(54) 发明名称
物联网数据传输方法及网络节点

(57) 摘要
本发明提供一种物联网数据传输方法及网络节点。该方法包括：网络节点将同一应用对应的各类型数据进行混合，得到混合数据，所述网络节点获取所述混合数据的复杂度，所述网络节点从所述应用对应的路径中选取一条作为目标路径，所述网络节点根据所述复杂度获取所述目标路径的传输代价，所述网络节点判断所述传输代价是否低于预设阈值，如果判断结果为是，所述网络节点将所述混合数据按照所述目标路径进行传输。本发明中的网络节点通过获取混合数据的复杂度，为混合数据选取传输代价低于预设阈值的目标路径，实现了为混合数据自适应选取目标路径的目的，而且通过目标路径传输混合数据，可以降低混合数据的传输代价，从而能够节省路由资源。
1. 一种物联网数据传输方法，其特征在于，包括：
网络节点对同一应用对应的各类型数据进行混合得到混合数据；
所述网络节点获取所述混合数据的复杂度；
所述网络节点从与所述应用对应的传输路径中选取一条作为目标路径；
所述网络节点根据所述复杂度获取所述目标路径的传输代价；
所述网络节点判断所述传输代价是否低于预设阈值；
如果判断结果为是，所述网络节点将所述混合数据按照所述目标路径进行传输。
2. 根据权利要求1所述的物联网数据传输方法，其特征在于，还包括：
如果所述传输代价高于或者等于所述阈值，所述网络节点重新执行从所述应用对应的路径中选取一条作为所述目标路径直到选取出的所述目标路径的所述传输代价低于所述阈值。
3. 根据权利要求2所述的物联网数据传输方法，其特征在于，所述网络节点获取所述混合数据的复杂度，包括：
所述网络节点根据各类型数据的单位大小与各类型数据在存储空间占用所述单位大小的数量，获取各类型数据的第一复杂度；
所述网络节点根据各类型数据的第一复杂度与预设的各类型数据对应的权值，按照所述第一算法计算得到所述复杂度。
4. 根据权利要求3所述的物联网数据传输方法，其特征在于，所述网络节点根据所述复杂度获取所述目标路径的传输代价，包括：
所述网络节点获取所述目标路径的传输距离；
所述网络节点根据所述复杂度、所述传输距离以及预设的权值，按照第二算法计算得到所述传输代价。
5. 根据权利要求4所述的物联网数据传输方法，其特征在于，所述网络节点从与所述应用对应的传输路径中选取一条作为所述目标路径，包括：
所述网络节点预先存储有与所述应用对应的传输路径。
所述网络节点从与所述应用对应的传输路径中选取一条作为所述目标路径。
6. 一种网络节点，其特征在于，包括：
混合模块，用于对同一应用对应的各类型数据进行混合得到混合数据；
第一获取模块，用于获取所述混合数据的复杂度；
选取模块，用于从与所述应用对应的传输路径中选取一条作为目标路径；
第二获取模块，用于根据所述复杂度获取所述目标路径的传输代价；
判断模块，用于判断所述传输代价是否低于预设阈值；
传输模块，用于在所述判断模块判断出所述传输代价低于所述阈值后，将所述混合数据按照所述目标路径进行传输。
7. 根据权利要求6所述的网络节点，其特征在于，还包括：
所述选取模块，还用于所述判断模块判断出所述传输代价高于或者等于所述阈值后，重新执行从所述应用对应的路径中选取一条作为所述目标路径直到选取出的所述目标路径的所述传输代价低于所述阈值。
8. 根据权利要求7所述的网络节点，其特征在于，所述第一获取模块，具体用于根据各
类型数据的单位大小与各类型数据在存储空间占用所述单位大小的数量，获取各类型数据的第一复杂度，根据各类型数据的第一复杂度与预设的各类型数据对应的权重值，按照所述第一算法计算得到所述复杂度。

9. 根据权利要求8所述的网络节点，其特征在于，所述第一获取模块，具体用于获取所述目标路径的传输距离，根据所述复杂度、所述传输距离以及预设的第二权重值，按照第二算法计算得到所述传输代价。

10. 根据权利要求6—9任一项所述的网络节点，其特征在于，所述选取模块，具体用于预先存储有与所述应用对应的传输路径，从与所述应用对应的传输路径中选取一条作为所述目标路径。
物联网数据传输方法及网络节点

技术领域
[0001] 本发明涉及物联网技术，尤其涉及一种物联网数据传输方法及网络节点。

背景技术
[0002] 物联网分为感知层、传输层（即网络层）、处理层和应用层。物联网中的数据采集设备如红外传感器、射频识别（Radio Frequency Identification，简称RFID）及各种二维码等通过感知获取到物体的物理特性，如温度、位置等信息，再将感知的信息转换为数据发送给物联网中的应用如智能交通、身份认证、基于位置服务和安全等，以使得各应用使用这些数据为用户提供各种服务。
[0003] 目前，在数据采集设备采集到数据后，需要将数据按照预设的传输路径发送到相应的应用上，存在不能自适应地为传输数据选路传输路径的缺陷。

发明内容
[0004] 本发明提供一种物联网数据传输方法及网络节点，用于解决现有技术中存在不能自适应地为传输数据选路传输路径的缺陷。
[0005] 为了实现上述目的，本发明提供的一种物联网数据传输方法，包括：
[0006] 网络节点对同一应用对应的各类型数据进行混合得到混合数据；
[0007] 所述网络节点获取所述混合数据的复杂度；
[0008] 所述网络节点从与所述应用对应的传输路径中选取一条作为目标路径；
[0009] 所述网络节点根据所述复杂度获取所述目标路径的传输代价；
[0010] 所述网络节点判断所述传输代价是否低于预设阈值；
[0011] 如果判断结果为是，所述网络节点将所述混合数据按照所述目标路径进行传输。
[0012] 为了实现上述目的，本发明提供的一种网络节点，包括：
[0013] 混合模块，用于对同一应用对应的各类型数据进行混合得到混合数据；
[0014] 第一获取模块，用于获取所述混合数据的复杂度；
[0015] 选取模块，用于从与所述应用对应的传输路径中选取一条作为目标路径；
[0016] 第二获取模块，用于根据所述复杂度获取所述目标路径的传输代价；
[0017] 判断模块，用于判断所述传输代价是否低于预设阈值；
[0018] 传输模块，用于在所述判断模块判断出所述传输代价低于所述阈值后，将所述混合数据按照所述目标路径进行传输。
[0019] 本发明提供的物联网数据传输方法及网络节点，网络节点将同一应用对应的各类型数据进行混合得到混合数据，所述网络节点获取所述混合数据的复杂度，所述网络节点从所述应用对应的路由中选取一条作为目标路径，所述网络节点根据所述复杂度获取所述目标路径的传输代价，所述网络节点判断所述传输代价是否低于预设阈值，如果判断结果为是，所述网络节点将所述混合数据按照所述目标路径进行传输。本发明中的网络节点通过获取混合数据的复杂度，为混合数据选路传输代价小于预设阈值的目标路径，实现了为
混合数据自适应选取目标路径的目的，而且通过目标路径传输混合数据，可以降低混合数据的传输代价，从而能够节省路由资源。

附图说明
[0020] 图 1 为本发明实施例一提供的一种物联网数据传输方法的流程示意图；
[0021] 图 2 为本发明实施例二提供的一种网络节点的结构示意图。

具体实施方式
[0022] 为使本发明实施例的目的、技术方案和优点更加清楚，下面将结合本发明实施例中的附图，对本发明实施例中的技术方案进行清楚、完整地描述，显然，所描述的实施例是本发明一部分实施例，而不是全部的实施例。
[0023] 实施例一
[0024] 图 1 为本发明实施例一提供的一种物联网数据传输方法的流程示意图，如图 1 所示，该物联网数据传输方法包括以下步骤：
[0025] 101. 网络节点对同一应用对应的各类型数据进行混合得到混合数据。
[0026] 具体地，网络节点接收来自不同数据采集设备发出的数据，如传感器等，在接收到各数据采集设备发出的数据后，网络节点可以间被测到的各数据中获取到各数据对应的信号。网络节点将同一应用对应的各类型数据进行混合得到混合数据。例如，网络节点可以将同一应用的各类型数据进行封装成一个数据包。
[0027] 102. 网络节点获取所述混合数据的复杂度。
[0028] 具体地，网络节点根据各类型数据的单位大小与各类型数据所需在存储空间占用的所述单位大小的数量，获取各类型数据的第一复杂度，网络节点根据各类型数据的第一复杂度与预设的各类型数据对应的权值，按第一算法计算得到混合数据的复杂度。
[0029] 第一算法的具体公式为：

\[X = \sum_{i=1}^{n} a_i X_i \]

[0030] 本实施例中，X 表示混合数据的复杂度，a_i 为第 i 类型数据对应的权值，X_i 表示第 i 类型数据的第一复杂度。

[0031] 第 i 类型数据的第一复杂度的具体公式为：

\[X_i = -\frac{\ln M_i}{\ln L_i} \]

[0032] 本实施例中，L_i 表示第 i 类型数据的单位大小，M_i 表示第 i 类型数据占用存储空间中所述单位大小的数量。进一步地，a_i 根据各类型数据的第一复杂度进行设定。可选地，可以根据各应用对各类型数据的需求不同预先设定 a_i，例如，对道路状态进行监控的应用中，由于视频数据为车辆违章判定的主要证据，本实施例中可以将视频数据的第一权值设定为 5，而语音数据的第二权值设置为 2。
[0033] 103. 网络节点从与所述应用对应的路径中选取一条作为目标路径。
[0034] 本实施例中，为不同应用预先设置有多条传输路径，将每个应用对应的多条传输路径存在网络节点中。在获取到混合数据后，网络节点可以根据混合数据对应的传输路径，从该应用对应的所有传输路径中选取一条传输路径作为目标路径。
104. 网络节点根据所述复杂度获取所述目标路径的传输代价。

具体地，在选取的目标路径后，网络节点可以获取该目标路径的传输距离。进一步地，网络节点根据混合数据的复杂度、传输距离以及预设的第二权值，按照第二算法计算得到目标路径的传输代价。

第二算法具体公式为：

\[Y = \alpha X + \beta Z \]

其中，\(Y \) 表示目标路径的传输代价，\(X \) 表示混合数据流的复杂度，\(Z \) 表示目标路径的传输距离，\(\alpha \) 与 \(\beta \) 分别表示所述复杂度和所述传输路径的第二权值。

在获取到传输代价后，网络节点将该传输代价与预设阈值进行比较，以判断传输代价是否低于预设阈值。本实施例中，如果传输代价低于预设阈值，说明选取的目标路径的传输代价符合传输要求，网络节点执行步骤 106；而如果传输代价高于或者等于预设阈值，说明选取的目标路径的传输代价较大，不符合传输要求，网络节点需要为所述混合数据选取新的传输路径作为目标路径。具体地，网络节点在判断出传输代价高于或者等于所述阈值时，返回执行步骤 103 从所述应用对应的路径中选取一条作为所述目标路径及后续操作，直到选取出的所述目标路径的所述传输代价低于所述阈值。

105. 网络节点将所述混合数据按照所述目标路径进行传输。

106. 网络节点在步骤 105 中判断出目标路径的传输代价低于预设阈值时，网络节点按照该目标路径将混合数据传输到目标端或设备中。

此处需要说明，通过在网络节点中设置能够执行本实施例一提供的物联网数据传输方法的设备或者软件，通过该设备或软件来实现该方法。

本实施例提供的物联网数据传输方法，通过网络节点将同一应用对应的各类型数据进行混合得到混合数据，所述网络节点获取所述混合数据的复杂度；所述网络节点从所述应用对应的路径中选取一条作为目标路径，所述网络节点根据所述复杂度获取所述目标路径的传输代价，所述网络节点判断所述传输代价是否低于预设阈值，如果判断结果为是，则所述网络节点将所述混合数据按照所述目标路径进行传输。本实施例中的网络节点通过获取混合数据的复杂度，为混合数据选取传输代价小于预设阈值的目标路径，实现了为混合数据自适应选取目标路径的目的，而且通过目标路径传输混合数据，可以降低混合数据的传输代价，从而能够节省路径资源。

实施例二

图 2 为本发明实施例二提供的一种网络节点的结构示意图，如图 2 所示，该网络节点包括：混合模块 21、第一获取模块 22、选取模块 23、第二获取模块 24、判断模块 25 和传输模块 26。

具体地，混合模块 21 接收来自不同数据采集设备发送的数据，如传感器等，在接收到各数据采集设备发送的数据后，混合模块 21 可以从接收到的各数据中获取到各数据对应的应用，将同一应用对应的各类型数据进行混合得到混合数据。例如，混合模块 21 可
以将同一应用的各类数据进行封装成一个数据包。

【0051】 与混合模块 21 连接的第一获取模块 22，用于获取所述混合数据的复杂度。
【0052】 具体地，第一获取模块 22 根据各类型数据的单位大小与各类型数据所需存储空间占用的单位大小的数量，获取各类型数据的第一复杂度，网络节点根据各类型数据的第一复杂度与预设的各类型数据对应的权值，按照第一算法计算得到混合数据的复杂度。
【0053】 关于第一算法、第一复杂度及第一权重的介绍可参见上述实施例一中相关内容的记载，此处不再赘述。
【0054】 与混合模块 21 连接的获取模块 23，用于从与所述应用对应的传输路径中获取一条作为目标路径；
【0055】 本实施例中，为不同应用预先设置有多条传输路径，将每个应用对应的多条传输路径在存储节点中。在获取到混合数据后，获取模块 23 可以根据混合数据对应的路径，从该应用对应的传输路径中，选取一条传输路径作为目标路径。
【0056】 与第一获取模块 22 和获取模块 23 连接的第二获取模块 24，用于根据所述复杂度获取所述目标路径的传输代价。
【0057】 在获取到复杂度及目标路径，为了确定选取的目标路径是否为该混合数据合适的传输路径，第二获取模块 21 需要根据混合数据的复杂度获取目标路径的传输代价。
【0058】 具体地，在获取的目标路径后，第二获取模块 24 可以获取该目标路径的传输距离。进一步地，第二获取模块 24 根据混合数据的复杂度、传输距离以及预设的第二权重，按照第二算法计算得到目标路径的传输代价。
【0059】 关于第二算法，传输距离及第二权重的介绍可参见上述实施例一中相关内容的记载，此处不再赘述。
【0060】 与第二获取模块 24 连接的判断模块 25，用于判断所述传输代价是否低于预设阈值。
【0061】 在获取到传输代价后，判断模块 25 将该传输代价与预设阈值进行比较，以判断传输代价是否低于预设阈值。本实施例中，如果传输代价低于预设阈值，说明选取的目标路径的传输代价符合传输要求，传输模块 26 将所述混合数据按照所述目标路径进行传输。
【0062】 而如果传输代价高于或者等于预设阈值，说明选取的目标路径的传输代价较大不符合传输要求，返回获取模块 23 为所述混合数据选取新的传输路径作为目标路径。具体地，在判断出传输代价高于或者等于所述阈值时，选取模块 23 还用于重新从所述应用对应的路径中选取一条作为所述目标路径直到选取出的所述目标路径的所述传输代价低于所述阈值。
【0063】 本实施例中，网络节点将同一应用对应的各类型数据进行混合得到混合数据，所述网络节点获取所述混合数据的复杂度，所述网络节点从所述应用对应的路径中选取一条作为目标路径，所述网络节点根据所述复杂度获取所述目标路径的传输代价，所述网络节点判断所述传输代价是否低于预设阈值，如果判断结果为是，所述网络节点将所述混合数据按照所述目标路径进行传输。本实施例中的网络节点通过获取混合数据的复杂度，为混合数据选取传输代价小于预设阈值的目标路径，实现了为混合数据自适应选取目标路径的目的，而且通过目标路径传输混合数据，可以降低混合数据的传输代价，从而能够节省路由
最后应说明的是：以上各实施例仅用以说明本发明的技术方案，而非对其限制；尽管参照前述各实施例对本发明进行了详细的说明，本领域的普通技术人员应当理解：其依然可以对前述各实施例所记载的技术方案进行修改，或者对其中部分或者全部技术特征进行等同替换；而这些修改或者替换，并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
网络节点对同一应用对应的各类型数据进行混合得到混合数据

网络节点获取所述混合数据的复杂度

网络节点从与所述应用对应的路径中选取一条作为目标路径

网络节点根据所述复杂度获取所述目标路径的传输代价

网络节点判断所述传输代价是否低于预设阈值

是

网络节点将所述混合数据按照所述目标路径进行传输

图 1

图 2