access
module 80 reconstructs the data object from the data segments and the gateway module 78
formats the data object for transmission to the user device.

Figure 4 is a schematic block diagram of an embodiment of a grid module 82 that
includes a control unit 73, a pre-slice manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85, a de-slicer 87, and/or a post-slice
de-manipulator 89. Note that the control unit 73 may be partially or completely external to the
grid module 82. For example, the control unit 73 may be part of the computing core at a remote
location, part of a user device, part of the DS managing unit 18, or distributed amongst one or

more DS storage units.

13

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

In an example of write operation, the pre-slice manipulator 75 receives a data segment
90-92 and a write instruction from an authorized user device. The pre-slice manipulator 75
determines if pre-manipulation of the data segment 90-92 is required and, if so, what type. The
pre-slice manipulator 75 may make the determination independently or based on instructions
from the control unit 73, where the determination is based on a computing system-wide
predetermination, a table lookup, vault parameters associated with the user identification, the
type of data, security requirements, available DSN memory, performance requirements, and/or
other metadata.

Once a positive determination is made, the pre-slice manipulator 75 manipulates the data
segment 90-92 in accordance with the type of manipulation. For example, the type of
manipulation may be compression (e.g., Lempel-Ziv-Welch, Huffman, Golomb, fractal, wavelet,
etc.), signatures (e.g., Digital Signature Algorithm (DSA), Elliptic Curve DSA, Secure Hash
Algorithm, etc.), watermarking, tagging, encryption (e.g., Data Encryption Standard, Advanced
Encryption Standard, etc.), adding metadata (e.g., time/date stamping, user information, file type,
etc.), cyclic redundancy check (e.g., CRC32), and/or other data manipulations to produce the
pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data segment 92 using a forward error
correction (FEC) encoder (and/or other type of erasure coding and/or error coding) to produce an
encoded data segment 94. The encoder 77 determines which forward error correction algorithm
to use based on a predetermination associated with the user’s vault, a time based algorithm, user
direction, DS managing unit direction, control unit direction, as a function of the data type, as a
function of the data segment 92 metadata, and/or any other factor to determine algorithm type.
The forward error correction algorithm may be Golay, Multidimensional parity, Reed-Solomon,
Hamming, Bose Ray Chauduri Hocquenghem (BCH), Cauchy-Reed-Solomon, or any other FEC
encoder. Note that the encoder 77 may use a different encoding algorithm for each data segment
92, the same encoding algorithm for the data segments 92 of a data object, or a combination
thereof.

The encoded data segment 94 is of greater size than the data segment 92 by the overhead
rate of the encoding algorithm by a factor of X/T, where X is the width or number of slices, and
T is the read threshold. In this regard, the corresponding decoding process can accommodate at
most X-T missing EC data slices and still recreate the data segment 92. For example, if X=16
and T=10, then the data segment 92 will be recoverable as long as 10 or more EC data slices per

segment are not corrupted.

14

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

The slicer 79 transforms the encoded data segment 94 into EC data slices in accordance
with the slicing parameter from the vault for this user and/or data segment 92. For example, if
the slicing parameter is X = 16, then the slicer 79 slices each encoded data segment 94 into 16
encoded slices.

The post-slice manipulator 81 performs, if enabled, post-manipulation on the encoded
slices to produce the EC data slices. If enabled, the post-slice manipulator 81 determines the
type of post-manipulation, which may be based on a computing system-wide predetermination,
parameters in the vault for this user, a table lookup, the user identification, the type of data,
security requirements, available DSN memory, performance requirements, control unit directed,
and/or other metadata. Note that the type of post-slice manipulation may include slice level
compression, signatures, encryption, CRC, addressing, watermarking, tagging, adding metadata,
and/or other manipulation to improve the effectiveness of the computing system.

In an example of a read operation, the post-slice de-manipulator 89 receives at least a
read threshold number of EC data slices and performs the inverse function of the post-slice
manipulator 81 to produce a plurality of encoded slices. The de-slicer 87 de-slices the encoded
slices to produce an encoded data segment 94. The decoder 85 performs the inverse function of
the encoder 77 to recapture the data segment 90-92. The pre-slice de-manipulator 83 performs
the inverse function of the pre-slice manipulator 75 to recapture the data segment 90-92.

Figure 5 is a diagram of an example of slicing an encoded data segment 94 by the slicer
79. In this example, the encoded data segment 94 includes thirty-two bits, but may include more
or less bits. The slicer 79 disperses the bits of the encoded data segment 94 across the EC data
slices in a pattern as shown. As such, each EC data slice does not include consecutive bits of the
data segment 94 reducing the impact of consecutive bit failures on data recovery. For example,
if EC data slice 2 (which includes bits 1, 5, 9, 13, 17, 25, and 29) is unavailable (e.g., lost,
inaccessible, or corrupted), the data segment can be reconstructed from the other EC data slices
(e.g., 1, 3 and 4 for a read threshold of 3 and a width of 4).

Figure 6 is a schematic block diagram of an embodiment of a dispersed storage (DS) unit.
As illustrated, the DS unit 102 includes a storage unit control module 104, a plurality of
memories of type A (1 through a), and a plurality of memories of type B (1 through b). The
storage unit control module 104 may be implemented with the computing core 26. The
memories may be one or more of a magnetic hard disk, NAND flash, read only memory, optical
disk, and any other type of read-only or read/write memory. The memories may be implemented

as part of or outside of the DS unit 102. For example, memory A-1 may be implemented in the

15

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

DS unit 102 and memory A-2 may be implemented in a remote server (e.g., a different DS unit
operably coupled to the DS unit 102 via the network). In an example, memory A-1 through
memory A-a are implemented with the magnetic hard disk technology and memory B-1 through
memory B-b are implemented with the NAND flash technology.

As illustrated, the storage unit control module 104 includes the DSnet interface 32, a DS
tables and logs memory 106, an operating system (OS) memory 108, and the DS processing 34.
The storage unit control module 104 may be operably coupled to the computing system 10 via
the DSnet interface 32 by way of the network 24. The storage unit control module 104 receives
a store command, metadata, and data to store via the DSnet interface 32. The data may include a
simple object file, a block file, and/or error coded data slices. In response, the DS processing 34
of the storage unit control module 14 stores data in memory A and/or memory B. In an
example, the DS processing 34 stores the data in the memory A and/or memory B substantially
as received (e.g., a data slice is stored as a slice, a block file is stored as a block file, etc.).

In another example, the DS processing 34 encodes a portion of the data in accordance
with an error coded dispersal storage function to produce encoded data slices, determines where
to store the encoded data slices, and stores the encoded data slices in the memory A and/or
memory B. Such a determination may be based on one or more of the metadata, a command
(e.g., from a DS processing unit 16 indicating which memory type to use), a type of data
indicator, a local virtual DSN address to physical location table lookup, a priority indicator, a
security indicator, available memory, memory performance data, memory status, memory cost
data, and/or any other parameter to facilitate desired levels of efficiency and performance. For
example, the storage unit control module 104 may choose memory A-1 (e.g., a magnetic hard
disk drive) to store a received data slice since the performance and efficiency is good enough for
the data slice requirements (e.g., availability, cost, response time). In an instance, the DS
processing 34 stores the data slices at various addresses across memory A-1. In another instance,
the DS processing 34 stores the data slices across more than one of DS unit 102 memories. In
another instance, the DS processing 34 stores a threshold k number of the data slices across
memory B (for fast retrieval) and the other slicing pillar with minus the threshold number (n-k)
updated slices across memory A. In another instance, the DS processing 34 stores the data slices
across the DS unit 102 memories and at least one other DS unit at the same site as the DS unit
102. In another instance, the DS processing 34 stores the data slices across the DS unit 102
memories and at least one other DS unit at a different site as the DS unit 102. The method to

store and retrieve data slices will be discussed in greater detail with reference to Figures 7-9.

16

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

The storage unit control module 104 creates and maintains the local virtual DSN address
to physical memory table as part of the DS tables 106. The storage unit control module 104
determines where previously stored data slices are located based on the local virtual DSN
address to physical memory table. The storage unit control module 104 saves activity records
(e.g., memory utilization, errors, stores, retrievals, etc.) as the logs in the DS tables and logs
memory 106.

The storage unit control module 104 utilizes the DS processing 34 to distributedly store
information from the DS tables and logs 106 and the operating system memory 108 as data slices
in memory A and/or memory B to improve the reliability of operation of the DS unit 102. The
storage unit control module 104 determines when to distributedly store one or more of the DS
tables and logs 106 and the OS memory 108. Such a determination may be based on one or more
of a time period has expired since the last store, a command, an error message, a change in the
memory architecture (e.g., a new memory device is added), and at least one of the DS tables and
logs 106 and OS memory 108 have changed since the last store. The storage unit control module
104 determines where to distributedly store data slices of DS tables and logs 106 and OS
memory 108 when the storage unit control module 104 determines to distributedly store the data
slices. Such a determination may be based on one or more of a predetermination, a command, a
management configuration parameter, a reliability indicator, a memory status indicator, a
performance history indicator, DSN memory architecture, and any other factor to optimize the
system reliability.

Figure 7 is a schematic block diagram of another embodiment of a dispersed storage (DS)
unit. As illustrated, the DS unit includes a DS processing 34 and a memory A-1. In an example,
memory A-1 has one billion bytes of storage capacity. In an example of a storage operation, the
DS processing 34 receives 900 bytes of data 109. The DS processing 34 determines an error
coded dispersal storage function with a pillar width n=4 and a read threshold = 3. The DS
processing 34 encodes the data 109 in accordance with the error coded dispersal storage function
to produce four data slices (e.g., of the four pillars) where the data slices are each approximately
300 bytes in size. The DS processing 34 determines addressable locations within memory A-1 to
store the data slices based on one or more of lookup of where the last slices were stored, the
local virtual DSN address to physical location table, available memory, memory status, a
command, memory errors, and the error coded dispersal storage function. In an instance, the DS
processing 34 determines to evenly space the pillars apart evenly across the memory A-1 (e.g.,

spaced apart by 250 megabytes across the 1 gigabyte memory). In another instance, the DS

17

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

processing 34 determines to utilize memory addresses that avoid known issues as indicated by
the memory status for memory A-1 (e.g., 400 mega bytes between pillars 1 and 2 to avoid an
issue at address 300 million, 100 mega bytes between pillars 2 and 3, and 150 mega bytes
between pillars 3 and 4). Next, the DS processing 34 stores the data slices in the memory A-1 at
the addressable locations.

In an example of a re-commissioning operation, a hard disk drive is utilized for a first
time period (e.g., three years) within a non-dispersed storage system (e.g., a RAID system). The
hard disk drive is re-commissioned in a dispersed storage system at the end of the first time or
when a number of disk drive errors exceeds an error threshold. For example, the hard disk drive
is removed from the non-dispersed storage system and installed in the dispersed storage system
when the hard disk drive is producing too many disk drive errors. A processing module of the
DS processing module 34 generates an initial error profile (e.g., reliability of the hard disk drive
by addressable storage sectors) and determines a dispersal configuration (including a memory
utilization approach) based on the initial error profile. The processing module generates the
initial error profile by the generating test data, storing the test data in two or more storage sectors
of a set of addressable storage sectors, retrieving the test data from the two or more storage
sectors of the set of addressable storage sectors to produce retrieved test data.

Next, the processing module compares the retrieved test data to the test data. The
processing module determines that a storage error has been detected when the comparison is
unfavorable (e.g., when substantially different). The processing module determines that a
storage error has not been detected when the comparison is favorable (e.g., when substantially
the same). The processing module produces the initial error profile by listing the detected
storage errors and the corresponding addressable storage sectors. The processing module
determines the dispersal configuration based on the initial error profile to avoid using
addressable storage sectors corresponding to detected storage errors. Note that as the hard disk
drive is utilized in the dispersed storage system, the processing module produces an error profile
when storage errors are detected and rebuilds stored data within the hard disk drive in
accordance with the error profile. The method of operation to rebuild data is discussed below.
The method of operation to store data is discussed with reference to Figure 8. Note that the
effective lifespan of the hard disk drive may be extended by utilizing the hard disk drive in the
dispersed storage system where overall data reliability is above acceptable levels even though
individual hard disk drives may produce errors above unacceptable levels in a non-dispersed

storage system.

18

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

In an example of a rebuilding operation of a single hard drive, a processing module
detects a storage error of an encoded data slice (e.g., an integrity test failure, a checksum test
failure, a missing data slice indicator, etc.) of a set of encoded data slices, wherein the set of
encoded data slices represents data encoded using an error coding dispersal storage function,
wherein the single hard drive is defined to have a set of addressable storage sectors, and wherein
encoded data slices of the set of encoded data slices are stored in corresponding addressable
storage sectors of the set of addressable storage sectors. In addition, the processing module may
detect a plurality of storage errors and determine a rate of increase of the plurality of storage
errors. Next, the processing module evaluates the rate of increase of the plurality of storage
errors to determine a level of reliability. The processing module determines a second error type
when a size of usable storage space is greater than a storage threshold and when the level of
reliability compares unfavorably to a reliability threshold.

Alternatively, or in addition to, the processing module detects a storage error of an
encoded data slice of a plurality of sets of encoded data slices, wherein the plurality of sets of
encoded data slices represents a plurality of data segments each encoded using the error coding
dispersal storage function, wherein a first encoded data slice of each of the plurality of sets of
encoded data slices is stored in a first addressable storage sector of the set of addressable storage
sectors, and wherein a second encoded data slice of each of the plurality of sets of encoded data
slices is stored in a second addressable storage sector of the set of addressable storage sectors.

The method of the rebuilding example continues where the processing module updates an
error profile based on the storage error(s). The processing module determines a type of error for
the storage error. Such a determination of the type of error includes determining an error profile,
evaluating the error profile to determine a level of reliability, determining the first error type
when the level of reliability compares favorably to a first reliability threshold and determining a
second error type when the level of reliability compares unfavorably to the first reliability
threshold.

The processing module rebuilds the encoded data slice in accordance with the error
coding dispersal storage function to produce a rebuilt encoded data slice when the type of error is
a first error type. Next, the processing module stores the rebuilt encoded data slice at a different
storage location in the corresponding addressable storage sector of the encoded data slice. The
processing module determines a second error coding dispersal storage function when the type of
error is a second error type. The processing module re-encodes the set of encoded data slices

based on the second error coding dispersal storage function to produce a re-encoded set of

19

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

encoded data slices. Next, the processing module re-defines addressable storage sectors of the
single hard drive in accordance with the second error coding dispersal storage function and an
error profile of the single hard drive to produce a re-defined set of addressable storage sectors.
The processing module stores the re-encoded set of encoded data slices in corresponding
addressable storage sectors of the re-defined set of addressable storage sectors.

Figure 8 is a flowchart illustrating an example of storing slices. The method begins with
step 126 where a processing module receives data to store and metadata. The processing module
may receive the data and associated metadata from any one of a user device, a DS processing
unit, a DS managing unit, a DS unit, and a storage integrity processing unit. The data may
include one or more of an encoded data slice, a data segment, a data object, a data file, and a data
stream. The metadata may include one or more of a data object name, a data object size
indicator, a slice name, a source name a simple object file name, a block file name, a command,
a request a priority indicator, a security indicator, a user identification, a data type, a memory
error indicator, a memory availability indicator, and a memory status.

The method continues at step 128 where the processing module determines error coding
dispersal storage function parameters. The error coding dispersal storage function parameters
may include one or more of a slicing pillar width n, a read threshold k, and encoding algorithm, a
slicing method, a pre-data manipulation, and a post-data manipulation. Such a determination
may be based on one or more of the metadata, a table lookup, a command, the data object size
indicator, a memory status, a memory availability indicator, a priority indicator, a security
indicator, a user 1D, and the data type. For example, the processing module determines the pillar
width n=4 and the read threshold = 3 when the table lookup indicates a preference for a 4/3
system and the memory status indicates that the memory is fully operational with no recent
storage errors. In another example, the processing module determines the pillar width n=16 and
the read threshold = 10 when the table lookup indicates a preference for a 16/10 system when
there is a history of memory errors and the memory status indicates that the memory has recent
eITors.

The method continues at step 130 where the processing module determines the memory
(e.g., memory ID) to utilize to store data slices which may include one or more of one local
memory device, two or more local memory devices (e.g., in the same DS unit), and non-local
memory (e.g., in another DS unit). Such a determination may be based on one or more of the
metadata, a table lookup, a command, a data object size indicator, a memory status, a memory

availability indicator, a priority indicator, a security indicator, a user ID, and a data type. For

20

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

example, the processing module determines to utilize one memory A-1 when the table lookup
indicates a preference for one memory and the memory status indicates that the memory A-1 is
fully operational with no recent errors. In another example, the processing module determines to
utilize two memories A-1 and B-1 when the table lookup indicates a preference to utilize at least
two memory types when there is a history of memory errors and the memory status indicates that
the memory A-1 has recent errors.

The method continues at step 132 where the processing module defines addressable
storage sectors (e.g., of a single hard drive) to utilize in the determined memory. The processing
module defines addressable storage sectors within the single hard drive based on a number of
data slices within the set of data slices to produce a set of addressable storage sectors. For
example, the processing module defines the addressable storage sectors by one or more of
determining utilization of the single hard drive, avoiding an inoperable storage location of the
single hard drive, avoiding a storage location of the single hard drive with a history of errors, and
avoiding a second storage location of the single hard drive predicted to have a future error.

The method continues with step 132 where the processing module encodes at least a
portion of the data in accordance with the error coding dispersal storage function parameters to
produce a set of data slices. At step 136, the processing module stores data slices of the set of
data slices in corresponding addressable storage sectors of the set of addressable storage sectors.
At step 138, the processing module may store one or more slice names of the data slices of the
set of data slices, identity of the set of addressable storage sectors, and utilization information
associated with the data slices of the set of data slices in a local memory.

Alternatively, or in addition to step 134, the processing module may encode the data in
accordance with the error coding dispersal storage function parameters to produce a plurality of
sets of data slices. Alternatively, or in addition to step 136, the processing module stores a first
data slice of each of the plurality of sets of data slices in a first addressable storage sector of the
set of addressable storage sectors and the processing module stores a second data slice of each of
the plurality of sets of data slices in a second addressable storage sector of the set of addressable
storage sectors. The method to retrieve the slices and recreate the data is discussed in greater
detail with reference to Figure 9.

Figure O is a flowchart illustrating an example of retrieving slices by a processing module
where the slices may be stored in one memory. The method begins with step 140 where the
processing module (e.g. of a DS processing) receives a data retrieval request from a requester.

The requester includes one of the user device, the DS processing unit, the DS managing unit, the

21

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

DS unit, and the storage integrity processing unit. The processing module receives one or more
of the data object name, a data object size indicator, a slice name, a command, a priority
indicator, a security indicator, a user ID, and/or a data type with the data object.

The method continues at step 142 where the processing module determines local
operational parameters (e.g., error coding dispersal storage function parameters) which may
include one or more of the pillar width n, the read threshold, the encoding algorithm, the slicing
method, pre-data manipulation, and post-data manipulation. The determination may be based on
one or more of a table lookup, a command, the data object size indicator, a memory status, a
memory availability indicator, the priority indicator, the security indicator, the user ID, and the
data type. For example, the processing module may determine the pillar width n=4 and the read
threshold = 3 when the table lookup indicates the 4/3 approach was previously utilized when the
data object was stored.

The method continues with step 144 where the processing module determines the
memory (e.g., memory ID) to retrieve the data slices which may include one or more of one
memory in a DS unit, two or more memories in the DS unit, and memory in another DS unit.
Such a determination may be based on one or more of the virtual DSN address to physical
location table, a table lookup, a command, a data object size indicator, a memory status, a
memory availability indicator, a priority indicator, a security indicator, the user ID, and a data
type. For example, the processing module determines to retrieve from one memory A-1 when
the table lookup indicates a preference for one memory and the memory status indicates that the
memory A-1 is fully operational with no recent errors. In another example, the processing
module determines to retrieve from two memories A-1 and B-1 when the table lookup indicates a
preference to utilize at least two memory types when there is a history of memory errors and the
memory status indicates that the memory A-1 has recent errors.

The method continues at step 146 where the processing module determines memory
locations (e.g., addresses, addressable storage sectors of a single hard disk drive) to retrieve
slices from the determined memory which may include one or more of to an even distribution of
pillar locations, all the pillars in sequence starting at one location, a pillar distribution to avoid
known memory issues, and a pillar distribution to avoid predicted future memory issues. Such a
determination may be based on one or more of the virtual DSN address to physical location
table, where last slices were stored, a table lookup, a command, the data object size indicator, a
memory status, a memory availability indicator, a priority indicator, a security indicator, a user

ID, and a data type. For example, the processing module determines to retrieve from the even

22

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

distribution of pillars when the table lookup indicates a preference for the even distribution and
the memory status indicates that the memory A-1 is fully operational with no recent errors. In
another example, the processing module determines to retrieve from the pillar distribution to
avoid known memory issues when the table lookup indicates a preference to utilize the pillar
distribution to avoid known memory issues when there is a history of memory errors and the
memory status indicates that the memory A-1 has recent errors.

The method continues with step 148 where the processing module reads the data slices of
the data from the determined memory at the determined addressable locations. At step 150, the
processing module decodes the data slices in accordance with the error coding dispersal storage
function parameters to recreate the data. At step 152, the processing module sends the data to
the requester.

Figure 10 is a flowchart illustrating an example of rebuilding memory by a DS processing
where a new memory may be populated with the information that was previously stored on at
least one memory device. In an example, a DS unit memory fails and EC data slices are
temporarily lost. The DS processing detects a new DS unit memory and stores recreated slices
of the lost slices to the new memory.

The method begins with step 154 where the DS processing detects a new memory. Note
that a new memory may be a memory that was recently installed to replace a failed memory
and/or a memory that was not recently installed but idle until this point. The new memory may
be available for utilization by the computing system to store EC data slices. The DS processing
detects a new memory by one or more of a message, a command, a DS managing unit message, a
configuration lookup, a list, a timed event, a predetermination, and a query.

At step 156, the DS processing determines if the new memory is a replacement memory
(e.g., for a failed memory) based on one or more of a message, a command, a DS managing unit
message, a configuration lookup, a list, a timed event, a predetermination, and/or a query. For
example, the DS processing determines the memory is not a replacement memory when the DS
processing queries the DS units and/or memories and determines that they are all accounted for
(e.g., actual is the same as a configuration lookup) with no failed memories. In another example,
the DS processing determines the memory is a replacement memory when the DS processing
queries the DS units and/or memories and determines that at least one memory is not active (e.g.,
actual is not the same as a configuration lookup). The method branches to step 160 when the DS
processing determines that the new memory is a replacement memory. The method continues to

step 158 when the DS processing determines that the new memory is not a replacement memory.

23

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

At step 158, the DS processing activates the memory in accordance with a memory expansion
method to format the memory and add the memory to an appropriate storage set(s) that require
more capacity.

The method continues at step 160 where the DS processing formats the new memory
when the DS processing determines that the new memory is a replacement memory. In an
instance, DS processing formats the memory by writing the same information to all memory
addresses (e.g., all zeroes, all ones, a pattern of ones and zeroes).

At step 162, the DS processing determines the slice name ranges of missing slices
previously stored on the missing memory (e.g., a failed, inactivated, and/or removed memory).
Such a determination may be based on one or more of a lookup in the local virtual DSN address
to physical location table, a message, a command, a DS managing unit message, a configuration
lookup, a list, a predetermination, and a query.

At step 164, the DS processing determines the slice locations (e.g., on the same and/or
other DS units) for all other slices of the data segments of the slice name ranges of missing
slices. Such a determination may be based on one or more of the slice name ranges of missing
slices, a lookup in the local virtual DSN address to physical location table, a lookup in the virtual
DSN address to physical location table, a message, a command, a DS managing unit message, a
configuration lookup, a list, a predetermination, and/or a query.

The method continues at step 166 where the DS processing sends a retrieve slice
command with slice names for all other slices of the data segments of the slice name ranges of
missing slices to the determined slice locations. The DS processing receives the slices in
response. At step 168, the DS processing recreates the data segments by de-slicing and decoding
the received slices in accordance with the operational parameters affiliated with the slice names.
In an instance, the DS processing determines the operational parameters affiliated with the slice
names by a user vault lookup.

At step 170, the DS processing recreates the missing slices by encoding and slicing data
segments in accordance with the operational parameters. Note that the slices of the other pillars
may remain stored as they were prior to this method. Alternatively, the DS processing creates all
new slices for every pillar by encoding and slicing data segments in accordance with new
operational parameters. Note that the slices are stored to the pillar(s) in the present memory and
of the other pillars to replace the previously stored slices (e.g., prior to this method). The DS
processing determines the new operational parameters based on one or more of the a memory

status indicator, a message, a command, a DS managing unit message, a configuration lookup, a

24

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

list, a timed event, a predetermination, and a query. For example, the DS processing determines
the new operational parameters to have more reliability than previously when the memory failed.

At step 172, DS processing writes the missing slices to the new memory and saves the
stored locations in the local virtual DSN address to physical location table. Note that the new
memory may have more capacity that the missing memory it is replacing. The DS processing
may make the extra memory capacity available to one or more storage sets when the missing
slices have been be replaced as described above.

Figure 11 is a schematic block diagram of another embodiment of a dispersed storage
unit 174 that includes a DS processing 34 and a plurality of memories 1-12. The DS processing
34 may be implemented with the computing core 26. The memories 1-12 may be one or more of
a magnetic hard disk, NAND flash, read only memory, optical disk, and any other type of read-
only or read/write memory. The memories 1-12may be implemented as part of or outside of the
DS unit 174. For example, memories 1-4 may be implemented in the DS unit 174 and memories
5-12 may be implemented in a remote server (e.g., a different DS unit operably coupled to the
DS unit 174 via the network). In another example, memories 1-8 are implemented with the
magnetic hard disk technology and memories 9-12 are implemented with the NAND flash
technology.

The DS processing 34 may be operably coupled to the computing system via the network
24. The DS processing 34 may receive a store command, metadata, and a data object to store.
The data object may include a simple object file, a block file, and/or EC data slices. In an
example, the DS processing stores the data object in one or more of the memories 1-12
substantially as received (e.g., a slice is stored as a slice, a block file is stored as a block file,
etc.). In another example, the DS processing 34 creates EC data slices of the data object and
stores the slices in one or more of the memories 1-12 as slices. Note that the DS processing unit
determines to utilize only the memories 1-12 of the DS unit 174 when the capabilities of
memories 1-12 substantially meet the requirements. In another example, a DS processing unit
may determine to utilize a combination of the memories 1-12 of the DS unit 174 and memory of
at least one other DS unit when the capabilities of memories 1-12 alone substantially do not meet
the requirements. The method to determine the memories to utilize is discussed in greater detail
with reference to Figure 12.

In an example, the DS processing 34 determines where (e.g., which address of one or
more of the memories) to store the received data object as EC data slices. The determination

may be based on one or more of the metadata, a command (e.g., from the DS processing unit

25

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

indicating which memory type to use), a type of data indicator, a local virtual DSN address to
physical location table lookup, a priority indicator, a security indicator, available memory,
memory performance data, memory status, memory cost data, and any other parameter to
facilitate desired levels of efficiency and performance. For example, the DS processing 34 may
choose memories 1-12 (e.g., magnetic hard disk drives) to store the EC data slices since the
performance and efficiency is good enough for the requirements (e.g., availability, cost, response
time). In another example, the DS processing 34 distributes the data slices to memories 1-10
when memories 11 and 12 are not available. In another example, the DS processing 34
distributes the slices at various addresses across one memory. In another example, the DS
processing 34 distributes a read threshold k=8 of the slices across memories 1-8 (for fast
retrieval) and the other 4 (n-k) slices other DS units. In yet another example, the DS processing
34 distributes the slices across the DS unit memories and at least one other DS unit at the same
site as the DS unit 174. In yet another example, the DS processing 34 distributes the slices
across the DS unit 174 memories and at least one other DS unit at a different site as the DS unit
174.

The DS processing 34 utilizes a temporary set of operational parameters and a temporary
set of memory choices when the memory capabilities do not meet the needs of the requirements
(e.g., when a memory has failed). The method to determine the memories to utilize is discussed
in greater detail with reference to Figure 12. The DS processing fee for creates and maintains the
local virtual DSN address to physical memory table. The DS processing module 34 determines
where previously stored EC data slices are located based on the local virtual DSN address to
physical memory table upon receiving a retrieve command via the network. Note that the DS

unit access may be via a WebDAYV sequence, e.g., via an IP address such as http://21.8.43/vaultl

to facilitate easy DS unit access.

Figure 12 is another flowchart illustrating another example of storing slices by a DS
processing 34 where the DS processing 34 determines which memories of a DS unit 174 or of
one or more other DS units to utilize as discussed below. The method begins with step 176
where the DS processing receives a data object to store from the user device, the DS processing
unit, the DS managing unit, the DS unit, and/or the storage integrity processing unit. The DS
processing may receive one or more of the data object name, a data object size indicator, a slice
name, a simple object file, a block file, a command, a priority indicator, a security indicator, a

user ID, and a data type with the data object.

26

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

The method continues at step 178 where the DS processing determines memory status of
the memory of the DS unit and/or the memory of one or more other DS units. Such a
determination may be based on one or more of a lookup, a command, a query, and/or a DS
managing unit message. For example, the DS processing may determine that memory 5 is
unavailable via a query. In an instance, the DS processing determines that the memory status is
not fully operational if at least one memory is not available. In another instance, the DS
processing determines that the memory status is fully operational when all of the memories are
available. The method branches to step 196 when the DS processing determines that the memory
status is fully operational. The method continues to step 180 when the DS processing determines
that the memory status is not fully operational.

At step 180, the DS processing determines temporary operational parameters which may
include one or more of the pillar width n, the read threshold, the encoding algorithm, the slicing
method, pre-data manipulation, and post-data manipulation. Such a determination may be based
on one or more of which memory is not available, how many memories are not available, a table
lookup, a command, the data object size indicator, a memory status, a memory availability
indicator, the priority indicator, the security indicator, the user ID, and the data type. For
example, the DS processing may determine the pillar width n=6 and the read threshold = 4 when
the memory status indicates that memories 10-12 are unavailable. In this example, the DS
processing subsequently stores the 6 pillars in 6 of the remaining 9 available memories. In
another example, the DS processing may determine the pillar width n=12 and the read threshold
= 8 when the memory status indicates that memory 5 is unavailable. In this example, the DS
processing subsequently stores 11 of the 12 pillar slices in 11 of the remaining 11 available
memories and temporarily stores the 12t pillar slices in one of the memories and/or in another
DS unit. In addition, the DS processing may subsequently move the temporarily stored slices to
memory 12 when memory 12 is available.

At step 182, the DS processing determines temporary memory (e.g., memory ID) or
memories to utilize to store the slices which may include one or more of one memory in the DS
unit, a spare memory, an unused memory, two or more memories in the DS unit, and/or memory
in another DS unit. Such a determination may be based on one or more of which memory is not
available, how many memories are not available, a table lookup, a command, the data object size
indicator, a memory status, a memory availability indicator, the priority indicator, the security

indicator, the user ID, and the data type. For example, the DS processing determines to utilize

27

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

temporary memories 1-4 and 6-12 to store 11 of the 12 pillar slices (with 12/8 operational
parameters) and memory 1 to store the 12" pillar slices when memory 5 is unavailable.

At step 184, the DS processing determines temporary memories locations (e.g.,
addresses) to utilize in the determined temporary memory to store the slices which may include
one or more of an even distribution of pillar locations, all the pillars in sequence starting at one
location, a pillar distribution to avoid known memory issues, and a pillar distribution to avoid
predicted future memory issues. The location determination may be based on one or more of
where last slices were stored, a table lookup, a command, the data object size indicator, a
memory status, a memory availability indicator, the priority indicator, the security indicator, the
user ID, and the data type.

The method continues at step 186 where the DS processing creates the EC data slices of
the data object in accordance with the temporary operational parameters. At step 188, the DS
processing writes the slices to the determined temporary memories at the determined temporary
memories locations. At step 190, the DS processing saves the slice name, temporary memory
ID, temporary memory locations (e.g., starting address), and sizes of the slices in the virtual DSN
address to physical location table to facilitate subsequent retrieval of the data object.

The method continues at step 192 where the DS processing determines memory status of
the DS unit and/or the memory of one or more other DS units to determine if memory that was
unavailable is now available. Such a determination may be based on one or more of a lookup, a
command, a query, and/or a DS managing unit message. For example, the DS processing
determines that memory 5 is now available via a query. The DS processing determines that the
memory status is not fully operational if at least one memory is not available. The DS
processing determines that the memory status is fully operational when all of the memories are
available. The method branches back step 192 when the DS processing determines that the
memory status is not fully operational. The method continues step 194 when the DS processing
determines that the memory status is fully operational.

The method continues at step 194 where the DS processing retrieves the slices from the
temporary memories at the temporary memories locations. Next, the DS processing recreates the
data object in accordance with the temporary operational parameters. The method continues to
step 196.

At step 196, the DS processing determines local operational parameters, which may
include one or more of the pillar width n, the read threshold, the encoding algorithm, the slicing

method, pre-data manipulation, and post-data manipulation. Such a determination may be based

28

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

on one or more of a table lookup, a command, the data object size indicator, a memory status, a
memory availability indicator, the priority indicator, the security indicator, the user ID, and the
data type. For example, the DS processing may determine the pillar width n=12 and the read
threshold = 8 when the table lookup indicates a preference for a 12/8 system (e.g., to utilize the
memory configuration of memories 1-12) and the memory status indicates that the memory is
fully operational with no recent errors.

At step 198, the DS processing determines the memories (e.g., memory ID) to utilize to
store the slices, which may include one or more of one memory in the DS unit, two or more
memories in the DS unit, and memory in another DS unit. Such a determination may be based
on one or more of a table lookup, a command, the data object size indicator, a memory status, a
memory availability indicator, the priority indicator, the security indicator, the user ID, and the
data type.

At step 200, the DS processing determines memories locations (e.g., addresses) to utilize
in the determined memories to store the slices which may include one or more of, but not limited
to an even distribution of pillar locations, all the pillars in sequence starting at one location, a
pillar distribution to avoid known memory issues, and a pillar distribution to avoid predicted
future memory issues. The location determination may be based on one or more of where last
slices were stored, a table lookup, a command, the data object size indicator, a memory status, a
memory availability indicator, the priority indicator, the security indicator, the user ID, and the
data type.

At step 202, the DS processing creates the EC data slices of the data object in accordance
with the local operational parameters. At step 204, the DS processing writes the slices to the
determined memories at the determined memories locations. At step 206, the DS processing
saves the slice name, memory ID, memories locations (e.g., starting address), and sizes of the
slices in the virtual DSN address to physical location table to facilitate subsequent retrieval of the
data object.

Figure 13 is a schematic block diagram of another embodiment of a computing system
that includes a plurality of DS units 1-7 where at least one of the plurality of DS units 1-7
includes a DS processing 34 to create slices to be stored in one or more of the plurality of DS
units 1-7. The DS units 1-7 may be installed at one or more sites. For example, DS unit 1 208
may be at site 1, DS units 2-4 may be at site 2, and DS units 5-7 may be at site 3.

As illustrated, the DS unit 1 208 at site 1 may include the DS processing 34 and a

plurality of memories 1-12. The DS processing 34 may be implemented with the computing core

29

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

26. The memories 1-12 may be one or more of a magnetic hard disk, NAND flash, read only
memory, optical disk, and any other type of read-only or read/write memory. The memories 1-
12 may be implemented as part of or outside of the DS unit 208. For example, memories 1-4
may be implemented in the DS unit 208 and memories 5-12 may be implemented in a remote
server (e.g., a different DS unit operably coupled to the DS unit 208 via the network 24). In
another example, memories 1-8 are implemented with the magnetic hard disk technology and
memories 9-12 are implemented with the NAND flash technology.

As illustrated, the DS units 2-7 each include memories 1-4. In this instance, DS units 2-7
do not include the DS processing 34. The DS processing 34 of DS unit 208 is operably coupled
to DS units 2-7 to facilitate storing and retrieving of data to and from the DS unit 2-7 memories
1-4. The DS processing 34 may be operably coupled to the computing system via the network to
four. The DS processing 34 may receive a store command, metadata, and a data object to store.
The data object may include a simple object file, a block file, and/or EC data slices. In an
example, the DS processing 34 stores the data object in one or more of the memories 1-12
substantially as received (e.g., a slice is stored as a slice, a block file is stored as a block file,
etc.). In another example, the DS processing 34 creates EC data slices of the data object and
stores the slices in one or more of the memories 1-12 as slices. Note that a DS processing unit
may determine to utilize only memories 1-12 of the DS unit 208 when the capabilities of
memories 1-12 substantially meet the requirements. In another example, the DS processing unit
may determine to utilize some combination of the memories 1-12 of the DS unit 208 and
memory of at least one other DS unit 2-7 when the capabilities of memories 1-12 alone do not
substantially meet the requirements.

In an example, the DS processing 34 of DS unit 208 determines where (e.g., which
address of one or more of the memories) to store the received data object as EC data slices. Such
a determination may be based on one or more of the metadata, a command (e.g., from the DS
processing unit indicating which memory type to use), a type of data indicator, a local virtual
DSN address to physical location table lookup, a priority indicator, a security indicator, available
memory, memory performance data, memory status, memory cost data, and any other parameter
to facilitate desired levels of efficiency and performance. For example, the DS processing 34
may choose memories 1-12 (e.g., magnetic hard disk drives) to store the EC data slices since the
performance and efficiency is good enough for the requirements (e.g., availability, cost, response
time). In another example, the DS processing 34 distributes the slices to memories 1-10 when

memories 11 and 12 are not available. In another example, the DS processing 34 distributes the

30

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

slices at various addresses across one memory. In another example, the DS processing 34
distributes a read threshold k=8 of the slices across memories 1-8 (to enable fast retrieval) and
the other 4 (n-k) slices to DS units 2-7. In yet another example, the DS processing 34 distributes
the slices across the DS unit memories and at least one other DS unit 2-7.

The DS processing 34 creates and maintains the local virtual DSN address to physical
memory table. The DS processing module 34 determines where previously stored EC data slices
are located based on the local virtual DSN address to physical memory table upon receiving a
retrieve command via the network. Note that the DS unit 208 access may be via a WebDAV

sequence, €.g., via an IP address such as http://21.8.43/vault]l to facilitate easy DS unit 208

access.

The plurality of DS units may include one, two, three, or more DS units at any point in
time. For example, the system may start with DS unit 208 at site 1 and may add DS unit 2 at site
2 at a subsequent time. The DS processing 34 may detect that DS unit 2 was added and may
move a portion of stored data from the memories of DS unit 208 to DS unit 2 in response. In
another example, DS unit 5 may be added at a still further subsequent time. The DS processing
before may detect that DS unit 5 was added and may move a portion of stored data from DS unit
208 and DS unit 2 to DS unit 5 in response.

In another example, the DS processing 34 may move all 12 pillars of slices from the
memories 1-12 of DS unit 208 to memories 1-4 of DS units 2-4 when the DS processing 34
detects that the site 2 DS units 2-4 are available. Still later, the DS processing 34 may
redistribute all 12 pillars of slices from the memories 1-4 of DS units 2-4 to memories 1-4 of DS
units 2-7 when the DS processing detects that the site 3 DS units 5-7 are also available. The
method to determine added DS units and to move a portion of the data will be discussed in
greater detail with reference to Figure 14.

Figure 14 is a flowchart illustrating an example of distributing slices. The method begins
at step 210 where a DS processing determines if the DS unit storage set configuration has
changed. A configuration change may include the addition or subtraction of DS units assigned
as pillars of common storage sets. The DS units may comprise pillars at one or more sites. Such
a determination may be based on one or more of a command, a new configuration message from
the DS managing unit, a lookup, and a query. The method repeats step 210 when the DS
processing determines that the DS unit storage set configuration has not changed. The method
branches to step 212 when the DS processing determines that the DS unit storage set

configuration has changed.

31

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

At step 212, the DS processing determines the new storage set and new operational
parameters. The new storage set determination may be based on one or more of the current
storage set configuration, the location of a new DS unit, DS unit capabilities, predetermined
storage set configuration goals, a command, a new configuration message from the DS managing
unit, a lookup, and a query. For example, the DS processing determines the new storage set to
replace a current storage set where the new storage set will utilize more sites to improve
reliability when the predetermined storage set configuration goals indicate more reliability and
the storage set change enables at least one new site.

At step 212, the determination of the operational parameters may be based on one or
more of the new storage set, the current operational parameters, the current storage set
configuration, the location of a new DS unit, DS unit capabilities, predetermined storage set
configuration goals, a command, a new configuration message from the DS managing unit, a
lookup, and a query. For example, the DS processing determines the new operational parameters
to replace the current operational parameters where the new operational parameters will utilize
more pillars to improve reliability when the predetermined storage set configuration goals
indicate more reliability and the storage set change enables at least one new pillar.

The myth continues at step 214 where the DS processing determines what portion of the
slices to move based on one or more of, but not limited to the new storage set, the new
operational parameters, the current operational parameters, the current storage set configuration,
a current memory utilization indicator, an amount of data stored indicator, a current storage set
performance indicator, a new storage set capacity indicator, the location of a new DS unit, DS
unit capabilities, predetermined storage set configuration goals, a command, a new configuration
message from the DS managing unit, a lookup, and a query. For example, the DS processing
determines the portion of the slices to move to be 25% when the current memory utilization
indicator has not reached a high threshold and the new storage set capacity indicator is at least a
threshold greater than the amount of data to be moved.

At step 216, the DS processing retrieves slices from the current storage set in accordance
with the current operational parameters based on a lookup in a local DSN address to physical
location table. The slice retrieval may include reading slices from the DS unit memories and/or
sending a retrieve slice command to one or more DS units. The DS processing reads the slices
from memory and/or receives the slices in message(s) from other DS unit(s).

At step 218, the DS processing recreates data segments and data objects by de-slicing and

decoding the read and/or received slices in accordance with the current operational parameters.

32

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

At step 220, the DS processing creates slices of the data objects in accordance with the new
operational parameters. At step 222, the DS processing writes slices to the DS unit memory (for
pillars of the DS unit) and/or sends slices with a store command for storage of slices in other DS
unit(s) where the DS unit and the other DS unit(s) comprise the new storage set. The DS
processing saves the storage locations of the slices in the local virtual DSN address to physical
location table to be utilized in subsequent data object retrieval.

Figure 15 is a schematic block diagram of another embodiment of a computing system.
As illustrated, the system includes a DS managing unit 18 and a plurality of DS units 1-4. The
DS units 1-4 may be allocated to one or more DS unit storage sets 1-2 (e.g., a set of DS units
where the pillars resulting from encoding and slicing of data segments of a user vault are stored).
For example, DS units 1-3 comprise storage set 1 and DS units 2-4 comprise storage set 2.

In an example of operation, the DS managing unit 18 determines an amount of memory
allocated to the storage set where the allocation is the amount of available memory the storage
set may utilize. Such a determination may be based on one or more of a user vault lookup, a
predetermination, the number of system users, the estimated memory use per user, the actual
memory use per user, the memory capacity of DS units, the current amount of memory
utilization, the amount of unused capacity, a command, an adaptive algorithm, memory status, an
error message, and an external input. For example, the DS managing unit 18 determines the
amount of memory allocated to the storage set to be 100 terabytes when the amount of unused
capacity is above a first threshold and the estimated memory use per user is below a second
threshold.

In another example, the DS managing unit 18 determines the amount of memory
allocated to the vault(s) that utilize the storage set where the allocation is the amount of available
memory the vault may utilize. Such a determination may be based on one or more of a
subscription indicator, a user vault lookup, a predetermination, the number of system users, the
estimated memory use per user, the actual memory use per user, the memory capacity of DS
units, the current amount of memory utilization, the amount of unused capacity, a command, an
adaptive algorithm, memory status, an error message, and an external input. For example, the
DS managing unit determines the amount of memory allocated to vault 1 to be 30 terabytes when
the amount of unused capacity is above a first threshold and the estimated memory use per user
is below a second threshold.

The DS managing unit 18 sends a memory allocation information message to the DS

units 1-4 of the storage set that contains memory allocation information. The memory allocation

33

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

information may include one or more of, but not limited to the amount of memory allocated to
the storage set, vault IDs that may utilize the storage set, other DS unit IDs of the storage set,
and/or storage set operational parameters (e.g., pillar width n). The DS unit saves the memory
allocation information including the amount of memory allocated to all of the storage set(s) that
include the DS unit. For example, DS unit 1 saves the 100 terabyte allocation to storage set 1,
DS units 2 and 3 saves the 100 terabyte allocation to storage set 1 and a 100 terabyte allocation
to storage set 2, and DS unit 4 saves the 100 terabyte allocation to storage set 2.

In an instance, DS unit 1 determines when to analyze the memory utilization to produce
utilization information 224 that the DS unit 1 sends to the DS managing unit. The utilization
information 224-230 may include one or more of vault utilization of memory (e.g., how much is
actually stored) per storage set, total memory utilization of all vaults per storage set, total
memory used, and/or free memory space. The DS units 1-4 determine when to analyze the
memory utilization based on one or more of a time duration since the last analysis, a storage
sequence, a time schedule, a command, a message from the DS managing unit, and a received
query. For example, DS unit 2 determines to analyze the memory utilization immediately when
receiving a store slice command. In another example, the DS unit 3 determines to analyze the
memory utilization once every day at 3AM when the time schedule indicates a daily analysis at
3AM.

The DS units 1-4 determine the memory utilization and produces utilization information
224-230. For example, the DS unit 1 determines that vault 1 is utilizing 26 terabytes of storage
set 1, vault 2 is utilizing 20 terabytes of storage set 1, and storage set 1 has 54 terabytes of free
space. Note that the memory utilization may be expressed as total vault utilization (e.g., based
on DS unit specific utilization and the pillar width of the vault) and/or DS unit specific
utilization. For example, the vault 1 DS unit 1 utilization may be 8.66 terabytes and the vault 1
pillar width =3 such that the total vault 1 utilization is 3 x 8.66 terabytes = 26 terabytes. In
another memory utilization example, the DS unit 2 determines that vault 1 is utilizing 26
terabytes of storage set 1, vault 2 is utilizing 20 terabytes of storage set 1, storage set 1 has 54
terabytes of free space, vault 1 is utilizing 42 terabytes of storage set 2, and storage set 2 has 58
terabytes of free space. In another memory utilization example, the DS unit 4 determines that
vault 1 is utilizing 42 terabytes of storage set 2 and storage set 2 has 58 terabytes of free space.

The DS units 1-4 send the memory utilization information 224-230 to one or more of the
DS managing unit, the DS processing unit, the user device, and the storage integrity processing

unit when the DS unit 1-4 determines the memory utilization information 224-230. The DS

34

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

managing unit 18 receives the memory utilization information 224-230 from the DS units 1-4
and aggregates the information. The DS managing unit on it determines the vault utilization and
unused capacity and takes action if either or both do not compare favorably to thresholds. The
method to process the received memory utilization information 224-230 by the DS managing
unit is discussed in greater detail with reference to Figure 16.

Note that a simple file object vault may not be pre-defined such that writing data
increases memory utilization and deleting data lowers the memory utilization. Further note that
in a block vault may be pre-defined (e.g., pre-allocated) such that writing data does not increase
memory utilization and deleting data does not lower the memory utilization.

Figure 16 is a flowchart illustrating an example of determining memory utilization. The
method begins with step 232 where a DS managing unit receives memory utilization information
from a DS unit. At step 234, the DS managing unit aggregates the memory utilization
information per vault to produce vault utilization. For example, the DS managing unit adds the
received memory utilization information from a DS unit 3 that vault 1 is utilizing 26 terabytes of
storage set 1 to the received memory utilization information from the DS unit 3 that vault 1 is
utilizing 42 terabytes of storage set 2 for a total of 68 terabytes.

The method continues with step 236 where the DS managing unit determines storage set
unused capacity based on the received memory utilization information. For example, storage set
1 has 54 terabytes of unused capacity and storage set 2 has 58 terabytes of unused capacity. At
step 238, the DS managing unit determines if vault utilization compares favorably to a utilization
threshold. For example, the DS managing unit determines that the vault utilization compares
favorably to the utilization threshold when the vault 1 utilization is 68 terabytes and the
utilization threshold is 150 terabytes. Note that the DS managing unit determines the utilization
threshold based on one or more of, but not limited to a predetermined value, a user vault lookup,
a predetermination, a command, an input to the DS managing unit, and/or a dynamic value. The
method branches step 242 when the DS managing unit determines that the vault utilization
compares favorably to the utilization threshold. The method continues to the step 240 when the
DS managing unit determines that the vault utilization does not compare favorably to the
utilization threshold. At step 240, the DS managing unit sends an alert message (e.g., to the user
device, DS unit, DS processing unit, and/or a manager station) containing the vault ID of the
vault with the unfavorable vault utilization. Alternatively, or in addition to, the DS managing
unit may perform one or more of modifying the utilization threshold, modifying the amount of

memory allocated to the storage set of the vault, delete a portion of the slices stored in the vault,

35

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

and move a portion of the slices stored in the vault to another storage set. Note that the DS
managing unit may repeat the steps above for each vault.

The method continues at step 242 where the DS managing unit determines if unused
capacity compares favorably to a capacity threshold. For example, the DS managing unit
determines that the unused capacity compares favorably to the capacity threshold when the
storage set 1 free space is 54 terabytes and the capacity threshold is 10 terabytes. Note that the
DS managing unit determines the capacity threshold based on one or more of a historic memory
usage factor, a predetermined value, a user vault lookup, a predetermination, a command, an
input to the DS managing unit, and a dynamic value. The method repeats back to step 232 when
the DS managing unit determines that the unused capacity compares favorably to the capacity
threshold. The method continues to step 244 when the DS managing unit determines that the
unused capacity does not compare favorably to the capacity threshold. At step 244, the DS
managing unit allocates more memory to the storage set. Alternatively, or in addition to, the DS
managing unit performs one or more of sending an alert message (e.g., to the user device, DS
unit, DS processing unit, and/or a manager station) containing the storage set ID with the
unfavorable unused capacity, modifying the capacity threshold, deleting a portion of the slices
stored in the storage set, and/or moving a portion of the slices stored in the storage set to another
storage set. The method branches back to step 232.

As may be used herein, the terms “substantially” and “approximately” provides an
industry-accepted tolerance for its corresponding term and/or relativity between items. Such an
industry-accepted tolerance ranges from less than one percent to fifty percent and corresponds to,
but is not limited to, component values, integrated circuit process variations, temperature
variations, rise and fall times, and/or thermal noise. Such relativity between items ranges from a
difference of a few percent to magnitude differences. As may also be used herein, the term(s)
“operably coupled to”, “coupled to”, and/or “coupling” includes direct coupling between items
and/or indirect coupling between items via an intervening item (e.g., an item includes, but is not
limited to, a component, an element, a circuit, and/or a module) where, for indirect coupling, the
intervening item does not modify the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used herein, inferred coupling (i.e., where
one element is coupled to another element by inference) includes direct and indirect coupling
between two items in the same manner as “coupled to”. As may even further be used herein, the
term “operable to” or “operably coupled to” indicates that an item includes one or more of power

connections, input(s), output(s), etc., to perform, when activated, one or more its corresponding

36

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

functions and may further include inferred coupling to one or more other items. As may still
further be used herein, the term “associated with”, includes direct and/or indirect coupling of
separate items and/or one item being embedded within another item. As may be used herein, the
term “compares favorably”, indicates that a comparison between two or more items, signals, etc.,
provides a desired relationship. For example, when the desired relationship is that signal 1 has a
greater magnitude than signal 2, a favorable comparison may be achieved when the magnitude of
signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less than that of
signal 1.

The present invention has also been described above with the aid of method steps
illustrating the performance of specified functions and relationships thereof. The boundaries and
sequence of these functional building blocks and method steps have been arbitrarily defined
herein for convenience of description. Alternate boundaries and sequences can be defined so
long as the specified functions and relationships are appropriately performed. Any such alternate
boundaries or sequences are thus within the scope and spirit of the claimed invention.

The present invention has been described, at least in part, in terms of one or more
embodiments. An embodiment of the present invention is used herein to illustrate the present
invention, an aspect thereof, a feature thereof, a concept thereof, and/or an example thereof. A
physical embodiment of an apparatus, an article of manufacture, a machine, and/or of a process
that embodies the present invention may include one or more of the aspects, features, concepts,
examples, etc. described with reference to one or more of the embodiments discussed herein.

The present invention has been described above with the aid of functional building blocks
illustrating the performance of certain significant functions. The boundaries of these functional
building blocks have been arbitrarily defined for convenience of description. Alternate
boundaries could be defined as long as the certain significant functions are appropriately
performed. Similarly, flow diagram blocks may also have been arbitrarily defined herein to
illustrate certain significant functionality. To the extent used, the flow diagram block boundaries
and sequence could have been defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional building blocks and flow diagram
blocks and sequences are thus within the scope and spirit of the claimed invention. One of
average skill in the art will also recognize that the functional building blocks, and other
illustrative blocks, modules and components herein, can be implemented as illustrated or by
discrete components, application specific integrated circuits, processors executing appropriate

software and the like or any combination thereof.

37

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675
CLAIMS
What is claimed is:

1. A method for storing data on a single hard drive, the method comprises:

receiving data to store;

determining error coding dispersal storage function parameters;

encoding at least a portion of the data in accordance with the error coding dispersal
storage function parameters to produce a set of data slices;

defining addressable storage sectors within the single hard drive based on a number of
data slices within the set of data slices to produce a set of addressable storage sectors; and

storing data slices of the set of data slices in corresponding addressable storage sectors of

the set of addressable storage sectors.

2. The method of claim 1, wherein the determining error coding dispersal storage function
parameters further comprises:

determining the error coding dispersal storage function parameters based on metadata
that includes one or more of: a data object name; a data size indicator; a slice name; a command;
a priority indicator; a security indicator; a user identification; a data type; a memory error

indicator; a memory availability indicator; and a memory status.

3. The method of claim 1, wherein the defining addressable storage sectors further
comprises one or more of:

determining utilization of the single hard drive;

avoiding an inoperable storage location of the single hard drive;

avoiding a storage location of the single hard drive with a history of errors; and

avoiding a second storage location of the single hard drive predicted to have a future

CITOor.

4. The method of claim 1 further comprises:
storing one or more slice names of the data slices of the set of data slices, identity of the
set of addressable storage sectors, and utilization information associated with the data slices of

the set of data slices in a local memory.

38

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

5. The method of claim 1 further comprises:

encoding the data in accordance with the error coding dispersal storage function
parameters to produce a plurality of sets of data slices;

storing a first data slice of each of the plurality of sets of data slices in a first addressable
storage sector of the set of addressable storage sectors; and

storing a second data slice of each of the plurality of sets of data slices in a second

addressable storage sector of the set of addressable storage sectors.

6. A method for rebuilding data stored on a single hard drive, the method comprises:
detecting a storage error of an encoded data slice of a set of encoded data slices, wherein
the set of encoded data slices represents data encoded using an error coding dispersal storage
function, wherein the single hard drive is defined to have a set of addressable storage sectors, and
wherein encoded data slices of the set of encoded data slices are stored in corresponding
addressable storage sectors of the set of addressable storage sectors;
determining a type of error for the storage error; and
when the type of error is a first error type:
rebuilding the encoded data slice in accordance with the error coding dispersal
storage function to produce a rebuilt encoded data slice; and
storing the rebuilt encoded data slice at a different storage location in the

corresponding addressable storage sector of the encoded data slice.

7. The method of claim 6 further comprises:

updating an error profile based on the storage error.

8. The method of claim 6, wherein the determining the type of error comprises:

determining an error profile;

evaluating the error profile to determine a level of reliability;

when the level of reliability compares favorably to a first reliability threshold,
determining the first error type; and

when the level of reliability compares unfavorably to the first reliability threshold,

determining a second error type.

39

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

0. The method of claim 6 further comprises:

when the type of error is a second error type:

determining a second error coding dispersal storage function;

re-encoding the set of encoded data slices based on the second error coding dispersal
storage function to produce a re-encoded set of encoded data slices;

re-defining addressable storage sectors of the single hard drive in accordance with the
second error coding dispersal storage function and an error profile of the single hard drive
to produce a re-defined set of addressable storage sectors; and

storing the re-encoded set of encoded data slices in corresponding addressable storage

sectors of the re-defined set of addressable storage sectors.

10. The method of claim 6 further comprises:
detecting a plurality of storage errors;
determining a rate of increase of the plurality of storage errors;
evaluating the rate of increase of the plurality of storage errors to determine a level of
reliability; and
when the level of reliability compares unfavorably to a reliability threshold:
determining a second error type when a size of useable storage space is greater than a

storage threshold.

11. The method of claim 6 further comprises:

detecting a storage error of an encoded data slice of a plurality of sets of encoded data
slices, wherein the plurality of sets of encoded data slices represents a plurality of data segments
each encoded using the error coding dispersal storage function,

wherein a first encoded data slice of each of the plurality of sets of encoded data slices is
stored in a first addressable storage sector of the set of addressable storage sectors, and

wherein a second encoded data slice of each of the plurality of sets of encoded data slices

is stored in a second addressable storage sector of the set of addressable storage sectors.
12. The method of claim 6 further comprises:

generating an initial error profile based on one of more of:

generating test data;

40

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

storing the test data in two or more storage sectors of the set of addressable storage
sectors;

retrieving the test data from the two or more storage sectors of the set of addressable
storage sectors to produce retrieved test data;

comparing the retrieved test data to the test data; and

when the comparison in unfavorable, detecting a storage error.

13. A computer comprises:
an interface;
a hard drive; and
a processing module operable to:
receive, via the interface, data to store;
determine error coding dispersal storage function parameters;
encode at least a portion of the data in accordance with the error coding dispersal
storage function parameters to produce a set of data slices;
define addressable storage sectors within the hard drive based on a number of data
slices within the set of data slices to produce a set of addressable storage sectors; and
store data slices of the set of data slices in corresponding addressable storage sectors

of the set of addressable storage sectors.

14. The computer of claim 13, wherein the processing module further functions to determine
error coding dispersal storage function parameters by:

determining the error coding dispersal storage function parameters based on metadata
that includes one or more of: a data object name; a data size indicator; a slice name; a command;
a priority indicator; a security indicator; a user identification; a data type; a memory error

indicator; a memory availability indicator; and a memory status.

15. The computer of claim 13, wherein the processing module further functions to define
addressable storage sectors by one or more of:

determining utilization of the hard drive;

avoiding an inoperable storage location of the hard drive;

avoiding a storage location of the hard drive with a history of errors; and

avoiding a second storage location of the hard drive predicted to have a future error.

41

10

15

20

25

30

WO 2011/066236 PCT/US2010/057675

16. The computer of claim 13, wherein the processing module further functions to:
store one or more slice names of the data slices of the set of data slices, identity of the set
of addressable storage sectors, and utilization information associated with the data slices of the

set of data slices in a local memory.

17. The computer of claim 13, wherein the processing module further functions to:

encode the data in accordance with the error coding dispersal storage function parameters
to produce a plurality of sets of data slices;

store a first data slice of each of the plurality of sets of data slices in a first addressable
storage sector of the set of addressable storage sectors; and

store a second data slice of each of the plurality of sets of data slices in a second

addressable storage sector of the set of addressable storage sectors.

18. A computer comprises:
a hard drive; and
a processing module operable to:
detect a storage error of an encoded data slice of a set of encoded data slices, wherein
the set of encoded data slices represents data encoded using an error coding dispersal
storage function, wherein the hard drive is defined to have a set of addressable storage
sectors, and wherein encoded data slices of the set of encoded data slices are stored in
corresponding addressable storage sectors of the set of addressable storage sectors;
determine a type of error for the storage error; and
when the type of error is a first error type:
rebuild the encoded data slice in accordance with the error coding dispersal
storage function to produce a rebuilt encoded data slice; and
store the rebuilt encoded data slice at a different storage location in the

corresponding addressable storage sector of the encoded data slice.

19. The computer of claim 18, wherein the processing module further functions to:

update an error profile based on the storage error.

42

10

15

20

25

WO 2011/066236 PCT/US2010/057675

20. The computer of claim 18, wherein the processing module further functions to determine
the type of error by:

determining an error profile;

evaluating the error profile to determine a level of reliability;

when the level of reliability compares favorably to a first reliability threshold,
determining the first error type; and

when the level of reliability compares unfavorably to the first reliability threshold,

determining a second error type.

21. The computer of claim 18, wherein the processing module further functions to:

when the type of error is a second error type:

determine a second error coding dispersal storage function;

re-encode the set of encoded data slices based on the second error coding dispersal
storage function to produce a re-encoded set of encoded data slices;

re-define addressable storage sectors of the hard drive in accordance with the second
error coding dispersal storage function and an error profile of the hard drive to produce a
re-defined set of addressable storage sectors; and

store the re-encoded set of encoded data slices in corresponding addressable storage

sectors of the re-defined set of addressable storage sectors.

22. The computer of claim 18, wherein the processing module further functions to:

detect a plurality of storage errors;

determine a rate of increase of the plurality of storage errors;

evaluate the rate of increase of the plurality of storage errors to determine a level of
reliability; and

when the level of reliability compares unfavorably to a reliability threshold:

determine a second error type when a size of useable storage space is greater than a

storage threshold.

43

WO 2011/066236 PCT/US2010/057675

23. The computer of claim 18, wherein the processing module further functions to:
detect a storage error of an encoded data slice of a plurality of sets of encoded data slices,
wherein the plurality of sets of encoded data slices represents a plurality of data segments each
encoded using the error coding dispersal storage function,
5 wherein a first encoded data slice of each of the plurality of sets of encoded data slices is
stored in a first addressable storage sector of the set of addressable storage sectors, and
wherein a second encoded data slice of each of the plurality of sets of encoded data slices

is stored in a second addressable storage sector of the set of addressable storage sectors.

10 24 The computer of claim 18, wherein the processing module further functions to:
generate an initial error profile based on one of more of:
generating test data;
storing the test data in two or more storage sectors of the set of addressable storage
sectors;
15 retrieving the test data from the two or more storage sectors of the set of addressable
storage sectors to produce retrieved test data;
comparing the retrieved test data to the test data; and

when the comparison in unfavorable, detecting a storage error.

44

PCT/US2010/057675

WO 2011/066236

1/12

T W31SAS suIINdWOD

T 'Ol

3uiBeuew gQq

QT 1un

g 2J02

gunndwoo

i

€ 90BJJID1UI |

¥ X T 921s D3

v T T9o1sD3

87 X A221s D3

Tv X T 921s D3

T 92IA3P Jasn

9% T A=21sD3

TV T T 920s D3

c
=]
0
0O

0Z 1un 8uissasoud
Anu8a3ul aSeaols

€1unsg 9c —
x e o O x gz 2400
e R P I Suiindwoo
87 XA 321|5 O3 9% T A 22I|s O3 3
(YY) (Y X) TE 2degv1ul NS

A

A

T S90I|S ——

A 4 A 4

O€ 92eJ91UI |«

i

g 92402
guinndwoo

0% 320|q eiep
Jo/3 BE 3|} ejep

»| OF 20ei91UI

< @de4a1ul NSO

¥

3

¥ € 3uissanoud s

9¢ 2400 3unndwod

g7 11un 3uissatoud s

T< 2oep91UI NSA

9

v

¥ € 8uissanoud
sd

g¢ 2402 guiindwod

T 901A9p Jasn

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

2/12

FADIE]
e e
|
g7 a|npow vZ o|npowl T @|npow aoejiaiul OZ @|npowl 89 a|npow 99 a|npoLu
@oe}a1ul NSA @oe@1uUl gH ysej4 @oejJa1Ul JJoMIBU @oe}a1ul vaH @oejJa1ul gsn

%

i

1 1

il

]

|

2

QG 90BIa1UI |1Dd

H

SOId WOY

¥9

!

79 ?|npow
909Ul
92IAap Ol

99 09 @oea1ul

J3]|oJ1uod O] Ol
¥S Aowaw 7S J3||043u0D 0G 9|npow
ulew = AJowaw — Suissaooud

H

G 1un Suissasoud
soiydel3 oapia

g¢ 2402 Suirndwod

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

3/12

Y X A ©21|S B1Ep POpOI J04ID

€ 9ld

97 T A 921|S Blep poapod Jo41D

Weu adl|S

aweu adl|S
[]
®
[]
¥T X T 921|S e1Ep Papod J04ID
aweu al|s

8% X A d21s e1ep oo 9% T AddIs elep
papod Jodia papod Jodia
2Weu 3adl|s o aweu 3dl|S

®

— — . — —

PrX TdAseep | oo [TV T T 32Us elep
papod JoJa papod JoJa
aweu adl|s aweu 3adl|s

aweu eleq | AsaJ | uadynea | Qi ynea X9pul adl|S
214199dS
uollewJoju| 8uilnoy |esJaAIluN
Inea

7€ aweu aol|s

76 A 1uswdas ei1ep

06 T 1uswsdas e1ep

€ aWeuU 32Jn0S

0t 103lqo elep
GE 2Weu 324nos

al 3l ASDJ

uag nea | qalynea

G<€ 2Weu 22Jnos

m 90ElJalul 1aus(

¥3 a|npow adeio1s

Z8 @|npow pud

08 a|npow ssadde

g7 anpow Aemaled

€ 9|npow uissasoud

[
|| T 1 19915 e1ep papod Jousd
— — aweu aI|S

0% 1algo
ejep

Qg aweu
13[q0

93al

I

Jasn

«—>
«—>

interface

sa

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

4/12

X @31|s e3ep D3

voolselepd3 [Bq | g | g | ¢t | St | Tfa | ‘9 | ®q SOl
goolselepdy | %q | %q | c<q |®8q|vq|°g | °q | q
67 1901 €«
gaolselepd]y |°eq|scq|tq|glEqf g | Sq | 'q
Taolseiepd3 [¥q | g |°q|®°q|<q| | 'q | °q
' |ee®| 89 | g | ®@® | 7°q (Y X) {0 | eee® | "q g |leee® | °q
¥6 1U2W3as eiep papooua JO S1q €
¥ "Old
- = 7 T I/, s e e T e T e e e e e e e e e e e e e e e e e —— -

68 Joie|ndiuew
-9p aoJs-1scd

Tg Joie|ndiuew
9ol|s-1sod

T @21 e3ep D3

T8 9|Inpow puug

78 1921|5-9p

I

Gg Jopodep

€7 1un |0Jlu0D

9

7 1921|s

‘€g Jole|ndiuew
-9p 9Id1|s-a4d

plingaJ

/[J°9p0OduU°a

G/ Jole|ndiuew
921|s-94d

76 1usW3as e1ep papodoua

76-06 1UawW3as elep

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

512

WO 2011/066236

|||||||||||||||||||||| | _|||||||||||||||||||||
1-v Adowaw _ |
_ _ $OT a|npow
_ | q-g9 Alowaw |0J1U0D HuN 38eJ01s
aoeds Auowaw | “ —
at INOSZ INOOS INOST o | s ve
_ | ® duissanoud s
veT 44 ocT 8TT _ I
21| 21| 20I|S 221|S _ | a Aowa L
21Aq 21Aq a1Aq 21Aq | _ 1-9 Q0T AJowaw
00€ 00€ 00€ 00€ P! woshs
14 _ SuneJsado
$TT s901Is _ _
Je|d g TTT sadl|s Jejd |z _ _ ey AlOWaW 50T
_ _ A/V AJowaw s8oj
9TT sa2I|s Jed N4 TT saolsae(d T | _ 9 sa|qe1 Sa
IIIIIIIII S A e I | s
| e
| T< 90ep91ul
“ 1-v Aowaw 19USd
(waisAs £/t) _ 1
7€ 8uissanoud sg _
I
I Z0T Hun sg
(s21Aq 006) - - - - - - - -1 —— =
601 eiep

3}JOMl3u O] vy

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

Joi1sanbal 0110

afqo ejep puas

8 "'Old

o~
n
—

9

suolledQ| Alowaw anes

0
i

”_.Uw.ﬁo_O elep o91ea4d09l

9

o
N
—

il

AJowaw 01 sa2I|S 91IM

(o]
—

AJowaw wouy sadl|s peal

i

6/12

r f

$921|s @onpoud

<
—

sSuUoIl1ed0| Alowaw 2UlWIal1ap

9

T t

$10109s 98eJ01S 3|qessaippe aulap

o~
—

Alowauw QUlIWJI1aP

i

T i

Alowaw UIWJII1aP

o
i

sJalaweled _MCO_HM._QQO UlWIalapP

9

vt 1

A

sJ9laweled UOIIdU nj

28eJ01s |essadsip SUIpod J0UIB BUIWIILBP

1sanbau [easlulal 109[qo eyep aAlad3u

il

WO 2011/066236

G f

2J01S O] elep 9AIa2al

O
i

)

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

7/12

Alowaw mau 01 s321|S SUISSIW 31IM
Ut 1
$921|s SuissIW 2182403
0T 1
sjuawdas elep a1eaJdal
89T 1
S$a2l|s 19410 aA3lilal
997 1
sjuowgas elep 4o SIS
J3Y10 ||B 10O} SUOI1BDI0| 3DI|S UIWIB1apP

ot f

Alowaw p|o uo paJols Alsnoinaid saol|s
8uissiw Jo sa8uels aweu 321|S BUIWILSIP

(5]
i

9

»

Alowaw mau lewlol

o
[Xo]
—

uolsu edxa 91EAlloe

AJowaw
Juawade|dal

ST

Alowsaw mau 1oolap

<t
Tl
—

)

0T Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

8/12

1T O
||||||||||| ¥ZTwnsa |
ZT AMowaw 1T Aowaw 0oT Aowauw 6 AJowaw
3 3 g 3
g AJowaw /, AJowaw 9 AJowaw G AJowaw
¥ 3 ¥ 3
7 Adlowaw € AJowaw Z Adowaw T AJowaw

—

Y

Y

FE 8uissadoud s

JjJdomilau O]

TANeA/ey8°Te//-d1y

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

9/12

HUO_O_O elep a1eaJdoal pue sadl|s analllal

61 |euoljesado
Alny
sniels
|euoiiesado\ Alowaw
AjInj 10u
sniels Alowaw aulwJialap
) 67
SUOI1e20| salJowawW dwal anes
067 1

salowaw dwal 01 $IJI|S 91JIM

88T T

—l

$921|S 91ea4d

SUOI1B20]| salloWaW aAeS

ot i

SIlJoWaW 0] $92I|S 21IM

ot T

S$a2l|S 91eald

[T

[
™~

suoljedso| saluoWwaw aulwialap

g T

Q)
o~

SaoWwaw aulwialap

Q
[9)]
i

i

sia1aweled _mCO_um._m.n_O ulwJIalap

T i

SUOI1e20]| sallowall dwal aulwialap

|euoljesado
AlIny

sniels

T i

<

Ssallowaw dwal 2UlIWI919p

T i

sJa12weled
|euoijesado Atesodwal suiWI1BP

T T

Alowauw

|euoljesado
Ajn} 10U

snjels AJowoaw ulWJalap

00
I~
—

i

210]1s O] H.Umu._.n_o elep aAIad3al

(0|
—J

ot T

[4 DTE

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

10/12

v AJowaw

T AJowsw

LUunsq

+ AJowaw

T AJowBaw

9 Hun sg

 AJowaw

T AJowsw

S Hun sg

v AJowaw

T AJowsw

¥ Hun sg

¥ AJowaw

T AJowsw

€ Hun sq

€1 'O

80¢ (T @1is) T HuUNn sq

ZT Aowaw

TT Alowaw

OT Aowsw

6 Alowsw

3

3

3

3

g Auowaw

/ Aowaw

g AJowaw

g AJowaw

3

3

¥ Adowaw

¢ AJowaw

z AdowBsw

T Adowaw

y

3

 AJowaw

T AdJowBaw

¢ Hun sg

YVY VVY

FE 8uissanoud s

JjJomiau O]

TANeA/ey 8 Te//:d1y

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

11/12

"SUOI1ED0| 3J1|S paAes alepdn
"98e401s J0J 195 98eJ01s Mau JO sHun sQ
0} S92I|S pUIS JO/*g AJOWBW 03 SIJ|S DIIM

1 {444

sJo12weled jeuoiielado
mau 3uizi|1in syalqo elep Jo sa0I|s 91240

1 (i144

s1a1aweded jeuoilesado uaaund uizinn
$3109[qo elep pue sjusW3as ejep 319409l

1 8T¢C

si1oweded [euoniesado 1ua4Ind pue
19S 98eJ01s 1Ua44Nd SUIZI|I1N SD1|S A1

1 9T¢C

9AOW O] Sa2l|s JO uoluod leym suilialop

1 v1¢

sJo19weled |euoiiesado
M3U pue 135 98e101S M3U SUIWII13P

A [4%4

adueyd

28ueyo 195 28eJ01S 1UN S JI BUIWIILBP

» (V)4

Y1 'Old

SUBSTITUTE SHEET (RULE 26)

PCT/US2010/057675

WO 2011/066236

12/12

91 "'Old

AJowaw aJow 3ied0|e 3|qeJoney

N

e

ploysaiyl Aloeded e 01 A|qeioney
saJedw o2 Alloeded pasnun I sulwla19p

e

98essaw 1ia|e puas 3|qeJoney

144

pPloysaJy3 uoliezi|ian e o} Ajqesoney
saJedwod UOIIEZI|IIN I NEA }JI SUIWJIDI3P

1 8ET

A110edeD pasnun 13s a3eJ0]s aulwIalap

1 9EC

uollezi|iin 1jnea asxnpoud o1
1jnea Jad uollewJojul uoliezi|iin a1edaa33e

1 vEC

uollewJojul uoljezijizn anladal

N
[32]
N

A

e

7135
a8eJo01s

ST 'OHd

(91 zv) T ynea

(91 85) 9oeds asuy

(6192) T 1neA
I 195 (d107) Z 1neA
a3eJ01s (91 vS) @oeds 294y
¥ 1un sg € Hun sa ¢ Hun sa T HunsaA
A A A A
(] o0 e 4_
o oN N oN
N oN N o
2 2 2 £
= = = £
c c c e
i) il Rl
© © © ©
N N N N
h 4 Y h 4 Y

T 1un SuiBeuew sq

SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings

