77048769 A1 I} 10 00 00 O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ‘1”1‘

) IO O 0 O OO 0 O

International Bureau

(43) International Publication Date
3 May 2007 (03.05.2007)

(10) International Publication Number

WO 2007/048769 Al

(51) International Patent Classification:
GOG6F 13/362 (2006.01)

(21) International Application Number:

PCT/EP2006/067660
(22) International Filing Date: 23 October 2006 (23.10.2006)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/260,579 27 October 2005 (27.10.2005) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, Portsmouth Hampshire
PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHEN, Wen-Tzer,
Thomas [US/US]; 11207 Crossland Drive, Austin, Texas
78726 (US). JOHNS, Charles, Ray [US/US]; 10703
Cassia Drive, Austin, Texas 78759 (US). RAGHAVAN,
Ram [US/US]; 41 Meandering Way, Round Rock, Texas

(74)

(81)

(34)

78664 (US). WOTTRENG, Andrew, Henry [US/US];
4224 Manor View Drive N.w., Rochester, Minnesota
55901-3112 (US).

Agent: WALDNER, Philip; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2IN (GB).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: PRIORITY CONTROL IN RESOURCE ALLOCATION FOR LOW REQUEST RATE, LATENCY-SENSITIVE

UNITS

510~ RATE DECREMENTER FOR
RESOURCE A AND RAG1
520 GRANT TOKEN TO RAGH
}_ TO ACCESS RESOURCE A

Veoe el TR 1

1

: N 540 RAG1 LATCHES i

| N RESOURCE A LATCHES H

H HIGH PRIORTY | 580~J Low PRIORITY d

: [REQUESTS POINTER |~ 570 | REQUESTS POINTER [*] !

: ! ' I

H HIGH PRIORITY | g0 | LOW PRIORITY d

! REQUESTSFOR | * REQUESTS FOR i

! RESOURCEA ["990 | RESOURCE A !

i

, :
{

1]

]

| sa0L RAG1 CONTROL LOGIC - !

o W J

1D OF REQUESTER TO WHICH
TOKEN IS TO BE GRANTED

(57) Abstract: A mechanism for priority control in resource allocation for low request rate, latency-sensitive units is provided.
&= With this mechanism, when a unit makes a request to a token manager, the unit identifies the priority of its request as well as the
& resource which it desires to access and the unit’s resource access group (RAG) . This information is used to set a value of a storage
device associated with the resource, priority, and RAG identified in the request. When the token manager generates and grants a
token to the RAG, the token is in turn granted to a unit within the RAG based on a priority of the pending requests identified in
the storage devices associated with the resource and RAG. Priority pointers are utilized to provide a round-robin fairness scheme
between high and low priority requests within the RAG for the resource.

WO 2007/048769 Al

Published:
— with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2007/048769 PCT/EP2006/067660

PRIORITY CONTROL IN RESOURCE ALLOCATION FOR LOW REQUEST RATE,
LATENCY-SENSITIVE UNITS

BACKGROUND OF THE INVENTION

Technical Field

The present invention relates generally to an improved data processing
apparatus and method. More specifically, the present invention is
directed to an apparatus and method for providing priority control with

regard to resource allocation.

Description of Related Art

Bandwidth management techniques have been employed in networking for
several years to prevent a small number of users from consuming the full
bandwidth of a network, thereby starving other users. The most recent
bandwidth management technology handles 10 Gbits per second (1.25 GB/sec),
involving 27 million packets per second or less. The techniques employed
for managing network bandwidth and priority often require an entire

Application Specific Integrated Circuit (ASIC) chip.

Traffic rates inside computer systems are typically higher than network
traffic rates. For example, some traffic rates inside computer systems
may reach 25 GB per second and may involve 200 million 128 byte packets.
Because the bandwidth is managed for multiple resources and this bandwidth
is higher than network bandwidths, managing bandwidth inside a computer
system is almost an order of magnitude more difficult than network
bandwidth management. In addition, the available circuits that can be
applied to the management of bandwidth within a computer, such as on a
system-on-a-chip, is a small fraction of the circuits on the chip. BAs a
result, the techniques used for network bandwidth management cannot be
utilized for management of bandwidth within a computer system. Thus,
simpler schemes requiring fewer circuits are needed for managing bandwidth

in a computer system.

Often a simple round-robin priority scheme is used to manage bandwidth
within a computer system because it promotes fairness between all of the
units in the computer system that contend for the bandwidth.
Alternatively, a fixed priority scheme may be used for some devices that

require low latency. Low latency for some devices is desired due to

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

limited buffering in the device and the negative performance implications
of over-running the buffer. BAnother need for low latency may arise with
devices whose performance limits the performance of the entire computer
system. To satisfy this need for low latency in some systems, priority is
simply assigned to a specific requester, such as an I/0 bridge, such that
all I/0 accesses to the system memory bus have higher priority than any

processor attached to the system bus.

In a real-time computer system, a simple round-robin priority scheme is
inadequate to produce guaranteed bandwidth results that vary per device
and dynamically change. Moreover, using a fixed priority mechanism for
some devices, coupled with a round-robin scheme for fairness among other
devices, 1s inadequate for a real-time system with multiple software
partitions since it can cause bandwidth starvation of lower priority
devices. Granting higher priority to some devices isn’t feasible when
control of that device belongs to untrusted applications at times,
intermixed with periods of time when a trusted operating system or

hypervisor controls the device.

SUMMARY OF THE INVENTION

In view of the above, it would be beneficial to have a priority control
mechanism in which a guaranteed amount of bandwidth is offered to devices
while avoiding bandwidth starvation of lower priority devices. The
present invention provides such a mechanism for performing priority
control in resource allocation for low request rate, latency-sensitive

devices or units.

With the present invention, each unit in the computer system contends for
bandwidth by making a request for a memory or input/output (I/0) bus
token. This request is sent to a token manager. A token represents the
right to use a resource for transfer of up to some defined number of bytes

of data, e.g., 128 bytes of data.

When a unit makes a request to the token manager, the unit identifies the
priority of its request as well as the resource which it desires to
access. The unit also identifies which Resource Access Group (RAG) it
belongs to. 1In some cases a single physical requesting unit may perform
accesses on behalf of multiple RAGs, as in the case of an I/0 interface
controller making requests for multiple I/0 busses or I/0 devices. In
this case, token requests may have different Resource Access Group

Identifier (RAG ID) values and a different priority. Therefore, to the

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

token manager, the physical requester may appear to be multiple virtual

requesters.

High priority can be assigned based on the type of requester and/or on the
type of request that is being requested. For example, a processor
performing critical control functions may always have high priority for
tokens. In another example, high priority may be assigned to specify
types of accesses that are for software locks, for example, in order to
minimize the amount of time that a critical lock is held. Moreover,
accesses to a page table in memory, when these accesses occur as part of
the hardware translation lookaside buffer (TLB) miss handling, may also be

assigned high priority in accordance with the present invention.

The token manager tracks all the requests for each resource including the
associated RAG and the priority of the requests. In one exemplary
embodiment of the present invention, the token manager keeps track of up

to 17 virtual requesters and requests for up to 20 resource targets per

requester. Internally, the token manager keeps track of requests on a per
RAG basis. For each RAG, the token manager records high priority requests
for each resource and low priority requests for each resource. For each

RAG, the token manager uses tracking latches and rate decrementers to
determine how often and exactly when to generate and grant tokens. The
token manager records all outstanding requests in tracking latches, using
a set of tracking latches for each resource, RAG and priority. The token
manager may have round-robin pointers per priority, per resource and per
RAG to track which of the multiple requesters in a RAG should be granted a
token on a round-robin basis when a token becomes available and there are

multiple outstanding requests.

For each set of tracking latches for each RAG and managed resource, there
is a round-robin pointer to select the next high or low priority request
in the RAG. Round-robin pointers are utilized to give fair treatment
between multiple high priority requesters and to give fair treatment
between multiple low priority requesters. There are several methods for

implementing such a round-robin pointer.

In one scheme, in every cycle, the high priority request round-robin
pointer is advanced one “slot”, i.e. to the RAG's next high priority
request tracking latch for the managed resource. Thus, there are times
when the high priority round-robin pointer will point to a “slot”

associated with a requester that does not have an active high priority

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

request. At other times, the high priority request round-robin pointer
will be advanced to a next “slot” where a high priority request is
pending. Likewise, the low priority request round-robin pointer is
advanced one slot per cycle until it points to an outstanding low priority
request in the RAG. When the round-robin pointers point to a “slot” in
which there is a pending request, the round-robin pointer is not advanced

until the request is dispatched.

In another scheme, where the number of total potential requests is small,
it 1s feasible to advance a round-robin pointer in a single cycle to
directly point to the next outstanding request. In this alternative
scheme, if any of the tracking latches for the high priority requests has
a pending request, the high priority request will be selected over any low
priority requests pending in the low priority tracking latches. It should
be kept in mind that this is done on a per RAG basis and that each RAG has

a predetermined portion of the available resources allocated to that RAG.

A high priority request is only eligible to be granted a token if the high
priority request round-robin pointer points to the request. A low
priority request is only eligible to be granted a token if the low
priority request round-robin pointer points to the request. However, a
high priority request is always selected over a low priority request.

When a token becomes available at the rate provided by the RAG's rate
decrementer, the token is granted to the associated RAG if a request 1is
outstanding. If a high priority request in the RAG is outstanding, the
token is granted to such a request in preference over a low priority

request.

In one exemplary embodiment, the present invention provides a method, in a
data processing system, for controlling access to a resource. The method
may comprise generating and granting a token to a resource allocation
group, wherein the resource allocation group comprises one or more
operational units within the data processing system. Request information
may be obtained from a group of request storage devices associated with
the resource allocation group and the resource, wherein the group of
request storage devices is separated into a first sub-group of first
priority request storage devices and a second sub-group of second priority
request storage devices. An operational unit may be selected from the one
or more operational units to receive the token based on the request

information obtained from the group of request storage devices and the

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

token may be granted to the selected operational unit, wherein the
selected operational unit uses the token to access the resource.

The token may be generated and granted to the resource allocation group in
response to a counter associated with the resource allocation group
reaching a predetermined value. The resource allocation group may be
allocated a portion, less than a full amount, of the resource to be shared

by the one or more operational units.

The obtaining of request information from a group of request storage
devices associated with the resource allocation group and the resource may
comprise obtaining a value of a first pointer associated with the first
sub-group of first priority request storage devices. In addition, a value
of a second pointer associated with a second sub-group of second priority
request storage devices may be obtained. A determination may be made as
to whether there i1s a pending first priority request for access to the
resource based on the value of the first pointer and a determination may
be made as to whether there is a pending second priority request for

access to the resource based on the value of the second pointer.

The selecting of an operational unit from the one or more operational
units to receive the token based on the request information obtained from
the group of request storage devices may comprise selecting an operational
unit associated with the first priority request if a pending first
priority request is identified by the value of the first pointer. An
operational unit associated with the second priority request may be
selected if a pending second priority request is identified by the value
of the second pointer and the value of the first pointer indicates that a
first priority request is not pending. The first sub-group of first
priority request storage devices may contain a pending first priority
request yet the first pointer may indicate that a first priority request
is not pending if the first pointer points to an empty first priority

request storage device.

In addition to the above, the method may further comprise incrementing the
value of the first pointer to point to a next first priority request
storage device in the first sub-group of first priority request storage
devices if a request associated with a current value of the first pointer
is dispatched. A value of the second pointer may be incremented to point
to a next second priority request storage device in the second sub-group
of first priority request storage devices if a request associated with a

current value of the second pointer is dispatched.

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

Alternatively, a value of the first pointer may be incremented to point to
a next non-empty first priority request storage device in the first
sub-group of first priority request storage devices if a request
associated with a current value of the first pointer is dispatched. A
value of the second pointer may be incremented to point to a next
non-empty second priority request storage device in the second sub-group
of first priority request storage devices if a request associated with a

current value of the second pointer is dispatched.

The data processing system may support a plurality of resource allocation
groups and a plurality of managed resources, wherein each resource
allocation group has a set of request storage devices, and wherein the set
of request storage devices for each resource allocation group is organized
into a group of request storage devices for each managed resource, and
wherein each group of request storage devices for each managed resource is
organized into a first sub-set of request storage devices associated with
first priority requests and a second sub-set of request storage devices
associated with second priority requests. Each combination of resource
allocation group and managed resource may have an associated counter for
determining when to allocate a token for accessing the managed resource to

the particular resource allocation group.

The resource allocation group may comprise one or more operational units
within the data processing system that have a same resource allocation
identifier. The data processing system may be a multiprocessor

system-on-a-chip having at least two heterogeneous processors.

In addition to the above, the present invention provides a computer
program product in a computer readable medium having a computer readable
program, wherein the computer readable program, when executed on a
computing device, causes the computing device implement the method
previously described above. Moreover, the present invention further
provides an apparatus comprising an apparatus, comprising a processor, a
plurality of operational units coupled to the processor, a resource
coupled to the plurality of operational units, a memory coupled to the
processor, and a plurality of request storage devices coupled to the
processor. The memory may store instruction which, when executed by the
processor, cause the processor to implement the method previously

described above.

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

These and other features and advantages of the present invention will be
described in, or will become apparent to those of ordinary skill in the
art in view of, the following detailed description of the exemplary

embodiments of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set
forth in the appended claims. The invention itself, however, as well as a
preferred mode of use, further objectives and advantages thereof, will
best be understood by reference to the following detailed description of
an illustrative embodiment when read in conjunction with the accompanying

drawings, wherein:

Figure 1 is an exemplary block diagram of a data processing system in

which aspects of the present invention may be implemented;

Figure 2 is a flowchart outlining an exemplary token availability process
in accordance with the architecture described in co-pending U.S. Patent

Publication No. 2005/0138621 Al;

Figure 3 is an exemplary diagram illustrating cross-granting of tokens in
accordance with the architecture described in co-pending U.S. Patent

Publication No. 2005/0138621 Al;

Figure 4 is an exemplary diagram illustrating the primary operational

components of one exemplary embodiment of the present invention;

Figure 5 is an exemplary diagram illustrating a process of looking at high
priority and low priority requests to determine which request should
receive a granted token in accordance with one exemplary embodiment of the

present invention;

Figure 6 is an exemplary diagram illustrating a mechanism for selecting
between high and low priority requests in accordance with one exemplary

embodiment of the present invention;

Figure 7 is a flowchart outlining an exemplary operation of the present

invention when selecting a requester to which a token is to be granted in

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

response to a token being granted to resource allocation group in

accordance with one exemplary embodiment of the present invention; and

Figure 8 is an exemplary block diagram of an information handling system
in which the exemplary data processing system of the present invention may

be implemented.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides an apparatus, system, computer program
product, and method for providing priority control in association with
resource allocation. In an exemplary embodiment of the present invention,
the mechanisms of the present invention make use of the architecture
described in co-pending and commonly assigned U.S. Patent Publication No.
2005/0138621 Al, entitled “Method of Resource Allocation Using an Access
Control Mechanism,” filed on December 17, 2003, which is hereby
incorporated by reference. The architecture described in this co-pending
application is summarized with reference to Figures 1-3 below. It should
be noted however, that the architecture described hereafter is only one
example of the data processing system and environment in which the present
invention may be implemented. Other data processing systems and
environments may be used with the present invention without departing from
the spirit and scope of the present invention, as will become readily
apparent to those of ordinary skill in the art in view of the following

description.

The invention can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing both hardware and
software elements. In a preferred embodiment, the invention is
implemented in software, which includes but is not limited to firmware,

resident software, microcode, etc.

Furthermore, the invention can take the form of a computer program product
accessible from a computer-usable or computer-readable medium providing
program code for use by or in connection with a computer or any
instruction execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any apparatus that can
contain, store, communicate, propagate, or transport the program for use
by or in connection with the instruction execution system, apparatus, or

device.

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

The medium can be an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system (or apparatus or device) or a
propagation medium. Examples of a computer-readable medium include a
semiconductor or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only memory (ROM), a rigid
magnetic disk and an optical disk. Current examples of optical disks
include compact disk - read only memory (CD-ROM), compact disk -

read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or executing program
code will include at least one processor coupled directly or indirectly to
memory elements through a system bus. The memory elements can include
local memory employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary storage of at least
some program code in order to reduce the number of times code must be

retrieved from bulk storage during execution.

Input/output or I/0 devices (including but not limited to keyboards,
displays, pointing devices, etc.) can be coupled to the system either

directly or through intervening I/O controllers.

Network adapters may also be coupled to the system to enable the data
processing system to become coupled to other data processing systems or
remote printers or storage devices through intervening private or public
networks. Modems, cable modem and Ethernet cards are just a few of the
currently available types of network adapters.

Figure 1 is an exemplary block diagram of a data processing system in
which aspects of the present invention may be implemented. The data
processing system shown in Figure 1 may be, for example, a
system-on-a-chip. In one exemplary embodiment of the present invention,
the data processing system in which the present invention is implemented
is a CELL Broadband Engine (CBE) architecture based data processing system
available from International Business Machines Corporation of Armonk, New
York. The Cell Broadband Engine (CBE) architecture, implemented on a
single chip, includes a plurality of heterogeneous processors, having
different instruction sets that share a common memory and bus. For
example, one heterogeneous processor may be a synergistic processing unit
(SPU) having a vector instruction set and the other heterogeneous
processor may be a PowerPC processor having a Reduced Instruction Set

Computer (RISC) or other type of instruction set, both sharing the same

memory space.

10

15

20

25

30

35

WO 2007/048769 PCT/EP2006/067660
10

In such an embodiment, requesters, as discussed hereafter, may be the
synergistic processing units (SPUs), the PowerPC processor, or other
functional element within the CBE data processing system. Still further,
the present invention may be implemented in any data processing system in
which there are multiple requesters that may request access to one or more

system resources.

As shown in Figure 1, there may be multiple requester devices and multiple
resources that each interact through a connection with a local bus 100.

In the depicted example, four requesters are shown and are labeled RO 102,
R1 103, R2 104, and input/output (I/0) controller 110. The requesters may
be any type of unit that requests access to system resources. For
example, the requesters may be I/0 controllers, direct memory access (DMA)

units, processors, and the like.

The managed resources may be any type of resource that is consumable by a
process or a requester. TFor example, the managed resources may be a
portion of bus bandwidth, memory bandwidth, processor cycles, an I/0
device’s bandwidth, or the like. The system may further include unmanaged
resources UMR(O 105 UMR1 106, such as a synchronous dynamic random access
memory (SDRAM), for example. Unmanaged resources are typically resources
that cannot be occupied by a single or small group of requesters or it 1is
typically not shared by multiple requesters. Some units within the system
may act as both requesters and resources. For example, an I/0 controller
110 may act as a requester and a managed resource. Other units may act as
only a requester or only a resource, e.g., requester RO 102 acts as a

requester only.

Each requester is coupled to the local bus 100 through one or more
communication channels. Requester RO 102 is coupled to the local bus 100
through a first communication channel 114 and a second communication
channel 115. Similarly, requesters R1 103, R2 104 and I/O controller 110
are coupled to the local bus 100 through communication channels 118, 119,
120, 121, 126 and 127 as shown. The aforementioned communication channels
may encompass wireless links, optical links, conductor cable lines, packet
switched channels, direct communication channels, and any combination

thereof.

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
11

Each unmanaged resource UMRO 105 and UMR1 106 is coupled to the local bus
100 through one or more communication channels. For example, unmanaged
resource UMR0O 105 is coupled to the local bus 100 through communication
channels 124 and 125 and unmanaged resource UMR1 106 is coupled to the
local bus 100 through communication channels 130 and 131. As with the
reqguester communication channels, the communication channels coupling the
unmanaged resources to the local bus may also encompass wireless links,
optical links, conductor cable lines, packet switched channels, direct

communication channels, and any combination thereof.

Typically, resources that relate to critical bottlenecks are managed and
one or more resources of a computing system may be managed in accordance
with the present invention. In the depicted example, managed resources
may include, for example, memory controller 108, managed resource 109, I/0
controller 110, and I/0 devices 111. The managed resources may be coupled
to the local bus 100 via a variety of different types of interfaces. For
example, memory controller 108 is coupled to the local bus 100 via
communication channels 116 and 117, managed resource 109 is coupled to
local bus 100 via communication channels 122 and 123, I/0 controller 110
is coupled to local bus 100 via communication channels 126 and 127, and
I/0 devices 111 are coupled to local bus 100 via communication channels
126-129. It should be noted that the I/0O devices 111 are also under the
control of the I/O controller 110.

Certain paths of usage between the requesters and the managed resources
have special designations, i.e. managed paths (MP). Most paths that
interconnect the requesters with the managed resources include a plurality
of communication channels and the local bus 100. For example, the first
communication channel 114, the local bus 100, and the communication
channel 122 comprises a managed path (MP) between the requester RO 102 and
the managed resource 109. The significance of the managed paths is that a
token is used for controlling communication across the given managed path,

as will be described in greater detail hereafter.

With the present invention, each requester is assigned a resource
allocation ID (RAID), which is stored in a register and which is typically
related to the requester’s access characteristics. Requesters with the
same RAID are referred to as a Resource Allocation Group (RAG). The token
manager 112 allocates the tokens for each managed resource for a given

RAG. The characteristics of the RAGs, which may be dynamic, are

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
12

determined by software. Essentially, each RAG is allocated a
predetermined percentage of bandwidth, the predetermined percentage being
determined based on the desired system performance. In order for a
requester within a RAG to communicate with or utilize a given managed
resource through a managed path, a token must be granted by the token
manager 112 to the requester. The token allows the requester to
communicate with or utilize the managed resource via the managed path.
Without a token, no communication or utilization of a managed resource 1is
permitted across the managed path.

The token manager 112 does not arbitrarily assign tokens. To the
contrary, the token manager 112 generates resource tokens for each RAG by
virtue of a rate counter. Either rate counters or rate decrementers can be
utilized to generate tokens. In either case a token is generated when the
counter or decrementer reaches a certain value and the counter or
decrementer is then again set to its starting value. A given requester
cannot accumulate the tokens, however, and the sum of all rates for all of

the RAGs must not exceed the capabilities of the resource.

In certain cases, such as with I/0 devices, multiple managed paths are
required for communication with the resource. For example, when an I/0
device accesses memory, there is both an I/0 controller and a memory
controller required to complete the transfer. Hence, for such a transfer,
there is a requirement of two tokens, one for each managed resource.

Thus, in special cases where multiple tokens are required to perform a
single task or communication, tokens must be accumulated to complete that

single task or communication.

The requester can utilize the tokens and initiate the communication. A
requester may first generate an internal token request for usage, which
includes both an identifier of the requester’s RAID and the managed

resource that is to be utilized. The token request is then forwarded to
the token manager 112. Upon reception of the request, the token manager
112 may grant the requested token. When all tokens for the managed path

are granted, the requester is then allowed to perform the pending request.

It should be noted that there will be times when the given RAG will not
have a requester with a pending request for the available managed
resource. At such times, a token can be granted to a requester in another

RAG or the token may go unused.

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
13

Figure 2 is a flowchart outlining an exemplary token availability process
in accordance with the architecture described in co-pending U.S. Patent
Publication No. 2005/0138621 Al. It will be understood that each block,
and combination of blocks, of the flowchart illustration in Figure 2, and
the flowchart illustrations in subsequent figures described hereafter, can
be implemented by computer program instructions. These computer program
instructions may be provided to a processor or other programmable data
processing apparatus to produce a machine, such that the instructions
which execute on the processor or other programmable data processing
apparatus create means for implementing the functions specified in the
flowchart block or blocks. These computer program instructions may also
be stored in a computer-readable memory or storage medium that can direct
a processor or other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory or storage medium produce an article of
manufacture including instruction means which implement the functions

specified in the flowchart block or blocks.

Accordingly, blocks of the flowchart illustrations support combinations of
means for performing the specified functions, combinations of steps for
performing the specified functions and program instruction means for
performing the specified functions. It will also be understood that each
block of the flowchart illustrations, and combinations of blocks in the
flowchart illustrations, can be implemented by special purpose
hardware-based computer systems which perform the specified functions or
steps, or by combinations of special purpose hardware and computer

instructions.

In order to cross-grant tokens, the token manager 112 may make a
determination of availability of the token. As shown in Figure 2, this
determination of availability includes software setting the rate of token
allocation (step 210) and the token manager 112 starting the corresponding
rate counter (step 220). Once the rate counter is started, a
determination is made as to whether the rate has expired (step 230). Upon
expiration, the rate counter is reloaded to its initial wvalue (step 235),
which is configured by software, and the available tokens are set (step
240). Software “configures” the value for the rate counter by loading the

value into an allocation register, for example.

A determination is then made as to whether there is a token request (step

250). If there is a token request, the token is granted, the associated

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660

14
token is reset and made available (step 280), and the token manager 112
again waits until the rate has expired (step 230). If there is no token

request, the token manager 112 waits until the rate has expired (step
260). Once the rate counter has expired, the rate counter is relocaded to
its initial value (step 265) and the token is given away (step 270). The

operation then returns to step 230.

There are situations where there are unallocated tokens. In other words,
there can be tokens that have no particular assignment to a RAG. These
unallocated tokens can also be available to requesters with pending
requests. However, to obtain the unallocated tokens, the procedure for
availability is identical to the procedure illustrated in Figure 2 above.
A requester with a pending request must simply wait for a token, either a
token created when the corresponding RAG’s Rate Counter expires, an unused

token from another RAG, or an unallocated token, to become available.

Referring now to Figure 3, an illustration of cross-granting of tokens is
provided. Figure 3 is only exemplary and is not intended to state or
imply any limitation with regard to the mechanisms of the present
invention. It should be appreciated that there may be one or more RAGs
utilized with a given process rate based on the desired performance
capabilities of the system. Moreover, there are at least one or more

tokens that each RAG utilizes.

As shown in Figure 3, there is an overall rate at which resources are
processed 300. For both RAGL and RAG2, there are respective rate counters
310 and 350, respective token availabilities 320 and 360, and respective
internal requests 340 and 370. The internal requests for RAGL are labeled
Al to A6 and the internal requests for RAG2 are labeled Bl to B7. One
should note that at time Tl a token is available for RAGI, but there is no
pending request in RAGL. However, there is a pending request at Tl within

RAG2. Hence, the token is cross-granted from RAGlL to RAG2.

Thus, from the above, it can be seen that the architecture described in
co-pending U.S. Patent Publication No. 2005/0138621 Al provides a
mechanism for controlling resource allocation by providing tokens to
requesters based on the resource requested and the resource allocation
group of the requester. Furthermore, the architecture provides a
mechanism for cross-granting tokens between resource allocation groups.

While this mechanism works well, improvements are provided by the present

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
15

invention to control priorities of resource allocation requests from
requesters within the same resource allocation groups. This priority
control helps to avoid bandwidth starvation of low request rate,

latency-sensitive devices or units.

Figure 4 is an exemplary diagram illustrating the primary operational
components of one exemplary embodiment of the present invention. As shown
in Figure 4, as with the architecture described in U.S. Patent Publication
No. 2005/0138621 Al, requesters 412-418, 422-424, and 432-436 are
organized into resource allocation groups (RAGs) 410, 420 and 430 based on
their associated resource allocation IDs (RAIDs), e.g., RAID 1, RAID 2 and
RAID 3. In this way, various units may be grouped together based on, for
example, their operating characteristics as identified by their RAIDs.

The token manager 440 includes token allocation control logic 442 for
controlling the allocation of tokens to the various requesters 412-418,
422-424, and 432-436 based on their respective RAGs, the resources for
which access is requested, the rates at which tokens are generated and
granted to the RAGs for each resource, and the priorities of the requests.
The token allocation control logic 442 uses RAG tracking latches 444 to
aid in determining how to allocate tokens to requesters 412-418, 422-424,
and 432-436, as will be described hereafter.

The token manager 440 may include a plurality of latches that are grouped
according to particular RAGs supported by the data processing system.
Thus, for example, if three different RAGs are utilized in the data
processing system, three different groups of latches 444 will be utilized
in the token manager 440, one group of latches per RAG. Within a group of
latches for a RAG, the latches are grouped according to the managed
resources. Thus, within the RAG group of latches 444, one or more
sub-groups of latches 446 are allocated to each managed resource. For
example, if there are four managed resources in the data processing
system, a particular RAG group of latches 444 will be grouped into four
sub-groups 446, one for each of the four managed resources. Within each
resource group of latches 446, the latches are organized into a first set
of latches for high priority requests and a second set of latches for low
priority requests, which are collectively referred to in Figure 4 as

priority tracking latches 448.

When a unit of a RAG wants to access a managed resource, the unit

generates a request for the managed resource and the request is sent to

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
16

the token manager. This request includes an identifier of the RAG in
which the unit is grouped, e.g., the RAID may be used to identify the RAG.
In addition, the request includes an identifier of the priority of the
request and the resource that is targeted by the request. The priority of
the request may be determined by the unit itself based on internal logic,
by an external logic unit (not shown) that ranks requests based on the
type of access requested, the source of the request, the cause of the
request, any other criteria that may be used to rank requests as to high

or low priority, or the like.

High priority can be assigned based on the type of requester and/or on the
type of request that is being requested, for example. In one example, a
processor performing critical control functions may always have high
priority for tokens. In another example, high priority may be assigned to
specific types of accesses that are for software locks, for example, in
order to minimize the amount of time that a critical lock is held.
Moreover, accesses to a page table in memory, when these accesses occur as
part of the hardware translation lookaside buffer (TLB) miss handling, may

also be assigned high priority in accordance with the present invention.

In some cases a single physical requesting unit may perform accesses on
behalf of multiple RAGs, as in the case of an I/0 interface controller
making requests for multiple I/O busses or I/O devices. In this case,
token requests may have different Resource Access Identifier (RAID) values
and a different priority. Therefore, to the token manager 440, the
physical requester, e.g., unit 422, may appear to be multiple virtual

requesters.

The token manager 440 tracks all the requests for each resource including
the associated RAG and the priority of the requests. In one exemplary
embodiment of the present invention, the token manager keeps track of up
to 17 virtual requesters and requests for up to 20 resource targets per
requester. Internally, the token manager 440 keeps track of requests on a
per RAG basis using the tracking latches 444 and the respective groups 446
and 448 of these tracking latches 444.

For each RAG, the token manager 440 records high priority requests for
each resource in a first set of priority grouped latches and low priority
requests for each resource in a second set of priority grouped latches,
collectively referred to as priority tracking latches 448. The token

manager 440 uses these tracking latches 444-448 and rate decrementers 450

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
17

to determine how often and exactly when to generate and grant tokens to
particular requesters, e.g., units 412-418, 422-424, zand 432-436. The
token manager 440 may have round-robin pointers per priority, per resource
and per RAG to track which of the multiple requesters in a RAG should be
granted a token on a round-robin basis when a token becomes available and

there are multiple outstanding requests.

In an exemplary embodiment of the present invention, the token allocation
control logic 442 establishes a rate decrementer for each combination of
resource and RAG. Thus, if there are three RAGs and four managed
resources in the data processing system, twelve rate decrementers 450 will
be established for managing the allocation of tokens for accessing
resources to the RAGS 410, 420 and 430. When the rate decrementer 450
reaches a zero count, a token for the corresponding resource is generated
and granted to the corresponding RAG so that a requester associated with
that RAG may access the corresponding resource.

When a token is generated and granted to a particular RAG, the token
allocation control logic 442 uses the RAG tracking latches 444 to
determine which unit within the RAG will obtain the token for accessing
the resource. In particular, the token allocation control logic 442
identifies the group of latches corresponding to the RAG to which the
token is granted, e.g., RAG tracking latches 444. The token allocation
control logic 442 then identifies the group of RAG tracking latches 444
corresponding to the resource associated with the granted token, e.g.,
resource tracking latches 446. The token allocation control logic 442
then looks at the high priority and low priority requests pending for the
particular resource from the particular RAG and determines which request
should receive the granted token. The corresponding requester, e.g., unit

422, is then granted the token and may access the requested resource.

This process of looking at high priority and low priority requests to
determine which request should receive the granted token is illustrated in
Figure 5. The mechanisms shown in Figure 5 are for a single resource and
single RAG. As shown in Figure 5, when the rate decrementer 510
associated with the resource and RAG decrements to zero, a token for
accessing the resource by the RAG is generated and granted to the RAG,
e.g., RAGL 520.

The token manager control logic (not shown) communicates with the RAG1

control logic 590 to cause the RAGL control logic 590 to retrieve values

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
18

from high priority request and low priority request latches 550 and 560 in
resource latches 540 corresponding to resource associated with the token,
e.g., resource A. In one exemplary embodiment, pointers 570 and 580 are
utilized to identify the next request in the high priority requests 550
and low priority requests 560 which are to receive a token for accessing
the associated resource. In an exemplary embodiment, the pointers 570 and
580 are round-robin pointers that are incremented when a token is granted
to a requester corresponding to a request pointed to by the round-robin
pointers. Round-robin pointers are utilized to give fair treatment
between multiple high priority requesters and to give fair treatment
between multiple low priority requesters. There are several methods for

implementing such a round-robin pointer.

In one scheme, in every cycle, the high priority request round-robin
pointer is advanced one “slot,” or latch, until a “slot” or latch having
an active request is encountered. Thus, there are times when the high
priority round-robin pointer will point to a tracking latch associated
with a requester that does not have an active high priority request. At
other times, the high priority request round-robin pointer will be
advanced to a next “slot” or latch where a high priority request is
pending. Likewise, the low priority request round-robin pointer is
advanced one “slot” or latch per cycle until it points to an outstanding
low priority request in the RAG. When the round-robin pointers point to a
“slot” or latch in which there is a pending request, the round-robin
pointer is not advanced until the request is dispatched, i.e. granted a

token for accessing the resource.

In another scheme, where the number of total potential requests is small,
it 1s feasible to advance a round-robin pointer in a single cycle to
directly point to the next outstanding request. In this alternative
scheme, if any of the tracking latches for the high priority requests has
a pending request, the high priority request will be selected over any low

priority requests pending in the low priority tracking latches.

A high priority request is only eligible to be granted a token if the high
priority request round-robin pointer points to the request. A low
priority request is only eligible to be granted a token if the low
priority request round-robin pointer points to the request. However, a
high priority request is always selected over a low priority request.
Thus, based on whether the high priority requests pointer 570 and the low

priority requests pointer 580 point to pending requests, the token granted

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
19

to RAGL 520 is allocated to a particular requester corresponding to a
selected request pointed to by the pointers 570 and 580. If pointer 570
points to a pending high priority request, that request will always be
selected for allocation of the token to the associated requester, even if
pointer 580 points to a pending low priority request. Only if the pointer
570 does not point to a pending high priority request will the token be
allocated to a requester associated with a low priority request pointed to

by pointer 580.

The mechanism for selecting between high and low priority requests 1is
further illustrated in the exemplary diagram of Figure 6. As shown in
Figure 6, each requester in the data processing system has its own
associated latch 612-618 in the high priority latches 610 and its own
associated latch 622-628 in the low priority latches 620. When a request
is sent from a requester to the token manager, the associated latch
612-618 or 622-628 is set, e.g., its value is changed from “0” to “1,”
based on the RAID, the resource requested, and the priority of the

request.

Pointers 630 and 640 are provided for pointing to the latches 612-618 and
622-628 to thereby identify the next latch whose associated requester
should receive the token for accessing the associated resource. The value
stored in the latch pointed to by pointers 630 and 640 is output to the
multiplexer 650. The multiplexer 650 receives these values as inputs and
also receives a select control signal. The select control signal is such
that if the value received from a high priority latch, pointed to by the
high priority pointer 630, is a set value, e.g., a logical “1”, then the
requester associated with that high priority latch is granted the token.
If the value of the high priority latch pointed to by the high priority
pointer 630 is not set, and the value of the low priority latch pointed to
by the low priority pointer 640 is set, then the token is provided to the

requester associated with the low priority latch.

After granting the token to either the requester associated with the high
priority request or the requester associated with the low priority
request, the pointers 630 and 640 are updated. This updating may involve
incrementing the pointer associated with the latches to which the token
was granted. Thus, 1f the requester associated with the high priority
latch was selected as the one to which the token was to be granted, the

corresponding high priority latch may be reinitialized to an unset value

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
20

and the pointer incremented to a next latch in the high priority request
latches 610. Similarly, the low priority pointer 640 may be incremented
if a requester associated with a low priority latch was selected to

receive the token.

The incrementing of the pointers 630 and 640 may take many different forms
and may be controlled by control logic provided in the token manager. 1In
exemplary embodiments of the present invention, the incrementing is done

in a round-robin fashion, although the round-robin fashion may itself take

different forms.

In one exemplary embodiment, the pointers are incremented one latch per
cycle until a latch corresponding to a pending request is encountered.
Thus, it is possible, after incrementing, that the pointers 630 and 640
may point to a latch that has an unset value. In this way, low priority
requests may be selected for dispatch even though there may be a high
priority request pending. In this way, low priority requests will not

starve for available resources.

In another exemplary embodiment, the pointers 630 and 640 are incremented
so that they immediately point to the next pending request identified in
the latches. In this case, if there are any high priority requests
pending, as identified by the high priority latches 610, those requests
will be selected before any of the low priority requests are selected for
dispatch. Only when there are no pending high priority requests in the
latches 610 will the requester associated with one of the low priority
requests, corresponding to a latch pointed to by pointer 640, be selected
for receiving the token. In such a case, while there may be a chance of
starvation of low priority requests, the more critical operations
associated with high priority requests will be ensured access to the

resources before low priority requests.

In the embodiments described above, because only a few RAGs are present in
the exemplary data processing system, there is an implicit and physical
association between tracking latches and requesters, i.e. there is a
1-to-1 correspondence in which there is a specific tracking latch for each
requester. For example, if a requester 0, in RAGO, makes a low priority
request for resource A, a specific physical tracking latch is set. This
tracking latch is always associated with RAGO, requester 0, and resource
A. Thus, 1f there are four RAGs and even if a requester can only be in

one RAG, the physical implementation has 4 sets of latches, one for each

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
21

potential RAG for this requester. In embodiments of the present invention
in which there are many RAGs provided in the data processing system, it
would be more efficient, i.e. it would require fewer tracking latches, to
use only one set of tracking latches for each requester and resource. A

register may be used to identify the RAG for these request latches.

It should be kept in mind that the above mechanisms of the present
invention work within the original allocation of resources to the resource
allocation groups (RAGs). This resource allocation is primarily
controlled by way of the RAG decrementers. Thus, each RAG will still be
given only its associated percentage of the resource, but individual units
within the RAG will receive varying portions of this allocated percentage
of the resource as determined based on the priority mechanisms of the
present invention. As a result, one RAG cannot dominate a resource over
other RAGs contrary to the original allocation of resources to achieve a

desired operation of the data processing system.

It should be appreciated that while the above embodiments are described in
terms of latches, multiplexers, and other hardware elements, the present
invention is not limited to hardware embodiments. To the contrary, the
mechanisms of the present invention may also be implemented in software or
a combination of hardware and software. For example, rather than
utilizing latches and multiplexers, the present invention may be performed
using various data structures for tracking high and low priority requests

from RAGs for particular resources.

Figure 7 is a flowchart outlining an exemplary operation of the present
invention when selecting a requester to which a token is to be granted in
response to a token being granted to resource allocation group in
accordance with the present invention. The operation outlined in Figure 7
may operate in concert with the operation described above in Figure 2.

For example, the operation outlined in Figure 7 may be performed as part

of step 280 in Figure 2.

As shown in Figure 7, the operation starts by generating and granting of a
token for accessing a resource by a particular resource allocation group
(step 710). This may be done, for example, in response to a decrementer
associated with the resource and RAG being decremented to zero thereby

causing the generation of the token for that resource and RAG.

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
22

The group of latches for the particular RAG are then identified (step 720)
and the particular sub-group of latches for the resource are identified
(step 730). The values of the latches pointed to by the high priority
pointer and low priority pointers in the sub-group of latches for the
resource are then read (step 740). A determination is made as to whether
the value associated with the high priority pointer indicates a pending
request (step 750). If so, then the token is granted to the requester
associated with the request corresponding to the latch pointed to by the
high priority pointer (step 760). If the value associated with the high
priority pointer indicates a request is not pending, then a determination
is made as to whether the value corresponding to the low priority pointer

indicates a request is pending (step 770).

If the value corresponding to the low priority pointer indicates a pending
request, then the token is granted to the requester associated with the
reqguest corresponding to the latch pointed to by the low priority pointer

(step 780). Otherwise, the token goes unused (step 790).

Thereafter, the value of the latch corresponding to the selected requester
to receive the token is reset to a value corresponding to no pending

request (step 800). The pointers are then incremented in accordance with
a pointer incrementing scheme being implemented (step 810). The operation

then terminates.

Thus, the present invention provides a mechanism for priority control in
resource allocation. The mechanism of the present invention makes
resource allocation fair between low and high priority requests by
allocation a percentage of a resource to a resource allocation groups and
then controlling access to this percentage of a resource by units within
the resource allocation group based on priority of requests and a fairness
scheme. The mechanism of the present invention performs such operations
while minimizing costs in implementing the present invention. That is,
costs are minimized by keeping the logic and hardware elements for
implementing the present invention to a minimum. For example, only a
small number of latches are required to record requests as high or low
priority requests, a single multiplexer per RAG and resource combination
is required to select between high and low priority requests, and number
of bits for round-robin pointers is kept small. For a reasonable number
of resource access groups, the mechanisms of the present invention provide

a low-cost solution to give low latency to high priority requests and

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
23

still limit the overall amount of resources assigned to a resource

allocation group.

It should be noted that while the above embodiments are described in terms
of high priority requests and low priority requests, the present invention
is not limited to such. Rather, the exemplary embodiments are described
using only two priorities in order to make the description of the present
invention as easy to understand as possible. In actual implementations of
the present invention, two or more priorities may be used with a
corresponding number of tracking latches provided to track requests having
priorities in the two or more priorities supported by the particular
implementation. Any number of priorities greater than two may be used

without departing from the spirit and scope of the present invention.

As shown in Figure 8, the mechanisms of the present invention may be
implemented in an information handling system (IHS) 850. The IHS 850 may
employ a data processing system 860, such as the data processing system
depicted in Figure 1, incorporating the resource allocation and priority
control mechanism 870, including token manager 880, of the present
invention. The IHS 850 may take many forms. For example, the IHS 850 may
take the form of a desktop, server, portable, laptop, notebook, or other
form factor computer or data processing system. IHS 850 may also take
other form factors such as a personal digital assistant (PDA), a gaming
device or console, a portable telephone device, a communication device or
other devices that include a microprocessor or a system-on-a-chip.

As stated previously, it is important to note that while the present
invention has been described in the context of a fully functioning data
processing system, those of ordinary skill in the art will appreciate that
the processes of the present invention are capable of being distributed in
the form of a computer readable medium of instructions and a variety of
forms and that the present invention applies equally regardless of the
particular type of signal bearing media actually used to carry out the
distribution. Examples of computer readable media include recordable-type
media, such as a floppy disk, a hard disk drive, a RAM, CD-ROMs, DVD-ROMs,
and transmission-type media, such as digital and analog communications
links, wired or wireless communications links using transmission forms,
such as, for example, radio frequency and light wave transmissions. The
computer readable media may take the form of coded formats that are

decoded for actual use in a particular data processing system.

WO 2007/048769 PCT/EP2006/067660
24

The description of the present invention has been presented for purposes
of illustration and description, and is not intended to be exhaustive or
limited to the invention in the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best explain the
principles of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited to the

particular use contemplated.

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
25

CLAIMS

1. A method, in a data processing system, for controlling access to a
resource, comprising:

generating and granting a token to a resource allocation group,
wherein the resource allocation group comprises one or more operational
units within the data processing system;

obtaining request information from a group of request storage
devices associated with the resource allocation group and the resource,
wherein the group of request storage devices is separated into a first
sub-group of first priority request storage devices and a second sub-group
of second priority request storage devices;

selecting an operational unit from the one or more operational units
to receive the token based on the request information obtained from the
group of request storage devices; and

granting the token to the selected operational unit, wherein the

selected operational unit uses the token to access the resource.

2. The method of claim 1, wherein the token is generated and granted to
the resource allocation group in response to a counter associated with the

resource allocation group reaching a predetermined value.

3. The method of claim 1 or 2, wherein the resource allocation group 1is
allocated a portion, less than a full amount, of the resource to be shared

by the one or more operational units.

4. The method of claim 1, 2 or 3 wherein obtaining request information
from a group of request storage devices associated with the resource
allocation group and the resource comprises:

obtaining a value of a first pointer associated with the first
sub-group of first priority request storage devices;

obtaining a value of a second pointer associated with a second
sub-group of second priority request storage devices;

determining if there is a pending first priority request for access
to the resource based on the value of the first pointer; and

determining if there is a pending second priority request for access

to the resource based on the value of the second pointer.

5. The method of claim 4, wherein selecting an operational unit from

the one or more operational units to receive the token based on the

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
26

request information obtained from the group of request storage devices,
comprises:

selecting an operational unit associated with the first priority
request if a pending first priority request is identified by the wvalue of
the first pointer; and

selecting an operational unit associated with the second priority
request if a pending second priority request is identified by the wvalue of
the second pointer and the value of the first pointer indicates that a

first priority request is not pending.

6. The method of claim 4 or 5, wherein the first sub-group of first
priority request storage devices may contain a pending first priority
request yet the first pointer may indicate that a first priority request
is not pending if the first pointer points to an empty first priority

request storage device.

7. The method of claim 4, 5 or 6 further comprising:

incrementing the value of the first pointer to point to a next first
priority request storage device in the first sub-group of first priority
request storage devices if a request associated with a current value of
the first pointer is dispatched; and

incrementing the value of the second pointer to point to a next
second priority request storage device in the second sub-group of first
priority request storage devices 1if a request associated with a current

value of the second pointer is dispatched.

8. The method of any of claims 4 to 7, further comprising:
incrementing the value of the first pointer to point to a next
non-empty first priority request storage device in the first sub-group of

first priority request storage devices 1f a request associated with a
current value of the first pointer is dispatched; and

incrementing the value of the second pointer to point to a next
non-empty second priority request storage device in the second sub-group
of first priority request storage devices if a request associated with a

current value of the second pointer is dispatched.

9. The method of any of claims 1 to 8, wherein the data processing
system supports a plurality of resource allocation groups and a plurality
of managed resources, wherein each resource allocation group has a set of
request storage devices, and wherein the set of request storage devices

for each resource allocation group is organized into a group of request

10

15

20

25

30

35

40

WO 2007/048769 PCT/EP2006/067660
27

storage devices for each managed resource, and wherein each group of
request storage devices for each managed resource is organized into a
first sub-set of request storage devices associated with first priority
requests and a second sub-set of request storage devices associated with
second priority requests, optionally each combination of resource
allocation group and managed resource has an associated counter for
determining when to allocate a token for accessing the managed resource to

the particular resource allocation group.

10. The method of any of claims 1 to 9, wherein the resource allocation
group comprises one or more operational units within the data processing

system that have a same resource allocation identifier.

11. A computer program product comprising a computer usable medium
having a computer readable program, wherein the computer readable program,
when executed on a computing device, causes the computing device to:

generate and grant a token to a resource allocation group, wherein
the resource allocation group comprises one or more operational units
within a data processing system;

obtain request information from a group of request storage devices
associated with the resource allocation group and the resource, wherein
the group of request storage devices is separated into a first sub-group
of first priority request storage devices and a second sub-group of second
priority request storage devices;

select an operational unit from the one or more operational units to
receive the token based on the request information obtained from the group
of request storage devices; and
grant the token to the selected operational unit, wherein the selected

operational unit uses the token to access a resource.

12. An apparatus, comprising:

a processor;

a plurality of operational units coupled to the processor;

a resource coupled to the plurality of operational units;

a memory coupled to the processor; and

a plurality of request storage devices coupled to the processor,
wherein the memory stores instructions which, when executed by the
processor, cause the processor to:

generate and grant a token to a resource allocation group, wherein
the resource allocation group comprises one or more operational units,

from the plurality of operational units;

10

15

20

25

WO 2007/048769 PCT/EP2006/067660
28

obtain request information from a group of request storage devices,
in the plurality of request storage devices, associated with the resource
allocation group and the resource, wherein the group of request storage
devices 1s separated into a first sub-group of first priority request
storage devices and a second sub-group of second priority request storage
devices;

select an operational unit from the one or more operational units to
receive the token based on the request information obtained from the group
of request storage devices; and
grant the token to the selected operational unit, wherein the selected

operational unit uses the token to access the resource.

13. The apparatus of claim 23, wherein the apparatus is a
system-on-a-chip and optionally part of an information handling system,
wherein the information handling system is one of a desktop data
processing system, a server, a portable data processing system, a laptop
data processing system, a notebook data processing system, a personal
digital assistant, a gaming device, a gaming console, a portable telephone

device, or a communication device.

14. The apparatus of claim 12 or 13, wherein the apparatus 1is a
multiprocessor system-on-a-chip having at least two heterogeneous

processors.

WO 2007/048769

1/6

PCT/EP2006/067660

TOKEN (S TO BE GRANTED

102 103 104 1/6 105 106
\ \ \ / /
UNMANAGED | | UNMANAGED
REQUESTER | | REQUESTER REQL;EZSTER RESOURGE | | RESOURCE
RO R1 UMRO UMRT | LOCAL
BUS
114 118 | 120 124 130 100
115 119~ 121~ 125~ 131~
< 117 >
16 | 1221 1231 N126 (127
MEMORY MANAGED w | TOKEN
CONTROLLER RESOURCE cONTROLLER| 110 | MANAGER
/ \ 128 N
108y 7 109 {i129 112
° N
pevices | -111
510~ RATE DECREMENTER FOR
RESOURCE A AND RAG1
520 GRANT TOKEN TO RAGT
- \1 T0 ACCESS RESOURCE A
el ooy JONCLESS RESOURCEA -
' 53 N RAG1 :
: 540 RAG1 LATCHES .
! \ RESOURCE A LATCHES :
i HIGH PRIORITY | 580~J LOW PRIORITY :
: | REQUESTS POINTER |_~570 | REQUESTS POINTER [*] :
! ¥ 13 |
i HIGH PRIORTY | g0 [Low PRIORITY :
| REQUESTS FOR 5o | PEQUESTS FOR I
| RESOURCEA |9 RESOURCE A }
1
. :
i 1
H A J]
f RAG1 CONTROL LOGIC — t
] ; [}
o N T __ J
FIG. 5 (D OF REQUESTER TO WHICH

WO 2007/048769

2/6

FIG. 2
START
210~] SET RATE OF TOKEN
ALLOCATION
'
220~ START RATE COUNTERS
K]
RATE
EXPIRED
RELOAD RATE COUNTER
935--] TO INITIAL VALUE
240 SET AVAILABLE TOKENS
r
GRANTTOKENTO | e TOKEN
«—{ REQUESTER RESET REQUESTED
AVAILABLE TOKEN
‘
280
RATE
EXPIRED
RELOAD RATE COUNTER
265--] TO INITIAL VALUE
!
2701 GIVE TOKEN AWAY
T

PCT/EP2006/067660

PCT/EP2006/067660

WO 2007/048769

3/6

£ OId

8g /9 99 68

£gcd 19

0

vd
¥

A

\%

L
]

]

T

TYNH3LNI SiL OV

NDIOL
29vY T18viivay— 09€

| HILNNCID Ve Omm

——

]

I 31vd 29w

SOVH HIHIOHOd |

9v SV vV m<

JIGVTIVAV NDIOL
034

—

TYNY3INI S LOVH~_Qpe
NINOL

[0 [rowuTavivav~gee

| H3INNGJ

I
]

131vd 19VH~-0I€
| |] 31vd DNISS3004d

i

F $30UN0SIH~_ goe

o3 A8

, ZOVY

> 19VH

WO 2007/048769

4/6

RAG 1

410\ (RAID 1)

UNIT 1
412

UNIT 2
a4

UNIT 3
416

UNIT4
418

420\

RAG 2
(RAID 2)

UNIT 5

REQUEST
(RAID, PRIORITY, RESOURCE)

FIG.

PCT/EP2006/067660

440

1/

TOKEN MANAGER

TOKEN ALLOCATION

CONTROL LOGIC

e
442

444

'

422

UNIT 6
424

430\4

RAG 3
(RAID 1)

UNIT 7
432

UNIT 8
434

UNIT 9
436

RAG TRACKING LATCHES |+

RESOURCE
TRACKING
LATCHES

448

/£

PRIORITY
TRACKING
LATCHES

_~ 446

RATE

DECREMENTERS

- 450

WO 2007/048769 PCT/EP2006/067660
5/6

HIGH PRIORITY LOW PRIORITY
REQUEST LATCHES REQUEST LATCHES

610 REQUESTER 0 REQUESTER 0
630 N 612 622 /620
0 612 622

HIGH PRIORITY REQUESTER 1 REQUESTER 1
POINTER 614 624 640

Z
REQUESTER 2 REQUESTER 2 | LOW PRIORITY
616 626 POINTER

o [+
] ©
-] o

REQUESTER N REQUESTER N
618 628

VALUE IN HIGH VALUE IN LOW
PRIORITY LATCH PRIORITY LATCH

Y
SELECT CONTROL SIGNAL: MUTPLEER A ocr FIG. 6

ID OF REQUESTER TO WHICH
TOKEN IS TO BE GRANTED

INFORMATION HANDLING SYSTEM
850

DATA PROCESSING SYSTEM
860

RESOURCE ALLOCATION AND
PRIORITY CONTROL MECHANISM FIG. 8
870

TOKEN MANAGER
880

WO 2007/048769

FIG. 7

n 0\ GENERATE AND GRANT
TOKEN FOR ACCESSING

RESOURCE TO RAG

¥

720~{ IDENTIFY GROUP OF

LATCHES FOR RAG

'

730~ IDENTIFY GROUP OF

LATCHES FOR RESOURCE

T

READ VALUES OF HIGH AND
740~ oW PRIORITY LATCHES
FOR RESOURCE, RAG

750

PENDING
REQUEST INDICATED BY
HIGH PRIORITY POINTER
VALUE?

770

PENDING
REQUEST INDICATED BY
LOW PRIORITY POINTER
VALUE?

6/6

PCT/EP2006/067660

GRANT TOKEN TO
REQUESTER ASSOCIATED

| WITH REQUEST POINTED TO

BY HIGH PRIORITY POINTER

_~760

GRANT TOKEN TO

| REQUESTER ASSOCIATED

WITH REQUEST POINTED TO
BY LOW PRIORITY POINTER

™-780

700~ TOKEN IS UNUSED
A
RESET LATCHES
800 (IF NECESSARY)
¥
INCREMENT POINTERS
810 (IF NECESSARY)

INTERNATIONAL SEARCH REPORT

Iinternational application No

PCT/EP2006/067660

A, CLASSIFICATION OF SUBJECT MATTER
INV. GO6F13/362

According 1o International Patent Classification (IPC) or o both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (ctassification system followed by classification symbols)

G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPQO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2005/138254 Al (RAGHAVAN RAM [USI ET AL 1-14
RAGHAVAN RAM [US] ET AL)

23 June 2005 (2005-06-23)

page 2, paragraph 27 - page 3, paragraph
33

Y US 2004/103231 Al (ZHU JUN [USD) 1-14
27 May 2004 (2004-05-27)

page 1, paragraph 9

page 2, paragraph 10 - paragraph 12
page 3, paragraph 30

A US 2005/138621 Al (CLARK SCOTT D [US] ET 1-14
AL) 23 June 2005 (2005-06-23)

cited in the application

page 1, paragraph 7

page 3, paragraph 28 - paragraph 29

_____ L

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :
P 9 *T* later document published after the international filing date

or priority date and not in conflict with the apptication but

*A" document defining the general state of the an which is not i G i
considered 1o be of particular relevance ;:raleedngc:) rl:nderstand the principle or theory underlying the
'E" earlier document but published on or after the international *x* document of pariicular relevance; the claimed Invention
filing date cannot be considered novel or cannot be considered 1o
L do?:mt]]ent whicci:h may t'r;l?ot\;v doubtslon priority cla}im(s) }?r involve an Inventive step when the document is taken alone
which is Giled to establish the publication date of another *y* document of particufar relevance; the claimed invention
citation or other special reason (@s specified) cannot be considered to involve an inventive step when the
O document referring o an oral disclosure, use, exhibition or docurnent is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the intemational filing date but n the art
later than the priority date claimed *&" document member of ihe same patent family
Date of the actual completion of the international seaich Date of maiting of the international search report
19 January 2007 29/01/2007
Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, 5
Fax: (+31-70) 340-3016 Dewyn, Torkild

Foim PCTASA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/067660

C(Continuation), DOCUMENTS CONSIDERED TO BE RELEVANT

6 June 2000 (2000-06-06)
the whole document

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2003/229742 Al (MOSS ROBERT W [US]) 1-14

11 December 2003 (2003-12-11)

page 1, paragraph 8 - paragraph 10

page 2, paragraph 28 - page 3
A US 6 073 132 A (GEHMAN JuDY M [US]) 1-14

Form PGT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/067660
Patent document Publication Patent family Publication
clted in search report date member(s) date
US 2005138254 Al 23-06-2005 NONE
US 2004103231 Al 27-05-2004 NONE
US 2005138621 Al 23-06~2005 NONE
US 2003229742 Al 11-12-2003 NONE
Us 6073132 A 06-06-2000 NONE

" Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

