INORGANIC MATERIAL COMPRISING METAL NANOPARTICLES TRAPPED IN A MESOSTRUCTURED MATRIX

Title: INORGANIC MATERIAL COMPRISING METAL NANOPARTICLES TRAPPED IN A MESOSTRUCTURED MATRIX

Abstract: The invention concerns an inorganic material consisting of at least two elementary spherical particles, each of said spherical particles including metal nanoparticles of size ranging between 1 and 300 nm and a mesostructured matrix based on oxide of at least one element X selected among the group consisting of aluminium, titanium, zirconium, gallium, germanium, tin, antimony, lead, vanadium, iron, manganese, hafnium, niobium, tantalum, yttrium, cerium, gadolinium, europium and neodymium, said matrix having a size of pores ranging between 1.5 and 30 nm and having amorphous walls of thickness ranging between 1 and 30 nm, said elementary spherical particles having a maximum diameter of 10 μm. Said material may also contain zeolite nanocrystals trapped inside said mesostructured matrix.

Abstrégé : On décrit un matériau inorganique constitué d’au moins deux particules sphériques élémentaires, chacune desdites particules sphériques comprenant des nanoparticules métalliques de taille comprise entre 1 et 300 nm et une matrice mésostрукtrurée à base d’oxyde d’au moins un élément X choisi dans le groupe constitué par l’aluminium, le titane, le zirconium, le gallium, le germanium, le plomb, le vanadium, le fer, le manganèse, l’hafnium, le niobium, le tantale, le prytium, le céroum, le gadolinium, l’eurodium et le néodyme, ladite matrice ayant une taille de pores comprise entre 1.5 et 30 nm et présentant des parois amorphes d’épaisseur comprise entre 1 et 30 nm, lesdites particules sphériques élémentaires ayant un diamètre maximal de 10 μm. Ledit matériau peut également contenir des nanocrystals zeolitifiés piégés au sein de ladite matrice mésostрукtrurée.
MATERIAU INORGANIQUE PRESENTANT DES NANOPARTICULES METALLIQUES PIEGEES DANS UNE MATRICE MESOSTRUCTUREE

La présente invention se rapporte au domaine des matériaux oxydes inorganiques, notamment à ceux contenant des métaux de transition et/ou de terres rares, présentant une porosité organisée et uniforme dans le domaine de la mésoporosité. Elle concerne également la préparation de ces matériaux qui sont obtenus par l'emploi de la technique de synthèse dite "aérosol".

Etat de la technique antérieure

Les nouvelles stratégies de synthèse permettant d'obtenir des matériaux à porosité bien définie dans une très large gamme, allant des matériaux microporeux aux matériaux macroporeux en passant par des matériaux à porosité hiérarchisée, c'est-à-dire ayant des pores de plusieurs tailles, connaissent un très large développement au sein de la communauté scientifique depuis le milieu des années 90 (G. J. de A. A. Soler-Illia, C. Sanchez, B. Lebeau, J. Patarin, Chem. Rev., 2002, 102, 4093). On obtient des matériaux dont la taille des pores est contrôlée. En particulier, le développement de méthodes de synthèse dites de "chimie douce" a conduit à l'élaboration de matériaux mésostructurés à basse température par la coexistence en solution aqueuse ou dans des solvants polaires de précursors inorganiques avec des agents structurants, généralement des tensioactifs moléculaires ou supramoléculaires, ioniques ou neutres. Le contrôle des interactions électrostatiques ou par liaisons hydrogènes entre les précursors inorganiques et l'agent structurant conjointement lié à des réactions d'hydrolyse / condensation du précureseur inorganique conduit à un assemblage coopératif des phases organique et inorganique générant des agrégats micellaires de tensioactifs de taille uniforme et contrôlée au sein d'une matrice inorganique. Ce phénomène d'auto-assemblage coopératif régi, entre autres, par la concentration en agent structurant peut être induit par évaporation progressive d'une solution de réactifs dont la concentration en agent structurant est le plus souvent inférieure à la concentration micellaire critique, ce qui conduit soit à la formation de films mésostructurés dans le cas d'un dépôt sur substrat (technique de dépôt de couche par immersion ou "dip-coating"), soit à la formation d'une poudre mésostructurée après atomisation de la solution (technique aérosol). A titre d'exemple, le brevet US 6,387,453 divulgue la formation de films hybrides organiques - inorganiques mésostructurés par la technique de dépôt de couche par immersion ("dip-coating"), ces mêmes auteurs ayant par ailleurs utilisé la technique aérosol pour élaborer des matériaux purement siliciques mésostructurés (C. J. Brinker, Y. Lu, A.

En plus des techniques de synthèse par dépôt de couche par immersion ("dip-coating") ou "aérosol" décrites ci-dessus qui utilisent le phénomène de concentration progressive des précurseurs inorganiques et de l'agent structurant au sein de la solution où ils sont présents, les matériaux mésostructurés peuvent être obtenus par précipitation directe au sein d'une solution aqueuse ou dans des solvants de polarité marquée en jouant sur la valeur de la concentration micellaire critique de l'agent structurant. Généralement, la synthèse de ces matériaux obtenus par précipitation nécessite une étape de mûrissement en autoclave et tous les réactifs ne sont pas intégrés aux produits en quantité stoichiométrique puisqu'ils peuvent se retrouver dans le surmante. En fonction de la structure et du degré d'organisation souhaité pour le matériau mésostructuré final, ces synthèses peuvent avoir lieu en milieu acide (pH ≤ 1) (WO 99/37705) ou en milieu neutre (WO 96/39357), la nature de l'agent structurant utilisé jouant également un rôle prépondérant. Les particules élémentaires ainsi obtenues ne présentent pas de forme régulière et sont caractérisées généralement par une taille supérieure à 500 nm.
La découverte de ces matériaux à porosité uniforme et organisée a ouvert de nouvelles perspectives quant à l’élaboration de solides innovants pour des applications potentielles dans des domaines aussi variés que la catalyse, la séparation de molécules chimiques, mais aussi l’optique, l’électronique et la biochimie. En particulier, l’étude de l’introduction de nanoparticules métalliques au sein de matrices oxydes mésostructurées essentiellement siliciques a fait l’objet d’un grand nombre de publications et brevets. En effet, l’utilisation d’un tel réseau hôte lors de la synthèse de nanoparticules métalliques a contribué aux avancées scientifiques suivantes : un meilleur contrôle de la taille et de la morphologie des nanoparticules métalliques conduisant, par exemple dans le domaine de la catalyse, à des activités et des sélectivités nouvelles en fonction des réactions étudiées ainsi qu’une meilleure dispersion des nanoparticules métalliques au sein du support grâce à une diffusion favorisée des précurseurs métalliques de part l’organisation de la porosité du réseau hôte.

propriétés texturales et/ou structurales de la mésostructuration et des nanoparticules métalliques.

Résumé de l'Invention

L'invention porte sur un matériau constitué d'au moins deux particules sphériques élémentaires, chacune desdites particules sphériques comprenant des nanoparticules métalliques de taille comprise entre 1 et 300 nm et une matrice mésostructurée à base d'oxyde d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, ladite matrice mésostructurée ayant une taille de pores comprise entre 1,5 et 30 nm et présentant des parois amorphes d'épaisseur comprise entre 1 et 30 nm, lesdites particules sphériques élémentaires ayant un diamètre maximal de 10 µm. On entend par nanoparticules métalliques des particules de taille nanométrique comprenant au moins un métal appartenant à la famille des métaux de transition (colonnes 3 à 12 du tableau périodique selon la classification de l'IUPAC) et/ou à la famille des métaux des terres rares (lanthanides et actinides). Ladite matrice mésostructurée à base d'oxyde d'au moins un élément X choisi dans la liste décrite ci-dessus contient avantageusement un élément X' choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, les éléments X et X' étant différents. Le matériau selon l'invention peut également contenir, en plus des nanoparticules métalliques, des nanocristes zéolithiques piégés dans la matrice oxyde mésostructurée, lesdits nanocristes zéolithiques ayant une taille de pores comprise entre 0,2 et 2 nm. La présente invention concerne également la préparation du matériau selon l'invention. Ledit procédé comprend a) la synthèse de particules métalliques de taille nanométrique maximale égale à 300 nm afin d'obtenir une solution colloïdale stable dans laquelle sont dispersées lesdites nanoparticules ; b) le mélange en solution d'au moins un tensioactif, d'au moins un précurseur d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le
manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, d'au moins une solution colloïdale stable de nanoparticules métalliques obtenue selon a), éventuellement d'au moins un prédécesseur d'au moins un élément X' choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, les éléments X et X' étant différents, et éventuellement d'au moins une solution colloïdale stable dans laquelle sont dispersés des cristaux de zéolithes de taille nanométrique maximale égale à 300 nm ;
c) l'atomisation par aérosol de ladite solution obtenue à l'étape b) pour conduire à la formation de gouttelettes sphériques de diamètre inférieur à 200 µm ;
d) le séchage desdites gouttelettes et e) l'élimination d'au moins dudit tensioactif pour l'obtention d'un matériau mésoscellé dans lequel sont piégées des nanoparticules métalliques.

La structure ordonnée de la matrice du matériau selon l'invention est consécutive au phénomène de micellisation ou d'auto-assemblage par évaporation induit par la technique dite aérosol.

Intérêt de l'invention

Le matériau selon l'invention qui est constitué de particules sphériques comprenant des nanoparticules métalliques piégées dans une matrice mésoscellée, aux parois amorphes, à base d'oxyde d'au moins dudit élément X, ladite matrice comprenant éventuellement au moins un élément X' choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme (X' étant différent de X) , présente simultanément les propriétés structurales, hydro-déshydrogénéante et d'oxydo-réduction propres aux particules métalliques et les propriétés structurales, texturales et éventuellement d'acido-basicté et d'oxydo-réduction propres aux matériaux à base d'oxyde d'au moins dudit élément X et éventuellement propres aux matériaux oxyde à base dudit élément X' en plus dudit élément X. L'élaboration à l'échelle du nanomètre d'un matériau oxyde composite formé d'une matrice mésoscellée et de nanoparticules métalliques conduit à une connexion privilégiée
des nanoparticules métalliques et de la mésoporosité uniforme et organisée de la matrice oxyde au sein d'une même particule sphérique. De plus, le matériau selon l'invention étant constitué de particules élémentaires sphériques, le diamètre de ces particules variant avantageusement de 50 nm à 10 μm et de préférence de 50 à 300 nm, la taille limitée de ces particules ainsi que leur forme homogène permet d'avoir une meilleure diffusion des réactifs et des produits de la réaction lors de l'emploi du matériau selon l'invention dans des applications industrielles potentielles comparativement à des matériaux connus de l'état de la technique se présentant sous la forme de particules élémentaires de forme non homogène, c'est-à-dire irrégulière, et de taille très supérieure à 500 nm.

D'autre part, le procédé de préparation du matériau selon l'invention qui consiste à faire interagir, préférentiellement en milieu acide, au moins un tensioactif, ionique ou non ionique, avec au moins un précurseur d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, au moins une solution colloïdale dans laquelle sont dispersées des particules métalliques de taille nanométrique maximale égale à 300 nm, éventuellement au moins un précurseur d'au moins un élément X' choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium (X' étant différent de X) et éventuellement au moins une solution colloïdale dans laquelle sont dispersés des cristaux de zéolithes de taille nanométrique maximale égale à 300 nm, la structure ordonnée du matériau étant consécutive au phénomène de micellisation ou d'auto-assemblage par évaporation induit par la technique dite aérosol, permet d'élaborer de façon aisée des matériaux composites mésocellulaires/nanoparticules métalliques comprenant éventuellement des nanocristaux de zéolithes et de travailler avec une large gamme de nanoparticules métalliques et éventuellement de nanocristaux de zéolithes quels que soient leurs procédés de synthèse initiaux dès lors que lesdites particules, éventuellement lesdits cristaux, ont la propriété de se disperser en solution, notamment en solution acide et très préférentiellement en solution aquo-organique acide, sous la forme de particules,
éventuellement sous la forme de cristaux de zéolithes, de taille nanométrique maximale égale à 300 nm.

Par ailleurs, le piégeage éventuel de nanocristaux de zéolithes dans la matrice oxyde mésostructurée en plus de celui des nanoparticules métalliques permet d'élaborder via une méthode de synthèse "one pot" des matériaux possédant simultanément une fonction acide et une fonction hydro-déshydrogénante présentant des connexions privilégiées de par la taille et la morphologie des particules sphériques élémentaires et la mésostucturation de la matrice oxyde.

De plus, par rapport aux synthèses connues des matériaux mésostucturés, la préparation du matériau selon l'invention est réalisée en continu, la durée de préparation est réduite (quelques heures contre de 12 à 24 heures en utilisant l'autoclavage) et la stœchiométrie des espèces non volatiles présentes dans la solution initiale des réactifs est maintenue dans le matériau de l'invention.

Exposé de l'invention
La présente invention a pour objet un matériau inorganique constitué d'au moins deux particules sphériques élémentaires, chacune desdites particules sphériques comprenant des nanoparticules métalliques de taille comprise entre 1 et 300 nm et une matrice mésostucturée à base d'oxyde d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'eurogium et le néodyme, ladite matrice mésostucturée ayant une taille de pores comprise entre 1,5 et 30 nm et présentant des parois amorphes d'épaisseur comprise entre 1 et 30 nm, lesdites particules sphériques élémentaires ayant un diamètre maximal de 10 µm.

Conformément à l'invention, l'élément X présent sous forme d'oxyde dans la matrice mésostucturée comprise dans chacune desdites particules sphériques du matériau selon l'invention est choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'eurogium et le néodyme et de préférence ledit élément X présent sous forme d'oxyde est choisi dans le
groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium. Ladite matrice à base d'oxyde d'au moins dudit élément X est mésostructurée : elle présente des mésopores ayant une taille uniforme comprise entre 1,5 et 30 nm et de préférence entre 1,5 et 10 nm, répartis de façon homogène et régulière dans chacune desdites particules. La matière située entre les mésopores de la matrice mésostructurée est amorphe et forme des parois, ou murs, dont l'épaisseur est comprise entre 1 et 30 nm. L'épaisseur des parois correspond à la distance séparant un pore d'un autre pore.

L'organisation de la mésoporosité décrite ci-dessus conduit à une structuration de ladite matrice, laquelle peut être lamellaire, hexagonale, vermiculaire, cubique, cholestérique ou bicontinue et de façon préférée vermiculaire. Il est à noter qu'une porosité de nature microporeuse peut également résulter de l'imbrication du tensioactif, utilisé lors de la préparation du matériau selon l'invention, avec la paroi inorganique au niveau de l'interface organique-inorganique développée lors de la mésostructuration de la composante inorganique dudit matériau selon l'invention. Le matériau selon l'invention présente également une macroporosité texturale interparticulaire.

La matrice mésostructurée présente dans chacune des particules sphériques élémentaires du matériau selon l'invention est, selon un premier mode de réalisation de la matrice, entièrement constituée d'oxyde de l'élément X choisi dans la liste décrite ci-dessus et de préférence entièrement constituée d'oxyde d'élément X choisi dans la liste préférée décrite ci-dessus (Al, Ti, Zr, Ga, Ge, Ce). Ladite matrice mésostucturée, à base d'oxyde d'au moins dudit élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, comprend, selon un deuxième mode de réalisation de la matrice, au moins un élément X' choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, les éléments X et X' étant différents. Conformément au deuxième mode de réalisation de la matrice, la proportion de l'élément X par rapport à celle de l'élément X' dans la composition de la matrice est variable : l'élément X peut être soit majoritaire soit
minoritaire par rapport à l'élément X', le rapport X'/X, toujours strictement positif, pouvant atteindre une valeur de 1000. L'élément X' est de préférence le silicium. De manière très préférée, l'élément X est l'aluminium et l'élément X' est le silicium.

Conformément à l'invention, on entend par nanoparticules métalliques des particules de taille nanométrique comprenant au moins un métal appartenant à la famille des métaux de transition (colonnes 3 à 12 du tableau périodique selon la classification de l'IUPAC) et/ou à la famille des métaux des terres rares (lanthanides et actinides). Plus précisément, lesdites nanoparticules métalliques piégées dans la matrice mésostructurée présente dans chacune des particules sphériques élémentaires du matériau selon l'invention comprennent, selon un premier mode de réalisation desdites particules, au moins un métal de transition au degré d'oxydation zéro appartenant à la liste non exhaustive suivante : Au, Pd, Pt, Ni, Co, Cu, Ag, Rh, Ru, Ir, Fe, leurs mélanges et alliages dérivés. Le métal de transition est de préférence choisi parmi l'or, le palladium, le platine, le nickel, le cobalt, le fer et leurs mélanges et de manière très préférée ledit métal de transition est le fer ou l'or. Lesdites nanoparticules métalliques comprennent, selon un deuxième mode de réalisation de celles-ci, au moins un oxyde de métal de transition et/ou au moins un oxyde de métal de terre rare, dans lequel un oxyde de transition est le fer ou l'or. Lesdites nanoparticules métalliques comprennent, selon un deuxième mode de réalisation desdites particules métalliques contiennent préférentiellement l'élément silicium en plus de l'élément métallique sous forme d'oxyde. Les nanoparticules métalliques comprennent, selon un troisième mode de réalisation de celles-ci, au moins un oxyde polymétallique de structure cristallographique de type spinelle AB₂O₄, perovskite ABO₃ ou ilménite ABO₃, A et/ou B étant au moins un métal de transition et/ou de terre rare. Dans la structure de type spinelle, A et B sont respectivement des cations divalents et trivalents et dans la structure de type perovskite, A et B sont respectivement des cations divalents et tétraavalents. A ou B pouvant éventuellement être un métal des groupes 1 et 2 du tableau périodique selon la classification de l'IUPAC lorsque A ou B n'est ni un métal de transition ni un métal de terre rare. S'agissant de l'ilménite ABO₃, les éléments A et B ont des tailles semblables et sont définis par la somme de leurs charges égale à +6. Pour exemple et de façon non exhaustive, les oxydes métalliques mixtes de type spinelle sont de préférence les
composés Fe$_3$O$_4$, MgFe$_2$O$_4$, ZnFe$_2$O$_4$, Co$_3$O$_4$, les oxydes métalliques mixtes de type perovskite sont de préférence les composés BaTiO$_3$, CaTiO$_3$, SrZnO$_3$, SrTiO$_3$, LaFeO$_3$, LaCeCoO$_3$, SrHfO$_3$, SrSnO$_3$, BaSnO$_3$, et les oxydes métalliques mixtes de type ilménite sont notamment les composés NiMnO$_3$ et FeTiO$_3$. Selon ce troisième mode de réalisation desdites nanoparticules métalliques, plusieurs oxydes polymétalliques de différents types (spinelle, pérovskite, ilménite) peuvent être piégés dans la matrice mésostruetrurée d’une même particule sphérique. Lesdites nanoparticules métalliques comprennent, selon un quatrième mode de réalisation de celles-ci, au moins un chalcogénure formé d’un métal de transition M et d’un élément chalcogène C choisi parmi le soufre, le sélénium et le tellure, de préférence le soufre. Les chalcogénures métalliques préférées en tant que nanoparticules métalliques appartiennent à la liste non exhaustive suivante : MoS$_2$, NiS$_x$ (x = 1 ou 2), Ni$_3$S$_2$, WS$_2$, Co$_9$S$_8$, PIS, PdS, RuS$_2$, Rh$_2$S$_3$, NbS$_x$ (x = 1, 2 ou 3), FeS, FeS$_2$, Au$_2$S, ZnS, CdS et de façon très préférée à la liste suivante : MoS$_2$, NiS$_x$ (x = 1 ou 2), Ni$_3$S$_2$, WS$_2$, Co$_9$S$_8$, PIS, PdS, RuS$_2$, Rh$_2$S$_3$, NbS$_x$ (x = 1, 2 ou 3).

Conformément à l’invention, les nanoparticules métalliques représentent avantageusement de 0,1 à 30% poids, de préférence de 0,1 à 20% poids et de manière très préférée de 0,1 à 10% poids du matériau de l’invention. Les nanoparticules métalliques ont une taille maximale de 300 nm, de façon préférée elles ont une taille comprise entre 1 et 300 nm et de façon très préférée elles ont une taille comprise entre 2 et 50 nm. Lesdites nanoparticules métalliques sont piégées dans la matrice mésostruetrurée de chacune des particules sphériques élémentaires du matériau selon l’invention sous la forme décrite dans l’un ou plusieurs des quatre modes de réalisation desdites nanoparticules décrits ci-dessus. En particulier, la matrice mésostruetrurée d’une particule sphérique peut piéger des nanoparticules métalliques présentes sous plusieurs formes selon les modes de réalisation desdites nanoparticules métalliques décrits ci-dessus. Des premières nanoparticules métalliques présentes sous l’une des formes décrites ci-dessus dans l’un des quatre modes de réalisation et des deuxièmes nanoparticules métalliques présentes sous une autre forme (choisie parmi l’une des formes décrites ci-dessus dans l’un des quatre modes de réalisation) que celle sous laquelle se présentent lesdites premières nanoparticules peuvent être piégées au sein de la matrice mésostruetrurée d’une même particule sphérique. Par exemple, un métal de transition au degré d’oxydation zéro conformément à la forme prise par les nanoparticules métalliques selon le premier mode de réalisation décrit ci-dessus et un oxyde de métal de transition conformément à la forme prise par les nanoparticules métalliques selon le deuxième mode de réalisation décrit ci-dessus peuvent être piégés
dans la matrice mésosstructurée d'une même particule sphérique élémentaire du matériau selon l'invention.

De manière avantageuse, chacune des particules sphériques comprend en outre des nanocristaux zéolithiques. Lesdits nanocristaux zéolithiques sont piégés avec les nanoparticules métalliques dans la matrice mésosstructurée contenue dans chacune des particules sphériques élémentaires. Conformément à ce mode de réalisation de l'invention consistant à piéger des nanocristaux zéolithiques dans la matrice mésosstructurée, le matériau selon l'invention présente à la fois, dans chacune des particules sphériques élémentaires, une mésoporosité au sein de la matrice elle-même (mésopores de taille uniforme comprise entre 1,5 et 30 nm, de préférence entre 1,5 et 10 nm) et une microporosité de type zéolithique générée par les nanocristaux zéolithiques piégés dans la matrice mésosstructurée. Lesdits nanocristaux zéolithiques présentent une taille de pores comprise entre 0,2 et 2 nm, de préférence entre 0,2 et 1 nm et de manière très préférée entre 0,2 et 0,6 nm. Lesdits nanocristaux zéolithiques représentent avantageusement de 0,1 à 30% poids, de préférence de 0,1 à 20% poids et de manière très préférée de 0,1 à 10% poids du matériau de l'invention. Les nanocristaux zéolithiques ont une taille maximale de 300 nm et de façon préférée ont une taille comprise entre 10 et 100 nm. Toute zéolithe et en particulier mais de façon non restrictive celles répertoriées dans "Atlas of zeolite framework types", 5th revised Edition, 2001, Ch. Baerlocher, W. M. Meier, D. H. Olson peut être employée dans les nanocristaux zéolithiques présents dans chacune des particules sphériques élémentaires constituant le matériau selon l'invention. Les nanocristaux zéolithiques comprennent de préférence au moins une zéolithe choisie parmi les zéolithes ZSM-5, ZSM-48, ZSM-22, ZSM-23, ZBM-30, EU-2, EU-11, Silicalite, Bêta, zéolithe A, Faujasite, Y, USY, VUSY, SDUSY, Mordénite, NU-87, NU-88, NU-86, NU-85, IM-5, IM-12, Ferriérète et EU-1. De manière très préférée, les nanocristaux zéolithiques comprennent au moins une zéolithe choisie parmi les zéolithes de type structural MFI, BEA, FAU, et LTA. Des nanocristaux de différentes zéolithes et notamment de zéolithes de type structuraux différents peuvent être présents dans chacune des particules sphériques constituant le matériau selon l'invention. En particulier, chacune des particules sphériques constituant le matériau selon l'invention peut comprendre de manière avantageuse au moins des premiers nanocristaux zéolithiques dont la zéolithe est choisie parmi les zéolithes ZSM-5, ZSM-48, ZSM-22, ZSM-23, ZBM-30, EU-2, EU-11, Silicalite, Bêta, zéolithe A, Faujasite, Y, USY, VUSY, SDUSY, Mordénite, NU-87, NU-88, NU-86, NU-85, IM-5, IM-12, Ferriérète et EU-1, de
préférence parmi les zéolithes de type structural MFI, BEA, FAU, et LTA et au moins des seconds nanocristaux zéolithiques dont la zéolithe est différente de celle des premiers nanocristaux zéolithiques et est choisie parmi les zéolithes ZSM-5, ZSM-48, ZSM-22, ZSM-23, ZSM-30, EU-2, EU-11, Silicalite, Bêta, zéolithe A, Faujasite, Y, USY, VUSY, SDUSY, Mordénite, NU-87, NU-88, NU-86, NU-85, IM-5, IM-12, Ferriérite et EU-1, de préférence parmi les zéolithes de type structural MFI, BEA, FAU, et LTA. Les nanocristaux zéolithiques comprennent avantageusement au moins une zéolithe soit entièrement silicique soit contenant, outre du silicium, au moins un élément T choisi parmi l'aluminium, le fer, le bore, l'indium et le gallium, de préférence l'aluminium.

Conformément à l'Invention, lesdites particules sphériques élémentaires constituant le matériau selon l'invention ont un diamètre avantageusement compris entre 50 nm et 10 μm de préférence entre 50 et 300 nm. Plus précisément, elles sont présentes dans le matériau selon l'invention sous la forme d'agrégats. Le matériau selon l'invention présente avantageusement une surface spécifique comprise entre 100 et 1100 m²/g et de manière très avantageuse comprise entre 200 et 600 m²/g.

La présente invention a également pour objet la préparation du matériau selon l'invention. Ledit procédé comprend a) la synthèse de particules métalliques de taille nanométrique maximale égale à 300 nm afin d'obtenir une solution colloïdale stable dans laquelle sont dispersées lesdites nanoparticules ; b) le mélange en solution d'au moins un tensioactif, d'au moins un précurseur d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, d'au moins une solution colloïdale de nanoparticules métalliques obtenue selon a), éventuellement d'au moins un précurseur d'au moins un élément X choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme (X et X' étant différents) et éventuellement d'au moins une solution colloïdale stable dans laquelle sont dispersés des cristaux de zéolithes de taille nanométrique maximale égale à 300 nm ; c) l'atomisation par aérosol de ladite solution obtenue à l'étape b) pour conduire à la formation de gouttelettes sphériques de diamètre inférieur à 200 μm ; d) le séchage desdites gouttelettes et e) l'élimination d'au moins dudit
tensioactif pour l'obtention d'un matériau mésostructuré dans lequel sont piégées des nanoparticules métalliques.

dodécytriméthylammonium) ou par le solvant lui-même employé pour la mise en œuvre de l’étape a) du procédé selon l’invention.

Dans le cas où lesdites nanoparticules métalliques comprennent non seulement au moins un oxyde de métal de transition et/ou au moins un oxyde de métal de terre rare mais également l’élément silicium, celui-ci est introduit via la combinaison, dans les protocoles de synthèse
de l'une des trois méthodes décrites ci-dessus, du précursore d'oxyde métallique avec un précursore de silice, ce dernier pouvant être obtenu à partir de toute source de silice et avantageusement d'un précursore silicate de sodium de formule SiO_2NaOH, d'un précursore chloré de formule SiCl_4, d'un précursore organométallique de formule Si(OR)_4 où R = H, méthyle, éthyle ou d'un précursore chloroalcoxyde de formule Si(OR)_4-xCl_x où R = H, méthyle, éthyle, x étant compris entre 0 et 4.

Dans le cas particulier où les nanoparticules métalliques piégées dans la matrice mésostructurée à base d'oxyde d'au moins dudit élément X comprennent au moins un métal de transition au degré d'oxydation zéro (premier mode de réalisation des nanoparticules), il est possible, au lieu de synthétiser des nanoparticules métalliques directement sous leur forme réduite (degré d'oxydation zéro) comme décrit plus haut conformément à l'étape a) du procédé selon l'invention, de synthétiser au cours de l'étape a) une solution colloïdale stable dans laquelle les nanoparticules métalliques y dispersées sont sous leur forme d'oxyde dudit métal de transition puis de procéder à la suite de l'étape e) du procédé selon l'invention à une étape additionnelle f) consistant en une réduction de l'oxyde dudit métal de transition de manière à ce que le métal de transition desdites nanoparticules métalliques piégées dans ladite matrice mésostructuré de chacune des particules sphériques du matériau selon l'invention soit au degré d'oxydation zéro. Les techniques de réduction employées sont similaires à celles préalablement décrites et employées au cours de l'étape a) du procédé selon l'invention lorsqu'il s'agit de synthétiser des nanoparticules métalliques comprenant au moins un métal de transition au degré d'oxydation zéro. En particulier, l'étape additionnelle f) du procédé de préparation selon l'invention peut être efficacement réalisée par réduction des nanoparticules métalliques comprenant au moins un oxyde du métal de transition sous atmosphère d'un gaz réducteur (hydrogène, monoxyde de carbone) dans une gamme de température variant de la température ambiante jusqu'à T = 800°C et de façon préférée variant de la température ambiante jusqu'à T = 550°C, le débit de gaz considéré étant fixé dans une gamme de 0,5 à 10 l/h/g de solide et de façon préférée de 0,5 à 5 l/h/g de solide.

aqueuse d'un sel métallique dudit métal de transition en présence d'un agent sulfurant, décomposition thermique du sel dudit métal de transition en phase aqueuse comme des thiométhallates.

Conformément à l'étape a) du procédé de préparation du matériau selon l'invention, lesdites nanoparticules métalliques selon l'invention peuvent être également commerciales (par exemple, fourniture par "Rhodia Electronics and Catalysis" de particules d'oxyde de métal de terres rares (La, Ce, etc.), par "Millenium Chemicals" de particules d'oxyde de titane, etc.).

Conformément à l'étape b) du procédé de préparation du matériau selon l'invention, le précurseur d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'eupérym et le néodyme, de préférence choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium est un précursur d'oxyde inorganique bien connu de l'homme du métier. Le précursur de l'élément X peut être tout composé comprenant l'élément X et pouvant libérer cet élément en solution, par exemple en solution aquo-organique, préférémentiellement en solution aquo-organique acide, sous forme réactive. Dans le cas préféré où X est choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium, le précursur de l'élément X est avantagusement un sel inorganique dudit élément X de formule XZn, (n= 3 ou 4), Z étant un halogène, le groupement NO₃ ou un perchlorate, de préférence Z est le chlore. Le précursur de l'élément X considéré peut être aussi un précursur organométallique de formule X(OR)n ou R = éthyle, isopropyne, n-butyne, s-butyne, t-butyne, etc. ou un précursur chélaté tel que X(C₅H₅O₂)n, avec n = 3 ou 4. Le précursur de l'élément X considéré peut aussi être un oxyde ou un hydroxyde de l'élément X. En fonction de la nature de l'élément X, le précursur de l'élément X considéré employé peut aussi être de la forme XOZ₂, Z étant un anion monovalent comme un halogène ou le groupement NO₃. De manière préférée, ledit élément X est choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium.
Conformément au procédé de l'invention, au moins un précurseur d'au moins un élément X' est avantageusement ajouté au mélange selon l'étape b) dudit procédé. Ledit élément X' est choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, de préférence choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium (X et X' étant différents). De manière préférée, ledit élément X' est le silicium ; ledit précurseur silicique est alors obtenu à partir de toute source de silice et avantageusement d'un précurseur silicate de sodium de formule $\text{SiO}_2\cdot\text{NaOH}$, d'un précurseur chloré de formule SiCl_4, d'un précurseur organométallique de formule Si(OR)_4 où $R = \text{H}$, méthyle, éthyle ou d'un précurseur chloroalcéxide de formule $\text{Si(OR)}_4\cdot\text{Cl}_x$ où $R = \text{H}$, méthyle, éthyle, x étant compris entre 0 et 4. Le précurseur silicique peut également avantageusement être un précurseur organométallique de formule $\text{Si(OR)}_4\cdot\text{R}^x$ où $R = \text{H}$, méthyle, éthyle et R' est une chaîne alkyne ou une chaîne alkyne fonctionnalisée, par exemple par un groupement thiol, amino, β dicétone ou acide sulfonique, x étant compris entre 0 et 4.

copolymère à deux blocs, l'un des blocs est constitué d'une chaîne de poly(oxyde d'alkylène) de nature hydrophile et l'autre bloc est constitué d'une chaîne de poly(oxyde d'alkylène) de nature hydrophobe. Pour un copolymère à trois blocs, deux des blocs sont constitués d'une chaîne de poly(oxyde d'alkylène) de nature hydrophile tandis que l'autre bloc, situé entre les deux blocs aux parties hydrophiles, est constitué d'une chaîne de poly(oxyde d'alkylène) de nature hydrophobe. De préférence, dans le cas d'un copolymère à trois blocs, les chaînes de poly(oxyde d'alkylène) de nature hydrophile sont des chaînes de poly(oxyde d'éthylène) notées (PEO)_x et (PEO)_x et les chaînes de poly(oxyde d'alkylène) de nature hydrophobe sont des chaînes de poly(oxyde de propylène) notées (PPO)_y, des chaînes de poly(oxyde de butylène), ou des chaînes mixtes dont chaque chaîne est un mélange de plusieurs monomères d'oxyde d'alkylène. De manière très préférée, dans le cas d'un copolymère à trois blocs, on utilise un composé de formule (PEO)_x-(PPO)_y-(PEO)_z où x est compris entre 5 et 300 et y est compris entre 33 et 300 et z est compris entre 5 et 300. De préférence, les valeurs de x et z sont identiques. On utilise très avantageusement un composé dans lequel x = 20, y = 70 et z = 20 (P123) et un composé dans lequel x = 106, y = 70 et z = 106 (F127). Les tensioactifs non-ioniques commerciaux connus sous le nom de Pluronics (BASF), Tetronic (BASF), Triton (Sigma), Tergitol (Union Carbide), Brij (Aldrich) sont utilisables en tant que tensioactifs non-ioniques dans l'étape b) du procédé de préparation de l'invention. Pour un copolymère à quatre blocs, deux des blocs sont constitués d'une chaîne de poly(oxyde d'alkylène) de nature hydrophile et les deux autres blocs sont constitués d'une chaîne de poly(oxydes) d'alkylène de nature hydrophobe.

Selon l'étape b) du procédé de préparation selon l'invention, la solution colloïdale dans laquelle sont dispersés des cristaux de zéolithes de taille nanométrique maximale égale à 300 nm, éventuellement additionnée au milieu de synthèse, est obtenue soit par synthèse préalable, en présence d'un agent structurant, de nanocristaux zéolithiques de taille nanométrique maximale égale à 300 nm soit par l'emploi de cristaux zéolithiques, qui présentent la caractéristique de se disperser sous la forme de nanocristaux de taille nanométrique maximale égale à 300 nm en solution par exemple en solution aquo-organique acide. S’agissant de la première variante consistant en une synthèse préalable des nanocristaux zéolithiques, ceux-ci sont synthétisés selon des protocoles opérateurs connus de l’homme du métier. En particulier, la synthèse de nanocristaux de zéolithe Bêta a été décrite par T. Bein et coll., *Micropor. Mesopor. Mater.*, 2003, 64, 165. La synthèse de nanocristaux de zéolithe Y a été décrite par T. J. Pinnavala et coll., *J. Am. Chem. Soc.*,
Lorsque les cristaux zéolithiques utilisés sont sous leur forme brute de synthèse, ledit agent structurant est éliminé au cours de l'étape e) du procédé de préparation selon l'invention.

La solution dans laquelle sont mélangés au moins un tensioactif, au moins un précurseur d'au moins dudit élément X, au moins une solution colloïdale de nanoparticules métalliques obtenue selon a), éventuellement au moins un précurseur d'au moins dudit élément X' (X et X' étant des éléments différents) et éventuellement au moins une solution colloïdale stable dans laquelle sont dispersés des cristaux de zéolithes de taille nanométrique maximale égale à 300 nm, peut être acide, neutre ou basique. De préférence, ladite solution est acide et présente un pH maximal égal à 3, de préférence compris entre 0 et 2. Les acides utilisés pour obtenir une solution acide de pH maximal égal à 3 sont, de façon non exhaustive, l'acide chlorhydrique, l'acide sulfurique et l'acide nitrique. Ladite solution peut être aqueuse ou peut être un mélange eau-solvant organique, le solvant organique étant préférentiellement un solvant polaire miscible à l'eau, notamment le THF ou un alcool, dans ce dernier cas préférentiellement de l'éthanol. Ladite solution peut aussi être pratiquement organique, de préférence pratiquement alcoolique, la quantité d'eau étant telle que l'hydrolyse des précurseurs inorganiques est assurée (quantité stoechiométrique). De manière très préférée, ladite solution dans laquelle sont mélangés au moins un tensioactif, au moins un précurseur d'au moins dudit élément X, au moins une solution colloïdale de nanoparticules métalliques obtenue selon a), éventuellement au moins un précurseur d'au moins dudit élément X' (X et X' étant des éléments différents) et éventuellement au moins une solution colloïdale stable dans laquelle sont dispersés des cristaux de zéolithes de taille nanométrique maximale égale à 300 nm, est un mélange aquo-organique acide, très préférentiellement un mélange eau-acide-alcool.

La quantité de nanoparticules métalliques comprenant au moins un métal appartenant à la famille des métaux de transition (colonnes 3 à 12 du tableau périodique selon la classification de l'IUPAC) et / ou à la famille des métaux des terres rares (lanthanides et actinides), est telle que lesdites nanoparticules métalliques représentent avantageusement de 0,1 à 30% poids, de préférence de 0,1 à 20% poids et de manière très préférée de 0,1 à 10% poids du matériau de l'invention.

La quantité de nanocristaux zéolithiques dispersés dans la solution colloïdale, obtenus selon la variante par synthèse préalable, en présence d'un agent structurant, de nanocristaux
zéolithiques de taille nanométrique maximale égale à 300 nm ou selon la variante par l'emploi de cristaux zéolithiques, qui présentent la caractéristique de se disperser sous la forme de nanocristaux de taille nanométrique maximale égale à 300 nm en solution par exemple en solution aquo-organique acide, éventuellement introduite au cours de l'étape b) du procédé de préparation selon l'invention, est telle que les nanocristaux zéolithiques représentent avantageusement de 0,1 à 30% poids, de préférence de 0,1 à 20% poids et de manière très préférée de 0,1 à 10% poids du matériau de l'invention.

La concentration initiale en tensioactif introduit dans le mélange conformément à l'étape b) du procédé de préparation selon l'invention est définie par c₀ et c₀ est définie par rapport à la concentration micellaire critique (cmc) bien connue de l'homme du Métier. La cmc est la concentration limite au delà de laquelle se produit le phénomène d'auto-arrangement des molécules du tensioactif dans la solution. La concentration c₀ peut être inférieure, égale ou supérieure à la cmc, de préférence elle est inférieure à la cmc. Dans une mise en œuvre préférée du procédé selon l'invention, la concentration c₀ est inférieure à la cmc et ladite solution visée à l'étape b) du procédé de préparation selon l'invention est un mélange eau acide-alcool. Dans le cas où la solution visée à l'étape b) du procédé de préparation selon l'invention est un mélange eau-solvant organique, de préférence acide, il est essentiel au cours de l'étape b) du procédé de préparation selon l'invention que la concentration en tensioactif à l'origine de la mésostructuration de la matrice soit inférieure à la concentration micellaire critique de sorte que l'évaporation de ladite solution aquo-organique, préférentiellement acide, au cours de l'étape c) du procédé de préparation selon l'invention par la technique d'aérosol induise un phénomène de micellisation ou d'auto-assemblage conduisant à la mésostructuration de la matrice du matériau selon l'invention autour des nanoparticules métalliques et éventuellement des nanocristaux zéolithiques lesquels demeurent inchangés dans leur forme et leur taille au cours des étapes c) et d) du procédé de préparation de l'invention. Lorsque c₀<cmc, la mésostructuration de la matrice du matériau selon l'invention et préparé selon le procédé décrit ci-dessus est consécutive à une concentration progressive, au sein de chaque gouttelette, d'au moins du précurseur dudit élément X, éventuellement d'au moins du précurseur dudit élément X', et du tensioactif, jusqu'à une concentration en tensioactif c>cmc résultant d'une évaporation de la solution aquo-organique, préférentiellement acide.
De manière générale, l'augmentation de la concentration conjointe du précurseur dudit élément X, éventuellement du précurseur dudit élément X', hydrolysée, et du tensioactif provoque la précipitation du précurseur hydrolysé dudit élément X et éventuellement du précurseur hydrolysé dudit élément X' autour du tensioactif auto-organisé et en conséquence la structuration de la matrice du matériau selon l'invention. Les interactions phasées inorganique / inorganique, phases organique / organique et phases organique / inorganique conduisent par un mécanisme d'auto-assemblage coopératif à la condensation du précurseur dudit élément X hydrolysé et éventuellement du précurseur dudit élément X' hydrolysé autour du tensioactif auto-organisé. Lors de ce phénomène d'auto-assemblage, les nanoparticules métalliques et éventuellement les nanocristaux zéolithiques se retrouvent piégés dans ladite matrice mésostructurée à base d'oxyde d'au moins dudit élément X et éventuellement à base dudit élément X' (les élémens X et X' étant différents), comprise dans chacune des particules sphériques élémentaires constituant le matériau de l'invention. La technique aérosol est particulièrement Avantageuse pour la mise en œuvre de l'étape c) du procédé de préparation de l'invention de manière à contraindre les réactifs présents dans la solution initiale à interagir entre eux, aucune perte de matière hormis les solvants, c'est-à-dire la solution, préférentiellement la solution aqueuse, préférentiellement acide, et éventuellement additionnée d'un solvant polaire, n'étant possible, la totalité de l'élément X, éventuellement de l'élément X', et des nanoparticules métalliques, éventuellement des nanocristaux zéolithiques, présents initialement étant ainsi parfaitement conservée tout au long du procédé de l'invention au lieu d'être potentiellement éliminée lors des étapes de filtration et de lavages rencontrées dans des procédés de synthèse classiques connues de l'homme du métier.

L'étape d'atomisation du mélange selon l'étape c) du procédé de préparation selon l'invention produit des gouttelettes sphériques de diamètre inférieur à 200 μm et de préférence dans la gamme comprise entre 50 nm et 20 μm. La distribution en taille de ces gouttelettes est de type lognormale. Le générateur d'aérosol utilisé ici est un appareil commercial de modèle 3078 fourni par TSI. L'atomisation de la solution se fait dans une chambre dans laquelle est envoyé un gaz vecteur, un mélange O₂/N₂ (air sec), sous une pression P égale à 1,5 bars. Conformément à l'étape d) du procédé de préparation selon l'invention, on procède au séchage desdites gouttelettes. Ce séchage est réalisé par le transport desdites gouttelettes via le gaz vecteur, le mélange O₂/N₂, dans des tubes en verre, ce qui conduit à l'évaporation progressive de la solution, par exemple de la solution
aquo-organique acide, et ainsi à l'obtention de particules élémentaires sphériques. Ce séchage est parfait par un passage des dites particules dans un four dont la température peut être ajustée, la gamme habituelle de température variant de 50 à 600°C et de préférence de 80 à 400°C, le temps de résidence de ces particules dans le four étant de l'ordre d'une seconde. Les particules sont alors récoltées dans un filtre et constituent le matériau selon l'invention. Une pompe placée en fin de circuit favorise l'acheminement des espèces dans le dispositif expérimental aérosol. Le séchage des gouttelettes selon l'étape d) du procédé de préparation selon l'invention est avantageusement suivi d'un passage à l'étuve à une température comprise entre 50 et 150°C. L'élimination du tensioactif et éventuellement de l'agent structurant utilisé pour synthétiser lesdits nanocristaux zéolithiques, conformément à l'étape e) du procédé de préparation selon l'invention afin d'obtenir le matériau mésosstructuré selon l'invention est avantageusement réalisée par des procédés d'extraction chimique ou par traitement thermique et de préférence par calcination sous air dans une gamme de température de 300 à 1000°C et plus précisément dans une gamme de 500 à 600°C pendant une durée de 1 à 24 heures et de façon préférée pendant une durée de 2 à 6 heures.

Le matériau mésosstructuré selon l'invention constitué de particules sphériques élémentaires comprenant des nanoparticules métalliques piégées dans une matrice oxyde mésosstructurée, peut être obtenu sous forme de poudre, de billes, de pastilles, de granulés, ou d'extrudés, les opérations de mises en forme étant réalisées par les techniques classiques connues de l'homme du métier. De préférence, le matériau selon l'invention est obtenu sous forme de poudre, laquelle est constituée de particules sphériques élémentaires ayant un diamètre maximal de 10 μm, ce qui facilite la diffusion éventuelle des réactifs dans le cas de l'emploi du matériau selon l'invention dans une application industrielle potentielle.

Le matériau mésosstructuré selon l'invention constitué de particules sphériques élémentaires comprenant des nanoparticules métalliques piégées dans une matrice oxyde mésosstructurée, présentant une porosité organisée et uniforme dans le domaine de la mésoporosité, est caractérisé par plusieurs techniques d'analyses et notamment par Diffraction des Rayons X aux bas angles (DRX aux bas angles), par Diffraction des rayons X aux grands angles (DRX aux grands angles), par Volumétrie à l'Azote (BET), par Microscopie électronique à transmission (MET), par microscopie électronique à balayage (MEB) et par Spectrométrie d'émission à plasma induit par haute fréquence (ICP).
La technique de Diffraction des Rayons X aux bas angles (valeurs de l'angle 2θ comprises entre 0,5 et 6°) permet de caractériser la périodicité à l'échelle nanométrique générée par la mésoporosité organisée de la matrice mésostructurée du matériau de l'invention. Dans l'exposé qui suit, l'analyse des rayons X est réalisée sur poudre avec un diffractomètre opérant en réflexion et équipé d'un monochromateur arrière en utilisant la radiation du cuivre (longueur d'onde de 1,5406 Å). Les pics habituellement observés sur les diffractogrammes correspondants à une valeur donnée de l'angle 2θ sont associés aux distances interréticulaires d_{(hkl)} caractéristiques de la symétrie structurale du matériau ((hkl) étant les indices de Miller du réseau réciproque) par la relation de Bragg : 2d_{(hkl)} sin (θ) = n * λ. Cette indexation permet alors la détermination des paramètres de maille (abc) du réseau direct, la valeur de ces paramètres étant fonction de la structure, hexagonale, cubique, vermiculaire, cholestérique, lamellaire ou bicontinue obtenue. Pour exemple, le diffractogramme de Rayons X aux bas angles d'un matériau mésostructuré selon l'invention constitué de particules sphériques élémentaires comportant une matrice mésostructurée oxyde à base de silicium et d'aluminium obtenu selon le procédé de préparation selon l'invention via l'emploi du sel d'ammonium quaternaire qu'est le bromure de cétethyltriméthylammonium CH₃(CH₂)₁₈N(CH₃)₃Br (CTAB) présente un pic de corrélation parfaitement résolu correspondant à la distance de corrélation entre pores d caractéristique d'une structure de type vermiculaire et définie par la relation de Bragg 2 d * sin (θ) = n * λ.

La technique de Diffraction des Rayons X aux grands angles (valeurs de l'angle 2θ comprises entre 5 et 100°) permet de caractériser un solide cristallisé défini par la répétition d'un motif unitaire ou maille élémentaire à l'échelle moléculaire. Elle suit le même principe physique que celui régissant la technique de diffraction des Rayons X aux bas angles. La technique DRX aux grands angles est donc utilisée pour analyser les matériaux de l'invention car elle est tout particulièrement adaptée à la caractérisation structurale des nanoparticules métalliques pouvant être cristallisées, et éventuellement des nanocristaux zéolithiques, présents dans chacune des particules sphériques élémentaires constituant le matériau défini selon l'invention. En particulier, elle permet d'accéder à la taille des pores des nanocristaux zéolithiques lors de la présence de ces derniers. Pour exemple, un matériau mésostructuré selon l'invention, obtenu selon le procédé de préparation selon l'invention, et constitué de particules sphériques élémentaires comprenant des nanoparticules métalliques d'oxyde de fer γ-Fe₂O₃ piégées dans une matrice mésostructurée oxyde à base d'aluminium et de silicium et obtenu via l'emploi du sel d'ammonium
quaténaire qu'est le bromure de cétethyltriméthylammonium \(\text{CH}_3(\text{CH}_2)_13\text{N(CH}_3)_3\text{Br}\) (CTAB) présente, en DRX aux grands angles, le diffractogramme associé au groupe de symétrie \(\text{fd}3\text{m}\) des nanoparticules d'oxydes de fer cristallisées aux grands angles et, en DRX aux bas angles, un pic de corrélation parfaitement résolu aux petits angles associé à la structure de type vermiculaire de la matrice mésostructurée qui correspond à une distance \(d\) de corrélation entre pores. Lors de la présence, éventuelle, de nanocristaux de zéolithes piégés dans ladite matrice mésostructurée oxyde, pour exemple des nanocristaux de zéolithe du type ZSM-5 (MFI), le diffractogramme aux grand angles associés présente, en plus des pics associés auxdites nanoparticules métalliques d'oxyde de fer, les pics attribués au groupe de symétrie \(\text{Pnma (N}^6\text{2)}\) de la zéolithe ZSM-5. La valeur de l'angle obtenue sur le diffractogramme RX permet de remonter à la distance de corrélation \(d\) selon la loi de Bragg :

\[
2d \cdot \sin(\theta) = n \cdot \lambda.
\]

La volumétrie à l'azote correspondant à l'adsorption physique de molécules d'azote dans la porosité du matériau via une augmentation progressive de la pression à température constante renseigne sur les caractéristiques texturales (diamètre de pores, type de porosité, surface spécifique) particulières du matériau selon l'invention. En particulier, elle permet d'accéder à la surface spécifique et à la distribution mésoporeuse du matériau. On entend par surface spécifique, la surface spécifique B.E.T. \((S_{\text{BET}} \text{ en m}^2/\text{g})\) déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUAER-EMMETT-TELLER décrite dans le périodique "The Journal of American Society", 1938, 60, 309. La distribution poreuse représentative d'une population de mésopores centrée dans une gamme de 1,5 à 50 nm est déterminée par le modèle Barrett-Joyner-Halenda (BJH). L'isotherme d'adsorption - désorption d'azote selon le modèle BJH ainsi obtenue est décrite dans le périodique "The Journal of American Society", 1951, 73, 373, écrit par E. P. Barrett, L. G. Joyner et P. P. Halenda. Dans l'exposé qui suit, le diamètre des mésopores \(\phi\) de la matrice mésostructurée correspond au diamètre moyen à l'adsorption d'azote défini comme étant un diamètre tel que tous les pores inférieurs à ce diamètre constituent 50% du volume poreux \((V_p)\) mesuré sur la branche d'adsorption de l'isotherme azote. De plus, l'allure de l'isotherme d'adsorption d'azote et de la boucle d'hystérésis peuvent renseigner sur la nature de la mésoporosité et sur la présence éventuelle de microporosité liée essentiellement aux nanocristaux zéolithiques lorsqu'ils sont présents dans la matrice oxyde mésostructurée. Pour exemple, l'isotherme d'adsorption d'azote relative à un matériau mésostructuré selon l'invention, obtenu selon le procédé de préparation selon l'invention et constitué de particules sphériques élémentaires comportant...
une matrice mésostructurée oxyde à base d'aluminium et de silicium préparée via l'emploi du sel d'ammonium quaternaire bromure de cétyltriméthylammonium CH₃(CH₂)₁₅N(CH₃)₃Br (CTAB) est caractérisée par une isotherme d'adsorption de classe IVc avec présence d'une marche d'adsorption pour des valeurs de P/P₀ (où P₀ est la pression de vapeur saturante à la température T) comprises entre 0,2 et 0,3 associée à la présence de pores de l'ordre de 2 à 3 nm comme confirmée par la courbe de distribution poreuse associée. Concernant la matrice mésostructurée, la différence entre la valeur du diamètre des pores φ et le paramètre de maille a défini par DRX aux bas angles comme décrit ci-dessus permet d'accéder à la grandeur e où e = a - φ et est caractéristique de l'épaisseur des parois amorphes de la matrice mésostructurée comprises dans chacune des particules sphériques du matériau selon l'invention. Ledit paramètre de maille a est relié à la distance d de corrélation entre pores par un facteur géométrique caractéristique de la géométrie de la phase. Pour exemple, dans le cas d'une maille hexagonale e = a - φ avec a = 2d/√3 , dans le cas d'une structure vermiculaire e = d - φ.

L'analyse par microscopie électronique par transmission (MET) est une technique également largement utilisée pour caractériser la structure de ces matériaux. Celle-ci permet la formation d'une image du solide étudié, les contrastes observés étant caractéristiques de l'organisation structurale, de la texture ou bien de la morphologie des particules observées, la résolution de la technique atteignant au maximum 0,2 nm. Dans l'exposé qui suit, les photos MET seront réalisées à partir de coupes microtomes de l'échantillon afin de visualiser une section d'une particule sphérique élémentaire du matériau selon l'invention. Pour exemple, les images MET obtenues pour un matériau selon l'invention, obtenu selon le procédé de préparation selon l'invention, et constitué de particules sphériques comprenant des nanoparticules métalliques d'or au degré d'oxydation zéro piégées dans une matrice mésostructurée à base d'oxyde de titane laquelle a été préparée via l'emploi du sel d'ammonium quaternaire bromure de cétyltriméthylammonium CH₃(CH₂)₁₅N(CH₃)₃Br (CTAB) présentent au sein d'une même particule sphérique une mésostructure vermiculaire (la matière étant définie par des zones sombres) au sein de laquelle sont visualisés des objets opaques représentant les nanoparticules métalliques d'or piégées dans la matrice mésostructurée. L'analyse de l'image permet également d'accéder aux paramètres d, φ et e, caractéristiques de la matrice mésostructurée définis précédemment. Il est parfois possible de visualiser également sur ce même cliché les plans réticulaires des nanoparticules métalliques, qui peuvent être cristallisées, au lieu des objets opaques cités précédemment,
ainsi que les nanocristaux zéolithiques lorsqu’ils sont présents, dans la matrice mésosstructurée et d’accéder ainsi à leur structure cristallographique.

La morphologie et la distribution en taille des particules élémentaires ont été établies par analyse de photos obtenues par microscopie électronique à balayage (MEB).

La structure de la matrice mésosstructurée comprend dans chacune des particules du matériau selon l’invention peut être, cubique, vermiculaire, hexagonale, lamellaire, cholestérique ou bicontinue en fonction de la nature du tensioactif choisi comme agent structurant.

L'invention est illustrée au moyen des exemples qui suivent.

Exemples

Dans les exemples qui suivent, la technique aérosol utilisée est celle décrite ci-dessus dans l’exposé de l’invention.

Exemple 1 : Préparation d’un matériau présentant des nanoparticules métalliques d’or à 3 % poids du matériau final piégées dans une matrice mésosstructurée d’oxyde de titane TiO₂.

50 mg de AuNaCIO₄, 2H₂O sont ajoutés à 500 ml de H₂O. La solution est portée à ébullition au bain marie. 10 mg de solution aqueuse contenant 0,5 g de Na₃(C₆H₅O₂) sont alors ajoutés. L’ensemble de la solution est laissé à ébullition jusqu’à un virement de couleur rouge de celle-ci. On obtient alors des nanoparticules d’or de diamètre moyen de l’ordre de 20 nm en suspension (J. Turkevitch, P. C. Stevenson, J. Hillier, *Discuss. Faraday Soc.*, 1951, 11, 55). La solution est alors concentrée par évaporation jusqu’à l’obtention d’une solution de concentration 0,014 mol/l.

0,41 g de CTAB sont dissous dans 23 g d’éthanol à température ambiante. 0,87 g de TiCl₄ sont ajoutés à cette solution sous vigoureuse agitation. Après addition de 5 ml de la solution de nanoparticules d’or, la solution est passée aux ultrasons pendant environ une minute. 2,2 g d’H₂O sont alors ajoutés lentement. La solution est homogénéisée aux ultrasons pendant environ une minute. L’ensemble de la préparation est envoyé immédiatement dans la chambre d’atomisation du générateur d’aérosol tel qu’il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l’action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bars). Les gouttelettes sont séchées selon le protocole décrit dans l’exposé de l’invention ci-dessus. La température du four de séchage
est fixée à 350°C. La poudre récoltée est alors calcinée sous air pendant 5 h à T = 550°C. Le solide est caractérisé par DRX aux bas angles et aux grands angles, par Volumétrie à l'azote, par MET et par MEB. L'analyse MET montre que le matériau final est constitué de nanoparticules d'or piégées dans une matrice d'oxyde de titane à mésoporosité organisée caractérisée par une structure vermiculaire. L'analyse par Volumétrie à l'azote conduit à une surface spécifique du matériau final de \(S_{\text{BET}} = 250 \, \text{m}^2/\text{g} \) et à un diamètre mésopore caractéristique de la matrice mésostructurée d'oxyde de titane de \(\phi = 2,6 \, \text{nm} \). L'analyse DRX aux grands angles (figure 1) conduit à l'obtention du diffractogramme caractéristique des nanoparticules d'or. L'analyse DRX aux petits angles (figure 2) conduit à la visualisation d'un pic de corrélation associé à l'organisation vermiculaire de la matrice mésostructurée. La relation de Bragg donne 2d * sin(1) = 1,5406, soit d = 4,4 nm. L'épaisseur des parois amorphes de la matrice mésostructurée définie par e = d - \(\phi \) est donc de e = 1,8 nm. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.

Exemple 2 : Préparation d'un matériau présentant des nanoparticules d'oxyde de fer à 10% poids du matériau final piégées dans une matrice mésostructurée oxyde à base d'aluminium et de silicium de rapport molaire Si/Al = 4.

On prépare 80 ml d'une solution de FeCl₃ de concentration 1mol/l et 20 ml d'une solution de FeCl₂ à une concentration de 2 mol/l en FeCl₂ et de 1 mol/l en HCl. Ces deux solutions sont mélangées et laissées sous agitation une dizaine de minutes. A l'aide d'un titromètre, on réalise la synthèse des particules d'oxyde de fer par précipitation de la solution de fer dans 500 ml d'une solution de NaNO₃ à 3 mol/l. Lors de la synthèse, le pH est maintenu à une valeur de 11 par addition simultanée d'une solution de soude de concentration 0,1 mol/l. Les particules solides sont séparées du surnageant par aïmantation. Les particules sont ensuite redispersées dans une solution aqueuse d'HClO₄ à 3 mol/l et laissées 30 minutes sous agitation de manière à réaliser l'oxydation du Fe(II) résiduel. Les particules sont alors séparées du surnageant par centrifugation (10 minutes à 11000 tr/min). Cette procédure peut être réalisée plusieurs fois. Les particules sont alors redispersées dans un volume d'eau dont le pH doit être maintenu à une valeur de 1,8-2,0 de manière à obtenir une concentration en Fe³⁺ de l'ordre de 0,13 mol/l. Le diamètre des particules obtenues est compris entre 5 et 12 nm.
2,3 g de AlCl₃, 6H₂O sont ajoutés à une solution contenant 32,45 g d'éthanol, 16,93 g d'H₂O, 0,078 ml d'HCl 37%. Une fois le chlorure d'aluminium dissous, on ajoute à cette solution 31 ml de la solution aqueuse de particule d'oxyde de fer décrite ci-dessus. Cette solution est placée aux ultrasons pendant quelques minutes (2 à 3) avant l'ajout très lent et sous agitation vigoureuse de 7,9 g de tétraéthylorthosilicate (TEOS). On ajoute alors très lentement et sous agitation vigoureuse une solution contenant 3,08 g de CTAB préalablement dissous dans 32,45 g d'éthanol et dans 16,93 g d'H₂O. L'ensemble est maintenu sous agitation quelques minutes. L'ensemble est envoyé dans la chambre d'atomisation du générateur d'aérosol tel qu'il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l'action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bars). Les gouttelettes sont séchées selon le protocole décrit dans l'exposé de l'invention ci-dessus. La température du four de séchage est fixée à 350°C. La poudre recollée est alors calcinée sous air pendant 5 h à T = 550°C. Le solide est caractérisé par DRX aux bas angles et aux grands angles, par Volumétrie à l'azote, par MET, par MEB et par ICP.

L'analyse MET montre que le matériau final est constitué de nanoparticules d'oxyde de fer dans une matrice alumino-silicate de rapport molaire Si/Al = 4 à mesoporosité organisée caractérisée par une structure vermiculaire. La Volumétrie d'adsorption à l'azote (figure 5) conduit à une surface spécifique du matériau final de S_BET = 700 m²/g et à un diamètre mésoporeux caractéristique de la matrice mésosstructurée de φ = 2,5 nm. L'analyse DRX aux grands angles (figure 3) conduit à l'obtention du diffractogramme caractéristique des nanoparticules d'oxydes de fer γ-Fe₂O₃ de structure spinelle et de groupe d'espace fd3m. L'analyse DRX aux petits angles (figure 4) conduit à la visualisation d'un pic de corrélation associé à l'organisation vermiculaire de la matrice mésosstructurée. La taille des nanoparticules calculée à partir de l'équation de Scherrer est de l'ordre de 8,2 nm. La relation de Bragg donne 2 d * sin (1,1) = 1,5406, soit d = 4 nm. L'épaisseur des parois amorphes de la matrice mésosstructurée alumino-silicate définie par e = d - φ est donc de e = 1,5 nm. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.

Exemple 3 : Préparation d'un matériau présentant des nanoparticules d'oxyde de cérium à 10% poids du matériau final piégées dans une matrice mésosstructurée oxyde à base de zirconium et de silicium de rapport molaire Si/Zr = 4.
Les particules d’oxydes de cérium CeO₂ sont fournies sous forme de solution aqueuse à 60% en masse d’oxyde de cérium par la société Rhodia. Les particules ont un diamètre moyen de l’ordre de 2 à 3 nm. 12,49 g de cette solution commerciale sont alors ajoutés à 150 ml d’H₂O. On obtient alors une solution de concentration théorique de 0,29 mol/l en Ce⁺⁴. 2,2 g de ZrCl₄ sont ajoutés très lentement à 65 g d’éthanol à température ambiante. 34 g d’H₂O sont alors ajoutés très lentement et sous vigoureuse agitation. On ajoute alors 3,08 g de CTAB puis toujours très lentement 7,8 g de tétraéthylorthosilicate (TEOS). 6 ml de la solution d’oxyde de cérium de concentration 0,29 mol/l sont alors ajoutés à la solution contenant le précurseur inorganique ZrCl₄ par un système dit de "stop-flow" (ou appareil de mélange rapide). Ce dispositif permet d’obtenir un temps de mélange suffisamment long pour assurer une bonne homogénéisation des réactifs et suffisamment court pour éviter la destabilisation de la solution. La solution ainsi obtenue est envoyée dans la pré-chambre de petit volume de l’appareil de mélange rapide, puis dans la chambre d’atomisation du générateur d’aérosol tel qu’il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l’action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bars). Les gouttelettes sont séchées selon le protocole décrit dans l’exposé de l’invention ci-dessus. La température du four de séchage est fixée à 350°C. La poudre récoltée est alors calcinée sous air pendant 5 h à T = 550°C. Le solide est caractérisé par DRX aux bas angles et aux grands angles, par Volumétrie à l’azote, par MET et par MEB et par ICP. L’analyse MET montre que le matériau final est constitué de nanoparticules d’oxyde de cérium dans une matrice SiO₂-ZrO₂ de rapport molaire Si/Zr = 4 à mésoporosité organisée caractérisée par une structure vermiculaire. L’analyse par Volumétrie à l’azote (figure 7) conduit à une surface spécifique du matériau final de S_{BET} = 220 m²/g et à un diamètre mésoporeux caractéristique de la matrice mésostructurée de ϕ = 2,0 nm. L’analyse DRX aux grands angles conduit à l’obtention du diffractogramme caractéristique des nanoparticules d’oxydes de cérium. L’analyse DRX aux petits angles (figure 6) conduit à la visualisation d’un pic de corrélation associé à l’organisation vermiculaire de la matrice mésostructurée. La relation de Bragg donne 2 d * sin (1,9) = 1,5406, soit d = 5 nm. L’épaisseur des parois amorphes de la matrice mésostructurée définie par e = d - ϕ est donc de e = 3 nm. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.
Exemple 4 : Préparation d'un matériau présentant des nanoparticules polymétalliques CoFe2O4 de structure spinelle inverse à 5% poids du matériau final piégées dans une matrice mésosstructurée oxyde à base d'aluminium et de silicium de rapport molaire Si/Al = 4.

8,1 g de FeCl3 et 4,4 g de Co(CH3COO)2. 4H2O sont ajoutés à 250 ml de 1,2-propanediol afin d'obtenir une solution de concentration en métal égale à 0,3 mol/l. On ajoute alors 10,35 g d'H2O et 14,8 g de NaCH3COO de manière à obtenir les rapports molaire H2O/(Fe+Co) et CH3COO-/(Fe+Co) respectivement égaux à 9 et 3. La solution est chauffée jusqu'à son point d'ébullition à 160°C avec une rampe de 6°C.min-1 et laissée à reflux pendant 5 heures. La solution est laissée à température ambiante et les particules sont séparées du surnageant par centrifugation, lavées à l'éthylène glycol et à l'acétone puis séchées à l'air à 50°C. Les particules polymétalliques de FeCo2O4 ainsi obtenues ont un diamètre moyen de 5 nm (S. Ammar, A. Helfen, N. Jouini, F. Fiévet, I. Rosenman, F. Villain, P. Molinié, M. Danot, J. Mater. Chem., 2001, 11, 186). Les particules ainsi récoltées sont redispersées dans un volume de 1,2-propanediol de manière à obtenir une concentration de 0,03 mol/l en particules métalliques.

1,03 g de AlCl3, 6H2O sont ajoutés à une solution contenant 30 g d'éthanol, 15 g d'H2O, 0,036 ml d'HCl, et 1,4 g de P123. Une fois le chlorure d'aluminium dissous, on ajoute à cette solution 3,59 g de TEOS.

30 ml de la solution de nanoparticules de FeCo2O4 de concentration 0,03 mol/l sont alors ajoutés à la solution contenant les précurseurs inorganiques de silicium et d'aluminium par un système dit de "stop-flow" (ou appareil de mélange rapide). Ce dispositif permet d'obtenir un temps de mélange suffisamment long pour assurer une bonne homogénéisation des réactifs et suffisamment court pour éviter la destabilisation de la solution. La solution ainsi obtenue est envoyée dans la pré-chambre de petit volume de l'appareil de mélange rapide, puis dans la chambre d'atomisation du générateur d'aérosol tel qu'il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l'action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bars). Les gouttelettes sont séchées selon le protocole décrit dans l'exposé de l'invention ci-dessus. La température du four de séchage est fixée à 350°C. La poudre récoltée est alors calcinée sous air pendant 5 h à T = 550°C. Le solide est caractérisé par DRX aux bas angles et aux grands angles, par Volumétrie à l'azote, par MET, par MEB et par ICP. L'analyse MET montre que le matériau final est constitué de nanoparticules de CoFe2O4 piégées dans une matrice alumino-silicate à mésoporosité organisée caractérisée par une structure vermiculinaire. L'analyse par
Volumétrie à l'azote conduit à une surface spécifique du matériau final de $S_{\text{BET}} = 300 \text{ m}^2/\text{g}$ et à un diamètre mésoporeux caractéristique de la matrice mésostructurée de $\phi = 5,6 \text{ nm}$. L'analyse DRX aux grands angles conduit à l'obtention d'un diffractogramme caractéristique des nanoparticules de CoFe$_2$O$_4$. L’analyse DRX aux petits angles conduit à la visualisation d'un pic de corrélation associé à l'organisation vermiculaire de la matrice mésostructurée. La relation de Bragg donne $2d \times \sin(0,32) = 1,5406$, soit $d = 13,1 \text{ nm}$. L'épaisseur des parois amorphes de la matrice mésostructurée définie par $e = d - \phi$ est donc de $e = 7,5 \text{ nm}$. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.

Exemple 5 : Préparation d’un matériau présentant des nanocristaux de zéolite de type ZSM-5 et des nanoparticules d’oxyde de fer γ-Fe$_2$O$_3$ dans une matrice mésostructurée oxyde à base d’aluminium et de silicium de rapport molaire Si/Al = 4.

6,0 g de TEOS sont hydrolysés dans 10,4 ml de solution d’hydroxyde de tétrapropylammonium (TPAOH 20%). 1,5 ml d’eau sont alors ajoutés et la solution est ensuite agitée de manière à obtenir une solution claire. La solution est autoclavée à $T = 80^\circ\text{C}$ pendant 4 jours. Une fois la synthèse terminée, on récupère par centrifugation (20000 tr/min pendant une heure) des cristaux de ZSM-5, ils sont ensuite redispersés dans de l'eau (ultrasons) puis recentrifugés jusqu'à ce que la solution après redispersion ait un pH voisin de 7. La taille moyenne des cristaux de ZSM-5 est de 100 nm. On prépare 80 ml d’une solution de FeCl$_3$ de concentration 1 mol/l et 20 ml d’une solution de FeCl$_2$ à une concentration de 2 mol/l en FeCl$_2$ et de 1 mol/l en HCl. Ces deux solutions sont mélangées et laissées sous agitation une dizaine de minutes. A l’aide d’un titromètre, on réalise la synthèse des particules d’oxyde de fer par précipitation de la solution de fer dans 500 ml d’une solution de NaNO$_3$ à 3 mol/l. Lors de la synthèse, le pH est maintenu à une valeur de 11 par addition simultanée d’une solution de soude de concentration 0,1 mol/l. Les particules solides sont séparées du surnageant par aïmantation. Les particules sont ensuite redispersées dans une solution aqueuse d’HClO$_4$ à 3 mol/l et laissées 30 minutes sous agitation de manière à réaliser l’oxydation du Fe(II) résiduel. Les particules sont alors séparées du surnageant par centrifugation (10 minutes à 11000 tr/min). Cette procédure peut être réalisée plusieurs fois. Les particules sont alors redispersées dans un volume d’eau dont le pH doit être maintenu à une valeur de 1,8-2,0 de manière à obtenir une
concentration en Fe$^{3+}$ de l'ordre de 0,13 mol/l. Le diamètre des particules obtenues est compris entre 5 et 12 nm.

1,03 g de AlCl$_3$, 6H$_2$O sont ajoutés à une solution contenant 30 g d'éthanol, 15 g d'H$_2$O, 0,036 ml d'HCl et 1,4 g de P123. Une fois le chlorure d'aluminium dissous, on ajoute 3,59 g de TEOS. On laisse homogénéiser une dizaine de minutes. Puis 400 µl de la solution de cristaux zéolithiques sont ajoutées à cette solution sous vigoureuse agitation. Le pH est alors ajusté à 2 avec HCl.

12 ml de la solution d’oxyde de fer de concentration 0,13 mol/l sont alors ajoutés à la solution contenant les nanocristaux zéolithiques en suspension et les précurseurs inorganiques d'aluminium et de silicium par un système dit de "stop-flow" (ou appareil de mélange rapide). Ce dispositif permet d'obtenir un temps de mélange suffisamment long pour assurer une bonne homogénéisation des réactifs et suffisamment court pour éviter la destabilisation de la solution. La solution ainsi obtenue est envoyée dans la pré-chambre de petit volume de l'appareil de mélange rapide, puis dans la chambre d'atomisation du générateur d'aérosol tel qu'il a été décrit dans la description ci-dessus et la solution est pulvérisée sous la forme de fines gouttelettes sous l'action du gaz vecteur (air sec) introduit sous pression (P = 1,5 bars). Les gouttelettes sont séchées selon le protocole décrit dans l'exposé de l'invention ci-dessus. La température du four de séchage est fixée à 350°C. La poudre récoltée est alors calcinée sous air pendant 5 h à T = 550°C. Le solide est caractérisé par DRX aux bas angles et aux grands angles, par Volumétrie à l’azote, par MET, par MEB et par ICP. L'analyse MET montre que le matériau final est constitué de nanocristaux de zéolithe de type ZSM-5 et de nanoparticules d’oxyde de fer γ-Fe$_2$O$_3$ piégés dans une matrice aluminosilicate à mésoporosité organisée caractérisée par une structure vermiculaire. L'analyse par Volumétrie à l’azote conduit à une surface spécifique du matériau final de $S_{BET} = 300 \text{ m}^2/\text{g}$ et à un diamètre mésoporeux caractéristique de la matrice mésostructurée de $\phi = 5,6 \text{ nm}$. L’analyse DRX aux grands angles conduit à l'obtention d’un diffractogramme constitué de la superposition des diffractogrammes caractéristiques de la zéolithe ZSM-5 et des particules d’oxyde de fer γ-Fe$_2$O$_3$. L’analyse DRX aux petits angles conduit à la visualisation d’un pic de corrélation associé à l’organisation vermiculaire de la matrice mésostructurée. La relation de Bragg donne 2 θ * sin (0,32) = 1,5406, soit $d = 13,1 \text{ nm}$. L’épaisseur des parois amorphes de la matrice mésostructurée définie par $e = d - \phi$ est donc de $e = 7,5 \text{ nm}$. Un cliché MEB des particules élémentaires sphériques ainsi obtenues indique que ces particules ont une taille caractérisée par un diamètre variant de 50 à 700 nm, la distribution en taille de ces particules étant centrée autour de 300 nm.
REVENDICATIONS

1. Matériau inorganique constitué d'au moins deux particules sphériques élémentaires, chacune desdites particules sphériques comprenant des nanoparticules métalliques de taille comprise entre 1 et 300 nm et une matrice mésostructurée à base d'oxyde d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'euroïpium et le néodyme, ladite matrice mésostructurée ayant une taille de pores comprise entre 1,5 et 30 nm et présentant des parois amorphes d'épaisseur comprise entre 1 et 30 nm, lesdites particules sphériques élémentaires ayant un diamètre maximal de 10 μm.

2. Matériau selon la revendication 1 tel que l'élément X est choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium.

3. Matériau selon la revendication 1 ou la revendication 2 tel que la taille des pores de ladite matrice mésostructurée est comprise entre 1,5 et 10 nm.

4. Matériau selon l'une des revendications 1 à 3 tel que ladite matrice mésostructurée présente une structure hexagonale, cubique, vermiculaire, lamellaire, cholestérique ou bicontinue.

5. Matériau selon l'une des revendications 1 à 4 tel que ladite matrice mésostructurée comprend au moins un élément X' choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'euroïpium et le néodyme, les éléments X et X' étant différents.

6. Matériau selon la revendication 5 tel que ledit élément X est l'aluminium et ledit élément X' est le silicium.

7. Matériau selon l'une des revendications 1 à 6 tel que lesdites nanoparticules métalliques comprennent au moins un métal appartenant à la famille des métaux de transition et / ou à la famille des métaux des terres rares.
8. Matériau selon la revendication 7 tel que lesdites nanoparticules métalliques comprennent au moins un métal de transition au degré d'oxydation zéro choisi parmi l'or, le palladium, le platine, le nickel, le cobalt, le cuivre, l'argent, le rhodium, le ruthénium, le fer, l'iridium, leurs mélanges et les alliages dérivés.

9. Matériau selon la revendication 7 tel que lesdites nanoparticules métalliques comprennent au moins un oxyde de métal de transition et/ou au moins un oxyde de métal de terre rare, dans le(s)quel(s) ledit métal est choisi parmi les métaux : Ti, Zr, Nb, Ta, Mo, W, Fe, Co, Cu, Y, La, Ni, Cr, Pd, Pt, Ce, Eu, Nd, Gd et leurs mélanges.

10. Matériau selon la revendication 7 tel que lesdites nanoparticules métalliques comprennent au moins un oxyde polymétallique de structure cristallographique de type spinelle AB₂O₄, perovskite ABO₃ ou ilménite ABO₃, A et/ou B étant au moins un métal de transition et/ou de terre rare.

11. Matériau selon la revendication 7 tel que lesdites nanoparticules métalliques comprennent au moins un chalcogénure formé d'un métal de transition M et d'un élément chalcogène C choisi parmi le soufre, le sélénium et le tellure.

12. Matériau selon l'une des revendications 1 à 11 tel que lesdites nanoparticules métalliques représentent de 0,1 à 30% poids dudit matériau.

13. Matériau selon l'une des revendications 1 à 12 tel que chacune desdites particules sphériques comprend des nanocrisaux zéolithiques.

14. Matériau selon la revendication 13 tel que lesdits nanocrisaux zéolithiques présentent une taille de pores comprise entre 0,2 et 2 nm.

15. Matériau selon la revendication 13 ou la revendication 14 tel que lesdits nanocrisaux zéolithiques comprennent au moins une zéolithe choisie parmi les zéolithes de type structural MFI, BEA, FAU et LTA.

16. Matériau selon l'une des revendications 13 à 15 tel que lesdits nanocrisaux zéolithiques comprennent au moins une zéolithe entièrement silicique.
17. Matériau selon l'une des revendications 13 à 15 tel que lesdits nanocristaux zéolithiques comprennent au moins une zéolithe contenant du silicium et de l'aluminium.

18. Matériau selon l'une des revendications 1 à 17 tel qu'il présente une surface spécifique comprise entre 100 et 1100 m²/g.

19. Procédé de préparation d'un matériau selon l'une des revendications 1 à 18 comprenant a) la synthèse de particules métalliques de taille nanométrique maximale égale à 300 nm afin d'obtenir une solution colloïdale stable dans laquelle sont dispersées lesdites nanoparticules ; b) le mélange en solution d'au moins un tensioactif, d'au moins un précurseur d'au moins un élément X choisi dans le groupe constitué par l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme, d'au moins une solution colloïdale de nanoparticules métalliques obtenue selon a), éventuellement d'au moins un précurseur d'au moins un élément X' choisi dans le groupe constitué par le silicium, l'aluminium, le titane, le tungstène, le zirconium, le gallium, le germanium, l'étain, l'antimoine, le plomb, le vanadium, le fer, le manganèse, l'hafnium, le niobium, le tantale, l'yttrium, le cérium, le gadolinium, l'europium et le néodyme (X et X' étant différents) et éventuellement d'au moins une solution colloïdale stable dans laquelle sont dispersées des cristaux de zéolithes de taille nanométrique maximale égale à 300 nm ; c) l'atomisation par aérosol de ladite solution obtenue à l'étape b) pour conduire à la formation de gouttelettes sphériques de diamètre inférieur à 200 µm ; d) le séchage desdites gouttelettes et e) l'élimination d'au moins dudit tensioactif pour l'obtention d'un matériau mésosstructuré dans lequel sont piégées des nanoparticules métalliques.

20. Procédé selon la revendication 19 tel que l'élément X est choisi dans le groupe constitué par l'aluminium, le titane, le zirconium, le gallium, le germanium et le cérium.

21. Procédé selon la revendication 19 ou la revendication 20 tel que l'élément X' est le silicium.
22. Procédé selon l’une des revendications 19 à 21 tel que ledit tensioactif est un copolymère à trois blocs, chaque bloc étant constitué d’une chaîne de poly(oxyde d’alkylène).

23. Procédé selon la revendication 22 tel que ledit copolymère à trois blocs est constitué de deux chaînes de poly(oxyde d’éthylène) et d’une chaîne de poly(oxyde de propylène).

24. Procédé selon l’une des revendications 19 à 21 tel que ledit tensioactif est le bromure de céthyltriméthylammonium.
FIG. 6

FIG. 7

N₂ cm³/g

(P/Po)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C01B39/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C01B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, PAJ, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>claims 47-54,58-64</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>claim 1</td>
<td>19</td>
</tr>
<tr>
<td>A</td>
<td>claim 7</td>
<td>2,5</td>
</tr>
<tr>
<td>A</td>
<td>claims 56-61</td>
<td>1-6</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C.
X See patent family annex.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 C document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Date of the actual completion of the international search
30 August 2006

Date of mailing of the international search report
06/09/2006

Name and mailing address of the ISA/
European Patent Office, P.B. 5816 Patentban 2
NL-2280 HV RIJSWIJK
Tel: +31-70 340-2040, Tx: 31 651 epo nl
Fax: +31-70 340-3616

Authorized officer
Arnotte, E

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>JOAQUÍN PÉREZ-PARIENTE, ISABEL DÍAZ AND JAVIER AG NDEZ: "Organising disordered matter: strategies for ordering the network of mesoporous materials" COMPTES RENDUS CHIMIE, vol. 8, no. 3-4, 2005, pages 569-578, XP002377426 the whole document</td>
<td>19-24</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 1037940 A</td>
<td>27-09-2000</td>
<td>AT 275600 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3739799 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69826148 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69826148 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003531083 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9937705 A1</td>
</tr>
<tr>
<td>US 6387453 B1</td>
<td>14-05-2002</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69625480 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9639357 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5622684 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5795559 A</td>
</tr>
</tbody>
</table>
Rapport de recherche internationale

A. Classemment de l'objet de la demande

INV. CO1839/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

B. Domaines sur lesquels la recherche a porté

Documentalisation minimale consultée (système de classification suivi des symboles de classement)

CO1B

Documentalisation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche.

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cette est réalisable, termes de recherche utilisés)

EPO-Internal, PAJ, WPI Data

C. Documents considérés comme pertinents

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>revendications 47-54,58-64</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>revendication 1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>revendication 7</td>
<td>19</td>
</tr>
<tr>
<td>A</td>
<td>revendications 56-61</td>
<td>2,5</td>
</tr>
<tr>
<td>A</td>
<td>----</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>US 6 387 453 B1 (BRINKER C. JEFFREY ET AL)</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>14 mai 2002 (2002-05-14)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>cité dans la demande</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>revendications 1-16</td>
<td></td>
</tr>
</tbody>
</table>

* Voir la suite du cadre C pour la fin de la liste des documents

* Les documents de familles de brevets sont indiqués en annexe

Date à laquelle la recherche internationale a été effectivement achevée

30 août 2006

Date d'expédition du présent rapport de recherche internationale

06/09/2006

Nom et adresse postale de l'administration chargée de la recherche internationale

Office European des brevets, P.B. 5819 Patentlaan 2 NL-2330 HV Rijswijk, Tél. (+31-70) 340-0044, Tlx. 31 651 epo nl, Fax: (+31-70) 340-3016

Fonctionnaire autorisé

Arnotte, E
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP 1037940 A</td>
<td>27-09-2000</td>
<td>AT 275600 T</td>
<td>15-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3739799 A</td>
<td>09-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69826148 D1</td>
<td>14-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69826148 T2</td>
<td>22-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003531083 T</td>
<td>21-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9937705 A1</td>
<td>29-07-1999</td>
</tr>
<tr>
<td>US 6387453 B1</td>
<td>14-05-2002</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69625480 T2</td>
<td>15-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9639357 A1</td>
<td>12-12-1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5622684 A</td>
<td>22-04-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5795559 A</td>
<td>18-08-1998</td>
</tr>
</tbody>
</table>

Formulaires PCT/ISA/210 (annière familles de brevets) (avril 2002)