WO 20117045634 A1 |10 V00 OO 0O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellcctual Property Organization. /&5 I} 00011000 0 OO0 0 0

International Bureau
(10) International Publication Number

(43) International Publication Date

21 April 2011 (21.04.2011) PCT WO 2011/045634 A1

(51) International Patent Classification: AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
GOGF 9/44 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
. L ) Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(21) International Application Number: 010/00 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
PCT/IB2010/002037 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
17 August 2010 (17.08.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, 8C, SD,
- ) ST, SG, SK, SL, SM, ST, SV, SY, TII, TJ, TM, TN, TR,

(25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(26) Publication Language: English  (g4) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of regional protection available).: ARIPO (BW, GH,
61/251,420 14 October 2009 (14.10.2009) us GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(71) Applicant (for all designated States except US). VER- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
MEG SERVICES SARL [TN/IN]; Rue du Lac de EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Neuchatel, 1053 Les Berges du Lac, Tunis (TN). LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,

(72) Tnventor; and SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
’

(75) Inventor/Applicant (for US only): OUALI, Badreddine GW. ML, MR, NE, SN, TD, TG).
[TN/TN]; 5, rue Astrate, 2016 Carthage (TN). Published:

(81) Designated States (unless otherwise indicated, for every —  with international search report (Art. 21(3))
kind of national protection available): AE, AG, AL, AM,

(54) Title: AUTOMATED ENTERPRISE SOFTWARE DEVELOPMENT

(57) Abstract: The preferred embodiment provides a sys-
tem and method for automatically generating enterprise

UML Graphical Design Tooﬂ software applications with minimal level of manual coding.

410 ; The preferred embodiment provide a graphical design tool

that models an application using Unified Model Langnage

l' (UML), validate the UML modecl, and automatically gener-

v ate deployable application The preferred embodiment also

i7 Val;é%tmn J provides a framework of libraries that the target applica-
== tion ca be build from.

Auromated Code Generator
430
" T
Preexisting Code ‘

- —
Manual Coding - Target Application
Configuration Tools ‘ Test & Benchmark ‘
460 470

FIG. 4

Deployment
490



WO 2011/045634

10

15

20

25

30

PCT/IB2010/002037

AUTOMATED ENTERPRISE SOFTWARE DEVELOPMENT

REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. Provisional Patent Application No.
61/251,420, filed October 14, 2009, whose disclosurs is hereby incorporated by reference inits
entirety into the present disclosure.

FIELD OF THE INVENTION

This invention relates generally to methods and systzms for automated enterprise
software development. Specifically, it relates to methods and systems for automating computer
software development process in connection with graphical modeling agproaches.

BACKGROUND OF THE INVENTION

Business enierprises rely on increasingly sophisticated software to manage their
internal operation and provide goods and services to their clients and customers. The
development, deployment, maintenance, and updating of enterprise level suftware has become
essential to carry out almost all business processes.

Traditionally, software development involves extonsive manual coding and testing
As software complexity increases, this tra'ditional marual approach is not ideal. Enterprise
software applicaﬁons are usually comprised of millicns of lines of computer code and have
traditionally required teams of programmers and several years to create, test, and debug. To
implement a system, a programmer must face a chore of repetitive coding. The software ccde
generated by this manual method is prone to contain error, and manual testing may be inadequate
to cover all possible user scenarios. The resulting software product may contain latent bugs that
cause disruption of services and great economic losses.

Model-Based Development (MBD) methodologies have emerged that shift the focus

.of the software development process. Modeling happens in the software application process

before coding. A model serves as blueprints in software development. A carefully constructed
model can help those responsible for a software development project's success to assure that
business functionality is complete and cotrect, end-user needs are met, znd program design
supports requirements for scalability, robustness, security, extendibility, and other ‘

characteristics, before implementation in code.. Implementation in cods after the fact of design

1

CONFIRMATION COPY



WO 2011/045634 PCT/1B2010/002037

usually renders making changes difficult and expensive. MBD allows verification of the

software specification at the model level and reduces the amount of manual coding. Modeling

tools also make it possible to visualize a design and compare it against the design requirement.
The Unified Modeling Language (UML) is a graphical language for visualizing,

5  specifying, constructing, and documenting the artifacts of a software-intensive system. The
UML offers a standard way to write a system's blueprints, mcluding conceptual things such as
business processes and system functions as well as concrete things such as programming
language statements, databasc schemas, and reusable software components. TABLE 1 presents a
list of standard UML elements.

10
TABLE 1 STANDARD UML ELEMENTS

Element Properties Standard UML Stereotype
Package Name
Interface Name Abstract
Class Name Abstract
Attribute Name Final
Type
Tnitial value
- Multiplicity
Y Method Name
Parameters
Return type

Relation: Realization | Realized Interface

Relation: Inheritance | mherited Class (Super Class)
Relation Type:

: Simple/Aggregation/Composition
Role
Symmetric Role
Cardinality
Navigability

Automatic code generation (ACG), but not application generation, has also become
available to the enterprise software development process. ACG gives an engineer the
15  opportunity to focus on the high-level design issues and on better understanding of the business

process. ACG can bring enterprise software to market faster, but canmot pull the entire

2



WO 2011/045634

10

15

20

30

PCT/1B2010/002037

application to géthcr with all its necessary parts such as the interface and data componenté with
the processing components, The ACG process usually comprises an automated code genera.or
thet reads meta-data for a specific set of designed pafterns and generates software code in a
specified programuming language. An automatic code generator may also be used to capture
knowledge a',nd business rules for enterprise software applications and generate the millions of
lines df codes in a short amount of time in any desired computer language and for any platform.
The process of ACG makes a software development project more agile. A change in
implementation can b treated as & different rendering of the sams meta-data. Once a potion of
the source code is generated, a programmer is then fres to fill in the gaps that are lefi by the code
generator, and to concentrate on the parts of the system fhat matter. This improves development
speed and reliability via code generation process.

Service Oriented Architecture (SOA) is an architectural approach for constructing
complex software-intensive systoms from a set of universally interconnected and interdependent
building blocks. SOA is used to build applications out of software services. Services are
intrinsically unassociated units of functionality, which have no call to another service embedded
within them. These software services typically implement functionalities a human would
recognize as a service, such as filling out an online application for an account or viewing an
online bank statement. Instead of having services with embedded calls to each other in their
source code, SOA defines protocols which describe how one or more services can communicate
with each c;ther. A flexible, standardized architecture is required to better support the connection
of various applications and the sharing of data. SOA unifies business processes by structuring
large applications as an ad hoc collection of smaller modules called services. These applications
can be used by different groups of people both inside and outside the company, and new
applications built from a mix of these services from the global pool exhibit flexibility and
uniformity. Building all applications from the same pool of services makes achieving this goal
much easier and more deployable for affiliate companies. This architecture can help business
respond more quickly and cost-effectively to changing conditions and it promotes reuse at macro
level service level rather than micro class level.

It would be beneficial and desirable to have a streamlined enterprise software

development tool that incorporates portions of these past metho ds to provide a graphical

- modeling and design tool, automate most or 21l of the coding, and has a framework of reusable



WO 2011/045634 PCT/IB2010/002037

components and services that facilitates the generation of custom enterprise applications.
Currently, there is no known process for automatically producing a software application that
designs, gencrates, and integrates all the clements of an executable application. "For example,
there are products that may create a design outline for an executable application, but will not

5 then create the clements specified in the design, such as the user interfacs, persistence (database -
design, data storage and data transfer) and processing steps to name a few. The current inveation
accomplishes this desired need, of design, generation, integration and production in one systmm,

which need has not been provided in prior systems.



WO 2011/045634 PCT/1B2010/002037

10

15 .

20

25

30

SUMMARY OF THE INVENTION

It is therefore an object of the invention to provide such a tool. To achieve the above
and other objects, the present invention presents 2 method for generating a software application
which comprises the steps of: modeling a business process in a graphical design tool; creating at
least one UML model to formalize the described processes by using one or more state diagrams
to represent the modeled business processes, and one or more class diagrams to represent data
models and to represent predetermined business rules that are applied to the described business
procésses; validating at lcast one UML model by detecting syntax errors using a predetermined
syntax, in order to validate either at least one state diagram or class diagram, or combination
thereof; and transforming at least one validated UML model into metadata that is used to
generate functional and non-functional aspects of the software application.

In one aspect of the present invention, the transforming step includes generating the
goftware application.

In another aspect of the present invention, the generated software application is
combined with pre-existing libraries.

Tn another aspect of the present invention, the generated software application is
combined with manually written code.

Tn another aspect of the present invention, the metadata includes one or more
application code, or constraint models, or automate files, or documentation, or some combination
thereof.

Tn another aspect of the present invention, the generated application includes a
predefined set of functional requircments.

In another aspect of the presenf invention, the generated application includes a
predefined set of non-functional requirements.

In another aspect of the present invention, the predefined set of non functional
requirements includes security management, or load balancing, or transaction management, or
user interfaces, or a gkeleton to build the algorithms on, or some combination thereof.

Tn another aspect of the present invention, the generaing step includes adding
manually written code to the generated application.

Tn another aspect of the present invention, the method further includes the step of

deploying the target application by means of a deployment tool 490.



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

BRIEF DESCRIPTION OF THE DRAWINGS

‘which:

A preferred embodiment will be set forth in detail with reference to the drawings, in

FIG. 1 is a schematic diagram of an exemplary computing environment;
FIG. 2 is a schematic diagram of an exemplary network environment;
FIG. 3 is a schematic diagram of multi-tiered client-server environment;

FIG. 4 is a flow chart of the general process cf developing a enterprise software using

the preferred embodimend;

FIG. 5 is an exemplary Palmyra UML Designer File menu,
FIG. 6 is an exemplary Palmyra UML Designer provides additional menu options;
FIG. 7A is an example of an Enumeration cless;

FIG. 7B is an example of a TypeName class;

FIG. 7C is an example of a DynamicTypeName class;
FIG. 7D is an example of an Attribute class;

FIG. 7F is an example of a Controller class;

FIG. 7F is an example of ActionEnumerationClass;

TIG. 8 is an example of a Constrainable class;

FIG. 9A is an example of an Entity class;

FIG. 9B is an example of a Composite class;

FIG. 9C is an example of a Macro class;

FIG. 9D is aﬁ example of a Controller class;

FIG. 10 is an interface class containing Velue Interface, Abstract Value Interface,

Storage Interface, Historicized Interface, and the hierarchy of these interfaces;

FIG. 11 shows the action handler “AgencyCommandSearch” that is registered in the

use case “UCAgency;”

FIG. 12A is an exemplary Palmyra class diagram that deamonstrates the use case

diagram wizard,

FIG. 12B is an exemplary Palmyra use case diagram wizard with three steps;
FIG. 13A illustrates creating new application using Palmyra generation tool;

FIG. 13B illustrates generation options using Palmyra generation tool;



WO 2011/045634

10

15

20

25

30

PCT/IB2010/002037

FIG. 13C illustrates screen Services, which is used to add, edit or remove services,
the button “Build Services™ applies the modifications in the selected Ear file;

FIG. 13D illustrates configurations options using Palmyra generation tool;

FIG. 14 illustrates the main steps of the autom;tic generation process; .

FIG. 15A illustrates an example of Relation One to One;

FIG. 158 illustrates an example of Relation One to N;

FIG. 16 illustrates an example of relation with interface;

FIG. 17 illustrates an example of an instance of inheritance;

FIG. 18 illustrates an example of the user interface of the Menu Editor Tool;

FIG. 19 illustrates an exerplary screen of Palmyra login screen;

FIG. 20 illustrates an example of the entity authorization process;

FIG. 21 illustrates an example of the service authorization process;

FIG. 22A {llustrates an exemplary Securityltem UML Model;

FIG. 22B illustrates an exemplary Policies UML Model;

FIG. 22C illustrates an exvinplary Securityltom's Roles UML Mo del;

FIG. 23 illustrates an example of UML model of the View Format Service;

FIG. 24 illustrates an exemple of how an application according to the preferred
embodiment integrates and communicates with different platforms;

FIG. 25 illustrates the architecture of the system in abstract and where the Tnput and
Output Devices fit into this system,

FIG. 25 i}lustrates an overview of the Mapping process;

FIG. 26 illustrates an example of configuration of Mapping;

FIG. 27 illustrates in detail the process of Mapping converters;

FIG. 28 illustrates an example of the workflow engine and bow it manages the states
in the system;

FIG. 29 illustrates the general architecture of the Report Writer;

FIG. 30 illustrafes the main methods defined in the Value Interface of Package
com.palmyra.arch basicStruct.data; ‘

FIG. 31 illustrates the Collection class implemented in
com.palmyra.arch.basicStruct.data package;

TIG. 32 illustratos the composition of Classe;



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

FIG. 33 illustrates the exceptions provided by

com.palmyra.arch. basicStruct.exception;

FIG. 34A illustrates the subclasses of the CompositeValue class;

FIG. 34B illustrates the subclasses of the StringValue class;

TIG. 35 illustrates an example of creating and defining CompositeValue class fields;
FIG. 36 illustrates an example of the class diagram of SimpleValue type and its

subclasses;

FIG. 37A is a UML diagram illustration of a queried class in a find operation is X,

and that the queried fields are: +, il.+, iL.i2.4 13.+

FIG. 37B is a reduced UML diagram illustration of queried class in a find operation is

X, and that the queried fields are: +, iL.+, i1.i2.+, i3+

Mapper;

FIG. 38 is a UML diagram illustration of a search query,

FIG. 39 is a UML diagram illustretion of another search query;

FIG. 40 is a UML class diagram illustration of expanded key structure;

FIG. 41A is a UML class diagram illustration of a PQL query;

FIG. 41B is a UML class diagram illustration of a reduced PQL query;

TIG. 41C is a UML class diagram illustration of a one to n relation;.

FIG. 42 is a UML diagram illustration of the Design Model of the ProcessExecuter;
FIG. 43 is a UML diagram illustration of the Design Model of the Traverser; and
FIG. 44 is an exemplary UML diagram illustration of the design model of the

FIG. 45 is an exemplary UML diagram illusiration of the design model of the DBDS

vendor specific subclasses; .

FIG. 46 is an exemplary UML diagram illustration of ow to use the interface

historicized,

FIG. 47A is an exemplary UML diagram illustration of how to use the scheduler

module in the design of an application;

repeat;

FIG. 47B is an exemplary screen of a job message configuration;
FIG. 47C is an exemplary screen of how to configure a job to be repeated daily;

FIG. 47D is an exemplary screen of how to configure a time of day in a job daily



WO 2011/045634

10

15

PCT/IB2010/002037

FIG. 47E is an exemplary screen of how fo assign an annual holiday to a calendar;

FIG. 47F is an exemplary screen of how to assign an exceptional holiday to a

calendar;
FIG. 47G is an exemplery screen of how to assign a weekly holiday to a calendar;
FIG. 47H is an exemplary screen of how to define the dependency between a job and
a calendar
FIG. 471 is an exemplary screen of how to configure a job to be tracked,
FIG. 477 is an exemplary screen of the result of track execution of job scheduler;
FIG. 48 illustrates a design of a presentation controller that allows it support many
technologies;

FIG. 49 illustrates an exemplary process of responding to client request via
presentation controller and associated components,; ‘

FIG. 50 illustrates retrieving an action based on a context;

FIG. 51 illustrates 2 UML representation of a Scheduler; and

FIG. 52 illuslrales an example of a Palmyra Schedule Trace.



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

A preferred embodiment will be set forth in detail with reference to the drawings, in
which like reference numerals refer to like elements or steps throughout. '
Example Computing Environment

FIG. 1 and the following discussion are intended to provide a brief general’
description of a suitable computing environment in which an example embodiment of the
invention may be implemented. It should be ynderstood, however, that handheld, portable, and
other computing devices of all kinds are contemplated for use in connection with the preferred
cmbodiment. While a general purpose computer is described below, this is but one example.
The preferred embodiment also may be operable oh a thin client having network server
interoperability and interaction.. Thus, an example embodiment of the invention may be
implemented in an environment of networked hosted services in which very little or mﬁn’mal
client resources are implicated, e.g., a networleed environment in which the client device serves
merely as a browser or interfacs to the ‘World Wide Web.

Alihough not required, the invention can be implemented via an application
programuming interface (API), for use by a developer ot tester, and/of included within the
network browsing software which will be described in the general context of computer-
executable instructions, such as program modules, being executed by one or more computers
(e.g., client workstations, servers, ot other devices). Geaerally, program modules include
routines, programs, objects, components, data structures and the like that perform particular tasks
or implement particular abstract data types. Typically, the functionality of the program modules
may be combined or distributed as desired in various embodiments. Moreover, those skilled in
the art will appreciate that the invertion may be practiced with other computer system
configurations. Other well known computing systems, eavironments, and/or configurations that
may be suitable for use with the invention include, but are not limited to, personal computers
(PCs), servér computers, hand-held or laptop devices, multi-processor systems, microprocessor-
based systems, programmable consumer electronics, network PCs, minicomputers, mainfraine
computers, and the like. An embodiment of the invention may also be practiced in distributed ‘
computing environments where tasks are performed by remote processing devices that are linked

through a communications network or other data transmission medium. In a distributed

10



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

computing environment, program modules may be located in both local and remote computer
storage media including memory storage devices.

FIG. 1 thus illustrates an example of a suitable computing systém environment 100 in
which the invention may be implemented, although as made clear above, the computing system
environment 100 is only one example of a suitable computing environment and is not intended to
suggest any limitation as to the scope of use or functionality of the invention. Neither should the
computing environment 100 be interpreted as having any dependency ox requirement relating to
any one or a combination of components illustrated in the exemplary operating environment 100.

With reference to FIG. 1, an example system for implementing the invention includes
a general purpose computing device in the form of a(computcr 110. Components of the
computer 110 may include, but are not limited 1o, 2 procassing unit 120, a system memory 130,
and a system bus 121 that couples various system components including the system memory to
the processing unit 120. The system bus 121 may be any of several types of bus structures
including a memory bus or memory controller, a poripheral bus, and a local bus using any ofa
variety of bus architectures. By way of example, and nct limitation, such architectures include
Tndustry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced
ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, Peripheral
Component Interconnect (PCI) bus (also known a8 Mezzanine bus), and PCI-Express bus.

The computer 110 typically includes a variety of computer readeble media.

Computer readable media can be any available media that can be accessed by the computer 110
and include both volatile and nonvolatile, removable and non-removable media. By way of
example, and not limitation, computer readable media may comprise compurer storage mecia
and communication media. Computer storage media include both volatile and nonvolatile,
removable and non-removable media implemented in any method or technelogy for storage of
information such as computer readable instructions, data structures, program modules or other
data. Computer storage media include, but are not limized to, random access memory (RAM),
read-only memory (ROM), Blectrically-Erasable Programmable Read-Only Memory
(EEPROM), flesh memory or cther memory technology, compact disc read-only memory
(CDROM), digital versatile disks (DVD) or other optical disk storage, magnetic cassattes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium

which can be used to store the desired information and which can be accessed by the computer

11



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

110, Communicetion media typically contain computer rendable instructions, data structures,
program modules or other data in a modulated data signal such as a carrier wave or other
transport mechanism aund include any information delivery media. The term “modulated data
signal” means a signal that has one or more of its characteristics set or changed in such a manner
as to encode information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or Cirect-wired connection, and wireless
media such as acoustic, radio Frequency (RF), infrared, and other wireless media. Combinations
of any of the above should also be included within the scope of computer readable media.

The system memory 130 includes computer s:orage media in the form of volatile
and/or nonvolatile memory such as ROM 131 and RAM 132. A basic input/output system 133
(BIOS), containing the basic routines that help to transfer information between elements within
computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically
contains data and/or program modules that are immediatoly accessible to and/or presently being
operated on by the processing unit 120. By way of example, and not limitation, FIG. 1 illustrates
operating system 134, application programs 135, other program modules 136, and program data
137. RAM 132 may contain other data and/or program modules.

The computer 110 may also include other removable/non-removable,
volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard
disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152,
and an optical disk drive 155 that reads from or writes to 2 removable, nonvolatile optical disk
v'156, such as a CD ROM or other optical medium. Other removable/non-removable, ‘
volatile/morvolatile computer storage media that can be used in the example operating

environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital

versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk

drive 141 is typically connected to the system bus 121 through a non-removable memory
interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 afe
typically connected to the system bus 121 by a removable memory interface, such as interface
150.

The drives and their associated computer storage media discussed above and

illustrated in FIG. 1 provide storage of computer readzble instructions, data structures, program

12



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

rﬁodules and other data for the computer 110. In FIG. 1, for example, the hard disk drive 141 is
{llustrated as the storing operating system 144, applicaticn programs 145, other program modules
146, and program data 147, Note that these components can either be the same as or different
from the operating system 134, application programs 135, other program modules 136, and
program data 137. dperating system 144, application programs 145, other program raodules
146, and program data 147 are given different numbers here to illustrate that, at a minimum, they
are different. A user may enter commands and information into the computer 1 10 through input
devices such as 2 keyboard 162 and pointing device 161, commeonly referred to as a mouse,
trackball or touch pad. Other input devices (not shown) may include a microphone, joystick,
game pad, satellite dish, scanner, or the like. These and other input devices arc often connected
to the processing unit 120 through a user input interface 160 that is coupled to the system bus
121, but may be connected by other interface and bus structures, such as & parallel port, game
port or a universal serial bus (USB).

A monitor 191 or other type of display device is also connected to the system bus 121
via an interface, such as a video interface 190, In addition to a monitor 191, computers may also
include other peripheral output devices such as speakers and a printer (not shown), which may be
connected through an output peripheral interface 195.

The computer 110 may operate in a networked environment using logical connections
to one or more remote computers, such as a remote computer 180. The remote computer 180
may be a personal computer, a server, a router, a network PC, a peer device or other common
network node, and typically includes many or all of the elements described gbove relative to the
computer 110, although only a memory storage device 181 has been illustrated in FIG. 1. The
logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area
network (WAN) 173, but may also include other networks. Such networking environments arc
commonplsce in offices, enterprise-wide computer networks, intranets and the Internet.

When used in 2 LAN networking environment, the computer 110 is connected to the
LAN 171 through a network interface or adapter 170. When used in 2 WAN networking
environment, the computer 110 typically includes means for establishing communica’cioﬁs ovet
the WAN 173, such as the Internet. In a networked environment, pro grain modules depicted
relative to-the computer 110, or portions thereof, may be stored in the remote memory storage

device. By way of example, and not limitation, FIG. 1 illustrates remate application programs

13



WO 2011/045634 PCT/IB2010/002037

10

15

20

25

30

185 as residing on a memory device 181. Remote epplication programs 185 include, but are not

limited to web server applications such as Microsoft® Internet Informarion Services IS)® and

Apache HTTP Server which provides content which resides on the remote storage device 181 or

other accessible storags device to the World Wide Web. It will be appreciated that the network
connections shown are exemplary and other means of estéblishing a communications link
between the computers may be used.

One of ordinary skill in the art can appreciate that 2 computer 110 or other client
devices can be deployed as part of a computer netwaork. In this regard, the preferred embociment
pertains to any computer system having any number of mermory or storage units, and any number
of applications and processes occurring across any number of storage units or volumes. Axn
embodiment of the may apply to an environment with server computers and client computers
deployed in a network environment, having remote or local storage. The preferred embodiment
may also apply to a standalone computing device, having progmrmhing language functionality,
interpretation, and execution capabilitiés.

Example Network Environment

FIG. 2 illustrates an embodiment of a network environment in which an embodiment
of the present invention can be implemented. The network environment 200 contains 2 number
of local server systems 210, which may include a number of file servers 211, web servers 212,
and application servers 213 that are owned and maﬁaged by the owner of the local network.
These servers are in commurication with local user systems 220 which may include a large

variety of systems such as workstations 221, desktop computers 222, laptop computers 223, and

thin clients or terminals 224. The local user systems 220 may contain their own persistent

storage devices such as in the case of workstations 221, desktop computers 222, and laptop
computers 223. They can also have access to the persistent storage, such as a database, provide
by the local servers 210. In the case of thin clients and terminals 224, network storage may be
the only available persistent storage. The usets within the local network usually get access to the,
wider area network such as the Internet 280 though the local server systems 210 and typically
some netwark security measures such as a firewall 270, There might &lso be a number (;f remote
systems 290 that can be in communication with the local server systems 210 and also the local
user systems 220, The remote computer systems can be a variety of remote termirals 291,

remote laptops 292, remote deskiops 293, and remote web servers 294

14



WO 2011/045634 PCT/1B2010/002037

"FIG. 2 illustrates an exsmplary network environment. Those of ordinary skill in the
art will appreciate that the teachings of the present invention can be used with any number of

network environments and network configurations.

15



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Client-Server environment

The client-server software architecture model is a versatile, message-based and
modular infrastructure that is intended to improve usability, flexibility, interoperability, and
scalability as compared to centralized, mainframe, time sharing computing. Client-server
describes the relationship between two computer progrars in which one prograim, the client is
defined as a requester of services, which makes a service request from another program, the
server ig defined as the provider of services, which fulfil's the request. A elient-server
application is a distributed system comprised of both client and server sottware. A client
software process may initiate a communication session, while the server waits for requests from.
any client.

In a network, the client-server model provides a convenient way to efficiently
interconnect programs that are distributed across different locations. Transactions among
computers using the client-server model are very common. Most Internet applications, such as
email, web access and database access, are based on the client-server model. For example, a web
browser is a client program at a user computer that mey be used to access information at any web
server in the world. For a customer to check a bank account from a remote computer, a client
program, which may run within a web browser, forwards a request to a web server program at
the bank. The web server program may in turn forward the request to a datebase client program

{hat sends a request to a database server at another bank computer to retrieve the requested

_account balance information. The balance information is returned back to the bank database

client, which in turn serves it back to the web browser client in the customer’s computer, waica
displays the information fo the customer. .

FIG. 3 illustrates an exémple of multi-tier client server architecture. Multi-tier client-
server architecture allocates different tasks and services to different tiers. In the example multi-

tier architecture of FIG. 3, there are three logical tiers. The first tier 310 is one or more clients

' 311, 312, the second tier is an application server 321, and the third tier 330 is a data server 331

332. At the client tier, the clients 311, 312 provide the application’s User interface and also act
as presentation servers. The application's graphical user interface is generally a custom-
generated web page to be displayed by a web browser on the client computer. There can be one
or more application servers 321 that host the business logic, and one or more ‘data servers 331,

332 to provide data stdrage and validation services. The main body of an application is run on a

16



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

shared host 321. The application server 321 does nol drive the graphical user interface, rather it
shares business logic, computations, and a data retrieval engine. The presentation of data
retrieved is handled by the presentation server at the client tier. With less software on the client
systems, there are fewer seourity concerns. Application scalability, support costs, and
installation costs are all more favorable when the software is concentrated or a single server then
when fhe software is distributed amongst a number of desktop clients. There are many different
implementations that may be produced using component technology in the application server
tier, such as CORBA (Comumou Object Request Brokor Architecture), EIB (Entetprise Java
Beans) and DCOM (Distributed Component Object Model).

In one preferred embodiment, the system implements Enterprise JavaBeans (E1B)
technology in its architecture. EJB is a Java Application Pro gramming Interface (API), which
aliows developers to focus on the actual business architecture of the model, Tather than having to
worry about endless amounis of programming and coding needed to cormect all the working
parts. The developer can design (or purchuse) the needed EJB componcnts and arrange them on
the server as needed. EJB is a component architecture for developing and deployment of
component-based distributed applications. Applications written using EJB are scalable,
transactional, and multi-user securc. These applications may be written once, and then deployed
on any server platform that supports the EJB specification.

Tn an EJB multi-tier environment, the client provides the user interface logic, the

business rules are separated to the middle tier, and the database is the information repository.

The ¢lient does not access the database directly. Instead, the client makes a call to the EJB
Server on the middle tier, which then accesses the database. EIB Server provides a framework
for deploying the middle-tier logic of distributed component-based applications. EJB Server's
high-performance transaction sexver provides efficient rianagement of client sessions, threads,
database connections, and transaction flow. The Wcb browser connects to EJB Server or aWeb

server via E'TTP to download an HTML page containing a Java applet that performs presertation

. functionality. The applet communicates with EJB Server, calling middle-tier components that

perform business logic. Data servers and storage servers stores, processes, and protects the
corporate data. EJB Server manages a pool of connections to the database, coordinating the
transaction processing to those servers.

The Preferred embodiment

17



WO 2011/045634

10

15

20

PCT/1B2010/002037

This form of preferred embodiment teaches methods and systems for automated
development of a software application. The method includes various processes for defining the
application, modeling the specific business process or function to be performed by the software
application, creating uniquely specialized UML models to further define the process or function,
and validating the models against a set of predefined unique syntax rules. The validated models
are then uniquely transformed into a unique metadata form that comprises generated application
code and XML files used by the target application. FIG. 4 provides a general schematic of the
major steps of the software engineering process of according to the preferred embadiment
method. In general, the software engineering process usimg the preferred embodiment comprises
the steps of first designing and modeling a business procsss using the UML graphical design tool
410. The business process is modeled using an enhanced version of UML provided by the
invention with metadata. The UML model and metadate are validated 420 and serve as input for
the automated code generation engine 430. The automated code generation engine parses the
UML mode] and metadata and generates deployable sourcc code for the target application 480
utilizing an enterprise applivation development framewark, referred to as the Palmyra
Framework. Some manual coding 450 is sometimes needed to supplement the automatically
generated code, but the amount of manual coding is dramatically less than pror methods and
usually directed to specific or specialized features of the application. The preferred embodimert
can also include configuration tool(s) 460 and a test'and benchmark tool 470. Once configured
and tested, the target application is ready for deployment 490.

18



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

L GRAPHICAL DESIGN OF SOFTWARE MODEL USING UML DIAGRAMS

This form of a preferred embodiment provides an eagy-to-use graphical software
engineering tool. The automatic code generation process starts with a standard modeling
approach using UML design tools such as MagicDraw or Rational Rose. These tools are applied
to create UML diagrams to represent the desired business process and the desired data model.
The graphical modeling and desigh tool can be used by both users and consultants. The
preferred embodiment facilitates the reuse of existing components, which include both business
and technical comioonents.

Tn one embodiment of the present invention, the graphical modeling and design tool is
based on a commercial UML visual modeling tool such as MagicDraw. MagicDraw alone is not
sufficient to function as the graphical modeling and design tool of the preferred“embodimcnt.
Although MagicDraw functions as a visual diagramming tool, it does not check for design errors,
control Stereotypes and Tagged Values, reject wrong data, or provide warnings. When using
MagicDraw as a tool to build and design UML models, the invention create the Designer tool as
a plug-in for MagicDraw to enhances its function. The enhanced UML Designer, referred to as a
Palmyra UML Designer, constitutes an additional layer that sits on top of MagicDraw in order to
overcome the limitation of creating UML models that do not conform to the pre-defined rules
and to avoid errors during and after the design process. The Palmyra UML Designer tool
employs several steps to achieve this. First, the Palmyra UML Designer tool checks whether the
designed models conform to pre-defined Palmyra rules by validating initial values, multiplicities,
types, etc. Second, the Palmyra UML Designer tool makes diagrams ready for the generation
process without human error. Third, the Palmyra UML Designer tool enables the addition and

change of relations and simple fields uniformly throughout the application with precision.

Fourth, the Palmyra UML Designer tool checks for Palmyra elements, and adds or corrects new

eligibility between their Stereotypes in order to avoid contlict and design errors, Finally, the
Palmyra UML Designer tool makes use of value references for Tagged Values instead of String
Values. .

The preferred embodiment is not limited to MagicDraw, or any other particular UML
design tool. Accordingly, one can implemeﬁt ‘ﬂu's validation functionality through the use of
other design tools, such as a stand-alone application, or an add-on for another UML visualrdesign

tool.

19



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

‘'he UML Designer also provides usability features that help a user to create a UML
model. The UML Designer provides user friendly interfaces for panels, classes and Tagged
Value input. It automatically loads models conforming to the preferred embodiment within
projects. The UML Designer simplifies the use of the Palmyra classes by grouping them into
four main categories, which are Entities, Interfaces, Controllers, and Simple Values. The UML
Designer adds needed Stereotypes to the classes depending on the type selected. The UML
Designer also displays available pareht types at runtime. ‘

Palmyra TIML Designer can also provide a set of new actions to the selevied design
tool. FIG. 5 represents a UML Designer File menu 500 having example new actions.

New Palmyra Project 510: This sub-menu is used to create a new Palmyra project. A
Palmyra project contains the Palmyra UML model and removes all conflicting Stereotypes.

Palmyra Save 520: saves the active project.

Validate Palmyra Projec: 530: This sub-menu is used to validate the Palmyra Rules
of the project

Open Palmyra Code Generation 540: This stb-menu is used to open the Code
Generation Tool and passes to it the full path of the related UML model (in Palmyra XML

format). This sub-menu is used when the project is validated. The path of the Code Generation

Tool is specified with the installagtion of the plug in.

Generate Log Files 560: This sub-menu is used to generate log files. A first log file
contains the list of entities without code in the current model. Its name is the concatenation of
the name the model and “_Entities WithoutCode.log”. A second log file contains the list of fields
which do not have the Tagged Value ‘currpaih’ and do not have a simple value (the field must
have at least one °.”). Its name is the concatenation of the curren: model name and
“ FieldsWithCurrPath.log”. This sub-menu comes available when the project is validated.

There are several types of diagrams that ere created using the UML design toals, such
as class diagrams, process diagrams, and use-case transition diagrams. Palmyra UML Designer
provides additional menu options to MagicDraw’s Diagram menu 600 (FIG. 6).

A. Class Diagram

The class diagram is uniquely created using class diagram modeling techniques where
specific predefined types of classes and decorations are applied to provide unique functionality

allowing the system to interpret the diagram and to generate the data structure a generation time,

20



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The specific predefined types of classes ure uniquely crezted in a standard UML model that is
provided by the framework of the invention. The classes are organized into types of classes such
as Entities, Conirollers, Simple Tyi)es, and Interfaces. The classes in the model are a part of the
framework libraries. Palmyra UML Designer provides direct access to graphical tools for
creating UML class diagram through the Palmyra Class Diagrams submenu 610.

The specific predefined decorations are uniquely created in the same standard UML
model that is provided by the framework. The decorations are also organized into types such as
Tagged Values and Stereotypes that are designed to facilitate the creation of the target softwars
application.

1. Class Types

Palmyra consists of four class types, Simple, Entity, Controller, and Interface.
a. Simple Types

Simple class types are primitive structurcs that contain ono single data element like a
sumber or a date or list of characters. The simple types can be predefined by the standard model
provided by the framework, and they can also be defined in & specific model of a target
application. Simple types are used as fields for more sophisticated classes like entity class-types
or as parameters for the methods contained in the controller class-types. These simple class
types can also be constrained in a way to provide Jimits and definitions of the data elements such
g5 rounding for numeric elements and formatting for text elements and preset values.

An examnpls of a predefined simple type is StringValue. A StringValue simple type is
a text structure that may be constrained by a maximum number of characters. Another example
of a predefined simple type is BooleanValue, where the data clement can have a value of true or
false.

An example of a defined simple type is AgeValue. In this example, a simple type is

created using the name AgeValue that is defined to inherit atiributes from another predefined or

a newly defined Simple type. For example, AgeValue is set to inherit from IntegerValue, which
is a predefined simple type that contains an integer between the range -2,147,483,648 to
2,147,483,647. Tn addition, a constraint can also be added to the newly defined AgeValue
Simple type so that the range might be 0 to 150. Accordingly, the newly defined AgeValue
inherits the att_ribute of an ability to provide a range of values and it can be further defined with

specific values established by the needs of the target apolication.

21



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Simple class types also have an Enumeration class. An enumeralion class describes
an enumeration type. Possible values of this type are defined within the class attributes. FIG.
7A illustrates zn example of an enumeration class. In this particular example the class contains a
list of users with their attributes. In ihis example userJ bad a list of properties such as
UserNamel[i] = Doveloper, UserName[I +1]= Designer. The Enumeration class can be
represchnted in a Combo Box in the generated application.

i TypeName class

A Type Name Class is an enumneration filled at run-time that conteins all sub clase
namos of a specific class, FIG. 7B illustrates an example of a TypeName class. For example, if
a type name extends “ConstraintsT) ypeName” and the Tagged Value “classname” has as value a
class “X”, at runtime the system will show in a combination box all sub classes’ names of the
class “X” having the Stereotype “constraints’.

i DynamicTypeName

A Dynamic Type Name Class is an enumeration filled at run-time that contains &ll
sub classes of a given class with two additional properties. FIG. 7C illustrates an example of a
DynamicTypeName class. For example, if the user defines a DynamicTypeName class that has
as ‘classname’ Tagged Value the Class “X?”, the ‘includetypes’ as “Type_AEbstractValue’ and the
‘excludetypes’ as “Type_Constraintable’, the system will show all sub classes of “X”" extending
“AbstractValue” and that do not have the Stereotype ‘constrainable’. The description of all
possible types is detailed in Palmyra Stereotypes & Rules (infra).

iii. Attribute class

An Attribute class is used to customize a stmple type that extends one of the ?a]:nyra
Simple types and adds specific properties that the user needs. FIG. 7D illustrates an example of
an Attribute class. The Attribute class defines a set of properties for a specific object. In the
example shown in FIG. 7D, four properties are defined for a specific atwibute attr!. In another
oxample, the user can define a new attribute having as type dmountValue, give'to this attribute
the precision and the defaultformat Tagged Values, and after that define sl attributes,
parameters, and returned values of operations in the application.

iv. ControllerName

22



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

A controller name is like a type name, except that the baseclassname is a controller.
FIG. 7E illustrates an example of a Controller class. For example, if a controller name has the
Tagged Value “baseclassname” as value a controller “C*, at runtime the system will show in a
combo box all sub classes’ names of the controller “C”.

V. Action Enumeration

An Action Enumeration Class is a dynamic enumeration that is filled at runtime by
the execution result of a method in a controller. FIG. 7F illustrates an exzmple of Action
Enumeration Class. For example, to fill a market Trensaction T'ype from file (Property file in an
Enterprise Application Archive (EAR), the user creates a controller, defines 2 method that
returns a Collection Value, and then creates an Action Enumeration Class with Tagged Value
“controllername”’ equal to the name of the new controller and “actionname’ equal to the name of
the method that will fill at rantime the values of Market Operation Type. When some values of
the Matket Operation Type are added, modified, or deleted, the changes will be done only in the
file.

b. Entity Types

Entity class types are heterogeneous structures that contain fields having one or more
Simple class types, and Entity class types can have relations with other Entity class types. Like
Simple types, .the Entity types can be predefined by the standard model provided by the
framework or they can be defined in a specific model of a target application. Entity types arc
data elements that compose the data structure of the target application that also can be used as
parameters for the methods contained in the Controller class-types. These Entity class types can
also be consirained, enhanced, and modified in a way to provide more precise data elements in
accordance with the needs estsblished by the target application.

Entity class types can have multiplicity of definitions for the fields and relations. The
integrity of the mstances of Entity classes, referred to as objects, is checked at runtime for the
correctness of those objects in accordance with the predefined multiplicities. ’

The relations between Entity classes types are categorized into four groups referred to
as generalization, aggregation, composition, and association.

Generalization relations are used to express inheritance. The inheriting class is
considered an extension of the existing class that can acd more fields or relations and/or can

modify some features such as multiplicities of existing fields and relations.

23



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Aggregation relations are used to make it possible for a data structure defined by one
ntity class to point to other data structures defined by other Entity classes.

‘Composition relations are used to indicate that a data structure defined by one Entity
class is composed of other data structures defined by other Entity classes.

Association relations are used to associate the data structure defined by an Entity
class with other data structures defined by other BEntity classes according to conditions related to
the contents of the related classes.

Relation dependencies ars categorized into six groups known 2 Iin, Contains,
Sameds, Or, Xor, and Exclusive. Relation dependencies are applied to a pair of relations, the
two relations are called the source and the target. The relations eligible for such dependencies
are Aggregation or Composition relation types.

In relation, dependency is used to indicate that the element belonging to the source
relation is simultanecusly 2 member of the target relation-collection.

Contains relation dependency is used to indicate that the collcetion of elements
belonging to the source relation includes the collection of elements that belong to the target
relation.

Sameds relation dependency is used to indicate that the element(s) belonging to the
source relation is the same element that belongs to the target relation. ‘

Or relation dependency is used to indicate that at least one of the two relations, source
or target, should be assigned at runtime.

Xor relation dependency is used to indicate that one and only one of the two relations,
gource or target, should be assigned at runtime.

Exclusive relation dependency is used to indicate that at most one of the two relations,
source or target, should be assigned at runtime. .

There are different types of entitics:

i Entity Class

An Entity clags is a persistent class in the database (realizes the “dbstractValue”
interface), having attributes (inherits from “CompositeValue”) and relations with other classes.
FIG. 9A illustrates an exemple of entity class. ‘

Entities can have Stereotypes such as (constrainable, cached), Tagged Values such as

(expandable, non expandable, and Business Tagged Value), and Attributes.

24



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

il Constraingble classes

A Constrainable class is a persistent class in the database on which we can define
constraints. Ttis an “entiy” that has the Stereotype “constrainable”. FIG. 8 illustrates an
example of a Constrainable class 810.

iii. Constraints classes

The objective of a constraints class is to define constraints on a Constrainable class:
The “constraints” class should inherit from the constrainad class (which should have the
Stereotype “Constrainable” or “constraints” also).

FIG. 8 illustrates the use of Conslraints/Constrafnable classes. The classes Equity
820, Right 830, and Warrant 840 are securities that have specific properties (fixed value,
multiplicit).r). The constraints are:

Equity 820: In this class the attributes: assetNature is frozen, read only, and has fixed
value “Equity.”

Right 830: In this class the attributes: assedVature is frozen, read only, and has fixed
value “Right.” ‘

Warrant 840: In this class the attributes: assefNature is frozen, read only, and has
fixed value “Warrant.”

iv. Composite class

A Composite class is not persisted in the database, which does not rcalize the
“dbstractValue” interface), and it has atiributes and relations. It inherits from
“CompositeValue”. Tt also can have Stercotypes and Tagged Values. FIG. 9B provides an
example of a Composite class.

v, Macro Class

The Macro class is used to optimize the repetition of some attributes in the class
diagram. When some attributes (from different classes) are common for many classes, the
definition of a macro can be very useful. In fact, 2 mac-o expresses a smantic grouping of some
atiributes within the same class in order to be used by other classes. FIG. 9C provides an
example of 2 Macré class.

d. Controller Class

25



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Controller class types are algorithm definition structures; they contain one or more
witten algorithms that are called Methods. Like Simple types and Entity types, Controller class
types can be predefined by the standard model provided by the framework or they can be defined
in a specific model of a target application. A Method may have cne or more input data elements
referred to as input parameters and may return at most one output element called the return
value. Both input parameters and return value represent instances of the Simple class types,
Entity class types or interfaces. A controller may have a short name known by an alias; this alias
is used by the application code or by the expressions used as calculation formulas 1o refer to a
specified Controller. FIG. 9D provides an example of a Controller class.

e. Interfaces

Interfaces are heterogeneous structures that serve as templates containing fields

having one or more Simple class types and can have relations with other Entity class types or

interfaces. Lilee Simple types and Fntity types, interfaces can be predefined by the standard

model provided by the framework or they can be defined in a specific model of a target
application.

The Interface category contains the following interfaces, which are illustrated in FIG.
10:

i Value Interface

“Value” 1010: this interface is the super interface of a1l elements in the framework.
All implementing classes are not persistent by default. The user can define its own ‘value’
interface that extends Valug or one of it sub-interfaces. The new interface is used to define
attributes and make relations with other interfaces or classes. All implementing classes are not
persistent (having the ‘composite’ stereotype for example)

ii. Abstract Value Interface

“Abstract Value” 1020: This interface is the super interface of all persistent entities in
the database. Tt defines the technical fields (pk, creationDate, creatorUserld, updateDate,

_updatorUserld, accessPoint, type). All sub-interfaces of AbstractValue must have the stereatype

‘abstractvalue’ and all sub-classes must have the stereotype ‘entity’. If the user defines an
‘abstractvalue’ interface, it can define attributes (but not operations) and make relations with

other classes or interfaces.

26



WO 2011/045634 PCT/IB2010/002037

10

15

20

25

i, Storage Interface

“Storage’™ An interface with the stereotype ‘storage’ speciﬁesAstorage of
implementing entities. A storage Interface must inherit from AbstractValue interface. The user
must add the related Tagged Value “datasource”. All classes that implement the created
interface will be stored in the specified data source. The mapping between the value of the
tagged value ‘datasource’ and the real database will be performed when deploying tae
application.

Example: A client has bought a Palmyra business application that has an interface
with another application but this application has it own database. The designer needs to create a
new storage entity that inherits from Storage interface and assigns to it the corresponding data
source.

iv. Historicized Interface

“Historicized” 1030: indicates that the implementing entity will be historicized. The
system defines two interfaces: Historicized and HistoricizedOnDelete. A Historicized entity is a
class that inherits from one of the two mentioned interfaces. The syster will maintain the
history of all modifications made on instances of this entity. The user can define its own
“historicized’ interface that defines the tagged value “historydatasource’. All classes that
implement the created interface will be historicized in the specified history data source. The
mapping between the value of the tagged value ‘historydatasource’and the real database Wil] be
performed when deploying the application.

The hierarchy of these interfaces is given in FIG. 10.

3. Class Decoration Types

The specific predefined decorations arc uniquely created Tagged Values and
Stereotypes designed to facilitate the creation of the target software application.

Decorations for clags diagrams provide additional information for elements like
interfaces, classes, relations, and fields. The decorations are categorized into Tagged Values and ‘
Stereotypes. Taggéd Values are used to add information to an element dy means of a desired
yalue such as a number or character. Stereotypes ate added to classity these elements into groups

such as Entities and Constraints, or to add information like the Stereotype Constrainable,

27



WO 2011/045634

PCT/1B2010/002037

however no values are assigned to Stereotypes. The list of available Tagged Values and

Stereotypes differs in accordance to the type of element.

Al the Stereotypes are defined exclusively in the standard UML model provided by

the framework. In addition, some of the Tagged Values are defined in the standard UML model

5 and others mey be defined by a specific model of a target application. TABLE 2 lists Palmyra

Stereotypes and Tagged Values:

Tuble 2: Palnryra Stereotypes and Tagged Values

Element Properties Palmyra Stereotype Palmyra
Tagged Value
Class Name entity context
constrainable descriptionkeyes
constraints domainmanager
composite fieldconfig
cached indexgroup
sameas
slaname
: unigquegroup
macro
controller Alias
utility .
enum domainmanager
typename classname
domainmanager
dynamictypensme classname
| excludetypes
includetypes
domainmanager
attr defaultformat
domainmanager
mask
max
min
precision
rounding
controllername baseclassname
actionenum actionname
controllername
domainmanager

28




WO 2011/045634

PCT/IB2010/002037

Inferface ‘

Name

value
abstractvalue

context
domainmanager
indexgroup
sameas
BAXEIoup
slaname
uniquegroup

storage

datasource

historicized

historydatasource

Atiribute

Name

type

initial value
multiplicity

code

agp
unique
SEqUence
transient

Active
calculationformmula
calendarpath
curpath
defaultformula
domainmanager
exclusivetarget
index

invisible

label

order

ortarget
orderincode
originalname
ownerclassname
ownerclasspath
readonly
rounding

style

skewed
wordsize
xortarget

QOperation

Name
Return type

Parameters (name angd type)

Relation:
Dependency

Between tow Association
rélations

In
sameas
contains
exclusive
| or

Xor

Root
source
target

Relation

Type:

Simple/Aggregation/Composition

Cardinalities
Navigability

29




WO 2011/045634

10

15

PCT/1B2010/002037

Role code Aclive

Symmetric Role set asp -

list calculationformula
map defaultformula
transient domainmanager
Unique index

: indexisunique
indexname
nvisible
joincondition
order

orderincode
originalname
possiblevaluesfornula
readonly

style

skewed

Role For relations between
Symmetric Role constraint classes:
originalName

a. Introduction to Tagged Values

Palmyra elements can have properties that ars called Tagged Values. Tagged Values
are properties given to elements like iﬁtcrfaccs, classes, relations, and fields. Tagged Values can
be méndatory or optional. Allv specific ’Il'agged Values (defined in a specific model of a target
application) are optional. Once a Tagged Value is added to an element, a value should be
assigned to that Tagged Value. An example of a Tagged Value is the Calculation Formula. Wheh
a Calculation Formula is added to a field, an expression is assigned as a value to that Calculation
formula. '

b. Introduction to Stereotypes

Stercotypes are also properties given to elements, Unlike the Tagged Valueg, no
values are assigned to Stereotypes when they arc used. The target Stereotype merely expresses
that a value is desired. For examb]e, the Constrainable Stereotype, when acded or assigned to an
Entity class type, informs the system that constraints could be added to that Entity class type

Jater at runtime.

30




WO 2011/045634

10

15

20

25

30

PCT/IB2010/002037

Palmyra Stereotypes and Tagged Values canbe classified according to the level of
applicability. They can be defined at attribute level, class level, a relation level, or a dependency
relation level. TABLE 2 lists Palmyra Stereotypes and Tagged Values.

c. Class Stereotypes

ventity": a class with the Entity Stercotype is persistent.

"eomposite": a class with the Composite Stereotype is not persistent.

"mécro": a class with fhe Macro Stereotype has a group of atuibutes that could be
repeated in more than one class. These attributes will be part of the attributes of each class
having an additional attribute having as type this Macro class. Every attribute having as type
Macro class will be replaced by all the attributes of this Macro class in the generation step.

| veontroller": a class with the Controller Stereotype can have only operations
(actions). _ '

"ypename": a class with the Typename stereotype is used to list all the subclasses of
one class. This information is set in the Tagged Value classname. If the user adds a typename
class having the classname Tagged Value as ‘StringValue’ for example, every field having this
typename class as type will have as values all subclasses of “StringValus’.

"dynamictypename": & olass with the Dynamictypename Stereotype is a variation of a
Typename class. In addition to the classname, the user can specify the included and excludsd
types. There are 9 types that the user can specify: ;cype_AbstractValue, type_Interface,
type_CompositeValue, type_Constraintable, type_Constraints, type_CollectionValue,
type_SimpleValue, type_BusinessEntity, type_ExcludeAll, and type_IncludeAll

ngitrs 2 class with the Atir stercotype can have an added resiziction to an element of
a Palmyra Simple type. The user can specify a customized simple type with all required
properties, such as default format, mask, max, min, precision, and rounding.

"enum": a class with the Bnum Stereotype represents an enumeration. Its attributes
prosent all jwssible values for a field having as type “enum.” Every Enum cless element should
inherent from a Palmyra StringValue type or one of its subclasses.

"eontrollername": a class with the Controllername Stereotyps can list 2l the
subclasses of a controller. This information is set in the Tagged Value baseclassname.

"aetionemam: a class with the Actionenum Stereotype has values dynamically

assigned at Tun time. An Actionenum has two Tagged Values: controllername and actionname.

31



WO 2011/045634 PCT/IB2010/002037

10

15

20

25

The possible values for an Actionenum class are the result of the execution of the action
specified in the Tagged Value actionname related to the controller specified in the Tagged Value
conirollername.

d. Interface Stereotypes

"value"; A ‘value’ interface is a non persistent interface.

"abstractvalue™; an interface with the ‘abstractvaluea’ stereotype is a persistent
interface All it sub-classes can be saved to any storage service.

"Storage": an interface with the stereotype starge is used to identify a ‘datasource’
(database), which is used by a1l implementing entities.

"historicized"; an interface with the stereotype ‘historicized” is used to identify an
“historydatasource’ (database), which is used to store the history tables of all implementing:
entities. ‘

e. View related elements

These elements help define the default view of their entity attributes and relations.
These properties will be added Lo the meta-data of the element that is used by the Palmyra
Presentation service.

ninvisible™ an attribute with the Invisible Tagged Value can be used to make an
associated object not viewable in all service paths. If the user wants the object to be visible for a
certain path, the user must add it using the view format. ’

Ustyle": an atiribute with the Style Tagged Value can be used to have an object be
viewed using the specified layout. The value of the style is one of the supported layouts in
Palmyra. The value may also contain criteria determining the condition that must be verified in
order to apply the specified layout.

"order": an attribute with the Order Tagged Value contains an integer value giving
the position within the view order in which of the specified object will be viewed within the
viewed class. The user must be carcful to not use the same order for two different objects.

"Jabel": an attribute with the Label Tagged Value will be viewed using the specified
vélue in the label.

"weadonly": an attribute with the Readonly Tagged Value wray not be modified.



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

"frozen" (defined using changeability property in the UML editor): when set as en
attribute, the UML designer must give the attribute an initial value, and its default view will be a
Read Only mode.

f. Database related elements

“mandatory" (defined using multiplicity property in the UML editor, see TABLE 1).
when set at attribute level, this attribute indicates that a value of this field must be set to a value
other than null. ‘

"index™ an attribute with the Tndex Tagged Value set must be indexed in the database
to accelerate search performance. When defined at a class level, it is used as a Tagged Value and
is set to the group of atiributes that must be indexed (ex: index=key1, key2, key3). If more than -
one group must be indexed, several Tagged Values must be set).

"wnique": an attribute with the unique Stereotype set indicates that this element has a
unique constraint in the database. When defined at a class level, it is used as a Tagged Value, and
is set to the group of attributes that must be unique (e.g., mique=keyl, key2, key3). If more than
one group must be unique, several Tagged Values must be set). "unique" verifies also the
"mandatory" property and the "index" tagged value.

"datasource': used with the Storage Stereotype, this interface Tagged Value
specifies the database to use for all entities (and their sudclasses) that realize this interface. The
values specified in the UML will be mapped to real database when running Palmyra Setup iool.

"historydatasource™: this is a Tagged Value used in interfaces that extends the

‘"Historicized” interface. It is used to specify the data soarce to be used for the history.

"code": A code is a string that uniquely represents an object. It comprises of one or a
concatenation of a set of its attributes and relations. The default entity code is its database
primary key. When an attribute or a relation ht;s code as a Stereotype, this indicates that this
attribute or relation is part of the object code. If the code is composed, the Stereotyped attributes
must be ordered using the ‘orderincode’ Tagged Value. "code" also verifies the "mandatory"
property and the "index" and "unique" Stereotypes.

"usp": this is a stereotype used in attributes to manage the sharing of global entities
between different users. The user is allowed to access only a subset of the associated entities. An
administrator must set the user properties to transparently map it to the asp attribute, which

determines the allowed subset to access.

33



WO 2011/045634 PCT/IB2010/002037

10

15

20

25

30

"indexgroup": this Tagged Value is used to indicate that the associated group of
attributes must be indexed in the database to accelerate search performace.

“uniquegroup": this Taggcd Value is used to indicate that this group of attributes have
aunique constraint in the database.

"skewed"; when this Tagged Value is set to true, the object will be passed to the SQL
query as the content of its value and not as a prepared statement.

Veransient”: indicates that this atiribute or relation is transient and will not be mapped
to the database. )

g Constraint model related elements

"eonstrainable": this Stereotype indicates a class is subject Lo be constrained. This
Stercotype is mandatory in the creation of constrained classes from a super class.

"constraints"; this Stereotype indicatos & class has a constraint on its super class. The
constrained class can change some of its super properties at run time such as Attribute ranges and
relation cardinality.

. originalname": this Tagged Value is associated with a relation of a constrained class
to indicate the original name of the overridden reletion (or role). The Stereotyped class is
constraint on its super class.

h. Model related elements

"sequence": this Stereotype is associated with an attribute that will be dynamically
assigned a unique sequenced value.

"se's A set is the default Stereotype applied to 1 to n composition and aggregation
relations. )

"isf": A list is a Stereotype that applies to 1 to n compositior and aggregation
relations. It indexes the owned elements according to a user-defined order. These elements are
displayed in order and can be re-ordered using either the up and down arrows or the "order list"
action. |

"map": A map is a Stercotype that applies to 1 to n composition and aggregation
relations. It indexes the owned elements according Lo a user-defined role (key).

"indexnarme": this Tagged Value indicates the name of the index applied to an

attribute.

.34



WO 2011/045634 PCT/IB2010/002037

10

15

20

"indexisunique'": this is a Tagged Value that defines a uniqueness condition that

groups hoth the index ficld and the symmetric role of the owner in a "map" relation, When such

a unique condition is applied only one collection itern is returned for each possible value of the

indexed field. When no unigue constraint is applied, more than one iter: can match each

possible velue of the indexed field. In such case the relation will be invisible and it is impossible

to create or update the collection via Palmyra default presentation interface.

class,

1. Dependency relations related elements

For all dependency relations three Tagged Values are mandatory:

"root": indicates the basic class to which the dependent relations belong.
"source": indicates the role of the source relation. ‘

"arget": indicates the role of the target relation.

Stereotypes define the type of the required dependency relation:

nsameas™ indicates that the target class of the dependent relations are identical.

in": indicates that the source relation must be one of the coilection of the target

“eontains”: indicates that the collection of target relation is included in the collection

of source relation.

naxelusive": indicates that at most one of the source and taxget relation can be set.
wor': indicates that at least one of the source and target relations must be set.
"yor": indicates that only one of the source and target relations must be sct.

j. SLA Tagged Values

“slaname”: This Tagged Value contains the name of the Class that inherits from the

Palmyra interface SLAInterface.

“context™ This Tagged Value contains the parameters to find the SLA.

35



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30 .

k SOA Stereotypes

“nterfuce”: This Stereotype is applicable only on classes having the stereotype
‘controfler’. For a method which belongs to en ‘interface’ controller, all the parameters and the
return value cannot be an Interface or the CompositeValue, CollectionValue, ListValue and
MapValue. This restriction is not applicable for any sub class of the methods. Interface
indicates that the methods of this controller can be used by a non-Palmyra application.

“yeference”: This Stereotype is applicable only on classes having the stercotype
‘controller’. Reference indicates that the implementation of this controller method can exist in
non-Palmyra application.

L Other Tagged Values

‘ “orderincode”™: This Tagged Value is an intezervalue giving the order of the specified
code within the group of attributes composing the code. This stereotype is telated to the
stereotype “code”.

“qligs’ This Tagged Value is used for the coniroller {o specify a unique alias toit. Tt
can be useful to call a controller by its alias instead of its full n(ame. A controller can have more
than one alias. )

“controllername”; This Tagged Value is used with the Stereotype
“actiondynamicenum”. It indicates the controller class name,'which contains the method that
returns a list of values (enumy).

“actionname”: This Tagged Value is related to “actiondynamicenum’” stereotype. [t

indicates the method that returns the list of values.

“possiblevaluesformula”: This tagged value is applicable on aggregation relations
only. Its value must be a valid criteria and it will be used when retrieving the possible values of

the relation.

“rounding”: this tagged value is applicable on attributes having as type DoubleValue.
It’s used to specify a rounding type which will be app‘licd to the value of the attribute..

“wordsize”™ This Tagged Value indicates a number value giving the max length of &
word shown in presentation side. It is useful in the search result of a very long string.

“defaultformula”: This Tagged Value contains an expression that will be calculated as
a default value. .

36



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

“calculationformula™ Celculation formulas are used to indicate that a field or a
relation is assigned automatically according to a calculation expression. The formula can depend
on other fields or relations that ere defined in the Entity class. An expression is a list of
arithmetical or logical operators, applied on field or relation values, or on results of calling
methods defined in Controller class types. Ifa field or arelation has a calculation formula this
means that the value of the field or relation cannot be assigned manually at runtime.

“calendarpaih’: This Tégged Value contains the full path of the business calendar.

“curparh”: This Tagged Value contains tbe full path of the currency class.

“domainmanager”: This Tagged Value contains the full path of the java class that
implements the interface DomainManager.

“qetive’: The Tagged Value active is set as true when a field is in focus. It will be
refreshed each time this field loses focus. |

Sownerclassname’”: This Tagged Value must be specified when the type of the field is
KeyNameValue, CriterionValue or ExpressionValue. It will contain a reference of the owner
class for the key.

“ownerclasspath”; This Tagged Value must be specified when the type of the field is
KeyNameValue, CriterionValue or ExpressionValue. It will contain the full path of the ownet
class for the key.

“Business TaggedValue” This is a special Stereotype defined by the Business Teém. '
All defined Tagged Values under this Stereotype will be shown in the Tagged Value subcategory
BusinessTaggedValue for all the UML elements such as Class, Field, Relation End, Interface.

“storename’™; Thic is a Tagged Value in which the user can specify a logical store
name. This one is used to store the value of an attribute having as type FileName or one ofits
subclasses. The user can associate a specific storage to every storename using the Setup tool. The ‘
storage can be a folder or a remote storage service, such as fip.

“feldconfig”: This Tagged Value is used to specify the configuration related to a
class that realize the interface HaslncompleteState. The user can select a list of fields related to
the selected entity.

“descriptionkeys”: This Tagged Value allows the user to specify the list of keys that
describe the entity. In the presentation side, the list of keys specified in this Tagged Value will be

used to present the entity.

37



WO 2011/045634 PCT/1B2010/002037

“ortarget”: The user can use this Tagged Value to define an ‘or’ dependency between
the current field and another field in the same entity or in another one with a relation.
“xortarger’: The user can use this Tagged Value to define an “xor’ dependency
between the current field and another field in the same ertity or in another one with a relation.
5 “oxclusivetarget’: The user can use this Tagged Value to define an ‘exclusive’

dependency between the current field and another field in the same entity or in another one with

arelation.
m. Palmyra Types
i Palmyra Simple Types
10 Palmyra Simple Types have the capability to personalize tuning according to business

needs. The user can define his own type, inherited from a simple type, and add the atiribute
(with Stereotype "atir™) with the appropriate value of his roquired tuning. TABLE 3 lists

Palmyra Simple Types.
Table 3: Palmyra Simple Types
15
Aitribute | Attribute Descripti
escription
name Type
StringValue and {ts subclasses
Max Integer max length of the string.
Mask String mask on the contents of the StringValue instarice.
NumberValue and its subclasses
Min Number Minimum valid value for the numeric number represented by

subclasses of NumberValue.

Maximum valid values for the numcric number represented by

Max Number subclasses of NumberValte.

The number of digits after the float point, which will be saved i in

Precision nt the database, Palmyra default value is 6.

Tiis the format used to input and output the value of the Number
object. The format must be the supported pduem in Palmyra (java

defaultformat | string standard patterns). Palmyra default value is

WHEO R RO HEHH

AmountValue
Min Number Same as NumberValue
Max Number Same as NumberValue
Precision int A default value=8 is mandatory
QuantityValue ‘
Min Number Same as NumberValue

| Max Number | Same as NumberValue

38




WO 2011/045634

PCT/1B2010/002037

Precision {nt

A defanlt value=16 is mandatory

defaultFormat | String

It is the format used to input and output the value of the Number
object. The format must be the supported pattern in Palmyra (java
standard patterns). Palmyra default value is

EHEI0. RO SRR

DateValue and its subclasses

max Date The maximum date allowed
min Date The minimum date allowed
The precision allowed is one of the following: DAY, MONTH,
. . YEAR, HOUR, MINUTE, SECOND, MILLSECOND. When using
precision String

this precision in the UML the related data will be saved with the
defined precision in the dazabase.

defaultFormat | String

Tt is the format used to input and output the value of the Date
object. The format must be the supported pattern in Palmyra (java
standard patterns). There is no relation between the precision and
the format but it is recommended that you use the format
compatible with the chosen precision. Palmyra default format is’

MILLSECOND.
BusincssDate
min Date Same as Date type
max Date Same as Date type
precision String A default value=DAY is mandatory
defaultFormat | String Same as Date type
UserDate
min \ | Date Same as Date type
max Date Same as Date type
precision String Same as Date type _
defauliFormat | String Must be set by the regional settings configuration

ii. Palmyra Specialized Types

Specialized types arc provided by Palmyra in order to allow the implementation of

specific functions. These types include entity types and interfaces. TABLE 4 lists Palmyra

5  Special Types.

Table 4: Palmyra Special Types

Status Type of attribute representing a Lifecycle Status -
AbstractValue A type used to define a persistent object. It is equivalent to the "entity
Stercotype.
CompositeValue | A type used to define a non persistent object
Value An interface used to define a non persistent object.
Historicized An interface allowing enabling historization of the entity implementing it
C. Process Diagram

39




WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The process diagram is uniquely created using state diagram modeling techniques ‘
where specific predefined decorations are applied to provide unique functionality allowing the
system to interpret the diagram and to run the process later at runtime. The specific predefined
decorations are uniquely created Tagged-Values and Stereotypes designed to facilitate the
creation of the target software application.

A process diagram represents a Process Definition. A Process Definition lists what
hainpens between the start and end points. It includes all the activities performed by the system
and the users. A process comprises a number of steps, Using the state diegrem modeling
technique, the steps are expressed by states, and their inferconnectivity is expressed by
transitions. Two predefined states are used to define the start and the end of a process. The
transitions between states can be triggered by events and guarded by conditions. One event may
trigger multiple transitions defined in a specific order. When a first condition is satisfied, the
process moves to the next step defined by the transition having that satisfied condition.

States are classified into two types, persistent and non persistent. The persistent steps
are checkpoints in which the process may stop waiting for an extermal event, and norn persistent
steps represent activities carried on by the system.

1. Process Decoration List

Decorzations for process diagrams provide additional information for elements like
states and transitions. Here also, the decorations are categorized into Tagged Values and
Stereotypes.

a. Tagged Values

Tagged Values are properties given to elements like interfaces, classes, rolations, and
fields. Tagged Values can be mandatory or optional. All specific Tagged Values (defined ina

specific model of a target application) are optional. Once a Tagged Value is added to an

.element, a value should be assigned to that Tagged Value. An example of a Tagged Value is the

Calculation Formula. When a Calculation Formula is added to a field, an expression is assigned
as a value to that Calculation Formula.

Analogously to Tagged Values i class decorations, Tagged Values in process
decorations are properties given to elements like states and transitions. Tagged Values can'be
mandatory or optional, No specific Tagged Values can be defined in a specific model of a target

application. Once a Tagged Value is added to an element, a value should be assigned to that

40



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Tagged Value. An example of a Tugged Value is the Order applied to the transitions. A number
like 1,2, 3, etc., is assigned to this Tagged Value in order to express the order.
b. Stereotypes

Stereotypes are also properties given to elements. Unlike the Tagged Values, no
values are assigned to Stereotypes when they are used. The target Stereotype merely expresses
that a value is desired. For example the Constrainable Stereotype, when added or assigned to an
Entity class type, informs the system that constraints could be added to that Entity class type
later at runtime.

Here also, analogously to Stereotypes in class decorations, Stereotypes are properties
given to elements such as states and transitions. No values are assigned to Stereotypes when they
are used. The target Stereotype merely expresses that a value is desired. For example, the
Persistent Stereotype, when added or assigned to a state, informs the system to stop the process
in that step and causes it to wait for an cvent.

2. Use Case Transition Diagram

The use-case transition diagram is nniquely created using state diagram modeling
techniques where specific predefined decorations are applied to provide unique functionality
allowing the system to interpret the diagram and to creste uge-case actions to be used at run time.
The specific predefined decorations are uniquely crested Tagged-Values designed to facilitate
the creation of the target software application.

A use-case transition diagram represents an interaction scenario between the system
and a user through the user interface. The interaction scenario consists of a group of use-cases
represented by states in the state diagram, and the interconnectivity between them is expressed
by transitions. At runtime the use-cases are represented by the user screens and the transitions
are represented by actions like buttons displayed on the screen. By clicking on those buttons the
system displays another screen determined by the transition represented by the button.

Decorations for use-case transition diagrams provide additional information for
elements like states and transitions. The decorations for use-case transition diagrams are limited
to Tagged Values only. An example of a Tagged Value is the Action name, which when added
1o a transition gives a label to the button to be displayed later on the screen

3. Use Case Diagram:

41



WO 2011/045634 PCT/1B2010/002037

10

15

20

235

30

Palmyra UML Designer tool used the state dizgram modeling techniques in order to
create the UML Use Case Diagram, It allows the definition of use cases, navigation between use
cases and definitions of actions to be allowed by use case at design time. The generation tool
will use this design to generate the registration code re]ati‘fe to all of the defined use cases and
actions. The designer can define all actions by a simple drawing of use cases and the different
action that is allowed for each use case.

A new submenu, “Palmyra UCs Diagrams” 620 is added to the UML Designer named
Diagram menu 600 (FIG. 6). This diagram allows the designer to draw his own use cases and to
define the different actions allowed for it. The user can create this diagram by simple click to the
menu in the item “Palmyra UCs Diagram.” (FIG. 6). After creating the new diagram the user
can add manually the Stereotype “usecase” to it. After that the designer can add his speoific use
cases and actions.

a. Use Case:

The generation tool gives a default name to the use case, for exaraple “USECASEL.”

. This name can be modified, in this case, to “UCAgency” 1110. (FIG. 11). The user can consult

and modify its properties. Here are the descriptions of the fields:

Use Case: Contains the name of the use case.

Class Name: Contains the class on which the use case will be registered, it can be
empty, in that case the use case will be registered for any classes.

Super Use Case: Contains the super use case name: It can be the default Palmyra
(e.g., edit, searchInput, view, elc.) or the user-defined usc cases.

‘Bution Input Configuration: Allows the user to define the information used to prepare
the use case.

The user can also fill in some expert information using an expert button provided by

“the Palmyra UML Designer interface.

Use Case Result: Tt is a set of parameters that can be returned by this use case.
b. Action Handler:

To creale an action handler, the designer must click to the related button in the tool
bar. After that he must specify by drag and drop the source and the target use cases. FIG. 11
shows the action handler “AgencyCommandSearch”” 1130 that is registered in the use case
“UCAgency” 1110.

42



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The user can consult and modify the properties of a use case. Llere are the
descriptions of the fields:

Name: Contains the name of the action handler.

Action Name: By defanlt this contains the identifier of the action, it depend on the
action type. ‘

View Order: Contains the orgier of the action.

Position: Contains the position of the action in the screen, possible values are top,
bottom or both.

Navigation Type: Indicates the type of the navigation botween the source use case and
the target use case.

To Be Overridden: Indicates whether the programmer is allowed to override some
methods of the action handler.

Button Show Expert: Shows the action handler advanced infonnation

If the user is expert in the action properties information, he can click to the button
“Show Expert” to customize some properties.

The fields of the context are as follows:

Action Type: represcnt the type of the action:

Technical: The actions of this type aren’t visible;

Submission: The actions of this type are reprasented in the view;

RowOperation: The actions of this type are represented for each row in a collection;

ColumnOperation: The actions of this type are represented for each columm in a |
collection;

TableOperation: The actions of this type are represented in the header of collectior,
the navigation actions (next, last) belong to this type

Action Name: This field contains the identificr of the action when the action type is
submission, It contains the name of role.

Class Name: This field contains the name of the class that this action will register.

Use Case: This field contains the name of the source use case.

Inn Collection: This field indicates whether or not the action will be executed from
collection.

A separate screen shows the target information, which is related to the target use case:

43



WO 2011/045634 PCT/1B2010/002037

10

13

20

30

Navigation Type: Aﬂ;r executing the action, this property indicates whether the
application will stay or move forward to the new page.

On Return Action: The name of the action that will be executed when returning from-
the target use case.

On Return Action Type: The type of the action that will be executed when returning
from the target use casec.

Action Type: represent the type of the action:

Technical: The actions of this type aren’t visible

Submission: The actions of this type are represented in the view

RowOperation: The actions of this type are represented for each row in a collection

ColumnOperation: The actions of this type are represented for each column in a
collection

TableOperation: The zctions of this type are represented in the header of collection,
the navigation actions (next, last) belong to this type '

Action Name: This field contains the identifier of the action.

Class Name: This field contains the name of the class of the target use case.

Use Case: This field contains the name of ths target use case.

In Collection: This ficld indicates whether or not the destination use case is for
collection.

The user can modify the appearances of the action by modifying parameters, such as:
Key: The identifier of the view. ‘

" Label Key: The key of the label within the labels resource file.

Label Provider: The full path of the provider to get the labels resource file.

Image Src: the nainc of the image_.

Confirmation Message Key: The key of the confirmation message within the
confirmation message resource file.

Confirmation Message Provider: The full peth of the provider to get the confirmation
message resource file.

Access Key: Key board short cut.

Access Key Provider: The full path of the provider to get the access key resource file

44



WO 2011/045634 PCT/1B2010/002037

10

15

25

Collapse Current Screen: Specify whether the screen must be collapsed or no after
the execution of the action
c. Wizard Use Case:

The preferred embodiment provides another method to generate the use case
diagrams by using the WIZARD method. With the UML Designer, the designer can define a
wizard by a stmple drawing of use cases and the different action that is allowed for cacl‘l use

case. FIG. 12A illustrates an exemplary Palmyra class diagram that dearnonstrates how the

wizard works.

When a new diagram is added to the UML Designer named Palmyra Wizard Disgram
630 (FIG. 6), this diagram allows the designer to draw his own wizard and tae different step of
the wizard. The user can create this diagram by simple click to the menu in the item “Palmyra
Wizard Diagram” 630 (FIG. 6).

Afier creating the new diagram, the UML Designer tool automatically adds the
Steréotypes “ysecase” and “wizard”. The user gives a neme to the new diagram, and this name
will be at the run time the name of the menu item under the menu “Wizard.” Next, the designer
can add his specific steps (FIG. 12B).

' In the example of FIG 12B, thereis a wizard with three steps. The first siep allows
the user to create a client, “CreateClientStep;” 1240 the second step allows the user to create a
security account “CreateSecurityAccountStep” 1250; and the last step allows the user to create a
cash account 1260.

After creating a use case by clicking on the related button in the tool bar, the user can
put this use case in his preferred position by drag and drop. By default, the tool gives a name to
the use case for example “USECASEL.” This name can be modified, for example the use case
can be called “CreateClientStep” 1240,

The user can consult and modify the properties of the use case. Here are the
descriptions of the fields:

- Use Case: Contains the name of the use case.
Class Name: Contains the class on which the use cage will be registered. The field

cannot be empty.

45



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Input Parameters: A set of pérameters that are used by this use case for filling fields.
The user can add more than one parameter in the related grid. This grid contains two columns,
as follows:

(1) Key Nume: The key name of the value or the context in case of the SLA;

(2) Formula: Contains the formula that will be evaluated of the related Key Name.

Output Parameters: A set of parameters that represent the result of the current step.
The user can add more than one parameter in the related grid. The evaluations of the output
parameters are done before the input paraeters. This grid contains two columns, as follows:

(1) Key Name: The key of a global map of all the wizards steps;

(2) Formula: Contains the formula that will be evaluated of the related Key Name.

After the design the user must validate the project with the button “Validate Palryra
Project” and then save the UML with the button “Save Generated UML". Finally, in Palmyra
Generation too), the user loads the generated UML and generates the java classcs related to his
model.

d. Wizard Action Handler:

To create 2 wizard action handler the designer must click to the related button in the
tool bar. After that he must specify by drag and drop the source and the target wizard use cases.
FIG. 12B shows the action handler “CreateSecurityAccount” 1250.
The user can consult and modify the properties of the action handler by double
clicking. Here are the descriptions of the fields:
Name: This field contains the name of the action handler.
Action Name: This field can have four different valucs:
(1) Nexz: When the Action Name is Next, this action performs the action save and
then evaluates the parameters and finally sets them to the next value;
(2) viewSLA: When the Action Name is viewSLA, this action constructs a context
from the parameters and does a search of the SLA;
(3) createNewSLA: When the Action Name is createNewSLA, this action creates
a new SLA with the result of the evaluation of the parameters;
(4) finish: When the Action Name is finish, the action terminates the wizard.

Position: This field contains the position of the action in the screen.

46



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

To Be Overvidden: The value stored at this field indicates whether the programmer is
allowed to overridc some methods of the action handler.
Input Parameters: The user can add mare than one parameter in the related grid. This
grid contains two colummns, as follows:
(1) Key Name: The key name; of the value or the context in case of the SLA;
(2) Formula: Contains the formula that will be evaluated of the related Key
Name.
Output Parameters: The user can add more than one parameter in the related grid.
The evahiations of the output parameters are done before the input parameters. This grid containg
two columms, as follows:
(1) Key Name: The key of a global map of all the wizards steps;
(2) Formula: Contains the formula that will be evaluated of the related Key
Name.
After the design the user must validate the project with the button “Validate Palmyra
Project” and then save the UML with the button “Save Generated UML”. Finally, in Palmyra
Generation tool, the user loads the generated UML and generates the java clasées related to his
model.
. VALIDATING

Validation is accomplished by automatic creation and validation, or validation as you
go, much like spell checking in word processing documents. In addition, manual proj ect level
validation can be implemented. Warning and error notifications are provided for guidance and
correction as required.

Afer the design phase the user can validate the entire project, or some portion, with a
single step, or through an interface, provided by the system such as “Validate Palmyra Project”.
Following validation, the generated UML is saved in a single step, or through an interface,
provided by the system such as “Save Generated UML”. Using a single step, or an interface,
provided oy the system such as a Palmyra Generation tool, tﬂe user loads the gensrated UML
and generates the java classes related to the model.

Iv. CODE GENERATION

A, Palmyra Code Generation Tool

47



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

The Palmyra code generation tool is an application that generates an Enterprise
Application Archive (Ear) file from a UML model, The generated Ear file is ready to be
deployed in an application server. The code generation will include by default in the generated
Ear all Palmyra jer files required to deploy an application. The new Ear also includes all the
default configurations related to the folder XML of Pelmyra. Palmyra generation tool can
generate the java classes related to the UML model of the application and the interfaces related
to the cé)ntrollers. The system can also show a list of Generation Steps in the Lags part of the
uger gfaphical interface. ‘

1. Select Palmyra Application Screen

The first step of the code generation is to create a new Enterprise Application Archive
(Ear) file or select an existing Eax file.

a. Create a New Application

This option aliows the creation of a new Bar in a folder specified by the user. This
new application contains the default services and configurations (FIG. 13A). The code
generation will include by default in the new Ear all Palmyra jar files required to deploy an
application. The new Ear includes also all the default configurations related to the folder XML of
Palmylz'a. |

) There are two other settings for the generation.

Generate the generated code only: If this option is selected, the code gencration will
generate only the java classes related to the UML model of the application and the interfaces
related to the controllers.

Show Log;: If this option is selected, the system will show the list of Generation Steps
in the Logs part of user graphical interface.

When the user select the path of the new ear file to generate, then press the Next

button, he will enter the version of the ear. When he presses OK, the new ear will be generated in

the specified path. FIG. 13A illustrates creating new application using Palmyra generation tool.
b. Open an Existing Applicatior

When the user selects the option to open an existing application, he must first select
the old Ear in the system folders. Then the user sclects the next button to go to the screen of

Generation or the screen update.

43



WO 2011/045634 PCT/1B2010/002037

10

15-

20

25

30

Save Configuration File: If the user needs to save all the configuration steps, he must
specify a path for the configuration file that contains the -elated properties:

earPath: The full path of the Ear file.

sharedPack: A string holding the list of shared packages separated by commas. For
example: com.palmyra.arch.broker, com.palmyra. arch.devices.input,
com.palmyrz.arch.devices.output, com.palmyra.arch.mapping, ...

generateJavaDoc: Can be set to true or false.

ieCreation: Indicates whether the file is a creation of new Ear or an update of an
existing one.

prefix: The name of the prefix if one exists, else it is set to an empty string.

classPath: The list of Palmyra jars used to compile the generated java classes.

listJarWar: List of added jars and wars.

generationPack: The selected packages 1o be generated.

wnlFilePath: The full path of the XML file to be generated.

generatedCodeOnly: If true, the java classes will be generated and compiled without
updating an Ear file.

verify: If true, the XML file will be verified cnly without generating any java classes

businessServicesPath: The path of the business services directory that will be added
automatically in the ear file.

sequenceStore: If true, the user can specify her own sequence daa store in the Setup
side.

2. Generation Screen

Once the user created a new Bar file or chose an existing Ear file, the user can set
generation options on the generation screen. Two sub-screens compoge the generation screan,
one is called UML Source and the other is called Generation Options.

a, UML Source

In the UML Source screen (FIG. 13A), the user can select the UML file to be
generated (mandatory), select the business services path (optional), exclude or include some
packages of the application to be generated, and add or remove shared packages. By default, all
packages will be gencrated, and there are no shared pac<ages.

b. Generation Options

49



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

In this screen (FIG. 13B), the user can add or remove some jar files that will be used
to compile the generated java classes, and it can check the related options:

Generaie JavaDoc: This option allows the geaeration of the Java Docurnentation of
the generated java classes.

Configurable Sequence store: This option allows the user to configure the sequencé
data store in the Setup side.

Only Verification: If this option is checked, the code generator will check only the
validity of the UML model. In this case it will not affect the modifications in the Bar. But when
this option is not checked the code generation will affect the new modifications in the Ear. FIG.
13B illustrates generation options using Palmyra generation tool.

3. Update Screen

The update screen provides the user the functionality of updating an existing Bar file.
Two sub-screens compose this screen, one is called Services and the other is called
Configurations.

a. Services Screen

" The screen Services is used to add, edit or remove services, the button “Build
Services” will apply the modifications in the selected Ear file (see FIG. 130).
b. Configurations Screen

"Ihe screen Configurations is used to add, remove, or restore confl gurations files. It
also permits the building of configurations. The user can add or remove the configuration ofthe
view format, application server configuration, labels configurations, life cycle configuration,
reports configuration, and transactions configuration (sce FIG. 13D). The button remove will
remove a selected file from the Ear and the button restore is used to cancel a modification made
by the user. When the user clicks on the button “Build Configuration’, all modifications made by
the user will take effect. FIG. 13D illustrates configurations options using Palmyra generation
tool.

4. Output files

Once the generation process succeeds, it generates several files: the ear file; the

_ generate source and 1ib jars named respectively GenerazedCodeSrc jar and GeneratedCode jar;

the folder classes contain the unzipped file GeneratedCode.jar; the folder stc contains the

50



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

unzipped file GeneratedCodeSre.jar; and the folder MucS=e contains the controllets declared in
the UML to be implemented by the programmers. '
B. Palmyra Code Generation

1. Palmyra Automatic Code Generation

The Automatic Generation is a way to generats an Ear, generate java classes from an
XML file, update the Bar with a list of jars and wars and update the Ear with a list of
configuration files without using the Code Generation tool. FIG. 14 illustrates the main steps of
the automatic generation process, which compnscs 1) converting the UML model into an XML
file 1410, 2) using the XML file to generate Java source code (known as generated source code)
1420, and 3) compiling the generated java source code using JSDK compiler and creating a
library Java Archive or JAR 1430. The converting of UML model into an XML file can be
achieved through the use of the Palmyra UML Designer.

Elements:

Code:

Tava classes for the simple types and entitics

Java interfaces for the UML Interfaces

Absiract controller classes correspond to the controllers (to be manually extended
later to provide the implementation of the methods)

_ Action handler classes to manage screen-level actions (may be enhanced by adding

manually written code if necessary)-

XML files:

Constraint model description file: contains the definitions of the constraints to be
loaded later in the system at runtime ,

Process description files: One for cach process contains the definition of the process
to be loaded later at runtime.

There are two ways to use the Automatic Generation: a simple call to a static method
or using a property file.

a. Using the Automatic Generation with a call 1o a static method

Using the code generation Tool or processing an automatic generation, the developer

has the possibility to generate an ear, generate java classes from an XML file, update the ear with

51



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

¥

a list of jars and wars and update the ear with a list of ccnfiguration files. This document
describes the steps performed for every option. The generation is performed using the Automatic
Generation. The same scenario is reproduced if the code generation tool is used. ‘

The first way to use the Automatic Generation is to call the static method genem;‘e()
in the class dutomaticGeneration.

This method has 19 parameters. The relevant parameters are listed in TABLE 5.

Table 5: Palmyra Auto Generztion Parameters
-File earFile: the ear file that will be created or updated.

t

-String codeGenreationPath: the path of the cods generation containing all jars of
Palmyra. It must contain four directories which are: ‘ext’, ‘extLib’, “xml’ and ‘Iib’. These

directories are used in the generation of a new ear.

-boolean isCreation: if it is true, a new ear will be created. Tho now one will contains all
jars in the ‘ext” and ‘extLib’ folders. Also, all xml files in the folder “xm/l’ will be set to

Configs_config.jar and PalmyraRessourcesjar,

-String umiFilePath: the path of the xml file generated by the UML Desiguer plug in. this

file will be used to generate java files and the ‘ GereratedCode.jar’.

-boolean sequenceStore: if it is true, the sequence data store will be configurable. So the

user can indicate the data source of the sequence table in the Sefup side.

-boolean verifyOnly: if it’s true, the generated code will not be created, the UML model

will be verified only.

-String generationPackages: this string holds the list of packages that will be generated
(separated by a comma). If this string is null, all packages in the UML model will bs

generated.

-String sharedPackages: this string holds the list of shared packages (separated by a
comma). This string will be set to the file ‘sharedPackages.properties’ in the

‘GeneratedCodejar’.
-String prefix: string presents the prefix name of the sheared packages.
-String version: the version of the ear file.

52



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

-boolean generatedCodeOnly: if it's true, only the generation of java classes will be done.

-String classPath: the classPath required in the compilation of the generated java classes.
If it’s null, the class path will be calculated autoncatically: it will contains all existing jars

in the code generation directory.

-boolean generatedJavaDoc: ifit’s true, the java doc of the generated java classes will be

created. A new jar will be generated: ‘GeneratedCodeLib jar’ .

-String businessServicesPath: the path of business services jars that will bo added
automatically to the car. Only the jars corresponding to the used modules in the UML
will be added. If a there is some missing jars in the specified path, a warning will be
written in a log file called ‘GenerationWarnings.log’ that will be found in the path of the

edr.

-Collection updatedServices: a collection of Files that contains the list of jars and wars

added or updated in the ear.

-Collection updatedConfigurationFiles: a collection of Files that contains the list of
configuration files that will be added to the ear. Every file will be added to

‘Configs_config.jar’ or ‘PalmyraRessources jor’ switch its name.
. S.] Vi J

-String logFilePath: the path of the log file. If it’s null, it will take the value

‘AutomaticGeneration.log’ .

-String compilerPath: the path of the compiler that will be used (when the usr wants to

use & specific java compiler like the compile with a java 1.5 compiler).

-String compilerVersion: the version of the compiler that will be used (when the user

wants to use a specific java compiler like the compile with a java 1.5 compiler).

The combination of all these parameters allows the developer to execute one or many

options:

i. Create an Ear file fom scratch.

If the parameter ‘isCreation’ equals true and the Ear file is not null, a blank Ear will

be created. The list of parameters shown in TABLE 6 rzpresents an example of this option:

53



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Table 6: Exemplary Patameters for creating an car file from scratch -
String earFilePath = "D:/Test/Test.car';
String codeGenreationPath = "D/PALMYRA11.2 / codeGeneration”;
boolean isCreation = true;
String umiFilePath = null,
boolean sequenceStore= false;
boolean verifyOnly = false;
String generationPack = """}
String sharedPack ="";
String prefix ="";
String version = "1.0";
boolean generatedCodeOnly = falsc;
String classPath = null;
boolean generateJavaDoc = false;
String businessServicesPath = null;
Collection updatedServices = null;
Collection updatedConfigurationFiles = null;
String logFilePath = "D/BUG.log";
String compilerPath = null;
String compilerVersion = null,

AutomaticGeneration.generate (new File(carFilePath), cochcnreétionPath,
isCreation, umlFilePath, sequenceStore, verifyOnly, generationPack, sharedPack, prefix, version,
GeneratedCodeOnly, classPath, generateJavaDoc, businessServicesPath, updatedServices,
updatedConfigurationFiles, logFilePath, compilerPath, compilerVersion);

-If the parameter codeGenerationPath is null or an empty string, it will be set to the
parent of the project directory. In any cése, the codeGeneration directory usually contains the
following folders:

xml: contains the xml files used for service configuration.
ext: contains the Palmyra jars

extLib : contains external libraries.

54



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

As previously mentioned, the ext directory contains all the Palmiyra Jars required 1o
install, to deploy and to use a generated application within the framework Pelmyra. The picture
below shows the content of the ext directory. . '

Unlike the ext directory, the extLib folder includes only non Palmyra Components.
Such components are used by the framework for certain goals (For example, to parse an XML
document or to manage templates).

The following picture shows the content of the folder extLib.

The xm] folder contzins the xml configuratior. files used by some of the framework
components. The most commons are used to configure the prescntation labels and view formats.

The object of this part of the document is to show how to create an car without
generating a GeneratedCode.jar or up dating the ear because all parameters umlFilcPath,
updatedServices and updatedConfigurationFiles are null. By the call of the method:

AutomaticGeneration. generate (new File (carFilePaih), codeGenreationPath,
isCreation, umlFilePath, sequenceStore, verilyOnly, generationPack, sharedPack, prefix, version,

CeneratedCodeOnly, classPath, generateJavaDoc, businessServicesPath,
updatedServices, updalchouﬁguratianilss, logFilePath, compilerPath, cormpilerVersion,
hasJsf, excludedSharedPack);

The parameter applicationName provides the name of the earfile without the
extension . ear’. Tn this example applicationName =" Essai” ;

The following steps are performed:

Step 1: Creation of the temporary folders

Create the directory TMP under the codeGenreation folder. In this example, TMFP
will be placed under:

“D:\Projects\PALMYRA1 1.0\FRAMEWORK\build\éut\codeGeneration”. In this new directory,
we copy all the contents of the directories ext and extLib folders (those under the

codeGenreation directory).

- Create the directory Workingfoldei under the codeGenreation folder.
- Create the directory unEar under the new directory Workingfolder.

— Create the directory basedir under the directory unBar.

— Create the directory META-INF under the directory basedir.

- Create the directory config under the directory unEar.

55



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

Step 2: Building the application files

Copy the xml file “application.xm!” of the current directory (under the
package “com.palmyra.tools.builder”) to the new directory config

(code gencnration/workingFolder/unEar/éonﬁ 2).

The copied xml file will be parsed then the ignored lines (starting with “<I’’)
will be removed. The valucs of the nodes "display-name" and "context-root",
will be set to the value of applicationName (in this example “Essai”’) and the
value of the node "web-uri” will be set to the earFile name (in this example:

“Egsai. ear”).

The “application.xml” file is a deployment description for the J2EE application. This
 file must be located in the top level META-INF directory.

Copy the XML file “ibm-application-ext.xmi” of the current directory (under
the package “com.palmyra.tools.builder”) to the directory conflg and remove
also the ignored lines. For the new-capied file, we focus on every item named
"ymi: type" under any attribute of any element called "moduleExtensions". If
we find an item which value is “applicationext: WebModuleExtension", we
change the value of the attribule “altRoot” to "ALT-INE/* + applicationName
+", war'.

Copy the XML file “jboss-app.xm]” of the current directory (under the
package “com.palmyra.tools.builder”) to the directory config. For the new-
copied filc, we sct the value of the node “loader-repositoryfocus” to
"com.vermeg.services:loader=<applicationName™>.ear". The modified xml file
will be then copied to the directory workingFolder/unEar/basedit/META-INF
.The utility of such file is to isolate the class loader of every application by
configuring a unique domain.

Copy all the modiﬁed application files (application.xml, ibm-application-
bnd.xmi, ibm-application-ext.xmi, jboss-app.xml) to the directory
workingFolder/unEar/basedit/META-INF. T this directory, we copy also the
file “was.policy” (under the package com.palmyra.tools.builder).

Create the directory unWar under the directory Workingfolder.

Create the directory config under the directory unWar.

56



WO 2011/045634

10

15

20

25

Step 3:

Step 4:

PCT/1B2010/002037

Building the web.xml file
Copy the xml file "web.xml" under
codegenenration/workingFolder/unWar/config, for the new copy, the value of
the property "display-name" will be set to the value of applicationName.
(Remember that applicationName="Essai”). The same value will be set to the
attribute id under the element “web-app”. Thoss modifications are shown in
the following picture: -
Create the directory basedir imder unWar.
Create the directory config under Workingfolder.
Cyeate the directory handleConfig under Workingfolder.
Create the eventual directory which will contain the earFile (here, we create
the directory “D:\Essai_codegen”)
Handling the external folders
Tterate on the contents of the directory TMP:

Tf the file is a war file:

If it is the war of the ear: its name is the name of the application, we
Ietricve the versions of wars in the manifest of the war, else (if it is just an
added war), retrieve the value of the attribute “earversion” of the marifest
file of such war. Then extract the content of such war file to the directory

basedir (which is under the directory unWar).
If the file is an ear file:

Extract the content of such ear to the folder basedir (under unEar), we then
iterate on the content of this ear aad we do recursively the same thing for

the encountered files (ear, jar or war)

If the file is a jer file and if its name is different from

"GeneratedCode jar", it will be copicd under the unEar/basedir folder.

Create the META-INF directory under the directory vnWar.
In this diréctory, create the manifest file "MANIFEST MEF" .In such file, we
create the attribute “Created-By” for which we set the value:” Palmyra at

57



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

<ourrent Date>” and the aliribute “Menifest-Version” for which we set the
value “1.0”. Then, for each retrieved war version, a related new attribute is
created.
- Extract the content of the jar file: unEar/basedir/service jar to the directory
unEar/basedit/service.
Step 5: Updating the unzipped service.jar
- Parse the file workingFolder/Unear/basedir/service/ META-INF/ejb-jar.xml to
look for elements under the node "gjb-name" and which name is like
“AsynchronousX”, such elements will be renamed to
“Asynchronous<applicationN aﬁ1e>’ *(In this example “AsynchronousEssai “).
- For the XML file workingFolder/Unear/basedir/service/ META-INF/weblogic-
_ ejb-jar.xml, then the following modifications will be performed:
- Bvery element under “ejb-neme” which name is like “AsynchronousX” will
be renamed to “Asynchronous<applicationName>".
- The value of every clement under "jndi-name" will be set to applicationName
- The value of every element under "local-jndi-name" will be set to "Local
<applicationName>".
- The value of every node under "connsction-factory-jndi-name" will be set to
"ApplicationsQueusConnectionFactcry".
- The value of every node under "destination-jndi-name" will be set to
“<gpplicationName >Pending". L
The same modifications as the previous task will be applied to the XML file:
unEar/basedir/service/ MET A-INF/jboss.xml except tha: the value of every node under
"destination-jndi-name" will be set to "queue/< applicationName>Pending'. ‘
For the XML file WorkingFolder/unEar/basedif/ service/ META-INF/ibm-ejb-jar-
bnd.xmi, under the element "ejbBindings", the eventual value of the attribute "jndiName" will be
set to the applicationName and the eventual value of the attribute "listenerInputPortName" will
be set to “<applicationName> ServiceListener". l

Step 6: Creation of the jar file service.jar

58



WO 2011/045634

10

15

20

25

PCT/1B2010/002037

From the content of the directory workinglolcer/unEer/basedir/service, we create the

jar service.jer having as manifest: workingFolder/mEar/basedir/service/META-
INF/Manifest. mf. Then we delste the folder service.

Step 7: Handling the configuration files

Copy all the contents of the folder xml under the codeGeneration directory to the

folder workingFolder/config.

For the XML file workingFolder/config/service Resource.xml, we perform the

following modifications:

The value of the attribute “dataSource” will be st to “DataSource”
The value of the attribute “TmsCommectionFactoryName”’ will be set to
“ApplicationQueucComnectionFactory”.

The value of the attribute “LocalindiName” will be set 1o "Local<
applicationName>"

The value of the atiribute “nonXaDataSource” will be set to
“<gpplicationName>>NonXaDataSource".

The value of the attribute “ServiceQuzueName” will be set to

“<applicationName>Pending".

Those modifications are shown in the pictures below:

For the XML file warkingFolder/config/appServersConfig.xml, perform the

following modifications:

For all the nodes under the root node: “AppServerConfigurations”, focus on
the value of the attribute: “initial ContextFactory”
If it is equal to ““weblogic _jndi_WILnitialContextFactory”, set the value of the

attribute “securityProvider” to "weblogic™.

If it is equal to "org_jnp_interfaces NamingContextF actory"”, set the value of

the attribute *“ssourityProvider” to "jboss".

If it is equal to “com_ibm_websphere neming_WsnmitialContex{Factory" set

the value of the atiribute “securityProvider” to "websphere".

Step 8: Creation of the properties folders

59



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

, Tterate on the content of the property file
"/corn/palmyra/arch/tool/updator/config.properties." For every encountered property, create a
new directory having as name the value of this property; the new folder will be created under
workingFolder/handleConfig.

In this example, under the directory:
D:\Projects\PALMYRAL11 O\ERAMEWORK \build\out\codeGeneration/workingFold
er/handleConfi g the following folders will be created: '
Configs_config\Labels

Configs config\Viewformat
Configs_config\AppViewforniat
Configs_config\Reports
Configs_config\AppSer
Configs_config\Transactions
Configs_config\LifeCycle
PalmyraR esources

Every file under workingFolder/config will be copied, switch its name to a
correspondent directory: (a file which name starts by a property name (in the property file:
config.properties) will be copied to the created directory having as name the value of this
property).

For example, the xml file: appServersConfig.xml will be copied to the Directory:
workingFolder/handleConfig/Configs_config/AppSer.

If the name of the file doesn’t much any property name, this file will be copied to the
directory: workingFolder/handleConfig/Configs config .

Step 9: Creation of the config jar files

- Under workingFolder/handleConfig, we create the directory "META-INE",

then, under this folder, we create the manifest file "manifest. mf", in which we
put the following attributes:
Manifest-Version = "1.0"

60



WO 2011/045634

10

15

20

25

PCT/1B2010/002037

“

Created-By = “Palmyra at <The system date>

Version = "Palmyra:Config:<version>" +

The value of version is given as parameter to the method generate.
This file will be used as manifest for the following jars that will be created:

The jar file workingFolder\unEar\basedir\Configs_confi gjar that will be
created from the content of the directory:
WorkingFolder\handleConﬁg\Conﬁgs_cor;ﬁ g

The jar file workingF oldertunBartb asedir\DeploymentConfig jar that will be
created from the content of the directory workingFolder\config

The jar file workingFolderunEar\basedir\PalmyraR esources.jar that will be
created from the content of the directory

workingFolder\handleConfig\PalmyraResources.

Step 10: Creation of the war file

Fxtract the content of the jar file unEar/basedir/webService.jar to the dircctory
unBar/basedir/webservice.

Create the war file <applicationName>war (in this example: Essai.war) in the
directory unEar/basedir from the content of this directory. The Web-Inf
directory of the war will contain all the content of the folder
unBar/basedir/webservice/com/palmyra/arch/webservice/web except the .class

and the .scc files.

Step 11: Creation of the ear file

We create the manifest file for the ear: workingFolder\unEar\basedir\META-
INFunanifest mf. In this manifest, we fill the Zollowing properties:

- Manifest-Version = “1.0"
- Created-By" = ‘“Palmyra at <The system date>"
-Class_Path = <list of all the jar files under workingFolder/unEar/basedit™>

In the directory workingFolder/unEar/basedir, we replace the manifest of the

jar: servicejar by the new created manifest file.

61



WO 2011/045634

10

15

20

25

PCT/IB2010/002037

‘Write the manifcsf for the ear: We recreate the manifest file
workingFolder\unEar\basedir\META-INF/manifest.mf and we fill it with the
properties:

- Manifest-Version = “1.0"
- Created-By" = “Palmyra at <System Date>"
- Class_Path =<list of all the jar files under workingF older/unEar/basedir™>

Under the clement Palmyra Version Info, set the attribute version to the value of the
parameter version (in this cxarple 1.0).

Then we iterate on the jar files of the folder workingFolder/unBar/basedir, select
every file that is not an extemnal jar, so the files listed in Table ## for exeraple will not be
selected.

For every selected file, a new attribute under Palmyra Version Info will be createc. '
The new attribute will have as name the name of the selected jar file (without *. jar”) and as
value the last modification date of the selected jar.

Talke the jar file commons-codec-1.3 as an example, for this jar the attribute:
commons-codec-1.3 3 will be created having as value the date of the last modification in this jar.
This new manifest file will be used to update the manifest fils of the jar servioce.jar )

-Create the ear file (in this example: D:\Essai_codegen/Essai.car fiom the content of the
directory workingFolder/unEar/basedir. This ear will have as menifest the file
workingFolder\unEar\basedir META-INF\menifest.mf and as application file the xm! file
workingFolder\unEar/config/application.xrl

Y

Delete the folders workingFolder and TP (under the codeGeneration directory).
1. Generate the generated code only

‘[his option creates an Ear without generating a GeneratedCode.jar or updating the ear
because all parameters ‘umlFilePath’, “updatedServices’ and ‘updated ConfigurationFiles’ are
null.

Tn order to generate the ‘GeneratedCode.jar’ without updating the Ear and without
creating a new Bar, just set the parameter ‘isCreation’ to false, set the parameter ‘umiFilePath’

with the path of the UML file and set the parameter * generatecCodeOnly’ to true.

62



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Turther, ‘updatedServices’ and’ updatedConfigurationFiles’ must be null,

The parameters ‘sequenceStore’, ‘verifyOnly’, ‘generationPack’, ‘sharedPack’,

“prefix, “version, ‘classPath’, ‘generate] avaDoc’, businessServicesPath’, ‘compilerPath’ and

‘compilerVersion® are a set of switches for the case of generation.

The GeneratedCode.jar will be created in the root of the earFilePath (if there are no

compilation errors). The list of parameters shown in TABLE 7 represents an example of this

Table 7: Bxemplary Parameters for Generating the Generated Code Only
String earFilePath = "D:/Test/Test.car'";
String codeGenreationPath = "D:/PALMYRA11 2 / codeGeneration";
boolean isCreation = false;
String umliFilePath = “D:/Test/test.xml”;
boolean sequonceStore= false;
boolean verifyOnly = false;
String generationPack ="";
String sharedPack = "";
String prefix = "a";
String version = "1.0";
boolean generatedCodeOnly = false;
String classPath = null;
boolean generateJavaDoc = true;
String businessServicesPath = “D:/B5™;
Collection updatedServices = null;
Collection updatedConfigurationFiles = null;
String logFilePath = "D:/BUG.log";
String compilerPath = null;
String c‘ompilerVersion =null;

AutomaticGeneration.generate (new File(earFilePath), codeGenreationPath,

isCreation, umlFilePath, sequenceStore, verifyOnly, generationPack, sharedPack, prefix, version,
GeneratedCodeOnly, classPath, generateJavaDoc, businessServicesPath, updatedServices,

updatedConfigurationFiles, logFilePath, compilerPath, compilerVersion);

63



WO 2011/045634 PCT/1B2010/002037

Tn order to generate the ‘GeneratedCode.jar’ without updating the ear and without
crealing a new ear, the path of the UML file to be generated must be specified in the parameter
“umiFilePath’, set the paramete: ‘isCreation’ to false and the parameter ° generatedCodeOnly’ to
true. Also “updatedServices’ and’ updatedConfigurationFiles’ must be null. Additional

5 pé.rameters are listed in TABLE 8:

Table 8: Exemplary Parameters for Updating the ear with a list of, ‘jars and wars
String earFilePath = "D:/Test/Tost.car";
String codeGenreationPath = "D:/PALMYRAI11.2 / codeGeneration”;
10 boolean isCreation = true;
String umlFilePath = null;
boolean sequenceStore= false;
boolean verifyOnly = false;
String generationPack ="
15 String sharedPack ="";
String prefix ="";
String version ="1.0";
boolean generatedCodeOnly = false;
String classPath =null;
20 boolean generateJavaDoc = false;
String businessServicesPath = null;
Collection updatedServices = new ArrayList();
updatcdServices.add(new File("D:/Test/SmartPositionjar"));
updatedServices.add(new File("D:/Test/ statemonitoring jar"));
25 Collection nupdatedConfigurationFiles = null;
String logFilePath = "D/BUG.log";
String compilerPath = null;
String compilerVersion = null;
AutomaticGeneration.generate (new File(carFilePath), codeGenreationPath,
30 isCreation, umlFilePeth, sequenceStore, verifyOnly, generationPack, sharedPack, prefix, version,
GeneratedCodeOnly, classPath, generateJavaDoc, businessServicesPath, updatedServices,

updatedConfigurationFiles, logFilePath, compilerPath, compilerVersion);

64



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

If the parameter codeGenerationPath is null or an empty siring, it will be set to
the parent of the project dircctory. In any case, the code Generation directory usually contains

the folders xml, ext and extLib (see the paragraph: create an ear from scratch).

-If the user didn’t mention a path for the log file, it will take the value

‘ AutomaticGeneration.log’.

-If the paramseter classPath is not mentioned (null or *), the class path will be calculated
automatically: it will contain all existing jars in the code generation directory and all existing jars

in the Business Service path if it is mentioned.

By the call of the method:
AutomaticGeneration.generate (new File (earFilePath), codeGenreationPath,
isCreation, umIFilePath, sequenceStore, verifyOnly, generationPack, sharedPack,
prefix, version, GeneratedCodeOnly, classPath, generatefavaDoc,
businessServicesPath, updatedServices, updatedConfigurationFiles, logFilePath,
compilerPath, CompilerVersion, hasJsf, excludedSharedPack);

The following steps are performed:

Step 1: Creation of the temporary folders
-Create the directory TEMP under the parent of the earpath, (in this example,
TEMP will be created under: " D:\\Essai_codegen”

-From the xm] file (given in the parameter umlFilePath), load the object
UMLApplication

“Delete the eventual folders(src and classes) under the parent of earFilePath (in

this example, under " D:\\Essai_codegen”)

-If the parent of the earfile (" D:\\Essai_codegen”) doesn’t exist, create this

directory.

-Create the new folder doc under the carfile Parent (in this example "
D:\Essai_codegen\doc™).

-Modify the loaded application in order to make it ready for the code generation '

(See the document Generation Mechanism).

65



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

-Create the directory MucSre under the parent of the earFile directory.

-Generate the sources for classes and controllers in the dirsctories “src” and

“MucSte” (Ses the document Generation Mechanism).

Step 2: Creation of the property files
-Create the property file "datasource.properties” under the src directory .In this
file, the following attributes are defined:

AutotestDataSource
DataSource
SecurityStore

The values of those attributes will be set during the setup.
_Create the property file “gcstorename properties” In this file, the attribute
ATFiles will be added.

-Create the property file “sharedPackages.properties” under the “src” directory. In

this file, we put the prefix mentionec as parameter and a list of shared packages.

Step 3: Compiling the generated code

If the compiler version and the compiler path are not mentior.ed, a default compiler is
used having as path the value of the system class path variable. Before performing the
compilation task, redirect the compiler's error output to a stream other than the standard error
stream so that the oohlpiler's error output can be read into the errors array list.

Then compile all the java sources under the directories “src” and “MuSrc”, the

. < class” files resulling in the compilation vill be added under the “classes™ directory

Step 4: Create the generated code and source jars.
-Prepare the directory “classes” to the jar creation: A list of files have to be

deleted from this directory before making the jar. Thoss exoluded files are:
-All the non-directory files under “MuSrc”

-All the Palmyra classes. '

-Make the jar file, “Testl.jar” from the content of the directory “classes”.
-Make the jar file, “Test1Src.jar” from thc.content of the directory “src”.

66



WO 2011/045634 PCT/IB2010/002037

_If 2 businessServicesPath is mentioned, (in this example businessServicesPath
=“T):\Projects\PALMYRA1I.O\TECHN ICALSERVICES\out\lib™), iterate on the
Umlapplication used modules, for each module, look for a jar file having as rame
(theusedmodulename) Gen jar. T'or example, if the application has the used

5 module “Calendar”, look for a file named: “CalendarGen.jex” under
businessServicesPath. |If the file is found, copy it under the TEMP directory.

Repeat the same for a file having as name (theusedmodulename)lmpl jar .
Delete the directory ﬁEl\/LP.

iii,  |[Update the Ear with a list of jars and wars

10 In order to update an Ear, the parameter ‘updatedServices’ must contain a collection

of ‘javaio File’ representing the list of jars and wars to add. If the Bar fle does not exist, an
exception will be thrown. The list ofbparameters shown in TABLE 8 represents an example of
this option:
-Create the dircctory “TEMP’lf under the parent of the ear file (here under
15 D:\Essai_codegen).

-Copy all the files of the collection updatedServices under the TEMP directory.

Step 1: Creation of the temporary folders
Create the directory AppTemp under CodeGenerationPath

-Create the directory workingFolder under CodeGenerationPath
20 _Create the directory unEar under workingFolder
-Create the directory basedir under unFar

-Create the directory donfi g under unBar

-Create the directory unWar under workingFolder
-Create the directory biagedir under unWar
25 . -Creule the directory c:onﬁg under unWar

Step 2: Building the web'.)!(ml file

&7



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

This step is processed the same way 2§ in case of creating a new ear (See the
paragraph: create an ear from scratch).

Step 3: Copying the ear file to a temporary directory

This step consists on copying the ear file to be updated, to the directory AppTemp
under CodeGenerationPath.

Step 4: Handling the external folders

The content of the copied ear file will be extracted to the directory unEar\basedir. The
content of the war file included in this ear will be naturally extracted under unWarfbasedir. (See
the paragraph: create an ear from scratch).

The content of the TEMP directory (in this example, it only contains the jar file
Agenda.jar) to be added to the ear file) under the directory unEar\basedir.

In case user updates the ear with the jar file service jar, the directory service will be
created under unEar/basedir in which extract the content of this added file, and then recompress
this content to make a new jar file service jar.

Step 5: Creating the war file

Create the war file <applicationName>.war (in this example: Essai war) in the
directory unEar/basedir from the content of this directory. The Web-Inf directory of the war will
contain all the content of the folder unEar/basedir/webserviee/com/palmyra/arch/webservice/web
except the .sco files.

-Iterate on the content of the directory AppTentp (In this case, this directory

contains only the copied earfile).

-Open the manifest of the found ear file and lock for the attribute "Palmyra

Version Info.”. If such attribute is not found, an exception will be thrown.

Step 6: Creating the ear file
-Create the manifest of the ear and make the ear file as explained in the

paragraph: create an ear from scratch.
-Delete the folder workingFolder
-Delete the folder AppTemp

iv. Update the Ear file with a list of configuration files

68



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Tn order to add some configuration files to an Ear, the parameter
‘updatedConfigurationFiles’ must contain a collection of ‘java.io.File’ representing the list of
files to add. If the Ear file does not exist, an exception will be thrown. Every configuration file
will be set in the ‘Configs_config.jar’ or ‘PalmyraRessources’ switch its name.

b. Using the Automatic Generation with a Property File

The second way to use the automatic generation is to fill a property file with all
needed information. The list of parameters shown in TABLE 9 represents an example of this
option.” Tt will be passed as the first and only parameter to the main method in the class
AutomaticGeneration (the only class in the jar ExtemalBuilder jar).

Table 9: Exemplary Parameters for Using the Automatic Generation with a property file
String earFilePath = "D:/Test/Test.ear”;

String codeGenreationPath = "D:/PALMYRA11.2 / codeGeneration";
boolean isCreation =true;

String umlFilePath = null;

boolean sequenceStore= false;
boolean verifyOnly = false;

String generationPack = "";

String sheredPack ="",

String prefix ="";

String version ="1.0";

b-oolean generatedCodeOnly = false;
String classPath =null;

boolean generateJavaDoc = false;
String businessServicesPath = null;
Collection updatedServices = null;

Collection updatedConfigurationFiles = new ArrayLisi(};

69



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

updatedConfigurationFiles.add (new File ("D:/Tesl/

service.transaction File.xmll"));

updatedConﬁgurationFﬂes.add (ne\w File ("D:/Test/

VF_Presentation ViewFormat.xml")) ;
String logFilePath = "D:i/BUG.log";
String compilerPath = null;

String compilerVersion = null

AutomaticGeneration generate (new File(earFilePath), codeGenreationPath,

isCreation, uml[FilePath, sequenceStore, verifyOuly, generationPack, sharedPack, prefix, version,
GeneratedCodeOnly, classPath, generateJavaDoc, businessServicesPath, updatedS ervices,

updatedConfigurationFiles, logFilePath, compilerPath, compilerVersion);

The properties in this file are:
earPath. The path of the Ear file.
isCreation: Indicates whether the file is a creation of a new Bar or an update of an
existing one. True or false (False by default).
codeGenreationPath: The path of the directory ‘CodeGeneration’ of Palmyra. If this
property has no assigned value, it will be set to the parent of the current directory.
umiFilePath: The full path of the UML file to be generated by UMLDesigner.
sharedPack: A string holding the list of shared packages separated by commas.
prefix. The prefix of the shared packages.
generationPacl: The list of generated packages, scparated by commas.
verify: If true, the XML file will be verified without generating any java classes. (Felse
by default).
generatedCodeOnly: If true, the java classes will be generated and compiled without
updating an Ear file. (False by default).
listJarWar: The list of added jars and wars, separated by comunas.
xmiConfig: The list of configuration files that will be added to the Ear, separated by
commas. I

logFilePath: The path of the log file. If this property has no value, it will be set to

- " AutomaticGeneration.log".

70



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

sequenceSiore: If true, the user can specify his own sequence data store in the Setup side.

(False by default).

generateJavaDoc: True or false (False by default).

businessServicesPath: The path of the business services directory that will be added

automatically to the Ear by comparing the names of the imported modules in the UML

file and the existing jar in this path.

compilerPath: The path of the specific compiler (optional).

compilerVersion: The version of the specific compiler (optional).

classPath: The class path used in the compilation of the generated code. Ifit is null, the

class path will contains all jars in the code generation directory.
TABLE 10 represents an example property file.
Tsble 10: Exemplary Property File
* Create a property file containing these properties:

earPath=D:/test/Test.ear

isCreation=true

codeGenreationPath="D:/Palmyra 11.2/codeGeneration”

umlFilePath=D:/test/testGen xml
generatedCodeOnly=false
prefix="d"

verify=false

listJarWar= D:/test/SmartPosition jar, D:/test/statemonitoring jar, D:/test/test jar,

D:/test/dashBoard.war

xmIConfig=D:/test/presentationContext. test.xrnl,D:/test/test.xmnl

logFilePath= D:/test/GenerationLog.log

businessServicesPath="D:/BS”

* invoke the main method in the class AutomaticGeneration

- Using Windows console

> java -jar ExternalBuilder.jar propertyFileNance

- "Using a batch file
path=D:\bea\jdk141_05\bin

71



WO 2011/045634 PCT/1B2010/002037

10

15

20

30

java -Xms256m -XmxS512m -Xdebug -Xnoagent -Djava.compiler=NONL -
Xrunjdwp:transport= dt_socket,server=y,address=5051,suspend=n -jar BxternalBuilder.jar
propertyFileName :
V. DEPLOYING

A Palmyra Setup Taol

Palinyra provides a wizard-lilke setup tool that aims to automate the process of
deploying the generated applications into various application servers like BEA Weblogic, or
IBM Websphere, or others It is done to hide the complicated nature of the application servers,
This set-up tool also manages the communication with different database providers like Oracle,
Microsoft SQL server, or IBM DB2.

When going through the deployment steps using the setup tool, the configuration
established by the user can be stored in a file for a future use.

The Pelmyra Setup Tool supports a number of operating systems, application servers,
and databases, for example:

(1) operating systems: Windows, Linux;

(2) application servers: Weblogic 8.1, Weblogic 9.1, Weblogic 9.2, Weblogicl0.0, TBoss
3.2.x, JBoss 4.0.x, JBoss 4.2.x Webspherc 5.1, Websphere 6.%, WebSﬁhere 7.x;

(3) databases: Oracle (up to version 10 ), DB2, DB2 for z/08, MYSQL (version 4.1.18
or newer), SQL scrver (versions 2000, 2005 and 2008).

The Palmyra Setup Tool provides wizard-like steps to complete the setup operation.
The first step is the welcome screen. In the welcome screen, the user can find the Options
button. Clicking on the Options button brings up the options panel which contains four options:
Secmity data sonrce has different properties, Sequence data source has different properties, Load
setup parameter, and Update setup parameter.

The second step is to specify Operating Systems and Application Servers. At this
step, the operation system and the application servers can be selected.

Different application servers require varied detailed information. For Weblogic 9.1
and Weblogic 9.2, the username and password of an administration account of Weblogic must be
passed. For Websphere 5.1, the server name and node name must be passed. For Websphere
6.x, the server name and node name and profile name must be passed and the type of the

application server (Network deployment or Normal) mst be selected.

72



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The third step is to specify Application server home directory and JMS Provider. For
all versions of Weblogic Application Server, the.home directory for the appli_cation server and
the domain which will be used and the server name must be passed beside to the JMS provider
(MQSeries or Default JIMS). For all versions of JBoss, only the domain directory must be
passed. For all versions of Websphere, the server home directory and the TMS Provider must be
passed.

The fourth step is to specify the Ear path. The path of the Ear 1o be installed is
specified at this step. -

The fifth step is to setup User Login Parameters. The username and password of the
default account to login into the installed application is entered at this step.

The last step is to setup Data source parameters. All applications need data sources 1o
run successfully, these data sources have parameters which must be passed, for example:

Database type: the type of the database;

Operating system: the operating system on the databasc machine;
Host name: the host name of the database machinc;

Database name: the name of database instance;

User name: the datebase user name to be used;

Password: the password of the username.

The user can test the communication with the specified database by clicking on Test
Connection button.

All Palmyra Ears have at least three standard data sources: security store, autotest
datasource and data source. Tn most cases the security store has the same parameters of the data
source, so by default the setup tool does not show the security store for entering its parameters,
to show it, 20 to aptions panel and select the check box “security store has different properties.”

Additional options can be specified based on type of application server selected.

For Weblogic, additional options include:

Deploy and configure the application server: install the application into the
application sever with all the needed configuration.
Remove the deployed applications: remove all the deployed applications befors

installing the new application.

73



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Remove the JMS file store; remove all the messages from the queues in this
application server.

Remove the server cache files: clear the cache in this application server.

Copy the database drivers: copy the data base drivers to this application sgﬁsr.
Copy the ant library: copy the ant library to this application server.

Update the application server class path: update the application server class path.
Setup parameters path: to make the setup operation faster, the setup parameters
can be eave in 2 tex! {ile, which can be reused later without the need to rewrite
them manually.

The user can reuse the generated text file by clicking the button Load Setup
Parameters in the option panel, or can update them by clicking the button update Setup
Parameters.

VI  CREATING DATABASE STRUCTURE

A. Creating Database Tables

The database structure is composed of tables having columns, indices end constraints.
This structure is created automatically by the system using the metadata created following the
design phase according to the classes defined in the UML class diagrams.

The persistence module generates table names from UML classes following this rule:

TableName=lastPackage+’__’+ClassName+ ‘_'

For example, if the full name if the class is 2.b.c.d.MyClass, the generated name is
d_MyClass_ NB: If generated name exceeds 30 characters, it will be truncated from the
beginning the fit the max length (30, constant underscore is included).

For example, if the class name =
a.b.c.d.EntitywithlongNameForContractTest, the gonerated name will be:
tyWithLongNameForContractTest .

Relations betwoen Classes are represented. FIG. 15A illustrates an example of
Relation One to One. In this example, table X will cortain y$code and ySpk_. Indexes on
v$code_ and y$pk_ are created (only in case of compositions, for aggregation relations, the
UML must indicate so).

74



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

| FIG. 15B illusirates an example of Relation One to N. In this example, table v__ will

contain x$code_ and x$pk_. Indexes onxscode_ and x$pk_ are created (only in case of
compositions, for aggregation relations, the system must indicate so). ‘

FIG. 16 illustrates an example of relation with interface. In case of aggregation with
an interface, in the table related to Class X we add a field superInterfacestype_. This
field will contain the full name of the class Y1 o-r Y2.

NB: If an instance of X is in relation with instance of Y1,
guperinterfacestype_ in table X_ will be scf to full name of class Y1.

In case of aggregation with multiplicity n with an interface, ...Stype_ athribute is not
added.

The mapping from a class attribute to a table ficld follows this rule:

Field name= attribute name + '_’

For example: name ~-> name_

Tn one particular implementation, if generated name exceeds 30 characters, it will be
truncated from the beginning to fit the max length (30, constant underscose is included)

For example, if the attribute name= longFieldN ameForPersistenceContractTest, the
generated name = ameForPersistenceContractTest_

Fig. 17 illustrates an example of Inheritance. The mother_ table is created normally

(no special treatment). The child _table will contain only pk_ field with fields declared on class

Child (a2). Every insertion in the table child_will be accompanied with an insertion in the table
mother_.
Constraints are created according to integrity rules:
The “unique” stereotype on a field F (a unique field) in an entity E will be

translated into this following action:
Altering the E_ adding a constraint of type unique on F.

~ The “code” stereotype on a field F(should be mandatory) in an entity E will be

translated into this following action:

Adding a constraint of type unique on the fleld F.

75



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

The “index” tagged value on a field F in an entity B will be translated into these

following action:
Creating an index on that field.
B.  Updating Database Tables

The target software application is developed using an iterative process. Through this
process, each iteration produces a new version of the software application having more
functionalities than the previous versions, Whenever modifications are made on the UMT,
models for each iteration, the database siructure should be updated in accordance to the metadata
represented by the model. Through this process, the system allows for an automatic update of the
database structure without losing previously entered data.

During the development phase of the applicétion, or when upgrading already
deployed applications to new versions, the design of the application often changes, and this, in
turn, may affect the design of the database. These changes include adding/removing classes
to/from the application, or adding/removing field to/from each class. In order to preserve current
data in the storage, the "Update Tables" operation is provided in the persistence service to allow
modifying the underlying storage while reducing data loss risks to bare minimum.

In this document, the modifications to be executed while choosing the “Update
Tables” option is described.

Adding a new entity in the model (with n attributes) is translated into these tollowing
actions:

-Creating the entity’s table in the database.
-Adding a primary key constraint on the field pk_

-Adding n+7 records in the FormatData_ table, which contains information abaut
a1l columns of all tables (n atiributes with 7 technical fields)

Removing an entity from the model is trenslated into these following actions:

-No action (The Entity’s table 1s still existing)

Changing the name of an existing entity in the model from E to E2 is translated into
these following actions:

-Creating a new table B2_ (the table B_ is still existing)

76



WO 2011/045634 PCT/1B2010/002037

-Performing the same actions described in the previous scenario.

Adding a new field F in an existing entity B is translated into these following actions:
-Altering the table B_ by adding the new field F.

-Deleting all the entries related to the entity E in the FormatData_ table then

5 adding new entries.

Removing a field F in an existing entity B is translated into these following actions:

-No action (NB: if the field was never assigned).

Changing the name of a ficld F into F2 in an existing entity E is translated into these
following actions:
10 ~Altering the table E_ by adding a new fisld F2. (F is still existing in the table E_)

-Deleting all the entries related to E in the FormatData_ table then adding new

entries, (No more record for F, a new record for [2).

Adding a new entity in the model (that contains 1 attributes) in composition or
" aggregation with another entity is translated into these following actions:

15 -Creating the entity’s table in the database.
-Adding a primary key constraint on the field pk_

-Adding n+9 records in the FormatData_ table (n attributes, 7 technical fields,
entity$code and entity$pk fields).

-Tnserting new records in the ConstraintsData_ for the indexes and the con straints

20 created for this entity. (Next section for more details)

Adding a new relation of type composition or aggregation between two entitics will
be is translated into these following actions:
-Altering the table which should have the forci@ keys in the database by adding
the owner’s $code and $pk fields. »

25 Deleting all the entries related to the izble which should have the foreign keys in
the FormatData_ table then adding new zntries. (Including owner$code and

owner$pk)

77



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Adding a new relation of type inheritance between two entities will be trapslated into
these following actians:

-No action to execute.

Changing a relation’s multiplicity will be translated into these following actions:
- No action to execute if the multiplicity change doesn’t change the relation from

single-valued to multi-valued or vice versa.

- When the relation nature is changed, the system changes the place of the foreign
koys to be in the table that has the navigable role.

Chenging a field’s type will be translated into these following actions:
~ -Alter the concerned table by modifying the field’s data-type, such stop succeecs
if the RDBMS allows it.

-Deleting all the entries related to the concerned table in the FormatData_ table
then adding

new entries.
C. Updating Database Constraints

The database table-constraints are created in accordance with the integrity rules
defined in the UML models using field and relation multiplicities. Whenever modifications are
made to the integrity rules the table constraints must be updated. The system provides for an
automatic update of database constraints when possible. When constraints cannot be updated
automatically because the previously existing data does not comply with the new cénétraints, the
system generates a report that facilitates manual intervention. The system provides information
such as the failed constraints. V

" Sometimes the changes, made to the design of the application, do not include
adding/removing classes or fields. Sometimes all you need is to modify the constraints of some
fields. In this case there's no need to invoke the "Updats Tables" operation. Instead, you can use
"Update Constraints" operation.

The generated SQL code to be executed differs from one DBMS to another.

Here details the modifications to be executed after choosing the “Update Constraints™

-option.

78



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Adding the “unique” stereotype to a field F (a mandatory field) in an entity B will be
translated into these following actions:

-Altering the B_ adding a constraint of type unique en F.
~Updating ConstraintsData_ (removing all entries then redefining new entries)

Removing the “unique” stereotype to a field & (mandatory) in an entity E will be
translated into these following actions:

-Altering the table E_ by removing the unique constraint.
-Updating ConstraintsData_

Removing the “unique” stereotype to a field F (non mandatory) in an entity E will be
translated into these following actions:

-Altering the table B_ by removing the unique constraint.
-Altering B by rendering F nullable
-Updating ConstraintsData_

Adding the “code” stereotype to « ficld F(should be mandatory) in an entity E will be
translated into these following actions: "

-Adding a constraint of type unique on the field F.
-Updating ConstrainisData

Removing the “code” stereotype to a field F in an entity B will be translated into these
following actions:

-Removing the unique constraint created on F.
-Updating ConstraintsData_

Adding the “mdex” tagged valueto a t'ie]d F in an entity E will be translated into
these following actions:

-Creating an index on that field.
“Updating ConstraintsData

Removing the “index” tagged value to a field F in an entity E will be translated into

these following actions:

79



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

“Dropping the index created on that field.
-Updating ConstrainisData_

Changing the multiplicity of 2 field F in an entity E to 1 will be translated into these
following actions:
-Altering the table E_ by modifying the cefinition of F (F is henceforth not null).

-Updating ConstraintsData_

Changing the multiplicity of a field F in an entity E from | to nuliable will be
translated into these following actions:
-Altering the table E_ by modifying the definition of F (Henceforth, T coﬁld be
null).

-Updating ConstraintsData_

Removing a relation of type aggregation or composition will be translated into these
following actions: A

Dropping created indexes on the ownerScode and owner$pk fields.
-Updating ConstraintsData_

Adding a relation of type zggregation will be translated into these following actions:

-Adding a unique constraint on owner$pk if the multiplicity is 1.
-Updating ConstraintsData_
-(NO INDEXES ON FOREIGN KEYS)

Adding a relation of type composition will be translated into these following actions:

-Creating indexes on foreign keys
-Adding a unique constraint on owner$pk if the multiplicity is 1.
“Updating ConstraintsData._ »
VI  CONFIGURATION
A. Presentation

1. Menu

80



WO 2011/045634 PCT/1B2010/002037

10

15

20

The target application menus contain all the pathways to the screens provided by the
application. Each of these menus can contain sub-menus and additional pathways in a tree-like
structure.

2. Menu Editor Tool

The Palmyra framework provides a tool called Menu Editor Tool, which is used to
define the structure of the application menus. The Mernu Editor Tool allows for menu
configuration capability. The menu editor as an offline tool requires information from the server;
that information includes the current menu, the uscrs dofined in the system, the class paths of the
model, the action type, the use cases, free parameter and additional parameters. This tool allows
for loading of pre-built menu configuration files and then reflecting these configuration files in
the systemn. This tool also allows for loading of an Import/export configuration file that allows
the system to import or export the current configuration or get a configuration from another file
through importing it. Further, this tool allows for manipulation, in which the current
configuration file can be manipulated and changes would be applied to the current systém.
Additionally, the tool also provides different configurations for different user groups and
multilingual labeling in which labels are configured so they support certain language. Finally,
the too! also allows for adding new menu items. FIG. 18 represents the user interface of the
Menu Edi‘tor Tocl. '

The configuration menu items must be registered by defining an initalizer and call the
method AdvancedMenuGenerator.register().

TABLE 11 illustrates an example of adding new menu itoms.

Table 11: Example of Adding New Menu Ttems

SimpleContextImpl simpleCtx = new
SimpleContextInmpl (UseCaseConstants.EDIT,
Boolean . FALSE,
Menu.class . .getName {) ,
ActionTypeConstants . TECHNICAL,
ActionConstants.CREATE) ;

AdvancedMenuGenerator . register( AdvancedMenuGeneratox .PUBLIC,
1Configuration>Menu™, "Menu Manager”
gimpleCtx, null, false,
MenuProvider.class .getName()) ;'

81



WO 2011/045634 PCT/1B2010/002037

In this exampls, the structure includes the following information:
role: cither AdvancedMenuGenerator, VERMEG_ADMIN for vermeg admin or
AdvancedMenuGenerator. ADMIN.

path: the path of the parent of the newly created item. The path must be written in

5 the following form: item1>item2>... >parent. The path will be created if it was not found.
label: the name of the item.
targetContext, the target simple context to call.
isfnit: indicates whether the item is to be viewed in the initialization mode.

additionalParameters: the additional parameter that is needed in the target

10 context.
resource: the full path to the resource provider.

‘When finishing the creation of the menu structure, the system gencrates a file that
contains the menu structure to be uploaded into the target application.

3. View-format

15 The Palmyra framework automatically generates screen pages used to create, edit and
search the objects of the Entity class types that are defined in the UML model of the target
application. The contents of the screens are generated in accordance with the fields and relations
of the entity classes by using an algorithm to generate a default layout of the screens. The usage
of the visual elements that represent the fields and relations (text boxes, combos, lists, links) and

20  their distribution on the screens might be manually modificd later using the View-format
configuration tool. View-format can also remove unnecsssary fields from the screens and can
create groups of fields.

The view fofmat of a Palmyra screen is rcpfesentcd by an instance of the class
cam.palmyra.arch.p-resentlation.m0del.viewfarmat. ViewFormat. This class contains:

25 ' ‘Screen properties:

Label: contains the screen title;
isForCaching: whether the skeleton of the screen is cacheabls;

showTitle: whether the title of the screer is visible.

82



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Fields properties:
readOnly: whether the field is read-only or editable;

Mandatory: whether the field is mandatory in order to save an instance to

database;
Visible: whether to show or hide the field.

The information that link one view format instance to the appropnate screen are
stored on the class com.palmyra.arch, presgnmtion.modzl.viewfaVmat.FactmyEnhy, there are
two fields:

Context: Specify the context of the correspondent screen;

Precise: Specify whether the view format was registered using a precise comtext

or not.

FIG. 23 shows the UMT. Class Diagram of the view format service.
3. Actions Configuration

The Palmyra Framework generates default actions for every screen. The user can
modify some propertics of these actions using the Action Configuration service. He can hide ox
show the action, change its icon, change the position (Top or Rottom), change the arrangement
of actions.

4, Translator

The Translator is a configuration module of the Palmyra framework that manages
internationalization of many presentation eloments like labels, enumerations, screen title ...
a. Labels

The automatically generated screen pages have screen. elements (text boxes, combaos,
lists, links, etc.) with descriptive labels. The labels are generated using the field-nemes or
relation-names as defined in the UML class diagrams. The labels can be modified later using the
Translator module. When using the screen pages, the ladels are chosen according to the language
defined in the user profile.

b. Enumerations

83



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Enumerations are Simple class types that represent a text with a predcfined set of

.available values defined in the UML class diagram. In the screen pages, fields having

enumeration class types are displayed as combo boxes with the set of available values. The
available values can be modified using the Translator module. When using the screen pages, the
available values are chose according to the language defned in the user profile.

5. Default Values Configuration

The default values configuration service allows the definition of default values fora
specific field and a specific user. This allows defining a different default value for each user.

B. Security ' !
1. Authentication

Authentication is the mechanism by which callers prove that they are acting on behalf
of specific users or systems. Authentication answers the question, "Who zre you?" using
credentials such as user/password combinations.

The concept of ASP, i.e., Application Servics Provider, is included in the
Authentication module. In fact, the latter considers a user as a pair of User Name and ASP
Value. This allows defining more than one user with the same neme provided that they have
different asp values.

In Palmyra terminology, ASP is the Segrega-ion of data and processes between
different entities shering the same database. An entity can be a bank, a branch, a department or
any repartition required By the client. For example: A user with an ASP Value equal to X, will
only see data relative to X.

FIG. 19 shows an exemplay Palmyra login page.

In Palmyra, Authentication is done by two methods:

(1) Internal Authentication: authentication mechanism in which the authentication is
managed by the application itself using a built-in component. Here, the usernames and
passwords are saved in database. When using the internal authentication mechanism, the
application provides for a security configuration tool to create new users, which is usually dore

by the system administrator.

34



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

" (2) External Authentication: The application communicates with an external system.
in which users are defined. Where there is a custom registry, which stores the users and their
credentials (for example LDAP, Active Directory).

Authentication in Palmyra uses Filters to check each request sent from user. Ifitis
sent from an authenticated session it will be forwarded to the required resource. Otherwise, it
will be forwarded to the login page. Palmyra uses Form-B ased authentication to send the
username and password to the Filter, which verify the username and password. In the case of
External Authentication, users and passwords are stored in a custom registry such as LDAP. So

the first step is to assure that the application server used for deployment support the integration

‘with a custom registry.

The application server connects to the user registry to collect user-related information
when creating credentials, which are then used to represent the user during authorization (for
example, when logging into an application to check passwords). For example, Websphere
Application Server security supporls (he implementation of most major LDAP directory servers
(like ActiveDirectory of windows). As another exampls, Jhoss also supports the implementation
of Active Directory.

The security komel offers an interface for authentication called AuthenticationDriver.
The implementation of this interface depends on the suthentication technique required by the
client.

The AuthenticationDriver interface containg 6 methods:

boolean init(): initialisation of the security authentication driver (exp: Load of sstup
user).

String authenticate (ServletRequest servletRequest): the implementation of this
method depends on the technique used for authentication.

For exemyple, in the case of internal authentication, we can implement this method to
get the username, asp and password from the ServlefRequest parameters and then check this pair
if exist in the DataStore.

In the case of external anthentication it will be replaced by the JSecurityCheck

servlet, which will play the same role of check of users’ credentials.

85



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

void login(String userName, ServletRequest servietRequesi): in the case of defanlt
anthentication we implement this method to cache sessicnld and nsexName. In the case of
external authentication (jsecuritycheck) the user name is already cached in the session.

String isduthenticated(ServietRequest servietRequest): the implementatioh of this
method is to retumn the userName if sessionld exist in the cache else return null

void logout(ServietRequest request, ServietResponse response): the implementation
of this method allow the action of logout the user by invalidats session.

void failLogin(ServietRequest request, ServietResponse response): In case of
authentication fail the implementation of the failLogin method is to tell where forward the
request.

Any implementation of the authentication c:{river needs the following static block in
which we register our Driver ' ‘

static {

DriversFactory.getDriversFactcry () . registerAuthentication
Driver {
new MyAuthenticationDzriver ()
)7

}

The last connection date is stored for each Security User.

To enforce the security in the Palmyra framework, account management is
implemented through account lokout and password policy. Both are configurable in a property
file cafled passwordConfiguration. The containing properties ate: 7

minLength: is an integer that defines the mirimum length required for a
UserCredentials password. Its default value is 0.

u;vAndLow: is a boolean that defines whether both upper and lower case characters
are required for a UserCredentials password. Tts defanlt value is false

mixedChars: is a boolean that defines whether both numbers and characters are
required for a UserCredentials password. Its defaultValue is false

passwordValidity: is en integer that defines the validity period of a password in days.

By default, this property is empty.

86



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

warnBefore: is an integer that defines the number of days before which the system
should start warning a user that he needs to change his credentials. Tt must be used along with
passwordValidity. By default, this property is empty.

lockOuiNbr: is an integer that defines the number of failed password trials that causes
the user to be inactive (The SecurityUser’s IsActive property is set to false) and thus can no more
access the application, unless the administrator activate it again (set TsActive to true) or if he tries
after 8 hours. By defau]f, this property is empty.

Palmyra also supports Single Sign on (SSO) authentication mechsnism. Single sign-
on is the ability to require a user to sign on to an apﬁlication only once and gain access to maﬁy
different application components, even though these corﬁponents may have their own
authentication schemes. This feature allows end users to Jog on once per session rather than
logging on to each resource or application separately.

2. Authorization

Authorization is the process whereby the interaction between users and application
resources is cantrolled, based on user identity or other information. In other words, authorization
answers the question "What can you access?" ‘

The definition of the authorization process method used by the application is done by
the implementation of an interface AuthorizationDriver.

Palmyra anthorization system is implemented on different layers:

a. Groups

System users can be grouped so that they are managed easily. The security
configuration tool allows creating groups and corresponding users. Groups may also be grouped
in other groups in order to create a hierarchy. ’

Two groups are created by default when starting the application for the first time:
Administrators and VermegAdmin. VermegAdmin is part of the group Administrators.

' If a SecurityUser belongs to VermegAdmin or Administrators, then he has all
priviledges on the application.
b. Roles

87



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Roles are user-profiles ﬁsed to pre-establish a set of configurations to be applied to
the later created users. The roles ere created using the security configuration tools. Roles are
assigned later to previously created users using the same security configuration tool.

A role “admin” is créated be default when sterting the application for the first time.
This role gives all rights to the application resources.

c. Rights

The privileges and restrictions of users are expressed in terms of what Entity-class
types they can access and what process parts thoy can run. Rights are configured using the
security configuration tool. The rights are later assigned to the i)raviously created users, groups
and roles also using the security configuration tool.

Tn Palmyra the authcrization process is done in two levels:

(1) Bntity level: in which the system checks on the user privileges. FIG. 20
illugtrates the process of entity authorization implemented by Palmyra.

(2) Service level: in which the system checks on whether certain action is allowed
to be performed. FIG. 21 illustrates the process of service authorization process.

Roles in Palmyra are defined by their names (Roleld). They enclose Entity Policies
and Service Policies. The latter will define the privileges that the role offers to.2'user or a group
of users. ‘

To grant the access to a specified entity to role, the entity policy is associated to the
Role. Those associations are based on a create condition, update condition, delete condition and

find condition. If these conditions are verified, the user which role is granted can access to the

entity.
Entity policy is identified by: Application Name: ALL or the name of the application
and BEntity Name.

The “create condition”, “update condition”, “delete condition” cr “find condition”
fields are a Boolean expression that can be:
Empty: this meens that there is no restriction on this create/up date/delete/find .

action.

“false”: No right to execute create/updats/delets/find action.

g8



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Expression containing the following keys date, hour, time, currentUser,
userProperties or a combination of mentioned keys. Example: attribute ==
currentUser, this delete condition means that according to this role, only instances
with an attribute value equal to the current user can be deleted, Example2:
attribute = = userProperties.propertyNams
The entity con.Palmyra.arch.basicStruct.data.Busines sEntity is
the super entity of business entities. ‘\

|
The entity'com. Palmyra.arch.basicstruct.data.Abs tractvalue is

t

the super entity (business entities plus Palmyra entities).

To grant the access to execute a specified action in a sp%;ciﬁo service to rale, the
service policy is associated to the Role. Those associations are bas;ed on a condition. If this
condition is verified, the user which role is granted can access to the application
name/service/action. |
Service policy is identified by Application Name, Serviice name and Action name.
The Condition field is a Boolean expression that can be::

Empty: this means that there is 1o restriction on. thisz application

name/service/action. !

“false”: No right to access to this application name/service/action.

|

Expression containing the following keys date, hour, time, currentUser,
userProperties or parameters or a combination of mentioned keys.
Given this syntax: identifier operator value, cach of the latter keys can be used as

either an identifier or a value.

Date: is evaluated as the current date, a BusinessDate instance.
Example: date = = ‘10/12/2100b’,ie, allow ection execution only at 10/12/2100.
Hour is evaluated as the current hour, getHour() of a TimeValue instance.
Example: hour = = 8,ic., allow acﬁon execution only at & 6’cjlock each day
Time: is evaluated as the cuurent time, a TimeValue ilusfance.

Example: time = = “08:00:00:000",1ie, allow action execution only at 8 o’clock each

' day.

89



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

CurreniUser: is evaluated as the current user, a StringValue instance. Example:
currentUser = = X’

UserProperties: is to be used before a security property name with the follovﬁng
syntax: userProperties.propertyName. The latter is evaluated as the current user’s security
property value. Example: userProperties .menuld = = svaluel”,ie., allow action
execution only if the current user’s menuld is set to valuel.

Parameters: is to be used with the following syntax: parameters.paramnName, where
paramName is a parameter of the action defined as an actionNare in the ServiccPolicy.
Example: parameters.config. creatoxrUserId = = currentUser, this condition
means that the parameter “config” needs to be created by the current user in order to allow the
execution of the action.

‘ The service com.Palmyra.arch.service. BusinessDelegate is the super service.

FIGs. 22A, 22B, and 22C illustrate the main part of the exemplary Authorization
UML model. Specifically, FIG. 22A illustrates an exenrplary Securityltema UML Model, FIG. -
29B illustrates an exemplary Policies UML Model, and FIG. 22C {llustrates an exemplary
Securityliem's Roles UML Model.

When a user A access an application resourcs, checks are done on whether the user is
éuthorized to do so. The operating principle of these checks relies on the entity and service
policices related to the user A.

‘When checking if a user is authorized or not, from each role a condition is formed
and added to the union of all roles.

Example: User A needs to seaich for instences of Entity E. User A has one role X
and a role Y inherited from the Group B, which he is a member of. Role Y has an EntityPolicy
instance P2 on Entity E with a find condition set to creatorUserld==curentUser. This condition
means that the User A can only see instances that he created when doing a find on E. Role X has
an EntityPolicy instance P1 on Entity E with a find condition set to empty. Taking into account
the latter information, the user A will see all instances of E.

The reseason is simply because a criterion has been formed with the two conditions of
role X and Y as a union and sent as a query to the database. The criterion is pk!=null |
creatorUserld == “A”.

C. Input and Qutput Devices

90



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The generated target application contains pre-existing libraries that manage the
communications with other systems and applications using differsnt commmunication and
messaging protocols. FTP, File, Quoue, WebDav, Mail via SMTF are examples of protocois
supported by the preferred embodiment. For each of these protocols, an Input and an Output
device is integrated in the targct application.

To use an Input Device, one needs to:

Define an Input Device Configuration with a specific message type. He can do this in
the IODevices Configuration submenu of the Configuration Tools menu.

Define a listener class that implements the interface InputDeviceListener. In this
class, he has to subscribe his listener to the specific message type and to implement the method
onReceive(MessageHeader mh). When an input device consumer notifies a listener, it calls its
onReceive method.

The Output Device implementation defines two actors:

Output Device Configuration: The oulput dsvice configuration is an entity class with

a code field deviceID. Tt has several fields according to the device type (For example, the mail

_ server in the cuiput device mail configuration or the hostname in the output device FTP

confliguration).

Output Device: The output device manages the writing of values to a device. S0 it’s
associated with an output device configuration. All output devices should extend the abstract
class OutputDevice. Palmyra defines five types of Output Devices: Output Device Queue,
Output Device File, Output Device FTP, Output Device Palmyre Service and Output Device
Mail. Bach extended Output Device inherits a ByteArrayOutputStream Attribute and implements
the method flush. The inherited field can be obtained by calling the method getOutputStream (). ‘
This method returns an OutputStream. The method flush () writes the content of the inherited
field to the device defined by the associated output device configuration. ‘

New /O devices and protocols can be added by adding new modules and new
libraries for these I/O devices and protocols. Modification of the I/O devices is usually not
performed during runtime. The application is taken off line and re-deployed with the new
modules and libraries

D. Mapping Tool

91



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Mapping is a tool which provides the ability of converting objects (e.g. copying field
values from source object to target object(s) based on a configuration). FIG. 25 illustrates an
overview of the Mapping process.

1. Uses of Mapping Mechanism

The Mapping mechanism is used for:

a. Connecting with outer world

Within the framework Palmyra data is represented by a special object (the interface
“Value” and its implementers). External data coming from outer devices 1s parsed using general |
purpose drivers, so the output is generally in a driver-spacific format. Driver specific objects
should be converted into application data cbjects on which the process is defined.

b. Integrating components

Applications also use business services that may require creating specific objects i
order to integrate their processes. For example the input of the accounting business service 15 an
accounting message (a data object). Tf the user wants to integrate the accounting in an
application, he should create accounting messages having other data objects as sources such as
client payments.

2. Configuration of Mapping

.Mapping is configurable and customizable at runtime: the whole mapping
configuration could be changed at any moment and the configuration effects take place
immediately. This gives a large level of flexibility to the users of the system. The configuration
of mapping is created at runtime of the application using the presentation tier. Different mapping
configurations can be assigned to different processes. For example, in the Touter, for each
incoming message type, a parser (driver) is configured and then a mapping could be specified.
FIG. 26 iﬂustraées an example of configuration of Mapping.

3. Mapping Process

The mapping mechanism creates the destination class in order to map the objects. The
creation of a destination-class using mapping comprises a number of key-mappings or

elementary mappings.

92



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Key Mapping is an elementary mapping conflguration of u field in the target. Every
field may have one or more key mappings to define how the value should be extracted from the
source. .

The Source Formule is an expression based on fields from the source to construct the
value which will be mapped or will be assigned to the ta-get. For example, 2 sowrce formula
may read: grossAmount - commission. Target field: netAmonnt.

A Condition is an expression that defines a condition. If the result is true, then the
mapping is executed. For example, a condition may read: operationType == “buy”. Target key:
balancel'ype source formula: “debit”. »

Sometimes the result of applying the source formula does not fit the target field. In
this case a conversion should be made. This is done by a converter.

-There are four types of converters:

(1) Built-in Converter, in which converting occurs by executing an action gdited
by the user.

(2) Date Converter, for converting values from date format to another date format.

(3) Enumeration Converter, in which the converter speeifies a collection of pairs.
Each pair specifies Iﬁultiple values which are converted to one value.

(4) Numeric Converter, in which the converter specifies a converting type: abs,
ceil, floor and log. '

" Mapping saves time as the conversion process is a very frequent requirement in
Palmyra applications. Having a module that pcrfonﬁs the process saves development time.
FIG. 27 illustrates in detail the process of Mapping convértcrs‘
4. Types of Mapping

Mapping is used to maps an object (source) 1o another object (target). There are two
types of mapping: ' _
. (1) Field to field mapping: one field from the source is mapped to one field n the
target (no expressions).

(2) Rich Mapping: Newer version of mapping which maps one object (source) to
one or multiple object(s) (targets). The source value is extracted by a formula (e.g., the formula
may be ‘firstName + lastName").

E. Loading Lifecycles of Objects and Constraint Moedels

93



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

A process diagram represents a process deﬁﬁition. Process diagframs are created asing
the state diagram modeling technique, where a state diagram is called a lifecycle or automata.
Later, a workflow engine, which is & finite state automaton that manages the business processes,
manages the lives of these states. The workflow is related to entities and represented in UML by
2 state diagram and the lifecycle is configurable by the user. FIG. 28 illustrates an example of the
workflow engine and how it manages the states in the system. ‘

A lifesycle or automata file is an XML file déscribing in XML language the graphical
state diagram defined in UMT. After creating the graphical statc diagram in UML, Palmryz
reinterprets the graphical state diagram into XML language so it can be easily understood during
and after the building process of the application.

In the generation step, the process diagrams are transformed into XML files. Those
XML files are loaded in the application using a specific confi guration tool that allows afterwards
performing a syntax check on the loaded process-definition and binding the process defimition
with a previously defined Entity class. Binding is the process ol assigning entity classes to a
process. Modifications on the lifecycle or the process definition can be made at anytime after
deploying the application. The resulting XML file produced in the gencration step is then loaded
into the system and the modifications are taken into consideration. The modification is generally
performed through the UML Designer interface to take advantage of the built-in validation
capability. The generator can be configured to export XML files only. Constraint models are
class diagrams that define specific Entity class types known as constraint classes. They add
constraints on pre-existing class types defined as Constrainable. The constraints are additional
integrity rules defined in the UML models based on existing entity classes; they are next
converted into XML files during the generation step. Tte generated application provides for 2
tool to load XML files that represent constraint models into the epplication. Modification into
constraints or adding new constraints can be done anytime after deploying the application. The
resulting XML file is then loaded into the system and the modifications are taken into
consideration.

F. Trace Configuration

The generated application provides the functionality of writing a trace in specific files

created on the server machine. The trace is used when necessary to analyze the tasks done by the

94



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

application and to log for bugs or technical problems. Trace Configuration can also record
business logs and module specific logs.

The application provides for a configuration ool to determine the location, size, and
names of files to be generated to store the trace. It also enables selecting from a list of predefined -
levels of details in the generated trace. ‘

G. Reports

Reporting tools are vital to enterprise applications that deal with data. They give the
user the possibility to generate dynamically reports on the data they work o given certain
criteria. The Report module is the Palmyra tool that defines and generates generic reports. It
provides easy-to-use user interface to build Reports (“templates™) that can be used later to
generate Reports in different formats.

The generated application provides the functionally of creating Reports using the data
entered into the application. The Report Writer is part of the presentation service. The definition
of Reports is based on Metadata, which indicates the entity class types to be used as data
containcrs and the parameters to be entered when generated the Reports in order to select the
appropriate objects. Metadata is the definition of data loaded in the memory of the application.
Tt is derived from XML files (e.g.,, process and consiraints), generated code, written code, and
preexisting libraries. .

v Reports are generated in multiple formats like PDF or HTML or RTF based on the
data and form definitions. The Report designer can define some parameters to be used in the
criteria. The values of these parameters are supplied jus: before the Report generation. These
parameters arc a sot of optional conditions to be applied when collecting the data to generate the
Report. For example, if the user just wants the personal information of the Employees who are ‘
older than 25, then he can define search criteria to customize the Report gathered data. The
Report can also define an entity which is the name of the main type (class) representing the
entity to be displayed. For example if the user wants to build a Report which includes the
Employees’ personal information, the main Entity will be Employee. The Report can define the
names of the attributes (fields) of the main Entity io be viewed in the Repoxt, for example
employee first name. Further, these fields can be grouped, ordered, and represented in many
different ways such as charts. Finally, the Palmyra system also provides for the capability to

generate reports programmatically byproviding various methods for generating and mo difying

95



W
0 2011/045634 PCT/1B2010/002037

the interfaces for programmers to work with. TABLE 12 illustrates an example of the methods
that the Palmyra Reporting Tool exposes pro grammatically to work with the reporting tool.
Report comprises an cssential part of any application. However the design of the Report may
take a lot of time and effort. Moreover, any simple modification on the Report design may cause
the application to stop running and require restarting. For these reasons, Palmyra has the XSL
Editor Tool which facilitates designing process of the Report by the designers. This tool allows
for various design functionalitics, such as modifying the layout of the report, adding dynamic
date, modifying the labels, adding expressions, and adding images to the design. Finally, the
Report writer tool also provides means to represent dataina diagrafxl formai. The Palmyra
system contains a chart library. This library is a Java-based charting that enables the user to add
charts to his java applications and web pages. The library contains AWT based chart

components, applets, and a chart servlet. FIG. 29 illustrates the report generation steps.

96



WO 2011/045634 PCT/1B2010/002037

Table 12: An example of the methods that Palniyra Reposting Tool cxpose programmatically to
‘ work with the reporting tool

: Example of Report generation
FileOutputStream output = new FileOutputStream("D: \\Repoxrt.pdE");
String reportName = "myReport";

CollecticnValue parameters = new Collectionvalue () ;
parameters.set ("parameterName v, new StringValue ("testParameter" 1)
String criteria = "(yl== vtestCriterial") & (xl=={paraneterName})"*;
ReportGenerator reportGenerator = new ReportGenerator (};
reportGenerator.generateReport (output, reportNane , parameters, new
ToDriverDefaultConfig(), critexia);

Exemple Report Export Action

public class ActionExportComandReport extends ActionHandlerAdapter implements

Initializer {

private static final Sti'i.ng EXPORT_COMMAND_REPORT = vExportCommandReport" ;
private ActionExportComandReport() {
} .

private static ActionExportComandReport instance = new
ActicnExportComandReport ()

public static ActionExportCcmandReport getInstance() {

return instauce;’

private static boolean isInitialized = false;
public static doolean dnitialize() {
if (lisInitialized) { )

SimpleContext context = ActionsUtil.creazeSimpleContext(
ActionTypeConstants. ROW_OPERATION, EXPORT_COMMANL_REPORT,
UseCaseCcnstants.EDIT, Boolean. TRUE, AccountComp.class.getName()) ;

ActionsUtil.registeraAction (context, instance);
isInitialized = true;
}

return isInitialized;
Example of report download Controller

public class ReportDownloadController implements DownloadController (
public void download(PageData pageData, String key, OutputStream outputStream)
{
collectionvalue value = (CollectionValue) BEditUtil.getSelectedIitem(pageData) ;

ReportGenerator reportGen = new ReportGenerator ()
reportGen.generateReport("accountReport", otutputStream, value);

public String getFileExtension(PageData pageData, String key) {
return "pdf";

}
public String getFileName(PageData pageData, String key) {
return "account"; }}

97



WO 2011/045634

10

15

20

25

PCT/1B2010/002037

VI  TESTING
A, Auto Test

Palmyra based-on applications can contain a tosting tool used to ensure the non-
regression in the application when adding new functionalities through the iterative approach.
Generally, regressions are bugs in pre-constructed functionality, which surface after the
introduction of new code. The tool is called Autotest, and it is used to record testing scripts, to
create testing steps, scripts and suites manually, to Tun it later, and to compare the results. The
tool ensures non-regression in the gencrated application by making sure that functions created in
previous version of the application can still work after the additions. The tdel helps to discover
precisely and easily anomalies or differences in process-results between the version on which the
test is Taunched and the version in which the recording is done. .

1. AutoTest Terminologies

StepTest: Tt is the core item in the AutoTest, and presents the service that you want {o
test.

ScriptTest: It presents the test scenzrio of a given use case. A script is composed of a
set of ordered steps. The ScriptTest may have its own InitialState.

Suite: If you have many scenarios to be tested, then you can compose them by order
in one Suite. The Suite may have its own InitialState.

TnitialeState: Tt is an image of a database state saved in xml files; it is created by the
user.

Test Message: It is a configuration used by the AutoTest tool to create the suitable
Palmyra message that presents the service to be tested. It consists of a service name, action
name, and parameters. '

Result: The result of the execution of the TestStep.

StepExpression: Tt is a palmyra expression used to evaluate the result.

TestSearchResult: Tt enables you to find the Result in the database and display it.

TestCollectionSearchResult: Tf the Result is a collection of values, and the test

success depends of the number of these values, put the expected number here.

98



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

TestFailure: Bvery time one of the previous tests (StepExpression, TestS carchResult,
TestCollectjonSearchResult) fails, and if the run of the TestStep or TestScript fails; 2 new
TestFailure is created to inform you about the failure,

2. Create TestStep, TestScript and TestSuite manually using Autotest

The test scenario can be organized as test suitas which comprises test script, which is

further comprises of test steps. The first step of manual test scenario creation is to creale a test

-step.

AutoTest provides a dropdown meu for Step Creation. To seaxch for an old Step or
creates a new ome, click the Step link in the AutoTest menu, then the new button to create a new
Step. Fill in the Step name; this name is unique for the all steps.

Now create the Test Message, this field is mandatory and presents the service that
you want to test it. So you have to select the service name, action name and the user name for
this message. Ifthe message needs parameter(s), you can create them by clicking the Parameters
tab and select one of the available parameters types.

Select the Simple Parameter from the combo box to create a simple parameter for
your message, then select the parameter name and type, and fill the Param Value of the
parameter, this value is the real parameter value at runtime.

If the parameter value is not a simple one, then select the Composite Parameter from
{he combo box. This will enable you select any composite value and use it as a value for this
parameter.

A nuser can choose between two options to get this value.

_ Click the Select Value link and set the class type and the scarch criteria, which
will be used to search for the parameter value.

- Click the Create Value link and set the class type and the draft code, which will
be used to search for the parameter value in the draft values.

Simply use the Collection Parameter when you need a collestion of composite ones.
The Step Expression is used to ensure that the result is correct. »

-The Expression Name: it is unique for tae all Step Expressions.

-The Expression Value: is a Palmyra expression.

99



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Fill the Test Search Result name (which is unique), the Class Type and the criteria;
the Test Search Result will search for values from the Class Type

Test Collection Search Result is use to check the number of the results, set the class
type, the criteria used in search and the expected values’ number. ‘

AutoTest also provides a dropdown menu for Test Script creation. To search for an
old Script or creates a new one, click the Script link in the AutoTest menu, then the new bution
to create a new Script. Fill the Script Name, and select the Script State from the combo box
(optional), the Script may or may not have its own State.

a. Add TesiSteps to the SeriptTest via the StepOrders teb.

To Change Steps Order within the Script is important, because the execution flows
from the first Step to the last one considering this order. Fortunatély you can change this order
whenever you want, by using the axc links. i

AutoTest provides a dropdown ment for Test Suite creation. To search for an old
Suite or creates a new one, click the Suite link in the AntoTest menu, then the new button to
creste a new Suite. Fill the Suite Name, and select the Suite State from the combo box
(optional), the Suite may or may not have it own State

b. Add TestScripts to the TestSuite via the ScriptOrders (ab.

To Change Scripts order within the Suite is important, because the execution flows
from the first Script to the last one considering this order. You can easily change this order
whenever you want, by using the are links.

3. Rumnning TestSteps, TestScripts and TestSuites

Autotest enables runming a pre-recorded or created testScript, TestStep and TestSuite;
{liis is done by simulating automatically the user inputs into the application and comparing the
generated results with the recorded equivalents. A specially designed user interface is provided
for the execution of TestSteps, TestScripts and TestSuites. Autotest generates a report that
contains all the differences (if they exist) between the obtained and recorded results. The report
is then used to analyze the potential anomalies. After analyzing the results and making the
necessary corrections, the application developers may decide to update the test script when the

differences of results is because of enhanced features of the new version. Autotest provides the

100



WO 2011/045634 PCT/1B2010/002037

possibility to automatically update the recorded scripts by simulating the user-inputs and re-
recording the results.
Runming a test step, script, or suite is as simple as running a step, just enjoy the three
phases game:
5 Search;
Select; and
Run

4. AutoTest Recorder
The AutoTest Recorder provides an easy and fast way to create Script Tests.
10 By defanlt the Auto Test Recorder records all services that are different from Palmyra

services. But in some cases you may even need to rscord Palmyra Services; you can simiply

do that by adding the Palmyra Services name to a configuration file.

It already contains some entries; illustrating you how to add more:

com.palmyra.arch.lifeCycle.adapter.manager. LifeCycleBx
15 ecuter=fireEvent, fireEventWithoutConfig

com.palmyra.arch.scheduler.ctrl. JobEntryExeController=

immidi.at eExecuteJobEntry

com.palmyra.arch. pe:l:sistence .entitymanager=synchronize

Recorder Menu: From the AutoTest menu click the Record link:

20 ' Then you can choose between just records a Script Test, or a Script Test and its Record
Results.
Start recording scénarios: Tuput the Script and Step prefix names (optional, a defauit
ones will be used if you didn’t select ones), then click the Recording button, and wait till
the confirm message.

25 Play test scenario: And now you can play your pre-prepared scenario.

Stop Recording: Stop the Recorder when you finish your scenario

101



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Start Recording scenarios and results: You may need to know about the Record
Results before starts recording them. The Record Result presents an entity used during the
scenario, in this case the recorder hash each entity that should be synchronized nto a string, then
on running the same Script Test again, the AutoTest compares these stored hashes with the anes
calculated during the running. - 'You can exclude some fields from the hashed entity by assigning
a Record Config to the recorder. (Have alook to the next section to know how to create Record
Configs)

Create Record Config: In the AutoTest menu. seloct Create Record Config. Input 2
unique name. Select the entity to exclude some of its keys. Then, select the keys that you want
them to be excluded from the hash of the selected entity.

5. The Script Delete

The main purpose for the Script Delete is to rollback the database to a previous state,
to understand why you may need this feature in some scenarios.
“The scenario -to be tested- creates and saves a new instance of the entity (City) n

the datahase; the city name is always Paris. -
-The action name is (createCity()), it has no parameters as mput.

-The (City) has two fields, its name (name), and a sequential id (number), it starts
from 1000.

“When you successfully record this scenerio for the first time, a new city will be

added to the database:
Pk_ Neme__ Number_
28052008 Paris 1000

-If you try to run the recorded-scenaric, you will absolutely get an error message;
it notifies you that there is already a city in the database with the same unique

name (Paris).

-And if you somehow managed to change the city name in the database to another
name like (London), and run the recorded-scenario, then the AutoTest will report

an error in its log, because it expected a (number==1000), while it got

102



WO 2011/045634 PCT/1B2010/002037

(nummber==1001) at run time. This happened because of the sequence field is

automatically increased.

This is a classic example of when you need the Script Delete fimctionality, because
you have to delete the old city from the database, and also reset the sequence value of the field
5 (number) to (1000), before running scenario.
A script delete can be generated according to a Delete Configuration that contains the
list of classes to be deleted and a list of sequences to be deleted.
The list of those classes is specified in Class Configuration end Package
Configuration. In the package configuration, you can specify a list of excluded

10 classes.
The list of sequences is specified in sequence Configuration.

To delete the classes, the followings steps are executed:
Perform a delete simulation using the 'voumeDeleteSimniation' service from
4 Persistence layer. This method doesn’t delete a value but it is just é simulation of
15 the delete operation. The output of this method is a collection of “DeletedObject”
' objects. One deletedObject is defined by a className, valuePk and collect:on. of
“DeletedBrror” objects. If there is any problem during the delete (an error), this
action won’t stop the simulation but creaze a “DelstedError” object and associate
it to the current DeletedObject that causes this error. In case the number of
20 DeletedBrrors is less than 1000, the deletedError will have as type
“DeletedErrorP”. Else, the deletedBrror will have as type

“Deleted ErrorCriterion”.

Check the delete simulation errors: Verify that all instances specified in the

deleted error list are also in the list of the deleted objects list.
25 Create a script dslete using the list of deleted objects and deleted errors.
Execute the script delete.

Update the sequences in the database according to the specified sequences values

in the sequence configuration witch is attached to the current delete configuration.

103



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Create Script Delete: From the AutoTest menu click on the (Search Delete Config)
link: '
-Click new
-Enter the Script Delete name, it should be unique

-Select the entity (City) to be deleted on running this Seript Delete.

-Select the sequence (number) to reset its value to (1000) on running this Script

Delete.
-Return back and save it,

Run Seript Delete: To run any Script Delete, go the same link in the AutoTest menu
(Search Delete Config), search, select and rumn.
Attach Script Delete to Script Test: Now you know that you have to run the Script
Delete (Delete-City) just before running recorded-scenario (createCity()).
The AutoTest provides you the (unctionality of attaching a Script Delete to a Script Test. This
can be easily done by editing your script and assign the required Script Delete to it.
-Search and edit your Scribt Test

-Attach the required Script Delete

, When you have the Script Delete attached to the Script Test, there is no more need to
run each of them individually; you just have to run the Script Test as shown early in this
document.

6. Checlk the Results

In order to éompare and to provide the differences between the recorded result and
the current test result, Autotest compare the hash code of the two results.
The hash code of a value is created from its string representation. This representation is like
keyl=vall &key2=val2 where keyl and key2 are keys of the value and vall and val2 are
respectively their values. The differences between the 1ecorded result and the current test result
are the list of the keys having different values.

Note: The list of the keys used to create the string representation of the value aré
simple and technical keys excluding the sequence and pk code fields, the foreign pk fields, the
sequence fields and the excluded hash keys specified by the tester in the Record Result Conﬁg.

104



WO 2011/045634 PCT/1B2010/002037

10

15

25

The best way to check the test results is to see the AutoTest log file; you can find the

 log file in the “autotestLo gs” folder, while the form of the log file name is:

- For a Step: “step_step-neme execution-date.log”.
- For a Seript: “script_script-name execution-date.Jog”.
- For 2 Suite: “suite_suite-name execution-date.log”,

Also if you are running a Step, and a failure message appears, you cain check the
failure reason by elicking the Failures tab.
7. Autotest Import/Export

There is a collection of useful tools that helps you to import and export the data you
may need to accomplish your test; you can easily access these tools from the AutoTest main
mentu.

Export Draft: The AutoTest enables you to save a value as a draft in xml file, and then
you can use this draft value in the test, you can choose between two options
Export new Draft: Press the “New” button to create a new value from the type specified
in the “Class Type” text box. The AutoTest exports the new value lo .xml file with name
like:

-Class type: com. ...City

-The City class code is presents by two fields (name and created-date)

~File name becomes: $/drafts/ClassName_ClassCode.xml Ex. $/drafts/City_Paris
01072006.xml

Export exists Draft: Select one of the results, and then press the “Bxport” button, the
selected value will be deleted from the database.
8. Unit test of AutoTest

To test the methods of your application, you can use the unit test use case. In fact,
using this use case you can run the method with the passed parameters, show the result and the
failure values, save the configuration and then test if the method is executed successfully or not.

To add a Unit Test configuration you have to follow these steps below:

-Choose the action create from the menu under the path “Auto Test\Unit Test”

105



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

-Add a name to the configuration, a service name, an action neine, a user name

and the parameters values.

-Run the method on clicking on the button Run; the result ox the failure will be
added. Finally, you can save the configuration with the expected result o with the

expected failure,

After running the method you can consult the result. Then to test the method, you
have just to click on the button test. ‘

9.  AutoTest Report

~ The Autol'est generates a report for each running scenario, it contains both the
success messages for the succeed processes, and the error messages detected by the AutoTest
during the execution of the wrong processes. The log files canbe found in the working directory
of the application, and under this path:
.../Warking Directory/ AutoTest/autotestLogs

k Report messages: Essentially, after runuing a scenario three Iinds of messages can be
found in en AutoTest report, two of them the success and warning message are good and makes
you happy, however, the third one which it is the failure messages are better and should make
you happier. But why the failure messages are better?

The failure message means that an out of sight error is discovered, and going to be
solved, which is the main goal of the AutoTest tool, locating the errors in the tested application.
10.  Debug Mode

This section shows how to turn on/off the AutoTest debug mode, then how to read the
resulted debug log.
‘When 1t 1s needed?
_Tn most failures cases the debug-maode isn’t needed, because the normal AutoTest
log will lead you to solve the cause of the failure, but in very special cases the -

normal log isn’t enough.

-In these few cases the investigator nceds to know what happened al both the

record and run times, here comes the role of the debug-mode, it provides the

106



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

investigator with two logs to compare between them and solve the cause of the

failure.

-Practically the known case that you may aeed to use the debug-mode, is the one

when you got this errar in the normal log:
Step ADJU_EMISSIONS_fireEvent 1207239411130 has failed
[[ExecuteThread: '12' for queue: ‘weblogic.kernel. Default'] [711833142]]

Error: The type of the recorded result at this synchronization should he [X] while
the found type at run-time is [Y]

Debug mode On/Off: All what you need to turn-on the debug-mode in the AutoTest is
to add a file (debug.mode) under this path:
.JAutoTest/debug/debug.mode

To turn-off the debug-mode you have to delere or rename this file (debug.mode).
Debug mode usage: This usage order should e followed to get the advantages of the

. debug-mode:

i. Turn-on the debug mode
2. Record your scenario (s1)
3. Run this scenario (s1)

4. Tumn-off the debug mode

The result will be a number of log files that can be found under this path:

.JAutoTest/debug/stepl_record uniqueNum.log
stepl_1un uniqueNum.log
step2_record_uni queNum log
step?_run_uniqueNum.log

Debug mode logs: The extra results of the debug mode (in additions to the recorded
scripts) are the debug-logs files. Most of the recorded steps will has two debug-logs, one at
recording time and the other at running time; you can distinguish between them by name:

./AutoTest/debug/stepl_record_uniqueNum.log (at recording time)

107



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

stepl_run_uniqueNum.log (at running time)

VI STRUCTURE OF RESULTING APPLICATION (PATMYRA FRAMEWORK)

A. Presentation Layer

1. The Design of the Layer
a. The Chosen Architecture

For so many reasons (among of which we have security, maintainability and
centralization of processing) the thin-client architecture was selccted.

v In this architecture, the software system is split to at least 3 tiers. This is a brief
description for each of these tiers:

A thin client: The thin client is the tier that is in direct interaction with the end-user. It
is said to be thin becauss it has no business logic at all. It only provides the means to
communicate with the user, and it may b installed an every machine used by the users. As a
product, it can be part of the complete software solu-ion, or a third-party product such as a web
browscr.

A presentation tier: This tier runs on the server-side. It communicates with the thin-
client through some network protocol. It knows how to delegate requests to the proper business
services, and how to display results by sending responses baclk to the thin client. It also enables
the user to go from one use case to another. '

4 business logic tier: It is in this tier only that the business Jogic of the application is
performed. It can be thought of as a number of services that call each other, that are called by the
presentation tier, and that know how to connect to the database when it needs to process stored
data. ‘

The first two tiers are all that inerests ths presentation module, and we will be
focusing on these two ticrs later in this document.

b. The Chosen Design Pattern

The design pattern that proved useful for applications with (he previously explained
architecture is the MY C2 (stands for Model, View and Controller) design pattern in which the

application is split into the following three components:

108



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The Model: The model provides a set of services to access the database (or the state
of the application) and to run business processes.

The View: A set of components that know how to construct the user interface for cach
possible use case.

The Controller: The component that receives requests from the client and sends
respoﬁses back to it. Tt knows how to turn these requests into internal requests and how to’
delegate them to the proper services in the model. It also knows how to choose the proper view
companent that will construct the user interface.

( c. Closer Look at the Controller

In the MVC2 design pattern, it is evident that the controller component is solely
responsible for communicating with the thin client, and so, it should understand the network
protocol that connects it to the thin client, and it should elso understand the language of the thin
client so that it can interpret its requests, and synthesize zesponses back to it. So, we eﬁpect hat
much of the code that implements the controller component is client-dependent.

On the other hand, the controller is 2lso respensible for delegating requests to the
proper service in the model, and for choosing the view component that will decide the content of
the response. This functionality has nothing to do with the type of the thin client.

As a result, the controller component can be thought of as the union of the followfng
two units:

The Presentation Port: Tt is the only unit at which the client can connect to the
presentation ter of the application. It knows all the technical details related to the
communication with the thin client.

The Presentation Controller: It is the unit that receives client-independent requests
from the presentation port, delegates processing to the proper service, selects the proper view
component, and sends a client-independent response back to the presentation port.

FIG. 48 shows how the presentation tier can support many technologies thanks to its
design. ‘

d. The Big Picture

Generally, the interaction between the user and the presentation module starts by
sending a request, using some thin-client, to a presentation port that is “listening” to the client.

This request is client-dependent, and the presentation port has to convert it to a client-

109



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

independent request. Once it Coes that, it forwards this request to the presentation controller,
which will perform the necessary action to process this request.

Once the presentation controller handles a request, it can now respond to it. The
response must come in the form: of a new graphical user interface, or an update to an already-
displayed interface. The controller should know the graphical components to be rendered or
updated and the values to be bound to them. However, since the presentation controller does not
know how to communicate with the thin-client, it should do that through the presentation port
itself, which must provide the means for the presentation controller to render the user interface.
Thus, when the presentation port invokes the preseniation controller to build the user interface, it
should pass an object (a Renderer) that the presentation controller will use to render components
on the user interface.

The components displayed on the user interface are usually graphical representations
to the values in the current session. When the preser:tation port roceives a request duc to an
interaction between the user and a displayed interface, the port knows the graphical components
that were updated, but it does not know hox\v to updete the values they represent. So, the
Renderer is also a way for the presentation controller to pass objects (Value Bindings) to the
presentation port to help it update the values in the session when the port receives a request from
the built user interface.

In order to avoid over-writing the session data of one user interface with the session
data of another, each user interface (or page) must have its own memory space in the session. We
will refer to these separated spaces as the Page Data. The prescntation controller is the
component that knows how to create, initialize and updatc a Page Data object, but it is the
presentation port that knows how to keep the Page Data object returned by the presentation
controller in the session, and how to associate it with the rendered page (or user interface).

Of course, in order to conform to the MYC2 design pattern, the presentation
controller should not itself process the requests received from the presentation port, nor should it

build the page, even though this is what it seems to do from the point of view of the presentation

"port. Instead, the presentation controller should locate the appropriate service that would handle

the received request or action. From now cn, we will refer to this service as the Action Handler.

Similarly, when viewing or rendering a page, the presentation controller must locate the

110



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

appropriate view component, or a View Builder, that knows how to render a page, and invokes it
passing to it the Renderer object. FIG. 49 is an illustration of the above example.
e. Abstraction of the Presentation Port

In order to make an abstraction to the presentation port, we must define the language

of communication between it and the presentation controller. This languzge can be expressed in

 terms of the objects that are exchanged between the two units. To follow is a list of these objects:

The Requesi: The request contains any data sent by the client. This data includes the
targeted page or the use case to begin, and any additional parameters that affect the execution of
the business logic. The interface of this object must be declared in the presentation controller,
and each presentation port should provide its own implementation of that interface. The
implementation will most likely wrap the client-dependent request.

The Page Data: This object represents the session space reserved for each displayed
page. Thus it should be stored iﬂ the session. It should be identified using a unique identifier so
that it can be referenced in later requests/responses. »

The Session: In much the same way the request wraps a client-specific request, the
session also wraps a client-specific session. The interface of this object, which must be declared
in the presentation controller, contains only the necessary methods to add Page Data objects to
the session and to remove them from it.

The Renderer: The interface of this object (must also be declared in the presentation
controller) defines the set of components that any presentation port should know how to build.
Each presentation port must provide its own implementation of this interface. It actually must
wrap the client-specific response.

The Value Bindin g+ When the View Builder invokes the Renderer to build the user
interface, it should pass to it instances of this class to specify how each visual component maps
to the velues in the Page Data. These Value Binding objects can be used later by the presentation
port to update the values in the Page Data (Z.e. when a new request is received).

f. Locating the Appropriate Action Handler/View Builder

In the traditional approach of request handling, the controller ~eads the parameters in
the request, and then, it runs through a chain of if-else statements (and nested if-else statements)

that would eventually lead to the right action to be performed. In this approach, the code of the

111



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

controller is hard to maintain, because if a new action (which handles a special request) must bs
added, then the chain of if-else statements must be modified, and this might introduce bugs.

A better approach is to use the registry/factory design pattern. In this approach, the
actions register themselves at a factory. When the controller receives a request, it looks up the
action that is interested in this request from the factory. The registration and look-up operations
are done using a key object. This key may be built from data in the request and related data in the
session, The View Builders must be located the same way.

g. The Need for a Context

Suppose that the user interface contains a “Save” button, and the user clicks on it. In
this case, the presentation controller will receive a request telling it that a “Save” action must be

done. The presentation controller will look up the handler registered for this action and invokes

it. This is the simplest possible case, and from it, we conclude that the key used in the look-up

operation is the action name associated with the pressed button. However, this is insufficient,
since the action handler registered for the “Save” action will handle all “Save” actions regardless
of the page in which the source button exists. This means that the presentation controller needs to
know the precise context, in which the event happened. '

1. Defining the Context

Any user interface is actually a visual representation of one of the entities of the
system, and each entity in the system is an instance of some type. The actions the user performs
(such as the “Save” action) may be handlec differently accarding to the entity type. This means
that the type of the entity the page displays is part of the context. v

In addition, interaction with any page is actually a special cass of one of the following
known use-cases: ;

Edit: Tt is tae use-case in which the user creates new entity or updates an already
existing entity.

View; It is the use-case in which the user views an already created entity.

Search Input: In this use-case the user specifies search criteria with which he/she will
search for entities,

Search: This is the use-case in which the user displays the found entities that meet the

criteria specified in the search input use-case.

112



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

In the example given above, the “Save” action is a business action performed on the
displayed entity. There are other types of actions used to navigate the displayed entity. Using
such actions, the user can view the entities related to the displayed one. Yet there are other types
of actions that can originate from a user interface. The actions that refresh the page, or the
content of its components, when one component is modified, are examples on such actions.

To sum up, a context can be defined using the following attributes:

The use case name.

The entity type.

The action type (visual action, technical action, navigation, refresh, light refresh).

A parameter that indicates (depending on the action type) the action name, the navigation
role, or the modified component.

i More Precise Context

The above-mentioned context is 2 simple one that may not be sufficient in some
cases. In general, we naed to know the precise context in which an action was perlformed. The
precise context is defined in terms of the simple context of the current page, and the precise
context of the caller page. The caller page is the one from which the user accessed the current
page.

FIG. 50 illustrates how the action will be retrieved from the factory from a given
context.

h. Super Action Handlers / View Builders

By default, the presentation module will register basic actions and view builders for
the most generél and known use cases. For instance, for the following context:
Use case: Edit.
Entity type: Any (i.e. Composite Value).
Action type: Action.
Parameter: Save.
We will find registered a default action handler that invokes tae “synchronize”
method. Suppose that one request had the following slightly different context:
Use case: Edit,
Entity type: Currency (a sub-class of Composite Value).
Action type: Action.



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Parameter: Save.

Even-though the cortext is different, but since no action handler is registered for it,

the presentation controller should select the “Super Action Handler”, which is the handler

registered “or the more general case (i.e, the default action handler).

1. The Action Handler Interface

Every Action Handler on the system must implemcnt the interface

com.palmyra.arch.presentation.actions.ActionHandler:

public interfece ActionHandler {

TargetInformation executeAction(Request reguest,

PageData pageData, SuperActionHandler superAction) ;

BindingsMap getPcssibleBindings(PageData pageData,

String key, SuperActicnHandler superiAction) ;

ModifiedKeysInfo getModifiedKeysInfo (PageData

‘pageData, SuperActionHandler superAction) ;

String getActionPositionToUpdate (PageData 'pageData,

SuperActionHandler superAction);

}

This interface has 4 methods, the more important one is execuzedction, and its role is

to execute the business logic related to this action. It has three parameters:

(1) The Request. The request contains any data sent by the client. This data includes

the targeted page or the use case to begin, and any additional parameters that affect the execution

of the business logic. The interface of this object must be declared in the presentation coniroller,

(2) The Super Action Handler. Very often, a developer needs to extend the action

handling functionality for a special case. This means that the developer needs to call the super

action handler from within his/her action handler. Instead of knowing and extending the actual

type of the super acticn handler, the interface of the action handler must allow passing a special

cbject (with an interface similar to the action handler interface) through which invocations can

be made to the super action handler. This way, the developer need not know the actual type of

the super action handler, or how to locate it. The same technique must be used with view

builders.

114

\



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

(3)The Page Data. Obviously, the data of the page is the input to the business service
that will handle the request of tte user. Since this data is kept in a Page Data object, which is the
session space dedicated to the displayed page, then this object should be passed to the action
handler. P

(4) The Target Information. After executing an action the presentztion controller will
do one of the following operations, and it is the responsibility of the action handler to tell the
presentation controller what to do next by returning a Target Information object:

Calling a rew page: In this case the action handler must gpecify in its result the context
of the called page (including the action to be performed upon calling it), the data o be
passed to the called page, and the action to be executed upon returning from the called
page.
Forwarding to a new page: It is similar to the previous case, only the called page cammot
retumn to the caller page, and so, there is no nced to specify the action to be executed upon
fetuming.

Staying in the same page: This allows performing another action without transferring
control to another page. The action type and name is found in the simple context in the
Target Information object.

Returning to a caller page: The action handler must specify the data to be relurned to the
caller page.

None of the previous operations.

Thus, the Target Information object must contain the following attribules:

Navigarion Type: It could be Call, Forward, Stay, Return, or None.

Target Context: Used in case the Navigation Type was either Call or F orward.

Use Case Configuration; The configuration to be passed to the called page (for example
the value to be viewed)

The On-Return Action: The name of the action to be executed upon returning from a
called page.

The On-Returr Action Type: The type of the action to be executed upon returning from a
called page.

TABLE T1 is an example of Presentation generic Action Handler: AcrionSave

Tahle T1: Example of Presentation generic Action Handler: ActionSave

115



WO 2011/045634 PCT/1B2010/002037

nitialized),
SimpleContext:

il

‘UseCaseCons




WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

35

40

j- The View Builder Interface

Often, when a page calls another, the called page must be rendered inside the caller
one. To allow this to be abstracted, the View Builder must have the following method:

buildView. The Presentation Controller will nest calls to the View Builder of a page
within the calls to the View Builder of the caller page. To follow is the input of any view builder:

The Page Data: The page data must contain the data to be presented visually by the
view builder. ,

The Renderer: The object provided by the Presentation Port to aid the Presentation
Controller in rendering the visual user interface.

The Request: Sometimes the presentation controller may decide that some pages must
be updated only, without rendering them entirely. For this reason, it is useful that the View
Builder contains the following method thatl is used in this case:

updateKeys. The updateKeys method must returm a list of the components to be
updated.

This is an example of 2 ViewBuilder interface:

117



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

public interface ViewBuilder {

Container buildView(Renderer renderer, Request request,
PageData pegebata,

SuperViewBuilder superViewBuilder):

/'k*
* Returns a Set of components to be updated.

*/

Set updateKeys(Renderér renderer, Request reguest, PageData
pageData,

SuperViewBuilder superViewBuilder, Set
modifiedkeysInfos, Form form);

}
k. The Page Data

As mentioned before, the Page Data is the session space reserved for each displayed
page or user interface. Page Data objects have identiZiers used to access the page data in the
session. These identifiers are also used to bind rendered forms to their corresponding Page Data
objects. However, once a Page Data object is located, the context of the page must be restored so
that the Presentation Controller can locate the appropriate Action Handler that will operate on the
found Page Data object. The best way to restore the context is by keeping it in the Page Data
object itself.

Tn addition, since pages call each other, and since these pages must be rendered in the
same frame that represents a whole use case, it is useful to let each Page Data object keep 2
reference 1o the Page Data object that corresponds to the caller page.

Given this, the Page Data object need not keep its whole context. Instead, it only
needs to keep a simple context (i.e. use case name, class name, action type and the parameter).
The rest of the context information can be found in the caller Page Data object. In fact, if we
dorive an mterface from the Context object, the Page Data object can be thought of as an
imﬁlemcntation to this interfaca.

L How the Presentation Controller Works

When the presentat‘on controller receives a request, this request either will initiate a

new use case, or it will be part of an already initiated one. In the former case, the request mms:

118



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

contain the simple context of the use case to be initiated. In the latter, the requesf must provide a

. rcference to the targeted Page Data object and information about the action to be performed.

When initiating a new use case, the Presentztion Controller must create a Page Data object and
initialize it by copying tile context information to it. For already initiated usc cases, the
Presentation Controller must only copy the information about the action to be performed from
the request to the Page Data object. This will actually modify the context of the Page Data
object.

T both cases, the Presentation Controller must locate the proper Action Handler
object and invoke it. The Action Handler object will return an Target Tnformation object that
determines what the Presentation Controller should do next. The Action Handler may decide to
call a new use case, and thus a new Page Data object must be constructed and linked to the Page
Data object of the calling uss case, and a new Action Handler must be invoked. This means that
the Presentation Controller will go into a loop that breaks when the last called Action Handler
decides that no further actions should be performed.

2. GUI

The generated application automatically provides a web-based user interface. The
automated Ul generation process takes the metadata (which includes class and process) as input
and output visual clements which can be implemented as HTML page or native screen libraries.
The generated pages are basic use cases to create new objects, to search for already created
ohjects, and to edit or delete objects. The Palmyra framework automatically generates screen
pages used to creats, edit, and search the objects of the Enfity class types that are defined in the
UML model of the target application. The contents of the screens are generated in accordance
with the fields and relations of the entity classes by using an algorithm to generate a default
layout of the screens. The algorithm generates the layouts based on the structure of the classes
and then the view format tool can later be used to re-allocate the visual element if needed. The

usage of tae visual elements that represent the fields and relations (text boxes, combos, lists,

' links) and their distribution on the screens might be manually modified later using the View

format configuration tool. The medification of the user interface using the View format

configuraiion tool can be performed at runtime.

119.



WO 2011/045634 PCT/1B2010/002037

The automatically generated screen-pages contain a set of predefined buttons that
launch actions like save or delete or search. Process-related actions (defined in the process
diagrams) are also automatically generated in the target application.

Specific actions can be also be added on pages Wher new use-cases are defined in the

5  target application using the use-case transition diagrams.

When specific actions are added, the action-related treatment is written manually and
integrated in the application using the UML generation tool.

The manual'y written code is necessary when the required treatment is not predefined
or needed to be enhanced in accordance with a specific need.

10 2. Dashboard

Also as part of the Graphical User Interface, the Palmyra application provides the
users with the Dashboard tool. A dashboard is a tool that helps each application user to know his
"To Do" list, and it also provides an indication about the volume of his tasks. The dashboard lists
{he tasks that a user has to perform. Each user has his own list of tasks depending ort his

15  properties. The service provides configuration interface to allow a super user to assign properties
and conditions to users. It also guarantees that all tasks are assigned. .

A dashboard is a set of nodes, each node contains sub nodes. Each node dsals with an
entity. Entities are displayed according to conditions defined by the administrator of the
dashboard. A list of tasks corresponds to each entity. A task is a link to the product use case

20  allowing the achievement of this task. The configuration of the Dashboard is performed at run
time.
3. Input and Qutput Devices
a. 1/0 Devices

The Input and Output devices are the gateways of machine based communication
25" with other systems. The framework defines the templates that input and output devices should
follow. It alsa definos some input and output devices that support commen protocols like FTP,
HTTP, Queues, Emails via SMTP, printers and faxes (as oulput devices).
The communications are made using message exchanges. The input devices accept
messages generated from other systerns to be read by the target application and the output

30  devices send messages generated by the target application.

120



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Independently from the commun:eation port and the type of input device used,
messages arriving to ths system should be parsed in order to transfer the message into data
represented in a suitabls manner for the target application. This is done through two separate
modules, the drivers and the mapping.

The messages generated by the system depend also on the mapping and drivers in
order to transform data from internal representation into an intermediate form and eventually into
a message.

b. Mapping

The Mapping module is a configuration-based format transformer. The configuration
dofines the source and targel Lype (two entity class types defined in the metadata of the target
applicatior.) and defines how to transform field-values of the source type into the field values of
the target type. The transformation formulas are written using the expressions language defined
by the framework. The expressions provide the possibility to make arithmetical operations or to
invoke predefined methods on the field-values of the source element. The configuration also
provides the possibility to add conditions on the mapping instructions, so that only the
instructions with satisfied conditions ars executed.

The mapping configuration is done after the deployment of the application, and the
configurations are stored in specific database tables.

The mapping modue is principally used in Input and Output op erations wherein data
is converted from internal systém representation into intermediate representations used by the
drivers and vice-versa.

c. Drivers

Drivers are used to read from ot write into specific formats. In luput devices,
messages arrive ﬁ’ox_n external systems having a predefined format like XML or XLS or SWIFT.
These messages are parsed and converted into intermediate structures defined by the driver. In
Output devices, messages are generated in order to communicate with other systems. The
generated messages also have predefined formats.

For each format or type of format 2 driver can be created. The framework defines the
template of drivers. It also defines a set of drivers for some formats like XML, fixed text, and

swift messages.

121



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Some drivers require configurations, especially when the format is flexible. For
example, XML is a format but it is also a language so the structure of the tags and elements are
defined in a schema at runtime and the configurations are stores in a specific database table.

C. Business Layer
1. Basic Structure

The template that defines the metadata in the framework is called the basic structure.
Tt is considered the cors of the Palmyra framework because it is used by all the framework
services. All the metadata'deﬁnitions; whether by means of generated code or by dynamic
definition using constraint modsls or by means of written code, is based on the template defined
by the basic structure. By using the predefined template, all the implementing types inherit the
functionalities of integrity checking, serialization and de-serialization, and the possibilities of
having autornatically calculated fields. ‘

Rasic Structure defines the syntax and basic behavior for all entities in the
frameworl. Tt is a set of interfaces and classes that adds new features to the basic classes in Java.
Tt is composed of classes that are used in the development of applications. These classes are
wrappers for the Java primitives and Java Collection framework.

a. Packages of Rasic Structure

The main package com.palmyra.arch.basicStruct contains several sub-packages. The
most important are:

com.palmyra.arch.basicStruct.data: This sub-package contains simple and structured
data classes in the frameworl.

com.palmyra.arch.basicStruct. metadata: This sub-package containg descriptor or
meta-data classes, the list of deamons, integrity checkers and domain managers.

cam.palmyra.arch.basicStruct.exception: this sub-package contains the framework
customized exceptions. FIG. 33 illustrates the exceptions provided by this package.

com.palmyra.arch.basicStruct.init: this sub-package contains the main class
Generallnitializer java responsible of loading all Palmyra classes when staring the server.

com.palmyra.arch.basicStruct.interfaces: this sub-package contains the definition of

the interfaces to the different modules in the framework such as: configuration, security,

122



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

35

sequcncé trace, persistence, translator, lifecycle and file manager; this sub-package also coptains
a default implementation for each interface.

com.palmyra.arch.basicStruct.io: this sub-package defines a list of interfaces
allowing the definition, the configuration aﬁd the registration of drivers.

b. -Package com.palmyra.arch.basicStruct.data

This package contains the basic constructs in the framework, Classes in this package
are the main data blocks used in building applications under the Palmyra framework. These
classes implement the interface Value that is the highest abstraction level in the framework. This
interface defines the common behavior between all framework objects. The Value interface
states that a1l implementing classes will be Clonea‘ble, Comparzble, and Serializable. In addition,
implementing classes can be constructed from properly formatted human-readable strings and
XML documents, and implementing classes can be saved to similar strings and XMLs. Every
value is associated with a metadata descriptor class of type Classe that can be used to inspect the
definition and nature of this value. Table 13 illustrates the main methods defined in the Value
Interface of Package com.palmyra.arch.basicStruct.data:

Table 13: Main methods defined in the Value Interface of Package
com.palmyra.arch.basicstruct.data
package com. ioalmyra .arch.basicStruct.data;
public abstract interface vValue extends Serializable, Cloneable,
Comparable, PalmyraSerializable {
void checkIntegrity(int int0) throws IntegrityExceptiong
void checkIntegrity() throws IntegrityException;
void checkRules () throws RuleException;
Classe getClasse(); .
Classe getClasse(String key) throws ProcessException;
Fleld getField(String key) throws KeyNotFoundException;
void setvalue(String string, Profile profile);
void setValue(String string) throws IllegalFormatException;
void read|{InputStream inputStream, IODriver iODriver)

throwse IOExceptiomn;
void read(InputStream inputStream, Siring string) throws IOException;

void write(OQutputStrecm outputStream, IODriver iODriver)

throws IOExceptiomn;
void write(OutputStream outputStream, String string) throws IOException;

123



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Object clcne(boclean boolean0) ;

Object clcne();

void deserialize(String string, String stringl);

vold deserialize(String string):;

String toString(Profile profile);

void set(String string, String stringl, Profile profile)
throws KeyNotFoundException, IllegalFormatException;
void set(String string, String string1) throws KeyNotFoundException,

IllegalFormatException;

vold set(String string, Value value) throws
KeyNotFoundException;

c. Basic Struct Main Rules

basicStruct is composed of SimpleValue(s), CollectionValue(s) and
CompositeValue(s).

Each one of these types requires special procedures for use. However, there are
common tules in using all of the mentioned typés, these rules are:

Each Valuz object has a Classe instance associated with its Class type, this instance is
the description of this value and is provided through the getClasse method. FIG. 32 illustrates the
composition of Classe. '

Each Valus object has a default constructor, a string parameter constructor, and a
method setValue. This method takes a string and constructs the content of the object from this
string.

Each Value can provide its content in a readable string format.

In general, changing the constraint of a Value is achieved by sub-classing the Value
class and creating a new Classe instance and associating it with the new class of the Value.

‘When sub-classing any Value class, the user should always create the proper instance
of Classe that describes this value, override the getClasse method, and explicitly declare the
default constructor. ‘

The main methods defined in the Value interface are: methods for content checking,
checkIntegrity, and checkRules; methods for getting meta-data information about the object,

getClasse, and getField; methods for reading and saving the object in different formats, read,

124



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

write, sctValue, and toString; and naming methods. FIG. 30 illustrates the main methods defined
in the Value Interface of Package com.palmyra.arch.basicStruct.data.
d. Value Interface

The Valtue Interface has thres varieties of implementing classes. The SimpleValue
classes are a counterpart of Java primitives or wrapper classes, of it can simply be an atomic or
simple value. The CollectionValue class is a counterpart of the Java collections AP], or it can be
simply a collection of homogeneous items. The CompositeValue class is the counterpart of a
Java class, or it can be simply a coutainer that has items of ditferent types.

€. SimpleValue

The SimpleValue class is the abstraction of a single or atomic value in the
architecture. That means any instance of this class contains, logically, one value. Subclasses of
thls class are wrappers of the Java simple data types.

FIG. 36 represents the class diagram of SimplsValue type and its subolasses.

i. BooleanValue

This subclass is a wrapper Java boolean primitive. The BooleanValue hasno special
constraints or rales. TABLE 14 illustrates an example lisiing of Boolean Value. In TABLE 14,

two BooleanValue instances are created. The second one is created and hes its content set from

~ the string parameter;

Table 14: Example of BooleanValue

BooleanValue bvl = mew BooleanValue():

BoolsanValue bv2 = maw BooleanValue (®true");:

bvl.setvalue (true) ;

System.out .println(bvl.getValue());

System.out.println(bv2);

System.out.println(bv2.getClasse())

i, StringValue
This subclass is a wrapper of Java String class. FIG. 343 illustrates an example of

StringValue class. The StringValue adds to the Java String object three comnsiraints: the max
length of the content string, the mask that the content must apply to, and a Tist of poséible valid
values. These constraints are saved in the StringCls metadata instance associated with the

StringValue object, and the default StringCls instance has no value for these constraints. To

125



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

35

change one ar more of these constraints, the programmers must subclass the StringVaiue and
change these constraints in the StringCls instance associated with the new class as shown in
TABLE 15: _

Table 15: Example of the constraints on StringValus

package test;
public class MyStringValue extends Stringvalue {

private static f£imal Classe cls = new StringCls (
"test.MyStringValue', new Integer(4)):;

/* Remember: we should always explicitly declare the
default constructor and the Classe getter method. */
public Classe getClasse() {

return cls;

}

public MyStringvValue() {
}

}

This code defines a new StringValue that has a maximum length of 4.

One can get the maximum length and other constraints from the StringCls assocjatad
with the StringValue.

MyStringvValue sv = new MyStringValue();
Intecer max = (({StringCls) sv.getClasse()) .getMax () ;
System.out.println(max); // prints out: 4

iii. DateValue

The DateValue class is a wrapper for the Java Date class, the DateValue has two
constraints; min and max dates. TABLE 16 illustrates an exemple of how to create a DaieValue
object from a data or a string parameter:

Table 16: Example of how to create DateValue object from a Date or a String parameter

DateValue dvl = new Datevalue();

DateValue dv2 = mew DateValue("22/1/1977"):
dvl.getvValue (new Date());
System.cut.println(dvl.getValue());
System.out.println(dv2]) ;

126



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

35

iv. NumberValue

The abstract class NumberValue is the super-class of all numeric classes m the
framework. The metadata class for this value is NumiberCls class. This class defines two
constraints on the contents of NumberValue: the minimum and maximum value. In addition, as
in the Java Number class, this class provides helper methods for conversion between the various
numeric classes. Subclasses of NumberValue are IniegerValue, LongValue, FloatValue and
DoubleValue. TABLE 17 illustrates an sxample of how to create different types of
NumberValue class from a Double, Integer, or String pa:rametef:

Table 17: Example of how to create different types of NumberValuc class from a Double,
Integer, or String parameter.

NumbervValue nvl new IntegexrValue():

NumberValue nv2 Numbervalue.newInstance (new Double (88.421));
Integervalue nv3 = new TntegerValue (nv2.asInteger(}));
IntegerValue nv4d = new Integervalue("1977");
System.out.println(nvl); // prints out: (
gystem.out.println(nvl); // prints out: 88.421

System.out .println(nv3); // prints out: 88

System.out .println(nv4); // prints out: 1977

I

V. DynamicStringValueClass

vDynamicStringValue is a StringValue that can change its StringCls descriptor class at
runtime. Instances of DynamicStringValue class can have their StringCls instance set in the
constructor or in any part of its lifecycle. TABLE 18 illustrates an example of
DynamicStringValueClass:
Table 18: Bxample of creating a ListValue from a formatted string and add items to it

package test;
public c¢lass StringlList extends ListValue {

private static Classe cls = new CollectionCls(
"test,Stringlist®, StringValue.class.getName());

public Classe getClasse() {
return cls;

127



WO 2011/045634 PCT/1B2010/002037

}
public StringList() {
}
5 .
public Stringlhist (String value) throws ProcessException {
super (value) ;
}
10 publig static void main(Stringl[] args) {
tringlist list = new StringList("[22, Osama, Maher,

gh, 22/1/19551");
list.addvValue (new Stringvalue(*whatever®));
ligt.addvValue (new StringValue("ABCDEFG"));
15 list.addvalue (new StringvValue("1234567"));
Iterator iter = list.iterator();
while (iter.hasNext())} {
Object item = iter.next();
System.out.println (item) ;

f CollectionValue

25 V This is the super-class of all containers or data structures in the framewvork. FIG. 31
illustrates the Collection class implemented in com.palmyra.arch.bas'icStruct‘da’ta package.
Subeclasses of CollectionValue are either a concrete imp ementation or a filter class that adds a
specific feature to an existing concrete implementation, Subclasses of CollectionValue include:
ListValue, a collection implementation based on Java List; Mép Value (Teble 19), a collection
30  implementation based on Java Map (Table 20); ConditionalCollection, a collection that filters the
content of a concrete implementation based on a specific condition; and PageByPageCollection,
a collection that adds the paging behavior on other implementations (Table 21). The
CollectionValue class is the framework counterpart of the Collection concept in Java. A
CollectionValue is a \‘Nrapper of a collection that has items of type Value.:

33

Table 19 Example of the MapValue Class

public static void main(Stringl[] args) {
MapValue map = new MapValue();

128



WO 2011/045634 PCT/1B2010/002037

map. set ("name"”, new StringValue|'JName"));
map.set ("salary", new IntegerValue (1234)) ;-
map . set ("phone", new StringValue ("+963-(011)-5551234"))
map.set ("e-mail", new StringValue ( "me@somewnere.com") ) ;
5 map.set("on-job", new BooleanValue ("true"));
Tterator iter = map.values() .iterator();
while (iter.hasNext()) {
‘Object item = iter.next();
System.out.println{item);
10 }

129



WO 2011/045634

10

15

20

25

30

35

40

45

PCT/1B2010/002037

Table 20: An example of CollectionClassValue
package test; ‘ :

public class Integerlist extends ListValue {

private static Classe cls = new CollectionCls/(
"test.Stringhist®, IntegerValue.class.getName());

public Classe getClasse() {
return cls;

}

public IntegerList() {
// continued

}

public IntegerList(String wvalue) throws Proce ssException {
guper (value) ; ' :
}
¥
Second we define the condition:

package test;
public class MyCondition implements Condition {

public boolean eval (Object obj) {
if (((TntegerValue) obj).integerVelue() >= 48) ‘
return true;
else
return false;
}

b3
package test;

And finally we apply the condition object to the ListValue instance throw this
anditionalCollection instance,

public class Tester {
public static void main(String[] eargs) {
// create a Listvalue and £111 it with random numbers.
IntegerList list = new IntegerList(};
for (irnt 1 = 0; 1 < 100; i+-)

list.add(new IntegerValue(Math.round(100 * Math.random())));

130



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

35

40

Table 21: An example of the PageByPagelterator

public static void main(Stringl] args) {
' // create a Listvalue and f£ill it with random numbers.
MapValue values = mew Mapvalue();
for (int i = 0; L < 100; i++)
values.set (Integer.toString (i), mew IntegerVa_ue(i)):
System.out.println(values) ;
// create a PageByPageIterator.
PageByPagelterator pages = new PageByPagelterator (values);
pages.setbPagesSize{10);
pages .setPageNumber (2) ;
Tterator iter = pages.pagelteratoxr();
while (iter.hasNext()) {
System.out.printin(iter.next());
}

pages.nextPage();

Aq instance of the CollectionCls class is associated with every CollectionValue class.
The only constraint the CollectionCls imposes on the CollectionValue is the type of its items.

Tahle 22 illustrates an example of ReferencingClass.
Table 22 An example of ReferencingClass

package remcte;

public class NewStringValue extends StringvValue {
private fimal static Classe cls = new StringCls ("rcmote.
NewStringValue®) ;

public Classe getClasse() {
return cls;
}
}

T'o remotely reference this class we should create a new Class that extends the Reference class
and have the same name of this class,

_package remote;

public class NewS:ringValue extends Reference

{}

131



WO 2011/045634 PCT/1B2010/002037

10

15

25

30

g CompositeValue

CompositeValue is 2 data structure that contains predefined fields definition. The
definition of the fields exists in the CompositeCls instance associated with each CompositeValue
object. This is similar to the idea of a class in which it is composed of members. A .
CompositeValue object stores in its metadata class the definition of it fields.

Subclasses of CompositeValue are: DynamicValue, a CompoziteValue that can
change its fields at runtime; ID, a CompositeValue composed of a LongVealue primary key and:
StringValue code members.

FIG. 34A illustrates the subclasses of the CompositeValue class. The
CompositeValue class extends the CollectionValue elass, thus all operations valid for a
ClollectionValue are valid for the CompositeValue. Unlike the CollectionValue a user cannot set .
the value of a key not defined in a CompositeCls class, only declared fields are can have values.
The role of the CompusiteValue class in the framework is the same role of the class in Java. The
CompositeValue class is a structure composed of predefined fields. ‘

A CompositeValue class refererices a CompositeCls metadata class thet defines its
definition. The CompositeCls by its turn contains a collection fields whose elements are of type
Field. Each field in turn is associated with a specific Classe type.

The CompositeValue defines a set of methods to manipulate the value of its fields.

~The most important ones are:

get (String key): returns the value of the given key. The key can be simple (a) or
composite (a.b.c).

getSimple (String key): returns the valus of the given simple key.

set(String key, Value value): sets the value of the field with the given value. The key can
be simple or composite. The CompositeValue class provides many overloaded versions
of this method.

setSimple(String key, Value value): sets the value of the simple field with the given value.
remove (String key): removes the value of the key from the memory. The field can be
simple or composite. '
removeSimple(String key): removes the value of the simple key from the memory.
isAssigned(String key): returns true if the key has a value in the memory. The key can be

simple or composite.

132



WO 2011/045634 PCT/1B2010/002037

10

15

20

5

30

35

40

iSAS'.s"ignedSimple (String key): returns true if the simple key has a value in the memory.
A field defined in a composite value can be in one of two states.
~ Assigned: tae field is considered as assigned if it has an existing value in the memory.

Every field is considered as assigned after calling on of the two meth(;ds: set or get.

Not assigned: A field is considered as not assi gned if it hasn’t a value in the memory.
A field has the state ‘not assignad® after executing a remove operation on. it.

FIG. 35 illustrates an example of creating and defining CompositeValue class fields

' i DynamicValue

DynamicValue is a CompositeValue with a non-static Classe instance associated with
it. Thus this class instance can be updaled at runtime and fields can be added at runtime to this

DynamicValue object. Table 23 illustrates an example of using this class:

Table 23: An example of DynamicValueClass

First we define the DynamicValue class,

‘package test;

public class Employee extends DynamicVelue {

private static CompositeCls cls = new
CompositeCls (Employvee,.class) ;

public Classe getClasse() {
return cls;

}

public Employee() {.
1

}
Then we create an instance of Employee and we add fields to it at runtime,

public class Test {
Employee emp = new Employee();
CompositeCls cls = (CompositeCls) emp.getClasse();
cls.addrield (new Field("emp name", StringvValue.class));
cls.addPield (new Field("emp_salary", DoublevValue.class)):
cls.addField (new Field("emp_manager', Employee.class,

Field.COMPOSITION, null, true, false));

emp . set ("emp_name®, "“Osama A.0Obled");

133



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

35

40

emp.set("emp_salary", "123");
emp.set ('emp_xanager", new Enployee () )
System.out.println(emp) ;

1L ID class

ID class represents an identifier or primzﬁy key for a specific AbstractValue instance.
ID cxtends CompositeValue and is composed of three fields; idPk, idCode and idType . Each
AbstractValue instance provides a unique ID instance, the plk is provided znd maintained by tke
sequence service, the cade is cvaluated from the AbstractValue fields at runtime and the type
presents the name of the J'.nstancé type. In Table 24, the code is a StringValue composed of the
combination of ficlds that have their orderluCode property set. We can sce in the code listing
that the first three fields defined in this AbstractValue class have their orderinCode property set
to an integer value, whereas the remaining field has its orderInCode property set to the default
value null. Thus in the output of this code the values of the specified ficlds will be printed in that
order.

Table 24: An example of the ID class code

package tecst;

public class AV extends CompcsiteValue implements AbstractvValue
{
private static final Classe cls = new AVCIs("test.AV",
new Field[] {
new Field('"personal_number", LongValue.class, Field.SIMPLE,
null, true, false, mew Integer(l), new Integer(l), mew
Integer (0) ),
new Field{'mame", Stringvalue.class, Fleld.SIMPLE, null,
true, false, new Integer(l), new Integer(l), mnew
Integer(2)),
new Field{"surname", StringVa ue.class, Field.SIMPLE, null,
true, false, nmew Integer(l), new Integer(l), new
Integer(l)),
new Field{'salary", IntegexrValue.clasgs, Field.SIMPLE, null,
true, false, new Integer(l), new Integer(l), new
Integer(0)),

)i
public Classe getClasse() {

return cls;

}

134



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

public static void main(Stringl] args) {
AV av = new AV ();
av.set ("personal_ number", new: LongValue (22177) ) ;
av.set ("name", new StringValue("Albert "))
av.get ["surname", new StringValue('Einstein”));
av.set ("salary", new IntegerValue(84210) ) ;
gsystem.out.println(av.getCode());
// Prints out: 84210 Einstein Albart
3}

h. Koys clags

.

Keys class is a Map structure that defines names of possible fields that can existin a
CollectionValue or a CompositeVzlue class. “Possible” means that the key represents a field
defined in a CompositeValue but not necessarily an existing field. As Jong as the class of the
object is loaded, the definition of the field ﬁself exists in a Field object reachable from the Classe
instance associated with the class name of the Value, but in runtime the valus object may have a
key and consequently a value for the specified field or may not.

The structure of the Keys class is a Map, so every entry in this Map has a key and &
value. The key is a String object contains the name of the field and the value is a Keys object '
containing possible keys for this field or null if this field has no keys.

The main three types in the framework canreturn a Keys instance as follows:

SimpleValue: always returns null.

CollectionValue: returns a Keys instance with one entry that has the string "*" as the
key, this means that the CollectionValuc object can take any field name, and the value of this
entry is a Keys structurs of the items of this CollectionValue.

' CompositeValue: returns a Keys instance containing all the fields defined in the
CompositeCls object associated with this CompositeValue instance.

The framework provides the possibility to extract the list of keys regarding a set of
properties: owner, declared, mandatory, assigned, relation type, code, calculated ete...

The set of these methods are defined in the Classe class.

1. DeepMap Class

This abstract class is the first implementation of the Value interface. Tt overrides the

default behavior of the Map and implements the new object with in-depth naming access. All

135



WO 2011/045634 PCT/1B2010/002037

10

15

20

5

CollectionV alue implementation benefits from (his class and accepts composite object names &g
a key.
3. AbstractValue

AbstractValue is the super interface of all persistent objects in the application. It
contains default or technical fields that are used in saving and retrieving the AbstractValue from
any storage service. The technical fields are: pk, type, accessPoint, creationDate, creatorUse:ld,
updateDate, updatorUserId.

The AbsiractValue has three 1nctﬁods that deal with persistency:

Synchrom‘ze: tells the persistency service to save this AbstractValue object.

delete: tells the persistency service to delete this AbstractValue object.

lazyGet(String key): retrieves the value of the field from the application storage.
k. Package com.palmyra.zict basicStruct.metadata

This package contains four main parts: the motadata description of all elements in the

" framework (Simple values, composite values, collection values and controllers), the deamors

(IfAdded, TfNeeded and IfRemoved), the domain managers and the integrity checkers.

i Meta Data classes

The main class holding the metadata description of the framework classes is Classe.
Each object in the framework is associated with a Classe instance. This instence holds
information about the different fields of the Value and properties of the Value itself. The main
methods in this class are:

Value newlInstance(): creates a now instance of a value.

Classe forName(String className): retrieves the metadata description of a value

Classe getSuperClasse(): returns the metadata description of the super class.

List getAllfmplementedInterfaces(): returns the name of all implanted interfaces.

Keys getSubClasses(): returns the name of all sub-classes.

Classe have many sub-classes. The main ones are:

SimpleCls: is the root class holding the metadata definition of a simple value class. Its
main sub-classes are; BooleanCls related to instances of type BooleanValue, BytesCls related to

instances of type BooleanValue, DateCls related to instances of type DateValue, NumberCls

136



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

related to instances of type NumberValue, StringCls related to instances of type StringValue and
TimeZoneCls related to instances of type TimeZoneValue.

CollectionCls: is the Toot ¢lass holding the metadata definition of a collection value
class. This class provides the possibility to retrieve the items type of the collection.

CompositeCls: is the root class holding the metadata definition of the composite
classes in the framework (entities and interfaces). Its main methods are:

Field getField(String name): returns the metadata description of a field.

List getCodeFields(): returns the list of fields marked as code.

Keys getKeys(): returns the name of all fields. The CorpositcCls defines many
overloaded versions of this method.

Keys getDeclatedKeys(): retumns the declared keys only.

Keys getOverriddenKeys: retumn the overridden keys only. Note that all keys =
declared keys -+ overridden keys.

CompositeCls has many sub-classes:

AVCls: related to every class that extends CompositeValue and implements
AbstractValue or every interface that extends AbstractValue.

ConstraintableCls: related to classes having the stersotype “constraintable” in the
UML model.

InterfaceCls: related to every interface that extends the interface Value.

DynamicCls: related to dynamic values classes.

ConstraintsCls: is a sub-class of DynamicCls, it is related to classes marked as
“constraints” in the UML model.

The class Field is the elementary object for metadata description. Each CompositeCls
instance holds a group 'of Ficld instances. Bach one dsscribes an attribute or a relation with
another class. The field is defined using a set of propertis: name, Classe (equivalent to its type),
min and max multiplicity, collection type (map, set or 1ist), relation type (simple, composition,
aggrogation or association), owner, navigable, transient stc. ..

The Classe — Field classes are used to describe values with their fields. However, the
metadata of controllers and methods are described using the classes Controller, Method and

Parameter.

137



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Controller is & class that describes the metadata of user defined services (or
controllers). It provides methods to access the controller properties like the name, alias, super
controller, declared methods, all methods etc. ..

The Controller class provides also the possibility to create a new instance ofa
controller using the method newlnstance() and to retrieve a metadata description of & controller
via the methods forName() and fordlias().

Method is a class that describes an action (or a method) in a controller. It provides
methods to access the method properties liks the name, return type and pai‘ameters.

Parameter is a class that describes a parameter in a method. Tt providés methods to
access the method properties like the name and the type.

il Deamons

The value of a field in a composite value instance can be managed using three
methods: get, set and remove. The call of every method of the mentioned above can impact the
value of other fields or the integrity of the parént composite value instance. Deamons are ‘
listeners, that run in the background, and are invoked after each elementary method (get, set or
remove) in order to execute the required ireatment. The deamons are divided into four parts:

If Noeded Deamons; These deamons are invoked after a ger operation on a field. Each
field has one if need deamon which is responsible of retrieving the value of a field regarding ifs
properties: calculated, asp, foreign pk, foreign code, transient, navigable relation, composition,
association, pk, code stc... For example, IfSimplefFieldlsNeeded is registered for simple fields
and it returns the fields default velue if the parent value is new, else it tries to get the value of the
key using lazy process.

Default Value Deamons: These deamons are invoked when the system tries to assign
a default value for a ficld. Each field has one default if need deamon which is responsible of
retrieving the default value of a field regarding its properties: pk, type, calculated, has a default
formula tagged value, has an initial value, sequence etc... For example,
IfDefaultSequencelsNeeded is registered for simple fields having the stereotype ‘sequence’ and it
returns the next value of the field’s sequencer.

1f Added Deamons: These deamons are invoked after setting the value of a field.
Each field has many if added deamons which are responsible of maintaining the integrity of

field’s value or the integrity of the whole composite value instance. The list of if added deamons

138



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

are calculated once at server startup. They are calculated regarding the fields” properties:
calculation base, code base, pk, code, type, foreign pk, foreign code, transient, collection
relation, index field, mandatory etc... For example, if we change the valuc of a code field, the
system must recalculate the value of the technical field code. This is performed by the deamon
IfCodeBaselsddded .

If Removed Deamons: These deamons are invoked before executing a remove
operation on a field. Each field can have many if removed deamons. These listeners are
registered regarding the ficld’s properties: calculation base, foreign pk, foreign code or
immutable (non removable fields). For example, [fCalculationBaselsRemoved is registered for
fields participating in a calculation formula and it removes the value of the calculated field.

it Domain Managers

A Dormain Manager is a class that holds information related to a field: possible
values, visible, read only, caléulation base, min mulﬁpl'xcity, max multiplicity ete...

The domain manager mechanism is added to provide the possibility to customize the
field’s properties at run time using the adapter design pattern.

Ifthe developer needs to define one of the mentioned properties programmatically, it
should define a class that extends DomainManagerAdapter, overrides the required methods and
register this class as domain manager of the needed field in a static block or using the Initializer
Interface.

The framework assigns a default DomainManager for each field which is calculated
at server startup.

iv. Integrity Checkers

Integrity Checkers are classes tesponsible of verifying the integrity (the correctness)
of the field’s value. All integrity checkers implements the interface FieldIntegrityChecker which
defines the method checkFieldIntegrity(). |

Tach field can have many integrity checkers calculated switca the field properties at
server startup. The registered integrity checkers are used to verify the integrity of a field content
when the method checkintegrity() defined in the Value interface is invoked.

The implementation of checlkIntegrity() method provided in SimpleValue and it sub-
classes ensure the validity of the included value (the value must respect ‘he defined constraints

like min value, max value, the possible values eic...).

139



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The implementation of checkintegrity() method provided in CompositeValue ensure
the integrity of each ficld: the multiplicity ranges, value change in case of frozen field etc. ..

The implementation of checkintegrity() method provided in CollectionValue ensure
the integrity of all included values in the collection.

Palmyra framework provides another data check mechanism: check rules. The
business rules regarding a composite value instance can be implemented using the Rules
mechanism. The developer should define a class that implements the interface Rule and define
the method verify (). When the business semantic check is not verified, the developer should
throw an exception of type RuleException.

L Package com.palmyra.arch.basicStruct.exception

This package contains the framework customized exceptions. FIG. 33 illustrates the
exceptions provided by this package. The main ones are:

DataException: This exception is 2 runtime exception. It is the super class of
exceptions thrown during data manipulation.

IntegrityException: thrown when the integrity is violated.

KeyNotFoundException: throwr. when a non defined key is requested.

PalmyralllegalFormatException: thrown when the user tries to create a value from an
unformatted string.

RuleException: thrown when a business rule is not verified.

ValueNotFoundFException: thrown when the system cannot retrieve an entity from the
storage related to a wrong foreign pk or foreign cods. ’ '

ProcessException: is a runtime sxception used to encapsulate a non Palmyra
exception thrown in a business process.

PalmyraClassNo tFoundExceprion: thrown when the user iries to extract a metadata

definition of a not defined class in the application.

TnmutableFieldException: thrown when the user tries to remove an immutable field
(pk, updateDate, updatorUserld efc...). '

m. Package com.palmyra.arch.basicStruct.init

" This package contains the main class Generallnitializer.java responsible of loading
all Palmyra classes when staring the server. This class contains a method called loadAllClasses()

which is responsible of:

140



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Load all Palmyra classes in the memory which allows the registration of all Classe
instances. )

Execute all static blocks in the application. These blocks can be used to register an
implementation of each component driver.
This package contains two interfaces: Initializer and Palmyralnitializer. The first one can be
implemented by a non Palmyra class (business class) and the second can be implemented
exclusively by a Palmyra class. When the developer needs to execute a specific treatment at
server startup; such as registration of an action handler, loading a prop erties file or filling a
cache; the developer should 1'mpiement one of the mentioned interfaces and define the method
initialize with the following signature public static booleén initialize.

2. Expressions

Exprossions deﬁné gome simple paris of the applications’ business.

They are used in caleulation and default formulas, business rules, mapping process,
life cycle design etc...

They allow parsing and evaluating user-defined expressions (&==1, b>20,alias.f())

They can be arithmetic (a+1), comparative (b<10), logical {¢c & d|¢)...

In the process of expressions management, two sub processes can be distinguished:
the Parsing and the Evaluation

The Parsing is the process of expression compilation; it produces a structure used in
the evaluation of the expression. The parsing of an expression can be performed using one of the
two methods:

Expression.parse(String exp): performs a syntactic check.

Expression.parse(String exp, Classe cls). Performs a syntactic and semantic

check.

The Evaluation process aims to retrieve the expression resulting value.
The main concepts of the produced structure are Constant, Variable, Operation and
Function.

a Constant

I represents a constant value.

The evaluation result is defined from the beginning.

141



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Evaluation

paramcters

It can be of different types (number, date, string...)
The syntax of constants varies according to the type:
Number : 1.2; 45200L; 5.32E8

String : "constant value"
Date : “24/03/2006b’
Boolean : true; false
Null value : null

b. Variable

A varigble generally represents a Value field (B.g.: name, a, b123, taxRate.. D
Variables are literals which values are retrieved by the evaluation process.
The variable evaluation result is retrieved from the Value instance used in the
process.

Variables are used in Operations and Functions definition.

c.  Operation

Operations are expressions with three ilems: Operandl operator Operand2
The operandl and operand2 can be varigbles or complex expressions
There are five groups of operations:

Arithmetic: +, -, *, /

Logical: ! (not), & (and), | (or)

Comparison: >, >=,==, 1=, <=, <

Assignment. =

Delimiter: ; (used for actions in lifé cycle)
d. Function

Function expressions can be decomposed into two parts: function name and

The syntax of 2 finction expression is alies. functionName(parameterl, parameter2...)

The parameter can be either variable or complex expressions

142



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

The parameters are evaluated separately, and then the function is invoked with the
evaluation results. .

The evaluation result of the finction expression is the function invocation result.

1. Service

The target application is a service-oriented system that can be deployed ina
distributed onvironmen=. The distributed platform is formed by a number of configured
Application Servers on which the application is deployed.

A service is 2 set of functions that can be called locally or remotely. They can also be
called in a synchronous or asynchronous mode. A service is referred to using a name that is
independent of its actual physical location. The Service Pattern in Palmyra uscs one fagade EIB
to offer the synchronous service, called Facede, and one message driven bean EJB to offer the
asynchronous service, called AsynchronousFacade. Therefore, users can benefit from all
available T2EE foatures while hiding their complexity.

Synchronous Call: The synchronous service call consists of:

Build the message to be executed
‘Define the invocation at'ributes
Execute the message
Exarple:
//prepare the message to be exscut ed
ServiceMeggsage message =
BSFactory.getServiceDriver (). createServiceMessage (X.class.g
etName (), "actionB");
// add the parameters to the message
nessage. setParameter ( "ﬁaramC " mnew StringValue(“first
parameter”)) ;
//after building the message, it is ready to be executed
BSFactory.getServiceDriver () .callService (message) ;

For each Controller, Palmyra generates a caller class (ServiceNameCaller) that
offers the ‘mplementation of ths steps needed to call each action synchronously. -

Example:We can call the service which we called in the previous example in one row

of code

143



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

XCaller.actionB (new StringValue(“first Parameter”)) ;
Asynchronous Call: To call 2 service asynchronously, we justneed to add
InvocationAtiribute to the method callService(). This InvocationAtiribute give us the ability to
determine the call type, Synchronous or Asynchronous (defaultis Synchronous)
Here is an example:
ServiceMessage message =
BSFactory.getServiceDriver (). createServiceMessage (X.class.g
etName (), "actionB");
// add the parameters
message.setParameter ("param0", new Stringvalue(“first
parameter”)) ;
InvocationAttributes att =
BSFactory.getS8erviceDriver () . createlnvocationattributes () ;
//this message will be executed Asynchronously
att.setAsynchronous (true) ;
BSFactory.getServiceDriver () .callService (message, att);
Services are defined using UML class diagrams. They are represented by classes
called controllers. A controller has a name, a short name or alias, and a numb ei"of methods. A
controller is considered as a group of services. The generated code then represents skeleton of
the structure needed to define the service, then manually written code is added in order to cover
the functional implementation of the methods without taking into consideration the technica.
aspects.
For each controller these are the main generaied classes: ‘
An interface named X: This interface contains the method specified in the UMIL

as actions in this cantroller

An abstract class called AbstractX: This class is for techmicel reasons émd wiil not

be used by the user of this controller

A concrete class XCaller: This class contains the methods defined in the interface
X and provides a shortcut to call the service X with default contracts of the

service.

144



WO 2011/045634 PCT/1B2010/002037

" A concrete class XFactory: This class provides different ways to get the

registered implementation of the service X.

The developer has to provide a class that exteads AbstractX end he can give it the
name he wants and write extra code to register it, otherw se he should naroe it XZmpl.

5 Services defined in the UML model can be invoked using lifecycles, expressions or
manually written code. The accessibility of the services to different users is controlled by the
security module. The transactional behavior of the services (whether they support transactions or
not, and whether they start 2 new (ransaction or embedded in the callef transaction) can be

- ‘conﬁgm‘ed at runtime using a specific configuration tool.
10 The Palmyra Service Module allows the end user to configure, on runtime, which
service:

Is io be called remotely: Remote Service Configuration.
Is to be executed with a specific transaction type: Service Transaction Configuration
Is to be broadcasted either in a Cluster or to other Applications: Broadcast Configuration

15 Calls to Web Services are fully implemented by the service layer. The configuration

needed to call a web service is done on runtime through a WebServiceConfiguration instance.

145



WO 2011/045634

10

15

20

25

30

PCT/1B2010/002037

ii. Lifecycle
The Lifecycle management component monitors the transition of an object from one

state to another according to the associated state diagram that represents 2 process. This module

is used to run all the processes defined in the target application. Tt is possible, at runtime, to load

new processes and to associaté them to previously defined classes. The system takes the new
processes into consideration right after loading them.

As described before, state diagrams are used to define processes. Actions can be
defined in the entry points of the states that “orm the state diagrams. Conditions can be defined
in order to guide the execution path. Both actions and executions are defined using the Palmyra
Bxpressions language (PEL).

Processes can also be defined to lead several other processes (one process to control
and to launch several other processes).

iii. Security
Internal and external Authentication and single sign on (sso)
Role based authorization

iv. Job-Scheduler

Puluyra Scheduler is a technical module in the Palmyra Frameworlk that is
responsible of managing the exscution of scheduled jobs.

A job is a Palmyra Controller’s method with a particular configuration. The latter
configuration is to be specified at runtime.

A job can be created, modified, deleted, tracked and executed manually or
automatically.

The Palmyra Scheduler management includes repetition and failure.

Tt is tightly related to the module Palmyra Calendar, which is responsible of Holidays
and Business Calendars management.

For a Palmyra Application to work with the Palmyra Scheduler moduls, some
prmeqmsltcs need to be fulfilled at design time:

The action to be scheduled needs to be defined as a method in a Controller.

An implementation of Business Calendar nesds to be created. This implementation Entity

should encapsulates an attribute with the stereatype “code™.

146.



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Example: We will be confi guring a Job based on the TestController’s method “add”,
as well as an instance of the entity MyCalendar called “myCalendar”, both shown in FIG. 47A.

At Runtime, a JobEntry instance stores all necessary information zbout how an action
is to be schaduled:, '

Job Meivsage: The method to be executed, i.e. the actionName “add” of the
serviceName “gopi TestController”, shown in FIG. 47B.

Repetition: The job will be scheduled to execute daily at 5pm starting from
24/12/2009. Tt can also be scheduled once, minutely, hourly, weckly, monthly or annually. The
repetition setting is shown in figures FIG. 47C and FIG. 47D.

Holiday Treatment: We can assign holidays to the calendar myCalendar. For instance,
we assume that 25/12/2009 is an annual holiday, 26/12/2009 is an exceptional one and Sunday is
a weekly holiday. The Zst of holidays will be considered when executing jobs as follows: The
holiday is either to be ignored or to be considered. The holidays creation is shown in figures FIG.
47E, 47F, 47G, 47H.

Track Execution: Palmyra Schaduler offers the possibility to track the execution ofa

Jab, through JobExecution instances. As shown in the figures FIG. 471 and FIG.477, the first:

execution of the job will be on 24/12/2009 at 5pm. The status of tho JobExecution instance isset
to waiting. If finished sucéessfully, it will be changed to Success.

The next execution of tﬁe job, considering the holidays on 25/12, 26/12 and 27/12(Sunday), will
be on 28/12/2008 at Spm.

The Scheduler UML is shown in FIG. 51.

The operating principal of Palmyra Scheduler is that each time & job is created, it is
added to a work job List, sorted by the nearest date of execution. A running thread named
Palmyra-Scheduler-Thread relies on this work job list to know which is the first job tobe
executed, then it waits for its execution tims and execute it.

Creating a Job leads to the creation of the corresponding JobExecution instance.

Excouting a job consists in creating an appropriate message based on the JobMesszge
information of the job and then let the Service module handle it.

- The thread named Palmyra-Jobs-Feeder-Thread is the one responsible of menaging
the work job list. It refreshes its lists each LOAD_JOBS_INTERVAL, which defaults to 120

minutes. Refreshing means sending a query to the database to get all the j obs that are expected to

147



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

be executed within the latter interval of time, i.e. JobExecution instances with a Waiting status
and an execution date “realDate” that is lower than (cutrentDate+ LOAD_JOB S INTERVAL).

The cycle of a JobExecution instance goes from status “W, aiting” when created to
“Sent” when the related job reaches its execution date and is starting to be handled by the
Scheduler, to “InProcess” when its jobMessage is going to be executed and ﬁnaﬂy to “Success”
if the jobMessage has been successfully executed or “Fail” if something weni wrong, i.e. an
Exception occurred.

Starting the Scheduler thread can be done either automatically et the application
startup through a property called AUTOMATICALLY_START SCHEDULER or at rantime
through the Application Scheduler Menu.

The Palmyra Scheduler has its own logger, with very specific terminology. FIG. 52
is an illustration of a Palmyra Scheduler Trace E)'gample.

C. Storage Layer
1. Persistence

The persistence service is composed of several main sub-modules: Entity Manager:
responsible of receiving and transforming queries.

Data Store: responsible of communicating with the database and returning the result
to the Entity Manager.

PQL Parser (Palmyra Query Language): Used by the Entity Manager to parse PQL
queries. .

a. Entity Manager

The Entity Manager is a controller that fully conforms to Palmyra standards. Tt
implements the Business Delegate interface.. From the user’s perspective, the Entity Manager
performs all the work related to saving/retrieving Palmyra values to/from the data store. The
Entity Manager serves as an interfacing and parsing stage. Plus, it delegates processing to the
proper processing unit, which in turn performs the actual work. The Entity Manager defines three
groups of actions, in addition to the action that executos PQL statements:

(1) Formatting actions: These actions are to format the data store, update its format,
or update its constraints. These actions simply iterate the configured data sources and invoke the

corresponding procedure in the proper data store.

148



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

(2) Synchronization/deletion actions: These actions are to insert, update or delete
values in the data store.

(3) Scarch actions: Search for the AbsiractValue objects that meet some condition.

The following sections explain the components responsible of execuling cach one o
these groups of actions.

b. Context-Driven Approach

The Persistence service is designed in such a way that provides convenient level of
separation between the state of the operations performed by the Persistence service, and the logic
of the components that perform these operations and manipulate their state. This separation is
realized by defining a rumber of contexts (hat contain the state of these op erations. These
contexts are bean-like objects (i.e. objects that have “set” and “get” methods) that contain no
logic at all. The components that do the actual work are singleton stateless objects that take
contexts as their parameters and manipulate the contents of these contexts. This simplifies
parafneter passing between the various stages of operation processing, and is less costly
performance-wise.

The way an operation is performed by the Persistence service is very similar to the
way a product is manufactured while it moves along a production line in a factory. The product
enters the production line as a collection of raw materials. It goes from one stage to another.
Likewise, a context can be thought of as a product that gets processed by the various singleton
components. Its initial state provides the raw input of the Persistence service, and its final state
contains the proper output. Thus, a context may contain maﬁy attributes that are required by all

the processing phases. However, each phase, or cach component, is concerned only with a subset

~ of these attributes. So, each compopent musl have its own view of these contexts. Given this, the

singleton components must be defined to take sub-contexts as their parameters. Each sub-context
is actually an interface that defines the set of attributes that should be present in a context to be
cligible for processing by the corresponding component. The context of one operation is the .
realization of all sub-contexts of all the components that are involved in performing this
operation.

¢. The Processing Units

As stated before, the Entity Manager simyply fills the proper context with the

parameters passed to it, and then invokes the proper processing unit, passing the context to it.

149



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Each processing unit may as well invoke other processing units and so forth. All processing units
implement the same interface (the Processor interface) that has a single method (process) that
takes a context as its single parameter.

d. The Cache-Aware Processing Units

Some of the processors may cache some of, or all, the data they generate while
performing an operation, so that when a similar op eration is performed later, the data to be

generated are Tetrieved from the cache instead of regenerated. Such processors are called cache-

aware processors, and they extend the CacheAwareProcessor class that provides an abstraction o

the caching process, For example, suppose that a cache-aware processor, say P, processes a
context that contains the input attribules al, b, ¢1, and d1, and the output attributes a2, b2, 2,
and d2. When designing this processor the developer (the persistence layer developer) must
choose the output attributes that can be cached and those that should be processed every time,
Theoretically, the numbder of possible values for a1, b1, c1, and d1 is infinite. However, suppose
that in practical situations, and given a limited period of the application’s lifespan, find that the
number of possible values for al, bl and ¢l is very limited, whereas the number of possible
values for d1 is rélatively big. If the user presume that the output attributes a2, b2, ¢2, and d2
correspond directly and respectively to the input attributes al, bi, cl, and d1, this leads us to the
conclusion that a2, b2, and ¢2 should be cached, whereas d2 should be calculated every time,
because the reoccurrence frequency of al, b1, and ¢l (from which a2, 12, and c2 are generatec)
is higher than the reoccurrence frequency of d1. Furtber, if the user cache d2, the size of the
cache should be significantly increased to boost performance.

Since the nurmber of possible values for the input attributes is generally unlimited, a
cireular cache should be used instead of a map to store the cached valucs. The circular cache
keeps the last and most uscd keys. In our example, tae key for caching should be composed of
the input attributes al, b1, and cl.

Any cache-aware processor performs the following routine:

(1) Gernerate a caching key from the input attributes of the context.
(2) Use the generated caching key to retrieve data from the cache.

(3) If cached data were found, write the cached data into the context, and then

generate non-cacheable output attributes.

150

4



WO 2011/045634 PCT/1B2010/002037

(4) Otherwise, generate all output attributes, read cacheable output attributes from
the context, and then put the read cacheable data in the cache using the caching

key.

The existence of this routine in every cache-aware processor allows the abstraction of
5 the caching process by defining a super class for all cache-aware processors that perform the
caching routing, leaving some parts as abstract methods to be ovem'ddén in its subclasses.
There is one abstract method for each of the following tasks in the
CacheAwareProcessor class:

(1) Generating a caching key from the context.
10 (2) Generating all output atiributes.
(3) Generating non-cacheable output #ttributes.
(4) Reading cacheable output attributes from the context.
(5) Writing cached output attributes to the context.
e. The Operation Executers

15 . From now on, the root processing units, which are first invoked by the Entity
Manager, is reforred to as the operation executers. Taey will follow a special naming cosvention
~ in order to be recognized. If the operation’s name is 2xx, its executer will have the name
XxxExecuter (e.g., SelectExectter, SynchronizeExecuter, efc.).
Tn addition to invoking the other processors, the operation executer serves as a factory
20  object for the other processors. If a processor needs to invoke anothef processor it can obtain 2
reference to that processor from the operation executer. So, the operation executer can be thought
of as a central “palette” of processors. This makes it easy to create custorn executers for specific
purposes. However, this means that the operation executer must be accessible to all fhe
processors invoked by it, so a raference to it should be passed in the context.
25 Most Select executers invoke at least two processors. The first is a mapping prooessor
(or a mapper) that generates a data store command that would perform the operation, or part of
the operation. The second is an assembling processor (or an assembler) that would read the data

returned by the data store and assemble the result in a Palmyra value.

151



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

After involing the mapper, and before invoking the assembler, the command
generated by the mapper is sent to the data store through a special software layer represented by
the data store wrapper, which is an object that controls the flow of data berween the Persistence
service and the data store. Some operations require executing more than one data store
command. In other words, the mappers and assemblers might be executed more than once to
perform an operation. So, the operation executer should recognize two sorts of the operations it
performs. The first is atomic operations that can be performed by executing a single data store
command for each operation. The second is composite operations that require executiﬁg more
than one data store command. Each operation of the latter category can be broken down to
simpler atomic operations, and it is the operation executer’s responsibility to do this.

f. PQL vs. SQL

The Entity Manager performs PQL queries by querying the underlying data store.
Services provided by the data store are simiiar to those provided by relational databases. Since
most reletional databases are queried by SQL queries, almost each data store operation can be-
expressed in terms of an SQL query. The one-to-one corresp ondence between data store
operations and SQL queries makes SQL a good tooi for expressing how PQL queries are carried
aut. So, uss SQL as a pseudo query language in much the same way pseudo code is used to
expiain how certain algorithms are implemented. However, fine details (about how to overcome
limitations of SQL) are out of the scope of this docurnent.

"g. Search actions

The select executer is the super class of all select-operation executers, such as select-
count, select-historicized, and the rest of similar executers. As stated before, and like any other
executer, the select executer may invoke the mapping stage, the data store, and the assembling
stage more than once in order to perform a complete select, or find operation. This depends or.
the following two factors: '

(1) The queried keys or the search criteria contain keys that represent relations

with interfaces,
(2) The queried keys contain keys that represent one-to-n relations.

h. Heandling Interfaces



WO 2011/045634 PCT/1B2010/002037

10

13

20

25

Consider the UML in FIGS. 37A, 37B, suppose that the querjed class in a find
operation is X, and that the quericd fields are: +, i1+, 1142+, 3.+

Since there are no data store containers for interfaces and since the persistence service
has 1o means to know in advance the actual types of the entities related to the values of type X,
multiple mvocations to the data store are needed to find these entities.

One solution is to exscute the query without retrieving the keys i1, i2 and i3. Then
retrieve them lazily. This approach has two main drawbacks. The first of which is that the user
can not place conditions on these keys, or the user has to cvaluate these canditions after
retrieving the values and filter out the values that do not meet the condition, which is expensive
performance-wise. The second drawback is that the more values are retrieved, the more the user
needs to perform lazy-get operations. For instance, if the query retrieved 100 instances of class
X, then for each instance, the user needs to perform 3 lazy-get operations to retrieve i1, 11.i2 and
i3. This means that the user needs additiona. 300 lazy-get operations to reirieve the relations of
all the found instances. Tn other words, it requires 1 +n*m invocations to the data store (wheren
is the number of retrieved values, and m is the number of quericd relations with interfaces).

A better solution is to break such operation down to a number of atomic operations.
In each operation the user cast each of the queried interfaces to one of the classes that implement
it. Using this approach, for a given operation, the number of invocations to the data store would
be constant. This constant depends on the number of classes that implement each queried
interface. In our example, the interfaces I1, I2 and I3 can be cast as follows:

()Tt asAl,T2as A2 and I3 as A3
()1l as Al, 12 as A2 and I3 ag B3
(3)Ilas Al,I12 as A2 and I3 as C3
(411 asAl,I2 as B2 and I3 as A3
(5) Il as Al,I2 as B2 and I3 as B3
(6)I1 as A1,12 as B2 and I3 as C3
(7)1l asB1, 12 asAZ and I3 as A3
(8) I1 as B1, 12 as A2 and I3 as B3

(9)I1 as B1, I2 as A2 and 12 as C3

153



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

(10)I1 as B1, 12 as B2 and I3 as A3
(11) 11 as B1, 12 as B2 and 13 as B3
(12) Tt as B, 12 as B2 and I3 as C3

So, if the user has n keys that reference interfaces, and if c(i) is the number of classes
that implement the interface referenced by key number i, then the number of atomic operations
would be:

i=n

Hc(i)

i=1

Considering the Sth casting possibility in our example, in which Il is cast as B1, 12 as
A2 and T3 as C3, the illustrated UML in FIG. 37A, would be reduced in this case to the second
UML in FIG. 37B. Thus, the Select Executer must:
(1) Collect all the keys involved in the query.

(2) Search the collected keys for those that reference interfaces, and add them to a
list.

(3) Calculate the Cartesian product of all the sets of classes that implement each
interface referenced by the keys found in step 2. This gives 21l the casting
possibilities.

(4) For each castirig possibility, or combination, an atomic select operation should
be performed. The casting combination should be put in the context of the

operation so that later stages know how to cast each key.

The Select Bxecuter must terminate the iteration over the casting combinations as
soon as the number of assembled values reaches the maximum number of the values to be
retrieved that is specified by the user. The only exception to this is when an order is also
specified. In this case, cach atomic operation may retrieve up to the sp ecified maximum number.
Then, the retrieved values are sorted and trimmed so that they do not exeaed that number. This
means that the queries that involve interfaces, order and maximum number of values to be
retrieved are relatively costly.

i PQL to SQL Exzmple:

154



WO 2011/045634

10

15

20

25

PCT/1B2010/002037

In the previous sample UML (FIG. 37A and 37B), if the user perform the following
PQL statement:
PQL: select +, i1.+ from X where pk > 1000

The Select Executer will perform the equivalent of the following SQL queries:
(1) After casting i1 to Al: select T, T il.* from X T left join A1 T_il on
T i1$pk = T_il.pk where T_il.pk > 1000

(2) After casting 11 to B1: select T.*, 7 il.* from X T Jeft join B1 T_i1 on
Ti1$pk =T _il.px where T_il.pk > 1000

j.  The Interface Keys Collector

As above-mentioned, the Select Executer needs to know the keys present in a query
that refer to interfaces, and so, it must iterate over all the present keys in a query to search for '
those that rofer to interfaces. However, such keys can be found in the queried keys, the search
criteria, the group funciions, and the order fields. In other words, these keys are distributed in a
number of siructures. '

The Interface Keys Collector traverses all the structures in the Select Executer context
and collects the keys that refer to interfaces. The rosult is a map that maps each of these keys to
the interface it references. This map is used by the Select Hxecuter to generate all the cas (i
combinations.

% Handling One-to-N Relations

Tn this section, the relation between a country and a city is used as an example. This is
a one-fo-n relation because each country contains one or more cities. In the data stors, the
records in the city container must contain foreign keys that reference records in the couniry
container. Il the name of the relation is “cities”, and the name of the symmetric relation is
“country”, then the name of the foreign key is “country$pk”.

Consider the following PQL statement:

select +, cities.+ from Country where area > 1000

The obvious SQL equivalent of the PQL statement would be:
select T.*, T_cities.* from Country T leftjoin City T_cities on T.pk=
T_cities.country$pk where T.area > 1000

155



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Since the result of the previous SQL statement has not tree-like structure (in fact it is
4 set of records that contain the fields of the country end the city) the attributes of one country is
found in as many records as there are cities in that country. The only thing that differs in these
records is the attributes of the cizy. This redundancy will consume a considerable amount of
memory and network bandwidth. Plus, it requires adcitional computations to reduce this big sel
to atree. Though such a PQL query can be carried out with a single SQL statement.

Refering to FIG. 41C, let we need to execute a find operation to fetch X instances
along with their Y instances, then Persistence layer will generate a query of the shape:

select T .accessPoint_, T_v_.x$cods_, T_y_x3pk , T vy . accessPoint_,

T_y_.creationDate_, T y .creatorUserld_, T_y_pk , T_y_type_,
T _y_.updateDate ,

T_y_.updatorUserld , T .creationDate , T .creatorUserld , T_pk_, T_.type_,
T .updateDate_, T .updatorUserld _from test X _T_left jointest ¥_ T y_on
(T '
pk_=T_y_x$pk ) order by T_pk asc
Once the Data Store layer returns the vector of record instances which encapsulate the
result, the assembler scans this vector twice: one for creating the X iustances and the other onc

for creating the Y instances and combine between the created instances.

1. Further Optimizations

Consider the following UML in FIG. 3 8, for example; suppose that we want to
perform the following find operation:
select +, i1.1, 11.i2.+ from X where pk > 1000

Tf we follow the previous approach, the query would be first split to four smaller
queries by casting i1 and i2 as follows: -
(1)1l as A1,12 a8 A2

(2)I1l as A1, 12 as B2
(3)I1asBl, 12 as A2

(4)11 as B1, 12 as B2

156



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

Then sach of the 4 smaller queries will be split again to two atomic queries because
of the one-to-n relation between i1 and i2. Let us take the first two combinations as an example:
(1) After casting I1 as Al and I2 as A2 the Select Executer will perform the

following two queries:

PQL1:select +, il.+ from X where pk > 1000 cast il to
Al and i2 to A2

PQL2 (one-to-n): select +, 11.12.+ from X where pk > 1000
cast il to AL and 12 to A2

(2) After casting I1 as Al and I2 as B2 the Select Executer will perform the

following two queries:

PQL3: select +, il.+ from X where pk > 1000 cast il to

Al and 12 to B2

PQLA (one-to-n): select +, 11.12.+ from X where pk > 1000
cast il to Al and 12 to Bz

Note that the second term in the casting clause in the queries PQL1 and PQL3 is not
important and can be omitted because i2 is not present in the query. Plus, this casting term will
not affect the generated SQL query. So, if we omit it, PQLL and PQL3 will be identical and will
retrieve the same values, Therefore, further optimization can be done if we detect such identical
queries.

m. The Reduced Combinations

The solution to the previous problem is to detect the unnecessary casting terms before
generating each atomic Query, and omit them, generating a new reduced combination. If the
Select Executer kept a set of the reduced combinations of the executed atomic queries, it wiil be
able to skip an atomic query if its reduced combination already exists in that set.

Tn our example, before generating POL1, the combination (Al, A2) will be reduced to
(Al1). This reduced combination will be added to the reduced combinations set after executing
PQL1. Before generating PQL3, the combination (A1, B2) will be reduced to (A1), which
already exists in the reduced combinations set. Given this, the query PQL3 will be skipped.

157



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Detecting the unnecessary casting terms is an easy process. It will be shovm that the
first step in generating an atomic query is to collect all the keys present in that query. So, if the
key of the casting term does not exist in the collected Ieeys, then that casting term can be safely
omitted. '

1. The Mapping Stage

The mapping stage is responsible for generating a data store command from the
contents of a context. If the operation is performed by executing multiple data store commands,
the executer of that operation must, for cach commard, modify the contents of the context and
invoke the appropriate mapper. In addition, the mapping stage may generate data used to
optimize the work of the following assembling stage. The mapping stage is not necessarily
represented by a processor object. It is a logical stage that can be represented by multiple
Processors. .

For a given input, parts of the resulting data arc always generated by the mapper.
These parts can be cached, so that the mappsr need not regenerate them every time it receives the
same input. This is true as long as we assumr.e that these data are not dependant on the current
user who performs the operation, For security reasors, the entity manager may need to modify
the input of an operation (e.g. adding security conditions) depending on the current user thal is
performing it. This means that the same PQL query may result a different data store command
for eéch user. '

As a result, most mapping stages should be split into two stages: an adapting stage,
and a transforming stage. The adapting stage modifies the input depending on the user properties
5o that this input becomes independent from the user, The transfc;rming stage transforms the
user-independent input to a data store command.

The adapting stage is represented by a processor called the adapter. Whereas the
transforming stage is represented by another processor called the transformer, Since the data
dealt with by the transformer is adapted and is user-independent, the transformer may be cache-
aware Processor.

o. The Select Adapter

As stated before, the select adapter modifies the input to meke it independent from
the current user. It mainly invokes a processor called the Criterion Expander, which expands the

input criterion object by adding the following criteria:

158



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

(1) Security criteria: The criterion éxpandcl‘ adds security criteria for the root queried
class, and for each queﬁcé class that has, directly or indirecily, an aggregation relation with the
oot queried class.

(2) Isolation criteria: These criteria are built from the values of the ASP fields in the
root queried class. These values are retrieved from the cumrent user properties.

p. The Criterion Expander

Implementation of the isolation criteria will not be discussed further in this document,
since it is straightforward. However, adding security criteria is not as casy to implement. Unlike
isolation criteria, security criteria are added for the rcot queried class and for all queried classes
that have, directly or indirectly, aggregation relations with the root queried class.

When we invoke the security module to query the security criteria for one class, the
keys in the returned oriteria are relative to that class, not to the root 4queri‘ed class in the find
operation. This means that it cannot be added as is. The keys must be translated so that they
become relative to the root queried class.

Consider the UML ia FIG. 39. Suppose for example, that the queried keys are:

[+, a.b.c.y.+]

I this case, security criteria should be added for class X and class ¥ (A,Band C
have composition relations with X). Suppose that the security criterion for Y is:
sc.sb.sal.d.id == 1000

We can not add this criterion as is because it is not expressed  terms of the keys of
X, and so it should be translated. The simplest way to translate itis to add a prefix to the keys of
the criteria as follows:

a.b.c.y.sc.sb.sal.d.id = 1000

The drawback of this approach is that it may require a considereble number of join
operations at the data store level, because each “dot” ina composite key represents a join
operation. I the previous example, the composite key “a.b.c.y.sc.sb.sal.did” can be reduced to
the following key: “a.d.id”. This can be done only when the relations are one-to-one relations.

Table 25 illustrates the algorithm that generates a reduced composite key:

159



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

30

Tablé 25; Algorithm for generating a reduced composite key

String concat (String keyl, String key?2) {

1f (svmmetric (keyl) equals first(key2)) {
return concat (prefix(keyl), rest(key2);
} else -
return keyl + “.* + kevZ;

1
q. The Keys Expander

Since the criterion expander needs to know all the queried keys in order to build the
security criteria, the keys must be expanded before expanding the criteria, meaning that the
queried keys must not contain the two used “wild cards” (i.e. “*’ and ‘+). Instead, these
characters must be replaced with the keys they represent, and this is the intended purpose of the
keys expander.

Tn addition, expanding the keys is necessary for the later transforming stage.
However, since one-to-n keys are queried after one-to-one keys, the two types of keys must be
separated. So, the keys expander does not generate aKeys structure. Instead, it generated a
special structure that contains a number of split Koys structures. Each one of these Keys
structures are queried in a different atomic query. Tais structure is illustrated in the UML class
in FIG. 40.

The keys referred to by the “first” relation are the keys to be retrieved in the next
atomic query, whereas the “second” relation refers to the groups of keys to be retrieved in later
atomic queries. The values retrieved by these queries have one-to-n relations with the values
assembled from the “first” retrieved keys. The keys to these one-to-n relations are the keys of
the map of the “second” relation. In fact, this structure has the same tree-like structure of the
CKeys structure it encapsulates, but it serves the purpose of splitting the CKeys structure at the
keys that represent one-to-n relations.

The method that handles one-lo-n relations in the Select Executer actually traverses
the Expanded Keys structure recursively and performs the necessary atomic queries at each
recursion level.

Though expanding keys is an early process performed by the Select Adapter, but

since it depends only on meta-data, not on user dats, it may be a cache-aware processor.

160



WO 2011/045634 PCT/1B2010/002037

r. The Keys Collector

Tt will be shown later that the data store needs to know all the tables involved in a
query, and how these tables are joined. In order to specify these tables ail the keys present in 4
query must be collected.

5 The Keys Collector performs this task. It traverses a number of structures present in a
select context (i.e. the queried keys, the group functions, the order keys and the criteria) and
collects thé keys in thess structures. The output of this processor is a single Keys structure that
contains all the collected keys.

The keys collector does not belong to the adapting stage. It does not belong to the

0 transforming stage cither, because it does not generate any data store stiucture. However, since

keys collection must follow the adapting process, it may be a cache-aware processor.

s. The Assembler

This processor is responsible for creating Value objects out of the record list provided
by the Data Store Service layer.
15 It iterates over this list of Record instances and creates The Value depending on the
required keys expanded by the KeysBxpander. In case of Find operations that require relations to
e fatched the assembler scans this list more than one time in order to create the instances of
these relations.
Assembling values can be an expensive step depending on the size of the value (number of
20  fields to be set). Tn order to optimize this essential step Palmyra framework uses the multithreading aspect
to make the agsembling step works concurrently.
Not all types of find operations can use multithreaded assembler, so, the assembler decides
whether to tun its work in parallel or not depending on the Leys to be assembled.

1. Collecting One-to-N Keys in Criteria

25 Consider the following PQL statement:

select + from Country where city.population > 1000000
Sinee the relation “‘city” is a one-to-n relation, each country the previous query

returns has at least one city that meets the search criteria. The equivalent SQL statement would
be:

161



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

select T.* from Country T joim City T_city on T.pk =

T _city.country$pk where T city.population > 1000000

The problem arises when we query fields from the city relation. For instance,

consider the following PQL statement:

gselact +, city.+ from Country where city.population >

1000000

This query is performed through two SQL statements. The first of which is the same
SQL statement shown previously. If we follow the same steps performed by the Select Executer,
the query would be:

select T.pk, T_city.* from Country T join City T _city on

T.pk = T_city.country$px whers T city.population > 1000000
However, for cach retrieved couniry this query will retrieve only those cities whose
population is greater than 1000000. Syn chronizing such countries later would cause the cities
whosc population is less than or equal to 1000000 to be deleted, and this is not the intended
behavior.
The solution is to perform the following SQL statement instead:

select distinet T.pk, T_city.* from Country T join
city T_city on T.pk = T city.countryépk jein City C_city omn

T.ok = C_city.country$pk where C_city.population > 1000000

In this query, we join the City table to the Counry table twice giving two different
aliases to the City table. The fields of the City table are retrieved from the first alias, while the
condition is specified in terms of the second alias. The “distinct” keyword is used to avoid
fetrieving multiple copies of each city.

Since one-to-n keys in criteria are given different aliases they must be marked by the
Keys Collector so that the transformer generates the appropriate table joins.

u. The Select Transformer

162



WO 2011/045634 PCT/1B2010/002037

10

15

20

25

The Select Transformer is invoked by the Select Executer each time the latter wants
to generate a data store query. So, the Select Transformer transforms an atomic query (whose
atiributes are available in the context) to a data store query.

The implementation of the Select Transformer contains a sequence of mvocations to
other processors, or transformers. These processors trensform the structures in the context to
their data store counterparts as follows:

Queried/Needed Keys > Data Store Meta Record (queried fields)
Queried Class + Collected Keys - Data Store Teble Structure
Criterion = Data Store Condizion
Group Functions = Data Stors Functions (sum, max, min ... etc.)
Group Fields (Order Fields) 2 Data Storé Order Record
Order Fields - Data Store Order Record

The Select Transformer performs relatively heavy operations, and so, it must bea
cache-aware processor.

v. The Key Transformer

Bach key ir. an atomic query, whether present in the queried keys or the search
criteria or any other structure, should be transformed to a data store field. A data store field is a
composite key whose prefix represents the zable alias in which the field exists, and whose suffix

is the name of the field. Since all transformers need to do such transformation of keys, this

. common operation should be carried out by another object that is shared by all the transformers.

This object is the Key Transformer.

Some keys may appear more than once in an atomic query and in different structures.
So, the key transformer might be invoked to transform the same key a number of times. To
reduce the cost of such repetitive transformations, the key transformer must maintain an internal
map of the transformed keys.

This means that the key transformer is a state-full object that can not be reused ina
different operation. However, the key transformer may be cached to be used later if the same
query is performed again. So, the key transformer must be passed to the wansformers in the

context.

163



15

20

WO 2011/045634 PCT/1B2010/002037

The transformer must conform fo the following rules:

(1) Relations, whether composite or simple, generate table aliases only.

(2) Keys, whether composite or simple, that represent simple attributes, generate

complete data store fields (i.c. alias + field name).
(3) Identical relations or keys generate the same aliases and data store fields.
(4) Two different relations can never gencrate the same alias.

(5) Two different keys can never generate the same data store field, but they may
generate the same alias, provided that their prefixes are identical, and that their

suffixes represent simple attributes that are declared in the same class.

(6) The keys that are marked as one-to-n keys in criteria are a distinet group of
keys. Transforming such keys should not gencrate the same aliases generated by
the other keys. However, transformations in this group alone conform to the

previous rules.

The Keys Transformer transforms the exp anded queried keys to a meta-record of
queried datx store fields. The transformation is straight forward, because it only iterates over the
feaf keys and invokes the key transformer for cach key.

For instance, consider the UML diagrams in FIG. 41A and 41B; consider also the
following PQL statement:

select +, v.+, y.z.+ Erom X where pk > 1000

This query would be performed through exscuting one SQL query:

XView is a view on X and Y, whereas ZView is a view on Z. Il this scenario, since no
instances of class Y will be assembled, there would be no use of retrieving the primay
key of Y. Instead, the primary key of X (or XView) should be retrieved, and the second

query would be as follows:

164



WO 2011/045634 PCT/1B2010/002037

15

20

25

select distinct T.pk, T_v_z.* from X T left join ¥ Ty

on T.ySpk = T_y.pk join Z Ty z on T y.px = T v_z.sym¥S$pk

where T.pk > 1000

This change was made because, by the time the second query is executed, the cache
of assembled values will contain instances of class XView only, and the keys to these nstances
will be the primary keys of X.

Tn fact, it is the Select Executer’s responsibility to determine ths Implicit keys to be
addcd, because it is the processor that recursively iterates the one-to-n keys to be retrieved, and
therefore it is the only processor that knows the primary key of the previous recursive level.

vs. The Table Builder

The Table Builder builds the table structure that specifies how tables should be joined
and the aliases to be given to these tables. To build this structure, the Table Builder traverses all
the collected keys recursively, because the collected keys contain all the keys present in a query.
The Table Builder uses the Key Transformer to determine the aliases of the tables.

Tables are joined as follows:

(1) Relation joins: Buch tclation is transformed to & join between the two tables of

the two related classes.

(2) Generalization joins: Tables of super-classes are joined to the tables of their

sub-classes.

(3) Conditions of relation joins are retrieved from the meta-data of the field that

represents the relation.

(4) Conditions of the generalization joins are: T1.pk = T2.pk, where T1 is the
alias of the table of the super-class, and T2 is the alias of the table of the sub-

class.

(5) Joins of non-mandatory relations are lefi-join. And joins of mandatory

relations or generalization are inner-j oin

<

2. History Service in Palmyra

165



WO 2011/045634 PCT/1B2010/002037

Palmyra framework provides the possibility to keep images on the types instances
each time they arc changed. In order to do so, the type must implement an interface of type
Historicized. Refer to FIG. 46.

For each Historicized type, the Persistence layer creates another tahle — along with its

5 original one- in order to saves the images of that type instances. The table name is suffixed by
the term: History . .

Note that this table contains the column pk_ but it’s not unique since images of the
game instance have the pk of the instance itsclf. A unigue constraint is added on this table over
the columns (pk_, creationDate_) and the History table has the same columns of the original

[0 table.

The images are saved in History table each time the instance is created, modificd or
deleted. An exception can be done using an interface of type HistoricizedOnDelete, which makes
the system save an image only in deletion operations.

Seving an image _is done with filling the column creationDate by the exact time of the

15  synchronization event and the upduteDate column by the value Long.max.
When another image has to be saved, the last image updateDate value will take the

current synchronization date just like the new image’s creationDate column end so on.

name age CroationDate UpdateDate

S Aain “loo .| 08/08/2008 09/08/2008 .
Alain o 25 | £9/08/2008 10/08/2008
oAlEin S 30 40/08/2008 {.11/08/2008
Taan '35 | 14/08/2008 . Long.Max

20  Example:

Ifit’s required to get the images of a Person instance where pk = 10 betwoen the dates 08-Aug-

2009 and 11-Aug-2009, then the system will execute a query like:

25

61ect name, age.. from PersonHistory.
170842008 L0 e bl
d updateDate >=08/08/2008 .~

here. creationDate_ <= .

3. Find operations with massive results

166



WO 2011/045634 PCT/1B2010/002037

Ealmyra framework is safe cepable tc executz find operations that may returm massive
results. Retrieving big volumes may cause memory protlem.

The used technique is to bring the pks of the required instances in & find operation on
the column pk of the concerned table using the passed criterie, then, when some date of the result

5 isto be iterated, the system fetched a result page using a sub list of the obtained pks.

Paged find operations is done using the class LazyPageByPageCollection. This class
offers to the possihility ‘o access the result sequentially and randowmly. 4

Sequential access is done by obtainirg a special iterator using the method:

[public Iterator it erator ()]

Random access is done by setting the page number 1o be obtained, then accessing it

using the methods:

public veid gsetlageNumber (int pageNurber)|
and B
E_aublic Tollectionvalue getCurrentCollection ()

th

a. Synchronize Actions

To syuchronize a velus, the entity manager ‘nvokes the appropriate
“ProcessBxeciter” depending in the action type (delete, insert, or update). All the values

30 manipulated in Palmyra are of type Deep Map. So for this reason the ProcessExecuter checks the
integrity ard the rights and calls the Traverser that traverses all the object’s relations and invokes
the appropriate Mapper.

b. ProcessBxecuter
The Design Model of the ProcessExecuter is givon in the TML 1 FIG. 42.

25 The super class of all synchronization actions is the class “ProcessBxecuter”. The .
treatment of a delete action is different from the two other actions (insert and update). For this
reason, we have the 2 Sub-Classes “S ynchronizeExecuter” anc “DeleteExecuter”.

. Traverser
The Design Medel of the Traverser i¢ given in the UML diagrarm in FI1G. 43.
30 There are two types of traversers:

(1) Singlel vaverser: traverses a single value ard executes the actions on this value. The

singleTraverser has two Sub-Classes: DeleteTraverser and InsertTraverser.

167



WO 2011/045634 PCT/1B2010/002037

20

25

@) Updateﬂ‘avvemer: fraverses two values. The old value witch is obtained from database

and the new one witch is modified by the user. .

d. Mapper
The design model of the Mapper is given in the ML diagram in FIG. 44. The final

action to execute in the Database is a delete, insert, or update action. For this reason we have
these three classes: the DeleteAction class, the UpdateAction class, and the InsertAction class.
The super class of all synchronization actions is the class SynchromizationAction.

4. Persistence Layer Listensrs

Persistence layer provides the possibility to interfere the find, assembling, saving and
deletion operations.

Search listener: In order to operate a listonor for & search operation the programmer
Toust implement the interface SearchListener and register the implementer in the Classe of the
cencered search type. This listener is invoked before starting the analysis of the required find

operation. Its typically used to change the passed critoria:

extends Serializable {

public void oanSearch(8earchContext context,
SuperSearchListener listaner) throws ServiceException;

Assemble Listener: just like the previous listaner, the programmer nmust implement

{he interface AssembleListener and register the implementer:

Y extends Serializable (

public interface REr el

public void onAssemble (Asserblelontext context,
SuperaAssenblelistener superlListener) throws ServiceException;

}

For Synchronize operations, the programmer must implement the interface
SynchrenizeListener and register the implementer to be invoked in one or more of the following
situations:

Before insert.

* Adfter insert success.

168



15

20

25

30

WO 2011/045634 PCT/1B2010/002037

After insert failure.
Before update.
After update success.

After update failure.

¥ extends Serializable {

public interface [Sym

public void onSynchronize (SynchronizeContext context,
SuperSynchronizelListener supekListener) throws S erviceException;

}

Note that the registration uses the persistence driver obtained using the
BSFactory.getPersistenceDriver();

Note: Since the registration is done in the runtime, then, the programmer has the
control on the situations of when the listener must act using the conditional clauses.

Tnvocation of these listeners is accumulative, which means that Persistence layer
imvokes ~beside the concerned type listener- all the listeners registored for the interfaces
implemented by the concerned type. Collecting these listeners takes place using a listener adapter
that groups all the listeners that must be invoked for the concerned type.

The listener adapters are cached so that Persistence layer shouldn’t recalculate them
each time they are required.

a. Database Connection Service -

The persistence layer is based on a database connection service which communicates
directly with the database via JDBC. In order to optimize the performarnce database, vendors
usually provide specific drivers that support better their products. Having a database cormection
service separated from the entity manager enables using the right driver for each provider
without making anymodifications in the persistence layer.

These anlﬂ other advantages of the preferred embodiment will be apparent 10 those
skilled in the art from the foregoing specification. Accordingly, it will be recognized by those
skilled in the art that changes or modifications may be made to the gbove described embodiments
Without‘dep arting ﬁ'?111 the broad inventive concepts of the invention. It should therefore be

understood that this invention is not limited to the particular smbodiments described herein, but

169



15

20

25

30

35

WO 2011/045634 PCT/1B2010/002037

is rather intended to include all changes and modifications that are within the scope and spirit of
the invention. ’

This layer is responsible for dealing with different RDBMS which arc for the moment
Oracle, MySql, MS SqlServer and DB2.

Date Store leyer, just like the Persistence layer, uses the Conlext pattern. Beside that,
this layer uses the polymorphism extensively in order to establish a dialect for cach RDBMS.

Deta Stors layer deals with RDBMS using the standard SQL specification, but, in
come cases, some deviation may ocour caused by the differences between the standard 3QL end
the vendor spacific one. )

The default class that manages the communication with the RDBMS is Dbds, and for
the deviations rmentioned above, Palmyra framework made sub classes of this main class. Refer
to the FIG. 45. ‘

Dealing with RDBMS is done in Data Storo layer using procedures, a procedure can
do a whole operation by itself or it may involke some other procedures to get the job done.

The class Dbds provides access to the different procedures which are responsible for
executing the operations transformed from the Persistence layer. The polymorphism clearly
appears when a sub class of Dbds overrides some procedure getter in order to provide the
RDBMS suitable one.

All Data Store procedures implement the interface: Procedure.

7

public interface

/**

* This method executes the operation represented by this
Procedure object.

* Tt takes its input from the specified context parameter,
and writes

¥ Its output to the same context parameTer.

* @param context Context The state, imput, and ‘output of
the Procedure

* obdject.

*/

public void execute (Context context) throws
DatasStoreException;

}

Example:

170



10

15

20

WO 2011/045634

Tn MySgl, in order to obtain the row mumber, SQL statement should use the
expression: @rn instead of rownum which is used in Oracle, this means that the procedure
reéponsible for insert-from-select statoments must be vendor specific, hence, the method that
returns this type of procedure in Dbds is overridden in the related RDBMS Dbds class.

In Dbds:

public SqlExec getVolumeInsertSglExec() {
return VolumeSglExec.getVolumeSglExec():

}
In MySqlDbds:
public SglExec getVolumeInéertSqlExec() {
return
GV Enme }. mySglvolumeInsertSglExec(]
}

These and other advantages of the preferred embodiment will be apparent to those
skilled in the art from the foregoing specification. Accordingly, it will be reco gnized by those
skilled in the a1t that changes or modifications may be made to the above-described
embodiments without departing from'the broad inventive concepts of the invention. Tt should
therefore be understood that this invention is not limited to the particular embodiments described
herein, but is intended to include all changes and modifications that are within the scope and

spirit of the appended claims.

171

PCT/1B2010/002037




WO 2011/045634 PCT/1B2010/002037

‘What is claimed is:

1. A method for generating a software app! ication using a computer system, comprising the

steps of:

(a) modeling business processes in & graphical design tool 410 implemented in said

computer system;

(b) creating, in said computer system, at least one UML model to foxmalize the
business processes modeled in step (a) by using one or more state diagrams to represent
the modsled business processes, and one or more class diagrams to represent data models
and to represent predetermined business rules that are applied to the modeled business

Processes;

(c) validating, in said computer system, the at least one UML model 420 by detecting
syntax errors using a predetermined syntax, to validate either said one or more state
diagrams or said one or more class diagrams, or a combination of said one or more state

diagrams and said one or more class diagrams; and

(d) transforming, in said computer system, said at least one UML model validated in
step (c) into metadata that are used to generate functional and non-functional aspects of

the software application.
2. The method of Claim 1, wherein the transforming step includes generating the software

application 430.

3. The method of Claim 2, wherein the generated software application is combined with

pre-existing libraries 440.

4. The method of Claim 2, wherein the generated software application is combined with

manually written code 450.

172



WO 2011/045634

PCT/1B2010/002037
5. ‘The method of Claim 1, wherein the metadata comprisc at least one of application code,
constraint models, automatz files, and documentation.
6. The method of Claim 2, wherein the generated application includes a predefined sot of
functional requirements.
7. The method of Claim 2, wherein the generated application includes a predefined set of
non-functional requirements.
8. The method of Claim 7 wherein the predefined set of non functional requirements

includes at least one of security management, load balancing, transaction management, user

interfaces, aud a skeleton on which to build algorithms.

9. The method of Claim 2, wherein the generating step includes adding manually written

code to the generated application.

10.  Themethod of Claim 1, further comprising deploying the target application by means of

a deployment tool 490.

11.  The system of Claim 1, wherein the syntax includes Stereotypes ( for classes (composite,
constrainable, entity, macro, viewable), states (loadable), fields (ASF, code, same as, SEQUENCE,

transient, unique), and relations (cods, list, map, set, transient, unique).

12. A method for generating a software application using a computer system, comprising the

steps of:

(a) modeling business processes in a graphical design toal 410 implemented in said

computer system;

173



WO 2011/045634 PCT/IB2010/002037

(b) creating, in said computer system, at least one UML model to formalize the
business processes modeled in step (a) by using state diagrams to represent the modeled
business processes, and class diagrams to represent data models and to represent

predetermined rules that are applied to the modeled business processes;

(c) validating, in said computer system, the at least one UML model 420 by detecting
syntax errors using 2 predetermined syntax, to validate said state diagrams, said class

diagrams, or a combination of said state diagrams and said class diagrams; and

(d) generating said software application 430 such that said software application can
be deployed to a server by transforming the validated UML models into source code,

combining the transformed code with pre-existing librarics, and confi guration files.

13. The method of Claim 12, wherein step (d) comprises transforming the validéted
UML model into metadata that are used to generate functional and non-functional aspects

of the software application.

174



PCT/1IB2010/002037

WO 2011/045634

FIG. 1

e N
System Memory 130 i
l\\ : Monitor 191
ROM 131 Central Output i
BIOS 133 Processing Peripheral Video ”
— Unit Interface Interface ”
RAM 132 120 195 190
Operating - 1 System Bus 121 ﬂ .ﬂ :
System A i
Non-Removable Non-Removable User Network | _ | 1ae Area
Application _ Zoﬁ./\.oEﬁmo Non-Volatile Interface Interface ” Network 173
Programs Memory Interface Memory Interface 160 170 |
135 140 150 i
Other Program A A ; ¥
Modules : Remote
136 i Computer
Pa— ] Local Area ” 180
Program Data nagn ——t ﬁ.ﬂmb Network 171 i @
1 ,ft “ 151 3 155 } v m
i — l....vi\l\.\x .............................. T D) F P OO | noon
o el f/ D r
e - / — D _ @ - 181
Operating Application Other Program ﬂ 161 162
system Program Program Data 152 'ml ==
Modules o . . Remote Application
144 145 146 147 Exemplary Ooﬁ%ﬁ.ﬁsm Environment 100 ' Programs 185

1/62



PCT/1IB2010/002037

WO 2011/045634

Local User Systems

220

Workstations
221

L]

=1

=
Desktops
222

Y—

Laptops
223

Exemplary Network Environment 200

Local Server Systems

210

File Servers
211

I
1
t
1
1
t
1
1
t
]
1
]
1
1
]
1
]
H
1
]
i
1
I
1
1
1
1
1
I
i
i
1
i
1
|
!
4
!
1

Application
Servers

213

FIG. 2

/

<

T
........
.........
_________

Web Servers

PO

Internet
280

H W.oﬁoﬂo Systems
290

r ] =

Remote Remote Remote
Terminals Laptops Desktops Remote Web
291 292 203 Servers

2/62



WO 2011/045634 PCT/1IB2010/002037

310 \
First Tier:
User Interface
Presentation services

Y—

Client
312

320
Second Tier: —
Application services ‘
Business services
Application
Server
321
310

Third Tier: — nooa

Data services
Data validation

Storage
Data Server
Servers 332
331 T
FIG. 3

3/62



WO 2011/045634 PCT/1IB2010/002037

UML Graphical Design Tool 1
410

L

Validation
420

|

Automated Code Generator
430

Preexisting Code
440

Target Application

Manual Coding
480

450

Configuration Tools Test & Benchmark
460 470

hid
Deployment
490

FIG. 4

4/62



PCT/1IB2010/002037

WO 2011/045634

Case DG

5/62



PCT/1IB2010/002037

WO 2011/045634

Zagnm==>
MyEnumeration

-user! : UserNames [1]= DEYELOFER
-uger? : UserMames [1]= DESIGMER
-userd : UserMameas [1]= CONSULTANT

FIG. TA

sxgiirs=

ATTR1
{mar=100, -
precislon=3,
rounding=ROUND UP,
min=10}

FI1G. 7D

FIG. 7B

<<actiondynamicenums>
ACTIONDYNAMICERURA

actionname=createDaily,
~ontroliermname=CalendarEntryContraller}

FIG. 7TE

FIG.7F

6/62



PCT/1IB2010/002037

WO 2011/045634

<<gnum=*
AssgefMature

-

-haord - 5
~eqiuity ; St

-cash @ 8t
~future © &

ngwalus 1=
1gvalue [11=
rant : Stringvalua [11
ng¥alue [11=

wgvalue [11=

Bond
Equity
= Wart

Cazh
Future

ant

7/62



PCT/1IB2010/002037

WO 2011/045634

R S Fo

sredeiveSecunityM

rupdateSet

< SIFRValue] pUSTErDAIE EoSoNDa
; ShringValligzppsHionDaE= PO

Businessle; decontid

OuntidzStringvalue; dai

ng!

BuslnessDa

geEosiipneDyTALdate !
+elPostiionsByNafurc(ac

+getpositionsDyTaldl o L paics
+netvailab! omﬂnm@hamham&zmsmhwm_.mm_.m.anwmﬂ, ﬂ.,w.:sum.m_.:

jisiness

wum$amm=w,2m@=um.n tizatiohDatey

ions(AEcaln:; St

] oS ttionsByPosNatlre e, va

ns(clie

R S
RoslionsByRoshial i) :Pes

¥IG. 9D

8/62



WO 2011/045634 PCT/1IB2010/002037

01 "B1d

9/62



PCT/1IB2010/002037

WO 2011/045634

110 ‘ 130 1120 .
‘ ,,nn,c.mmm.mmmwv, memo@@mm::mmmalmWWM@m . A S _A.A:mmnm.mmwu& ot
UCAgency  m— T — o mmpmn:.xnoangcw i

FIG. 11

10/62



PCT/1IB2010/002037

WO 2011/045634

e=antify== D
_n_._ma ot

0.

O s=entity=
v nmwsﬁnng%

ADQOBB mﬁzucm_cm
-ammﬁ_ﬂ_os m:,:m{m_cm

Casygecasers
CreateClientStep . _

_ CreateSecurityAccount N

nnm:z@vv w.w : D

mmn::@.:nna:a

“cadept: m:_:mqmzm .
-amw:\_go: mq_znf_cm

FIG. 12A

1250

N\

LU zdusecase s

7]

1260

CraateCashAccount

ﬁnqmmnmmmn:ﬁwﬁnncsiﬁmﬂ

FIG. 12B

ﬁnqmmﬁmommzpnnaziwﬂmt_z

Fin

ish

11/62



PCT/1IB2010/002037

WO 2011/045634

UML Source _ Generation @uﬁ_:&
Select UL, Solrce (andattiry)

e

_mm—m_u Business Services Path

L

Al Packages

]

Select packagss o generate (f you didnt select package all packages wil ke generated)

Generaied packages

T Sheréd Patkages
= |comvermeg.services comRel
{comyermeg services instCanfia
noa..,..ﬂsmmwmlﬁawhgonxonhm«
- lcomvermeg services currencyinterface
) woz_km:smmAmminawkwnamao:
lcom vermeg services.lon
som.vermeg services pricelnterface
som vermeg services routerin

P A

&

- [Z] Presentation Labsls

- .. . [Fcenhelod
et shaved pactiags @R

o shareid packece

[¥] Job Sehecuter
[V secuiy -

Exit Code Generstion R N

Errors || Wamings§ Logs |

FIG. 13B

12/62



PCT/1IB2010/002037

WO 2011/045634

i e AT D R S

Palmyra Generation Tool

palmyra version 11.30010

add”

Eal

| Remove |

Build Services

Exit Code Generation |

Ervors _ Warnings.

fioge] -

FIG. 13C .

13/62



PCT/1B2010/002037

WO 2011/045634

%mm%ﬁmﬁ ﬁm‘m@wmﬁ@ﬁ .m.@@m

rEnshc
vm_zimmmwmo:_.nmw mm«Som:mswmg_o: File.xmi
service iransaction.com_palmyre_arch_scheduter_ctrl_§ mcsmac,mﬂnoa_d:m_‘ka_

. ‘m:__u@o:ﬁmc«m:o:m _

. Becsed Garereton |- B SR EE e
Enors Mz,mmzimw.mﬂmm.w_ I R T S Ll el I IR P

\ FI1G. 13D

14/62



PCT/1IB2010/002037

Converting the UML model into XML

bt
fe]

v

Generate Java source code from XML

el

v

Compiling the generated java source
code and creating a library Java Archive
or JAR

WO 2011/045634

FIG. 14

15/62




PCT/1IB2010/002037

WO 2011/045634

)1 mmaﬁwwu D H .ﬁmmﬁ&mwﬂﬂ,,w‘@
1 : Siringi/alug [0.1] 1% 1 : SiringValue [001]
%2 1 Integervalue [0.1] S -

FIG. 15A

1.7

1. Stringvaiue [0.1]- -yt Stringvalue [0..1]

3 Intégervalue [0.11 s

16/62

FIG. 15B



PCT/1IB2010/002037

WO 2011/045634

<antity=> 7y

0.1

s<entityz> (%)

<=entity== ()
Y2 -

FIG. 16

17/62



PCT/1IB2010/002037

WO 2011/045634

m.m,m:zd__vv,
Wiother

O

-al : Integervalue [0.1]

<=ehiity==.
Child

2

-a2s mﬁ._:m.c_mam [0.11

FIG. 17

18/62



PCT/1IB2010/002037

WO 2011/045634

riries
% Wodulex
& Walr Ereity

& Caleatdar
# Eriilles

% Benks

# Subsidierize
Friting Dade
G cash Acsouris
i) Adios & bterests
¥4 Cash Trenslerz
Tash Ststements
Fern Balancing
&4 Aunaunceinaids
Contrests
con
£ Additions! Sstup
'] Advanced Sestch
£ Repart

% Cou

™)

W

i}

Bl

]

=

s

FIG. 18

19/62



PCT/1IB2010/002037

WO 2011/045634

Warning 1 This computer program is protected by copyright law and
international treaties. Unauthorized reproduction or distribution of this
program, or any portion of it may result in severe civil and criminal
penalties, and will be prosecuted o the maximum extent possible under
the law,

FiG. 19

20/62



WO 2011/045634 PCT/1IB2010/002037

0T "DIA

21/62



WO 2011/045634 PCT/1IB2010/002037

17 D14

22/62



PCT/1IB2010/002037

WO 2011/045634

Ceacurtea: String¥ahus H¥order=1)

-asp

-member

-name : StingValue . 1jorder=1} 7 7
n

L - econttpr
Securitplser, - |users prop | Sentty> 7
- Brolearvalte [1}= ia{omer=d) - 0.7 0.4 |SEcunyorgup

1
<<codes>
{préerincad=1}

o
-groups

el

AectionDate : Datevalu2 [C. )| <emaps>
«dransien>>
{indexisunique,
indexnams=securinid, asp,

<<toder>

{orderincode=2,

0.
<<mapr>

{indername=membet,

indaxisunique}

palmiTa.

RIG. 22A

23/62



PCT/1IB2010/002037

WO 2011/045634

g - L .o
SenicePeticy ' . - .

[-conditon® Textvalue [3.1}

—
T

tersaitacous=1}
Ui

1

T ety

_Secrfyioe:

essyde

rrwrs

-erexatongion | Tevakis

eteConclinn Tert/ae
dCondiion : TexValag 0.1}

Y]

i

midfagecEniizns

MaagItany

Deém3

FiG. 22B

24/62



PCT/1IB2010/002037

WO 2011/045634

4\ o7 .AAQE‘_QVV SO
~SecurityRole B

_MAoonmv,Uq._‘c_m_n 2 ,ma:m,\wam 1

 — =

1
<<codes

{orderinchda=1}

{orderincxde=2}
<<codesp -
9

-0WNer

" . Securityitem’-

<<entiy=>""."

Id +"@' + ash, order=3

FIG

22C

25/62



PCT/1IB2010/002037

WO 2011/045634

mmnEEm:ﬁQ

Cesentiy>. . O

. .fmmémnn_ﬁmﬁ :

Knoaﬁm.ﬁ : 4mﬁ<m_cm nl
-u:m_n_mm moo_mmz,.\m_c‘m.

q_:m{n_cm :: E_m_zmu |
:n._‘:m?aml 0}
.u masm{m_‘cmﬂ ’

Q:mﬂ.a:f...mﬁma::m»

nnm:ﬁ_@vv e D

-é&: : _:Hmm&m._cm E..,_,

0.

lg.s

—r_ﬁ ....-\U.U,
nmaunmnmﬂmémcqzﬁﬂ
Q..

0.*
=«list=>=
<<list==

a<ligp== ﬁ

FIG. 23

26/62



PCT/1IB2010/002037

WO 2011/045634

Authentication

Directory

i
i
i
1 : :
I ‘Achive
i
H
e e e e e o e

—nﬂlll-llllllnllll!ll.lll.ln—

1 Swift Alliance
I

SWIFT

File
Directory

[

I
1
1
|
1
I
I
i
D e e e o e e

FIG. 23

I
I
I
1

e Tac MR W Dew  EOe Dem wex s e

o Wom Wox RN S mow RoM e Gl R

¥
a

27/62



PCT/1IB2010/002037

WO 2011/045634

Architecture

Presentation Business Storage

%

Datd

| U,

o
=
i

abase

Servicel [&

1
L A

Rartition/Cluste]

28/62



WO 2011/045634 PCT/1IB2010/002037

S

[

©01n0

|

9940

H

$7 01
puidde

MU

od

- uosl

29/62 .



PCT/1IB2010/002037

WO 2011/045634

FIG. 26

30/62



PCT/1IB2010/002037

WO 2011/045634

~source value'|

%

action

converted vatue

date converter

FiG. 27

31/62



PCT/1IB2010/002037

WO 2011/045634

Transition3

. Transitiond
state3 |

FIG. 28

32/62



PCT/1IB2010/002037

‘Report Configuration Set User Parameter Report Designer
Values

s (lass type

s Search Criteria
Report Fields

e (Grouping

s Sub Total

o Calculated Keys
> Additional Entities
o Report Format - .

| =" | XmlFie Xsl File

&

-5

WO 2011/045634

Report Generation Steps:

o  Configure the new Report.

o Design the Report XSL file. (the output is an
XSL file)

o When generating the report you may be
prompted to set the user parameter values Final Report
(if defined)

@ The Generated XML and XSL are sent to
transformation for generating the report file

FIG. 29

33/62



PCT/1IB2010/002037

WO 2011/045634

Bytésvalue naimmwwm@mﬂmw

HumberVatue

ettt Tl

Congvame

FIG. 30

34/62




PCT/1IB2010/002037

WO 2011/045634

Callectiony/alu

CondifigrialCalt

action’

FIG. 31

SaCallection]

35/62



PCT/1IB2010/002037

WO 2011/045634

Humbercis®

TimezoneCls |

CanstraimiCls

ControlieranieCls |

FIG. 32

36/62



PCT/1IB2010/002037

WO 2011/045634

DataExcention

IntegiiyCxception || [KeyNofFouridExCeftion

-

ImmiutableFieldEXception.

passiblevaliesCountExe

FIG. 33

37/62



WO 2011/045634 PCT/1IB2010/002037

Ve 1A

38/62



PCT/1IB2010/002037

WO 2011/045634

< ekttt
s zealter ) | passinard

wardvaiue

L pirtiee ~—= =

egaltry> 5]
eValue.

.Eumz.m.ﬂm .Lmiz m

|
|

. <<iypename=>

mm%qmimnaamzmamvy.

-

ConstraintTy

<<iypename>>

FIG. 34B

<sgnum>>
RelatlonName

-composition ; StingValue [1}= COMPOSITION

< String = \TION
-simple : StringValue [1]= SIMPLE
-assacialion : StringValue [1)= ASSOCIATION

<<enum>>
TransType

_requlred ; StringValue [§]= Requlred

-requiredNew : StrinaValue [1]= Reguired New
< Sting {1j= Supported

: Siring! [1]= Not
-mandatory : StringVatue [1]= Mandalory
-never: StringValue {1]= Nevar

39/62



PCT/1IB2010/002037

WO 2011/045634

Car

E5PanelNumber : StringValue
|

q S _Fear

d
+vendor

1
Vendor

1 heels

7 Wheel

1in model v
)1 ,
Model Michelin Bridgestone Afamia
FIG. 35

40/62



PCT/1IB2010/002037

WO 2011/045634

ﬁamwosmc‘u_:m

Buoleanvalue

,:,m.mBﬂ.m ]

allf=>

B Anqulv

=mn:u_n&n w_:m :mmﬂ_znmnmam_:w

ih

”=

41/62



PCT/1IB2010/002037

WO 2011/045634

asentity=r (3] +SYmX1

+5YME3

+i1

Sy +symi

RETTRTT

FIG. 37A

42/62



PCT/1IB2010/002037

WO 2011/045634

BT +symit

X
slef2

<=gntity>> o) | +symi 1 |
S e Tk

+Sym3

—

A2

FIG.37B

43/62



WO 2011/045634 PCT/1IB2010/002037

8¢ "DIA

44/62



WO 2011/045634 PCT/1IB2010/002037

E+

TES+

”'p-l-

w
°
P
|
3 .
- E
L2

A+

45/62



PCT/1IB2010/002037

WO 2011/045634

+first |

.
+second
<<apE>

1

=T

FIG. 40

46/62



PCT/1IB2010/002037

WO 2011/045634

0.1

=3 +symY

FIG. 41A

0.1

e —

+8ymy

FIG. 418

47/62



PCT/1IB2010/002037

WO 2011/045634

FI1G. 41C

48/62



PCT/1IB2010/002037

WO 2011/045634

FIG. 42

49/62



PCT/1IB2010/002037

WO 2011/045634

SingleValueTraverser

FIG. 43

50/62



PCT/1IB2010/002037

WO 2011/045634

Teieteaction

FIG. 44

51/62



PCT/1IB2010/002037

WO 2011/045634

FIG. 45

52/62



PCT/1IB2010/002037

WO 2011/045634

<=histaricized»=

[ O

o Person.

-name; StingVall

-age Intégarvalle 017"

FIG. 46

53/62



PCT/1IB2010/002037

WO 2011/045634

B

: ph dCalendar: StingValue [1(indes).
. SEEEda ?mi;wﬁf@o%; u
ALoohevalug) - . - .

FIG. 47A
F 1: Scheduler Part of a Palmyra Application UML Model

3

Edit 1 JobMessage —

Service Hame

=
Usartiame -

com.TestCantroilzr

Evalualor Hame:

—

[admin@aLL

FIG. 47B

54/62



PCT/1IB2010/002037

WO 2011/045634

ﬂ:@ m

14

Holidays .:‘me_z_m:ah _am_.a.mmn‘a i X o Prioxity ¢

{lonare Job i fesus - i . i [Hormat
StartDate Status - : “Track Execution
2477272003 00:00:00:000 g5 [Eeotng ¢ #

Bescription u@#mi ’ 3 . mma_:ﬂmmﬂaw

me&nmm: T _
Falled Repéat omt ’ , .
[ w M R

Hax Aliovred Delay

t4ax Retry Count - Repeat

—

Dai{comyerme:
vermeg services.scheduler)
com yermeg.sanices.scheduter)
somuermed.cenicas schaduler)
FEMS SENICRSs.:
Yearyicomyarmeg.services.schaduler)

3 Edit: Timelnba

.8 R L
Time N . L

[47:00:00:000

.=
.cums_..g._s :

|25,

Description
[Annual Holiday on 25(12°

FIG. 47E

55/62



PCT/1IB2010/002037

WO 2011/045634

R o
Has . Holiday | Deccriplion .
~ 281272000 iy Exceptional Holiday on 26/12/2009

myCalendar

B oo imitisees

Days in Week

Description

] fSundayisaWeeld; Holiday

Lon. o=
DependOn -

1 [mycatendar

=.Edit sdobEntry . s .

M row._nﬂ_m._.wmw?._ma ? . _n_m:a.m.m-.l B vnomm«a
' [1gnore Job ¥ st T [Horma
. Start Dat . S stats] Track Execution
| [BA/T22009 §0:00:00:000 . & - [Eecuing m

56/62



PCT/1IB2010/002037

WO 2011/045634

= Search Result:JobExecution

et s

O 2 8 testJob

i

Big

falss

B

RearDatel:SiA I

24/12/2008

S aith
17:00:00:000 Walling

e S eve A R ST

SRS G LR S plale Dale APy Ayt

21/12£2008 . ,
100 testlob o ._N”Bwomufm admin@AL

SaTA R Ceuon e Aol Enl

_Page w:,_ 1 m_,mEmanm... i

T WG4

57/62



PCT/1IB2010/002037

WO 2011/045634

FIG

-

48

58/62



WO 2011/045634

PCT/1IB2010/002037

6F D14

59/62



WO 2011/045634

PCT/1IB2010/002037

0s DI

60/62



PCT/1B2010/002037

WO 2011/045634

. <<entitp> Q

R Appointment

“StariDate: DaloVals [1}
-gmt : Intagervaiue 11
-validateDale DateValue
[-nextoccurénce : DatsValug
|-deseription : String¥atie
0.1
0.1
«<absirattvalue>> [e)
Repost 0.1 01
|comvermeg.senices.schezuter)
TalledrRypeat
0.1 ~falidJob
0.1
=1 st EctmatadTins: L Eu,?swax
o <<entiy> o totars 1 e stingValue 0.8] oL
y . -prioniy s JobPriarty J1] = Normal
{comemme3 serizes sche - hofidaysTréatment : HolidaysTrestmen: 1= zmun::
aieValue (1
ZValug A 4Ll o
o - .
<<abstrachvalue>> O [ maxRebyGoun nmum._nn__za 1 JobExecutips
Jabalert T T
(com.vermeg sarvices.sthedulzl) 3 T B <centy e i)
-faifksg + StingVatue (1} 0.4 JouExecution
i — (co Simnmwinmnmnzmn:_ma
- N rstigvatue ) 7
Mull- -reatDate : Dalevalite [1] R
Thieading -staius : JobExeStatus B
T <ol [ Gevicon-Stinpvatie .l - N
B S isFalled | Bodleanvalue [11=
(com g Se e Dot DaleValue [0.7] ~
. context: Conledvalie {1} jevaiue [1]=1
- fokAle  Liober: Siro A egerts €010« <
. m CTU I e L o Psi‘_%_s
o
- . - e Tl : ‘Anmz_a«-v‘. Te- i
R ° - . Jnbidessage’ .
- - o leomuemess nices.scheduiep L -
r éame [1{order=t), L " e L~ B
: [$Korder=2, i stz seon B N |

evalualotiame ; EyatisaforName s.:.__aml_
| use:Nzme tUseriames [fl{ordes=3) .
[-lexiMessage 4@2253 g

:&Em, =

——
<<enuma>

JabStalus

{comermeg.sendces.scheduler)

exoculing : SkingVaiue (1} = Execuiing
6nisher : StAngValue [1}= Finished

el
CeT :Bvdumvuaa

.created - SiringValue 1} = Created - .
-name ¢ nmanagEr=Com ‘ n
T -pYalie i) © 77 v . -
<<enums>
" <<ertm=~
JohExeSratus .

(comyermeg.servces.schedulen) <<gnumP> .suu:.u:e

HalidaysTreatmert. (comyereg.senvices.scheduler)

g+ StringValue [1]) = Walting
-sent - StingValue {1} = Sent

-inProtecs  StringYalue 1= In Process
.success ; SiringVatue [1] = Success
-fal ; SialngValue [1) = Fal
-wasted : StiingVakue [1} = Wasted

(comvarmeg.senices scheduien
Bt tant———
-neviDay : SiingValue [1]= Next Day

L previonsDay : Stingvalue [1l= Previous Dzy
-ipnoredob ; StinoValue 11]= E:Ew._a_u
l-ipnareHoliday ; SiingValue f{}=lgnore Ib_sm<

-highest; Siiagvalue [1)=Highes!
_high : SiringValue [1}= High
-normal : StingVaiue (1] =Narmal
+ GiringValue (1} = Low
._asmm_ Stingvalue [1} = Lowest

<<abstractvalue»>

-holicayEntys
o

BuskessCalentar

(com.vermeg.senices.calendal)

61/62



PCT/1B2010/002037

WO 2011/045634

Dec 9, 2009 3:07:28 PM [MegaAccounting-[Palmyra Scheduler Thread]:megara:Scheduler:The
work jobs list size is [1]

Dec 9, 2009 3:07:28 PM [MegaAccounting-[Palmyra Scheduler Thread]:megara:Scheduler:First job
in the registered jobs is [COD_Imp act_Reimpact comptable], validate date [09/12/2009
13:00:00:000], old date [null], is phantom [false], is executable [false]

Dec 9, 2009 3:07:28 PM [MegaAccounting-[Palmyra Scheduler
Thread]:megara:Scheduler:Handling registered job ... [COD_Impact Reimpact comptable], validate
date [09/12/2009 13:00:00:000], status [Executing], new validte date [09/12/2009 18:35:00:000],
new status [Executing]

Dec 9, 2009 3:07:28 PM MegaAccounting-[Palmyra Scheduler Thread]:megara:Scheduler:The
work jobs list size is [1]

Dec 9, 2009 3:07:28 PM [MegaAccounting-[Palmyra Scheduler Thread]:megara:Scheduler:First job
in the registered jobs is [COD_Impact Reimpact comptable], validate date [09/ 12/2009
18:35:00:000], old date [null], is phantom [false], is executable [true]

Dec 9, 2009 3:07:28 PM [MegaAccounting-[Palmyra Scheduler Thread]:megara:Scheduler:The
scheduler [PalmyraScheduler] is waiting for [12451167] milliseconds to [09/12/2009 18:35:00:000]
Dec 9, 2009 3:39:10 PM MegaAccounting-[Palmyra Scheduler Thread]:megara:Scheduler:The

scheduler [PalmyraScheduler] is notified at date [09/12/2009 15:39:10:369]

Dec 9, 2009 3:39:10 PM [MegaAccounting-[Palmyra Work Jobs Loader
Thread]:megara:Scheduler:Palmyra Work Jobs Loader Thread : notified at [09/ 12/2009
15:39:10:369], end date [09/12/2009 17:02:18:280]

Dec 9, 2009 3:39:10 PM [MegaAccounting-[Palmyra Work Jobs Loader
Thread]:megara:Scheduler:Palmyra Work Jobs Loader Thread : stoped at [09/ 12/2009

15:39:10:369]

FIG. 52

62/62



	DESCRIPTION
	CLAIMS
	DRAWINGS

