发明名称
基于周期性光可调滤波器的TWDM-PON ONU实现装置及方法

摘要
本发明公开了一种基于COTF的TWDM-PON ONU实现装置及方法，涉及PON接入领域。ONU实现装置包括光耦合器、环行器、增益介质、BPF1、隔离器、WDM、COTF、COTF控制电路、BPF2、接收机、信号调制电路和突发控制电路。COTF与COTF控制电路相连，光耦合器、COTF、WDM、BPF2、接收机顺次相连，共同构成下行链路；光耦合器、环行器、BPF1、隔离器、WDM、COTF构成闭合回路，环行器还与增益介质相连，增益介质还分别与信号调制电路和突发控制电路相连，共同构成上行链路。本发明能实现ONU接收端波长可选、发送端波长可变，满足TWDM-PON系统对ONU的要求，且保护了运营商的已有投资，节约了网络的建设成本。
1. 一种基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：包括光耦合器、环行器、增益介质、第一带通滤波器 BPF1、隔离器、波分复用器 WDM、COTF、COTF 控制电路，第二带通滤波器 BPF2、接收机、信号调制电路和突发控制电路，COTF 与 COTF 控制电路相连，光耦合器、COTF、波分复用器 WDM、BPF2、接收机顺序相连，共同构成下行链路；光耦合器、环行器、BPF1、隔离器、WDM、COTF 构成一个闭环回路，环行器还与增益介质相连，增益介质还分别与信号调制电路和突发控制电路相连，共同构成上行链路。

2. 如权利要求 1 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述光耦合器包括 3 个端口；P1 端口、P2 端口、COM 端口，COM 端口为合路口，P1 端口和 P2 端口为支路口，P1 支路口与 P2 支路口之间的比例按照系统要求分配，系统的下行信号经过 P1 支路口传输到 COM 端口输出，系统的上行信号经过 COM 端口后一部分从 P1 支路口输出到 ODN，另一部分经过 P2 支路口作为种子光注输入入到增益介质。

3. 如权利要求 2 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述环行器包括 3 个端口；端口 1、端口 2 和端口 3，环行器的端口 1 与光耦合器 P2 端口相连，环行器的端口 2 与增益介质相连，环行器的端口 3 通过保偏光纤与第一带通滤波器 BPF1 相连，光信号只能从端口 1 传到端口 2 或从端口 2 传到端口 3，其他方向传递的信号被隔离。

4. 如权利要求 1 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述增益介质是在无外加光源的情况下输出宽谱信号，在有外加光源光注入的情况下锁定输出单纵模光信号的增益器件，且单纵模光信号的波长与注入种子光波长相同。

5. 如权利要求 4 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述增益介质为反射式半导体光放大器 RSOA 或法布里-珀罗激光二极管 FP-LD。

6. 如权利要求 1 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述 COTF 是输出具有周期性的双向器件，COTF 输出的光信号具有周期性，其输出的波长是在单波长的基础上叠加一个或多个相同间隔的波长，实现多波长的输出，每两个相邻波长间隔为自由谐振范围 FSR。

7. 如权利要求 4 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述 COTF 控制电路根据 ONU 处理过的波长信息，查找波长与 COTF 电压的对应关系表，找出对应的电压值并输出到 COTF，COTF 根据该电压选择需要输出的波长。

8. 如权利要求 6 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述第一带通滤波器 BPF1 和第二带通滤波器 BPF2 决定上行、下行光信号的波长，BPF1 和 BPF2 的工作波长段都在周期性光可调滤波器波长覆盖范围之内，BPF1 和 BPF2 之间的间隔是周期性光可调滤波器 FSR 的整数倍。

9. 如权利要求 1 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述路信号调制电路和突发控制电为上行信号的控制电路，信号调制电路将直流信号调制成线要求的码型，突发控制电路按照 PON 协议发出的脉冲，允许激光器在被分配的时隙上发光，其他时隙不能发光，完成上行 TDMA 信号的接入。

10. 如权利要求 1 所述的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，其特征在于：所述波分复用器 WDM 分别与 COTF、隔离器和 BPF2 相连，用来分离和合路上行、下行不
同的波长段光信号。

11. 如权利要求1所述的基于周期性光可调滤波器的TWDM–PON ONU实现装置，其特征在于：所述隔离器分别与BPF1和波分复用器WDM相连，仅让上行信号单方向通过，对下行信号或上行信号的反射信号进行阻隔，避免下行光信号或上行信号的反射信号对上行信号产生干扰。

12. 基于权利要求1至11中任一项所述ONU实现装置的基于周期性光可调滤波器的TWDM–PON ONU实现方法，其特征在于，包括以下步骤：

S1. OLT发送波长信息到ONU，通知ONU需要调谐的波长；

S2. ONU接收到OLT发来的波长信息后，如果判定OLT所发的波长在ONU的波长能力范围内，ONU接收到的波长信息进行处理，得到波长信息相应的二进制码；

S3. ONU将二进制码发送到COTF控制电路，COTF控制电路根据二进制码的信息，查找波长与COTF电压的对应关系表，找出对应的电压值输出到COTF；

S4. COTF根据接收的电压值调整COTF工作的中心波长，该中心波长对应下行合波信号中的一个通道，至此COTF完成了对下行合波信号波长的选；上行和下行共享一个COTF，COTF的工作波长已定，上行信号的工作波长跟随下行接收波长而确定下来，选择下行波长的同时也实现了上行信号波长的可变。

13. 如权利要求12所述的基于周期性光可调滤波器的TWDM–PON ONU实现方法，其特征在于：步骤S1中还包括以下步骤：当OLT需要ONU重新调整波长时，OLT发送包含新波长信息的调整波长命令到ONU。

14. 如权利要求12所述的基于周期性光可调滤波器的TWDM–PON ONU实现方法，其特征在于：步骤S2中还包括以下步骤：ONU接收到OLT发来的波长信息后，如果判定OLT所发波长超出ONU的波长能力范围，ONU向OLT发送反馈信息“out of range”，并上报自己的波长能力信息“my range”；OLT接收到ONU发来的反馈信息“out of range”和波长能力信息“my range”后，重新发送在ONU能力范围内的波长信息到ONU，再重复步骤S2。

15. 如权利要求12至14任一项所述的基于周期性光可调滤波器的TWDM–PON ONU实现方法，其特征在于：下行的信号流向如下：光耦合器P1端口接收来自ODN方向的光信号，经过光耦合器的Com端口发送到COTF进行波长选择，下行方向的波长选择要根据OLT的指令，由OLT告诉ONU，ONU再将OLT波长指令处理后传送到COTF控制电路，COTF控制电路给出相应的波长的电压值给COTF，COTF根据电压值从下行合波信号的波长中选择一个波长输出，完成接收波长的选择，选择后的波长信号作为正确的接收光信号经过波分复用器WDM、BPF2后进入到接收机，完成下行信号的传送。

16. 如权利要求12至14任一项所述的基于周期性光可调滤波器的TWDM–PON ONU实现方法，其特征在于：上行的信号流向如下：增益介质为反射式半导体光放大器RSOA时，RSOA输出的宽光谱信号经过BPF1滤出上行工作波长段，BPF1滤出的带通光信号经过隔离器、波分复用器WDM后传输给COTF，COTF将带通滤波后的宽光谱信号分割成窄带光信号，窄带光信号的中心波长由OLT来指定；窄带光信号经过光耦合器com端和P2端口，再经过环行器的端口1、端口2，作为种子注入到RSOA内，RSOA经环行器的端口2、端口3输出单模光信号，如此循环，直至RSOA最终输出稳定的单模光信号，就形成了自种子的激光器作为ONU发送端的光源；环行器的端口3输出单模光信号，经突发控制电路的控制和信号调制
电路的调制后输出，形成上行的 TDMA 光信号，依次经过 BPF1、隔离器、WDM、COTF、光耦合器的 com 端口、PI 端口，发送到 ODN，直到 OLT，完成波长可变的上行 TDMA 信号的接入。
基于周期性光可调滤波器的 TWDM-PON ONU 实现装置及方法

技术领域

本发明涉及 PON（Passive Optical Network，无源光网络）接入领域，特别是涉及一种基于周期性光可调滤波器的 TWDM-PON（Time Wavelength Division Multiplexing—Passive Optical Network，时分波分复用—无源光网络）ONU（Optical Network Unit，光网络单元）实现装置及方法。

背景技术

由于光纤通信具有传输频带宽、通信容量大、信号传输质量高等优点，该技术在通信领域有着极其广泛的应用。光接入网络 FTTH（Fiber To The Home，光纤到户）作为光纤通信网络中的一个重要部分，具有广阔的应用前景。随着业务内容的丰富，需求的带宽越来越大，1G 速率的 EPON（Ethernet Passive Optical Network，以太网无源光网络）或 GPON（Gigabit Capable Passive Optical Network，吉比特/千兆位无源光网络）不能满足未来带宽的需求，需要新技术的出现解决带宽的问题。

NG PON2（Next Generation Passive Optical Network，下一代无源光网络）技术的研究被业界广泛关注，NG PON2 技术要求包括：下行 40G，上行 10G 带宽，无源 ODN（Optical Distribution Network，光分配网）下支持 40km 的传输距离；支持 1:64 分支比；支持已部署 ODN 网络，保护运营商现有投资。业界认为 NG PON2 接入技术的演进有 3 个方面：1. 单波长提高速率；2. 采用波分复用技术；3. 采用正交频分复用技术。

对于第一种单波长提高速率，关键技术在于下行方向单波长比特率提高为 40Gb/s，上行方向单波长为 10Gb/s，但需要解决以下问题：色散，速率提升 4 倍，色散就会提升 16 倍，限制了传输距离；光功率预算，在增加 4 倍速率的条件下，保证同样的 SNR（Signal to Noise Ratio，信噪比），必须将光功率增加 6dB，需要增加光放大器，ONU 侧高速电路技术，高速电路必然会增加更高的成本。

对于第二种正交频分复用技术，关键技术在于采用 DSP（Digital Signal Processing，数字信号处理）技术，在电域将信号分成多个正交的子载波，将每个子载波传送至每个 ONU，下行可支持 40G，上行可支持 20G。但需要解决以下几个问题：高速复杂的 DSP 技术、相干检测技术、光子集成或者光电集成技术等。

相对于第一种和第二种，第二种采用波分复用技术从技术上来讲相对比较容易实现的，不存在很高的技术障碍，成本也相对较低。NG PON2 采用波分复用技术的 PON 被称为 TWDM-PON（Time Wavelength Division Multiplexing—Passive Optical Network，时分波分复用—无源光网络），参见图 1 所示，TWDM-PON 系统主要是下行采用 WDM（Wavelength Division Multiplexing，波分复用）方式，上行采用 WDM-TDMA（Wavelength Division Multiplexing and Time Division Multiplexing Access，波分复用和时分复用多址接入）方式的网络。

由于 NG PON2 技术要求之一为支持已部署 ODN，这就要求 ODN 网络保持不变，在远
端分支节点仍旧采用光功率分配器，即 ODN 中仅配置波长不敏感的光功率分配器，而不是具有波长敏感特性的波长路由器或波长选择器。这种情况下如果采用波分复用技术的话，波长选择器就下降到 ONU 处，即 TWDM-PON 中的波长复用和解复用功能就下移到 ONU 处，这就要求 ONU 接收端具有波长选择功能，ONU 的发送端具有波长调节的能力。因此，NG PON2 的关键技术在于 ONU 的实现。

发明内容

[0008] 本发明的目的是为了克服上述背景技术的不足，提供一种基于周期性光可调滤波器的 TWDM-PON ONU 实现装置及方法，能实现 ONU 接收端波的长可选、发送端的波长可变，满足 TWDM-PON 系统对 ONU 的需求，且使 TWDM-PON 与传统 PON 共享一个 ODN，保护了运营商的已有投资，节约了网络的建设成本。

[0009] 本发明提供的基于周期性光可调滤波器的 TWDM-PON ONU 实现装置，包括光耦合器、环行器、增益介质、第一带通滤波器 BPF1、隔离器、波分复用器 WDM、COTF、COTF 控制电路、第二带通滤波器 BPF2、接收机、信号调制电路和突发控制电路，COTF 与 COTF 控制电路相连，光耦合器、COTF、波分复用器 WDM、BPF2、接收机顺次相连，共同构成下行链路；光耦合器、环行器、BPF1、隔离器、WDM、COTF 构成一个闭环回路，环行器还与增益介质相连，增益介质还分别与信号调制电路和突发控制电路相连，共同构成上行链路。

[0010] 在上述技术方案中，所所述光耦合器包括 3 个端口：P1 端口、P2 端口、com 端口，com 端口为合路口，P1 端口和 P2 端口为支路口，P1 支路口与 P2 支路口之间的比例按照系统要求分配，系统的下行信号经过 P1 支路口传输到 com 端口输出，系统的上行信号经过 com 端口与一部分从 P1 支路口输出到 ODN，另一部分经过 P2 支路口作为种子光注入到增益介质。

[0011] 在上述技术方案中，所述环行器包括 3 个端口：端口 1、端口 2 和端口 3，环行器的端口 1 与光耦合器 P2 端口相连，环行器的端口 2 与增益介质相连，环行器的端口 3 通过保偏光纤与第一带通滤波器 BPF1 相连，光信号只能从端口 1 传到端口 2 或从端口 2 传到端口 3，其他方向传递的信号被隔离。

[0012] 在上述技术方案中，所述增益介质是在无外部种子光源的情况下输出宽谱信号。在有外部种子光源注入的情况下锁定输出单纵模光信号的增益器件，且单纵模光信号的波长与注入种子光源波长相同。

[0013] 在上述技术方案中，所述增益介质为反射式半导体放大器 RSOA 或法布里-珀罗激光二极管 FP-LD。

[0014] 在上述技术方案中，所述 COTF 是输出具有周期性的双向器件，COTF 输出的光信号具有周期性，其输出的波长是在单波长的基础上叠加一个或多个相同间隔的波长，实现多波长的输出，两个相邻波长间隔为自由谱范围 FSR。

[0015] 在上述技术方案中，所述 COTF 控制电路根据 ONU 处理过的波长信息，查找波长与 COTF 电压的对应关系，找出对应的电压值并输出到 COTF，COTF 根据该电压选择需要输出的波长。

[0016] 在上述技术方案中，所述第一带通滤波器 BPF1 和第二带通滤波器 BPF2 决定上行、下行光信号的波长，BPF1 和 BPF2 的工作波长段都在周期性光可调滤波器波长覆盖范围之内，BPF1 和 BPF2 之间的间隔是周期性光可调滤波器 FSR 的整数倍。
[0017] 在上述技术方案中，所述路信号调制电路和突发控制电路为上行信号的控制电路，
信号调制电路将直段信号调制成线路要求的码型，突发控制电路按照 PON 协议发出的脉
冲，允许激光器在被分配的时隙上发光，其他时隙不能发光，完成上行 TDMA 信号的接入。
[0018] 在上述技术方案中，所述波分复用器 WDM 分别与 COTF、隔离器和 BPF2 相连，用来
分离和合路上行、下行不同的波长段光信号。
[0019] 在上述技术方案中，所述隔离器分别与 BPF1 和波分复用器 WDM 相连，仅让上行信
号单方向通过，对下行信号或上行信号的反射信号进行阻隔，避免下行光信号或上行信号
的反射信号对上行信号产生干扰。
[0020] 基于上述 ONU 实现装置，本发明还提供一种基于周期性光可调滤波器的 TWDM-PON
ONU 实现方法，包括以下步骤；
[0021] S1、OLT 发送波长信息到 ONU，告知 ONU 需要调谐的波长；
[0022] S2、ONU 接收到 OLT 发来的波长信息后，根据所发的波长在 ONU 的波长能
力范围内，ONU 对波长信息进行处理，得到波长信息相应的二进制码；
[0023] S3、ONU 将二进制码发送到 COTF 控制电路，COTF 控制电路根据二进制码的信
息，查找波长与 COTF 电压的对应关系表，找出对应的电压值输出到 COTF；
[0024] S4、COTF 根据接收的电压值调整 COTF 工作的中心波长，该中心波长对应下行合
波信号中的一个通道，至此 COTF 完成了对下行合路信号波长的选择；上行和下行共享一个
COTF，COTF 的下行工作波长已定，上行信号的工作波长跟随下行接收波长也确定下来，选
择下行波长的同时也实现了上行信号波长的可变。
[0025] 在上述技术方案中，步骤 S1 中还包括以下步骤：当 OLT 需要 ONU 重新调整波长时，
OLT 发送包含新波长信息的调整波长命令到 ONU。
[0026] 在上述技术方案中，步骤 S2 中还包括以下步骤：ONU 接收到 OLT 发来的波长信息
后，如果判定 OLT 所发波长超出 ONU 的波长能力范围，ONU 向 OLT 发送反馈信息“out of
range”，并上报自己的波长能力信息“my range”。OLT 接收到 ONU 发来的反馈信息“out of
range”和波长能力信息“my range”后，重新发送在 ONU 能力范围内的波长信息到 ONU，再
重复步骤 S2。
[0027] 在上述技术方案中，下行的信号流程如下：光耦合器 P1 端口接收来自 ODN 方向的
光信号，经过光耦合器的 Com 端口发送到 COTF 进行波长选择，下行方向的波长选择要根据
OLT 的指令，由 OLT 告之 ONU，ONU 再将 OLT 波长指令处理后传输到 COTF 控制电路，COTF 控
制电路给出相应波长的电压值给 COTF，COTF 根据电压值从下行合波信号的波长中选择一
个波长输出，完成接收波长的选择，选择后的波长信号作为正确的接收光信号经过波分复
用器 WDM、BPF2 后进入到接收机，完成下行信号的传送。
[0028] 在上述技术方案中，上行的信号流向如下：增益介质为反射式半导体光放大器
RSOA 时，RSOA 输出的宽光谱信号经过 BPF1 滤出上行工作波长段，BPF1 滤出的带通光信号
经过隔离器、波分复用器 WDM 后传输给 COTF，COTF 将带通滤波后的宽光谱信号分割成窄
带光信号，窄带光信号的中心波长由 OLT 来指定；窄带光信号经过光耦合器 com 端和 P2 端
口，再经过环行器的端口 1、端口 2，作为种子注入到 RSOA 内，RSOA 经环行器的端口 2、端口
3 输出单纵模光信号，如此循环，直至 RSOA 最终输出稳定的单纵模光信号，它形成了自种子
的激光器作为 ONU 发送端的光源；环行器的端口 3 输出单纵模光信号，经突发控制电路的
控制和信号调制电路的调制后输出，形成上行的 TDMA 光信号，依次经过 BPF1，隔离器，WDM，
OTF，光耦合器的 com 端口，P1 端口，发送到 ODN，直到 OLT，完成波长可变的上行 TDMA
信号的接入。
说明。与现有技术相比，本发明的优点如下：
（1）本发明能实现 ONU 接收端波的长可变，发送端的波长可变，满足 TWDM-PON 系统
对 ONU 的要求。
（2）本发明使 TWDM PON 与传统 PON 共享一个 ODN，保护了运营商的已有投资，节约
了网络的建设成本。
附图说明
图 1 是 TWDM-PON 系统的结构框图。
图 2 是周期性光可调滤波器 OTF 的功能测试框图。
图 3 是 OTF 不加电时，宽谱光源 ASE 通过 OTF 的光谱图。
图 4 是 OTF 的电压为 0.8V 时，OTF 输出的光谱图。
图 5 是 OTF 的电压为 1.2V 时，OTF 输出的光谱图。
图 6 是本发明实施例中基于 OTF 的 TWDM-PON ONU 实现装置的结构框图。
图 7 是 OTF 输出的周期性光谱与 BPF1 和 BPF2 之间的关系曲线图。
图 8 是 BPF 与通道中心波长之间的关系曲线图。
图 9 是 SOA 输出的宽谱光源的光谱图。
图 10 是宽谱光源经过 BPF1 和 OTF 后的窄带波的波形图。
图 11 是调制信号注入后 SOA 后输出的单纵模光信号的波形图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细描述。
为了实现 ONU 接收端的波长选择功能和发送端的波长调谐功能，本发明采用
OTF (Cyclic Optical Tunable Filter, 周期性光可调滤波器) 作为关键部件，下面对 OTF
的功能进行说明及验证。
参见图 2 所示，ASE (Amplified Spontaneous Emission, 宽谱光 源）或 WDM 光源，
OTF，OSA (Optical Spectral Analyser, 光谱分析仪) 顺次相连，OTF，还与 OTF 控制电路
相连。在 OTF 不加电的情况下，OTF 的输出光谱参见图 3 所示，图 3 中，标号 C_01，C_02，
C_11 等是宽谱光源 ASE 经过 OTF 后输出的波长，由上，下等相邻标号之间的波长差的绝对值
定义为 OTF 的 FSR (Free Spectral Range, 自由谱范围)，|C_n − C_{n+1}| = FSR, C_n 表示第
n 个波长，C_{n+1} 表示第 n+1 个波长。
OTF 上电后，OTF 控制电路输出不同的电压值（0～5V）给 OTF，可以从 OSA 上看到
OTF 输出的光谱图，其中，OTF 的电压为 0.8V 时，OTF 输出的光谱参见图 4 所示，当 OTF
的电压从 0.8V 增加到 1.2V 时，OTF 输出的光谱参见图 5 所示。对比图 4 和图 5 可发现，
当 OTF 的电压从 0 到高变化时，标号向长方向移动；反之亦然，当 OTF 的电压从高到低变化
时，波长标号向短波长方向移动。由此可见，通过 OTF 控制电路控制 OTF 的电压，OTF
可以选择需要输出的波长。因此，OTF 可实现波长的选择功能。
[0047] 参见图6所示，本发明实施例提供的基于周期性光可调滤波器的TWDM-PON ONU实现装置，包括光耦合器、环行器、增益介质、第一带通滤波器BPF1（Band Pass Filter1）、隔离器、波分复用器WDM、COTF、COTF控制电路、第二带通滤波器BPF2（Band Pass Filter2）、接收机、信号调制电路和突发控制电路，COTF 与 COTF 控制电路相连，光耦合器、COTF、波分复用器WDM、BPF2、接收机顺次相连，共同构成下行链路；光耦合器、环行器、BPF1、隔离器、WDM、COTF 构成一个闭合回路，环行器还与增益介质相连，增益介质还分别与信号调制电路和突发控制电路相连，共同构成上行链路。

[0048] 光耦合器是按照光功率进行分配的器件，包括3个端口：P1端口、P2端口、com端口，com端口为合路口，P1端口和P2端口为支路口，P1支路口与P2支路口之间的比例按照系统要求分配。系统的下行信号经过P1支路传输到com端口输出，系统的上行信号经过com端口一部分从P1支路输出到ODN，另一部分经过P2支路输出作为种子光注入到增益介质。

[0049] 环行器为三端口器件，包括3个端口：端口1、端口2和端口3，环行器的端口1与光耦合器P2端口相连，环行器的端口2与增益介质相连，环行器的端口3通过保偏光纤与第一带通滤波器BPF1相连，光信号只能从端口1传到端口2或从端口2传到端口3，其他方向传递的信号被隔离。

[0050] 增益介质作为ONU设备的输出光源，是在无外部种子光源的情况下输出宽谱信号。在有外部种子光源注入的情况下锁定输出单纵模光信号的增益器件，且单纵模光信号的波长与注入种子光源波长相同，该器件同时还具有前腔面反射率低、后腔面反射率高的特征，例如：RSOA（Reflective Semiconductor Optical Amplifier，反射式半导体光放大器）或FP-LD（Fabry-Perot Laser Diode，法布里-珀罗激光二极管）都可作为增益器件。

[0051] 环行器通过保偏光纤与BPF1相连，目的是保证光信号的偏振特性，使得RSOA减小其偏振相关增益，输出光信号功率稳定。

[0052] 波分复用器WDM分别与COTF、隔离器和BPF2相连，用来分离和合路上行、下行不同的波长段光信号。

[0053] 隔离器分别与BPF1和波分复用器WDM相连，目的是仅让上行信号单方向通过，对下行信号或上行信号的反射信号进行阻隔，避免下行光信号或上行信号的反射信号对上行信号产生干扰。

[0054] COTF是输出具有周期性的双向器件，COTF输出的光信号具有周期性。周期性表现在输出不是单一的波长，而是在单波长的基础上叠加一个或多个相同间隔的波长，覆盖的波长数更多，实现多波长的输出。每个相邻波长频谱间隔为FSR。上行和下行光信号共用一个COTF，COTF有两个作用，第一作为下行信号的波长选择器件，第二又作为实现上行信号波长可变的功能器件。

[0055] COTF控制电路根据ONU处理过的波长信息，查找波长与COTF电压的对应关系表，找出对应的电压值并输出到COTF，COTF根据该电压选择需要输出的波长。

[0056] BPF1和BPF2决定上行、下行光信号的波长，但BPF1和BPF2的工作波长段都在周期性光可调滤波器波长覆盖范围之内，BPF1和BPF2之间的间隔是周期性光可调滤波器FSR的整数倍，即\(BW_{BPF1}BW_{BPF2} = n\times FSR\)，n为正整数。隔离器是控制信号传递方向的器件，主要用于减小上行、下行光信号之间的干扰。波分复用器WDM用来分离上行和下行不同的波
长段光信号。接收机为通用的接收机，完成光信号转成电信号的功能。

[0057] 路信号调制电路和突发控制电路为上行信号的控制电路。信号调制电路将直接信号调制成线路要求的码型，突发控制电路按照PON协议发出的脉冲，允许激光器在被分配的时隙上发光，其他时隙不能发光，完成上行TDMA（Time Division Multiple Access，时分多址）信号的接入。

[0058] 在上述OUN实现装置的基础上，本发明实施例还提供一种基于周期性光可调滤波器的TWDM-PON ONU实现方法，包括以下步骤：

[0059] S1、OLT（Optical Line Terminal，光线路终端）发送波长信息到OUN，告知OUN需要调谐到哪个波长上；当OLT需要OUN重新调整波长时，OLT发送包含新波长信息的调整波长命令到OUN。

[0060] S2、OUN接收OLT发来的波长信息，如果判定OLT所发的波长在OUN的波长能力范围内，OUN对接收到的波长信息进行处理，得到波长信息相应的二进制码，例如，4个波长可用两位二进制码表示；00/01/10/11；如果判定OLT所发波长超出OUN的波长能力范围，OUN向OLT发送反馈信息“out of range”，并将自己的波长能力信息“my range”发送到OUN。OLT接收OUN发来的反馈信息“out of range”和波长能力信息“my range”后，重新发送在OUN能力范围内的波长信息到OUN，重新步骤S2；

[0061] S3、OUN将二进制码发送到COTF控制电路，COTF控制电路根据二进制码的信息，查找波长与COTF电压的对应关系表，找出对应的电压值输出到COTF。

[0062] S4、COTF根据接收的电压值调整COTF工作的中心波长，这个中心波长对应下行合波信号中的一个通道。因此，COTF就完成了对下行合路信号波长的选择；由于上行和下行共享一个COTF，但上行和下行共享一个COTF，但上行和下行共用一个波长段，波长段由BPF1和BPF2决定。COTF的下行工作波长已定的话，上行信号的工作波长就跟随下行接收波长也确定下来，所以选择下行波长的同时，也实现了上行信号波长的可变。

[0063] 参见图7所示，COTF每个波长段之间为FSR，COTF的覆盖频段涵盖BPF1、BPF2工作的波长段，参见图8所示，一个BPF可涵盖4个波长，BPF1和BPF2波长段之间的关系为：$BW_{BPF2}-BW_{BPF1} = n \times FS R$，n为正整数。也就是说上行工作在BPF1决定的波长段，下行工作在BPF2工作的波长段。参见图8所示，COTF控制电路输出V1的电压到COTF时，COTF工作在Ch11和Ch21，那么下行工作在Ch21通道，上行工作在Ch11通道；COTF控制电路输出V2的电压到COTF时，那么下行工作在Ch22，上行工作在Ch12，依次类推。

[0064] 下面详细说明上行、下信的信号流向。

[0065] 下行方向：光耦合器P1端口接收来自OUN方向的光信号，经过光耦合器的Com端口发送到COTF进行波长选择，下行方向的波长选择要根据OLT的指令，由OLT告之OUN。OUN再将OLT波长指令处理后发送到COTF控制电路；COTF控制电路给出相应波长的电压值给COTF，COTF根据电压值从下行合波信号的波长中选择一个波长输出，这就完成了接收波长的选择功能，选择后的波长信号作为标准的接收光信号经过波分复用器WDM、BPF2后进入接收机，完成下行信号的传送。

[0066] 上行方向：

[0067] 增益介质（例如反射式半导体光放大器RSOA）最初输出宽光谱信号，RSOA输出的宽光谱信号参见图9所示，RSOA输出的宽光谱信号经过BPF1滤出上行工作波长段，BPF1滤
出的带通光信号经过隔离器、波分复用器 WDM 后传输给 COTF。COTF 将经带通滤波后的宽光谱信号分割成窄带光信号，参见图 10 所示。窄带光信号的中心波长由 OLT 来指定；窄带光信号经过光耦合器 com 端和 P2 端口，再经过环行器的端口 1、端口 2，作为种子（上行信号的注人信号）注入到 RSOA 内，RSOA 经环行器的端口 2、端口 3 输出单模信光信号，参见图 11 所示，如此循环，直至 RSOA 最终输出稳定的单模光学信号，就形成了自种子的激光器作为 ONU 发送端的光源。环行器的端口 3 输出单模光信号，经突发控制电路的控制和信号调制电路的调制后输出，形成上行的 TDMA 光信号，依次经过 BPF1、隔离器、WDM、COTF、光耦合器的 com 端口、P1 端口，发送到 ODN，直到 OLT，完成波长可变的上行 TDMA 信号的接入。

[0068] 显然，本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围，倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内，则本发明包含这些改动和变型在内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。