
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2012/0131327 A1

Tomlinson

US 2012O131327A1

(43) Pub. Date: May 24, 2012

(54)

(75)

(73)

(21)

(22)

(30)

Nov. 19, 2010

4

:102

124

METHOD OF AND APPARATUS FOR
DISTRIBUTING SOFTWARE OBJECTS

Inventor: David Robin Tomlinson,
Wellington (GB)

Assignee: DATA ENCRYPTION SYSTEMS
LIMITED, Taunton (GB)

Appl. No.: 13/297,547

Filed: Nov. 16, 2011

Foreign Application Priority Data

(GB) GB 1O19618.6

126
Enterprise Server

1OO

Creates EUID

Store User Public Key
in Users Table

Encrypt Keyfile using
One R 68SSCOce

Enterprise

Issue Licence

106

Create Qutgoing Messace&Payload

108
AdoMessage to

Database

122 Flag as Outgoing

Records updated Acknowledge

18O

Periodic Query of Proxy

Delete Completed Records updated Acknowledge Process Messages

190 188 192

908, an anal--- XXXXX-XXXXX 1989 XXXXX-XXXXX. XXXXX

Server Proxy
LOOKUD Messages for

User ID & Index UN
140

SendMessage

Publication Classification

(51) Int. Cl.
H04L 9/00 (2006.01)
G06F 9/44 (2006.01)

(52) U.S. Cl. ... 713/150; 717/177
(57) ABSTRACT

A method of distributing software objects from a first entity to
at least one second entity, the method comprising: using a
distribution entity to accept a software object from the first
entity, the Software object including an identifier for a specific
second entity, and wherein the at least one second entity is
operable to contact the distribution entity and to enquire if a
software object has been deposited for it, and if a software
object has been deposited, to accept it from the distribution
entity.

Enter
Activation Code

130

Query Proxy with
EE & .

144

142 148

CreateUser PaSSWOrc

Create Messace 4.
Status, SID E.

150

Encrypt usin
ES E. E. 154

Addu, Message
160 D& Checksum

166

Login roceSS

Mark MSGID Complete

Patent Application Publication May 24, 2012 Sheet 1 of 14 US 2012/0131327 A1

/N
of 30

32

C
12 S/

1O

8

6

4 50

FIG. 1

Patent Application Publication May 24, 2012 Sheet 2 of 14 US 2012/0131327 A1

50

t

FIG. 2

Patent Application Publication May 24, 2012 Sheet 3 of 14 US 2012/0131327 A1

Activation (ww8.
4 126

Enterprise Server
100

Creates EUID

Store User Public Key
in USerSlable

EnCVOtKewfile USin R E.

Enterprise

ISSue Licence

Create Outgoing
MeSSace & Pavload Post to Proxy

Add Message to
Database

116
Flag as Outgoing

LOOKUDESACCOUnt
USincGrOUOCOce

184
N. Send incoming

MeSSaces

- Acknowled

190 188 192

Patent Application Publication May 24, 2012 Sheet 4 of 14 US 2012/0131327 A1

09. ---
XXXXX-XXXXX-XXXXX

Server Proxy 50 DESIOCK+ Client

LOOKup Messages for Query Proxy with ..
User ID& Index JN UsefD &ndex Activation COde

enCVIeSSage erty UneCKSUm 144

142 148

Derriage CreateUser Password
Create MeSSace: SEFEEH "Please Walt

152

EnCrVotuSin ES E. E.
AddEUD, MeSSage

D & Checksum

Add Message to
Database

162
FagaSnCOming

Complete Acknowledge LOgin proCeSS

Mark MSGID Complete

FIG. 3 (continued)

Patent Application Publication May 24, 2012 Sheet 5 of 14 US 2012/0131327 A1

Activation (w -XXXXX-XXXXX

Enterprise Server

Add User

ISSue Licence CreateSEUID

Store User Public Key Issue Keyfile in USerS Table

EnCrVotKewfile USin EE ES
Create Outgoing Enterprise

Post to Proxy MeSSace & Pavload

Send KeyFle

Encrypted Using Activation COce

Records updated Flag as Sent Sl-lo as sp S3 eS 9. pes cas
S 3 a

C S -- - EmailUser Se

Each message is part of a pair. One
Outgoing and One inCOming,

For a simple pr0CeSS Such as
authentication Orakey-update, the status
will Only be returned Once, the ES will
treat the "completed" status as final and
after updating it's record, signal the Proxy
to delete both parts of the message.

PeriodicQuery of PrOXy

LOgStatus

Records updated Acknowledge

FIG. 4

Patent Application Publication May 24, 2012 Sheet 6 of 14 US 2012/0131327 A1

90. ---
XXXXX-XXXXX-XXXXX

DESIOCK+ Client

Query Proxy with
User D&nceX

Enter
Activation COde

DeCrypt Message &
Keville

Create MeSSage,
Status, WSID, KeyEtc.

CreateUser PaSSWOrd

"Please Wait" Server Proxy

as
se to E. is - E. c. -F a cles 5 E: i. S35S, 2 E.

O
EnCVOtuSin ES A. E

AddEUD, Message
D& CheckSUm

Status, WSID, Key Etc

Encrypted using ESPub Key

Ack
For a Complex process like FDE, the client
may report Status On each Enterprise Sync,
Overwriting the previous incoming status
meSSage.
The ES will read and record the FDEstatus
at it's latest Value according to the Proxy, not
Calling for a delete until FDE Status is
"Completed."

Complete
LOgin process

Mark MSGID Complete

"Welcome"

FIG. 4 (Continued)

Patent Application Publication May 24, 2012 Sheet 7 of 14 US 2012/0131327 A1

Enterprise Server

Amend Keyfile

Issue Keyfile

Post to Proxy

Enterprise

202

204
EnCrVOtKewfile UOdate E.RSSS Ke

Add User ID, Message
D& CheckSUm

212

214

Add Message to
Database

216
Flag as Outgoing

Acknowledge

218

222

Records updated

220

Flag as Sent

182

L00kup ESACOunt
USincGrOUD COde

(Reg.
190 192

FIG. 5

184

Patent Application Publication May 24, 2012 Sheet 8 of 14 US 2012/0131327 A1

7O

Server Proxy 50 DESIOCk + Client

LOOkup EUID Enterprise Sync

SendMessage Run Checksum

254

Decrypt Using User
rivate Ke

Update Keyfile in
Memory & Write to Disk

Create Message:
StatuSEtc.

EnCrVot usin ES A: E.
Add UD, Message
D& Checksum

Add Message to
Database

282
Flag as Incoming

COmolete "YOur Kewfile has Acknowledge Update been E.

Mark MSGID Complete

290

FIG. 5(Continued)

Patent Application Publication May 24, 2012 Sheet 9 of 14 US 2012/0131327 A1

Enterprise Server

SelectUser

Amend Keyfile

Encrypt Keytile Update
Issue Keyfile USind USerPublic Ke

Post to Proxy
Add User D, Message Enterprise

D& Checksum

Key File

Encrypted using User Pub Key

Send

Records updated Flag as Sent

PeriocicQuery of Proxy

LOgStatuS

Records updated Acknowledge

FIG. 6

Patent Application Publication May 24, 2012 Sheet 10 of 14 US 2012/0131327 A1

DES00k+ Client

Enterprise Sync

Run Checksum

DeCypt USing User
rivate Ke

Update Keyfile in
Memory & Write to Disk

Create Message:
StatuSEtc.

Encrypt USing
ESPUblic Ke

Add User ID, Message
D& CheckSUm

Server Proxy
w

o

E 2
cas

ge
s

close
O

StatuSEtc

Encrypted using ESPub Key

Complete E.
Mark MSGIDCOmplete

"Your Keyfile has
been updated"

FIG. 6 (Continued)

Patent Application Publication May 24, 2012 Sheet 11 of 14 US 2012/0131327 A1

Enterprise Server Enterprise
Status. Complete
Status Complete Dale time

s

StatuS PendinC
Message 4

g
Status Pending -

Messages
Message6

Status. Pending - Message9 Status
Message 10 I Status: Pending Message 10 I Status.

Message 5 Status FDEStarted Dale, Time
StatuS. FDE25%

s

sets DE75 in
Status: FDECOmplete

y

x

3.

Enterprise Server Enterprise
Message 1 Status; Complete Date, Time
Message 2 Status; Complete Date, Time
Message 3 Status Pending
Message 4 Status Pencing -

8

Message 5 I Status. FDEStarted Server failure
D StatuS. FDE25% All data lost

Status. FDE 75% I Date, Time
Message 8 Status: FDEComplete
Message 9 Status Pending

StatuS PendinC

Enterprise Server
Message 1 Status. Complete DateTime

Status: Complete Date, Time
Message 3 Status Pending Message 3
SHME s

Message 5 Status FDEStarted Paeme HMSages y

Enterprise

Message 6 Status FDE25% G. MES
y Message 8 status: FDE Complete

w

Status Pending
Message 10 Status. Pencing -

Message 7 Status FDE 75% is
Message
Message 10

Patent Application Publication May 24, 2012 Sheet 12 of 14 US 2012/0131327 A1

Server Proxy DESOCK+ Client

Date, Time s
StatuS. FDE Started

s

Status: Pending -

All Original messages are stored On the Enterprise Server
Server Proxy in the event of a failure and total Orpartial data loss the Enterprise Server

can detect and refresh its records On the PrOxy.

Prior to this being possible. We will have torefresh the CustomerESIGroup Coded
ACCOUnts On the PrOxy. Once done, the Enterprise Servers can repopulate their tables,

If the Client has started a process, Or Completed it but this hasn't registered
On the Proxy, no Acknowledgement will have been received. On the next Enterprise
Sync, the Client will"Pull down"two messages which have already been processed.
(In the Case of FDE this is normal) On reading the MessageID, rather than process
the Message, the result is re-sent to the Proxy, repopulating the Status field with the
COrrect Orupdated information.

All Status info is passed, including GUID from Authorisations Etc. Nothing is lost.

Server Proxy DESIOCK+ Client
EnterOrise

StatuS. FDE50%

StatuS. Complete

FIG. 7 (Continued)

Patent Application Publication May 24, 2012 Sheet 13 of 14 US 2012/0131327 A1

Enterprise Server
Select WorkStation 300

Amend Settings

Issue Update

Post to Proxy

Enterprise

302

304
EnCNot Update
ER Ke

Add WSD, Message
D& Checksum

Add MeSSace to E.
322

328 326 312 Flag as Outgoing

Records updated Flag as Sent Acknowledge

LOOkup ESACCOUnt
USincGrOUOCOde

Send Incoming
MeSSaCes

Delete Completed
PrOCeSS MeSSaces Records updated

FIG. 8

Patent Application Publication

Server Proxy

LOOKUp Workstation ID

SendMessage

354

352

Add Message to
Database

372
Flag as Incoming

Acknowledge

May 24, 2012 Sheet 14 of 14 US 2012/0131327 A1

DESIOCk + Client

Enterprise Sync

Run Checksum

Decrypt using WSKey

Update Workstation

Create Message:
StatuSEtc.,

EnCrVDt USin ES E. E.
Add WSD, Message

D& Checksum

Complete
LOgin proCeSS

Mark MSGID Complete

FIG. 8 (Continued)

US 2012/013 1327 A1

METHOD OF AND APPARATUS FOR
DISTRIBUTING SOFTWARE OBJECTS

FIELD OF THE INVENTION

0001. The present invention relates to a method of and
apparatus for delivering software objects.

BACKGROUND OF THE INVENTION

0002 Within sensitive computing environments it is often
necessary to control the access of individuals to sensitive
documents or to computer systems. If strict role based hier
archies can be observed then such access may be defined by
access control lists. However if organisations are more
dynamic in their internal structure or individuals may be
involved with privileged information for some projects but
should not be involved at all for other projects then the use of
encryption to control access to documents may be preferred.
Encryption is particularly useful where documents may need
to be shared with individuals who are outside a particular
group within an organisation or do not belong to that organi
sation at all.
0003. The use of encryption allows encrypted documents
to be sent to a remote user and stored locally on their com
puting device. However from time to time it may be necessary
to revoke an individual’s rights to decrypt encrypted docu
ments. Decryption keys may need to be revoked at the end of
a project when people who had worked on it no longer need
access to the documents, when a change of staffing occurs
Such as when an employee leaves an organisation, or when
security is compromised in other ways for example by the
theft of a computer from an authorised user.
0004. The term “computing device' should be construed
broadly, and covers not only conventional computers, but also
devices where convergence with other consumer devices has
taken place, Such as telephones (Smartphones), media players
and other hardware. Furthermore, a user need not be a person
but may be a device or a process (Such as a Software applica
tion). Thus computing devices may include controllers,
vehicles having computing systems within them, and so on.

SUMMARY OF THE INVENTION

0005 According to a first aspect of the present invention
there is provided a method of distributing software objects
from a first entity to at least one second entity, the method
comprising:
using a distribution entity to accept a Software object from the
first entity, the software object including an identifier for a
specific second entity, and wherein the at least one second
entity is operable to contact the distribution entity and to
enquire if a software object has been deposited for it, and if a
software object has been deposited, to accept it from the
distribution entity.
0006. It is thus possible to provide a method of distributing
software objects in which all communications between the
first entity and the distribution entity are initiated by the first
entity. Similarly all communications between the second
entity and the distribution entity are initiated by the second
entity. This is particularly important within a computing envi
ronment because the machines initiating communication
have control over where the communication is going and
hence the security risk in opening an outbound port is gener
ally considered to be low. If, however, a machine is required
to have an inbound port Such that it can accept communica

May 24, 2012

tion then this is often considered to be a high risk and in
general IT managers or security consultants are very loath to
open Such inbound ports in their computing systems. In the
present invention all “inbound ports reside with the distri
bution entity which can be placed outside a secure computing
environment because its functionality is very simple and the
data it contains amounts to an identifier together with an
encrypted Software object. Advantageously the encryption is
chosen to be quite strong such that if the distribution entity is
compromised and its secrets are stolen by a malicious party
then in real terms no information is divulged because it is all
encrypted.
0007 Preferably the identifier is a non-distinctive binary
or alpha-numeric code such that if a third party managed to
obtain copies of the identifier they would in general be none
the wiser as to the actual identity of the or each second entity
that the associated data object was destined for.
0008. The or each second entity is a computing device.
The or each computing device is associated with a computing
device identity specific to that particular hardware platform
irrespective of whoever is using the hardware platform. This
is particularly relevant where, for example, a computer may
be shared by two or more individuals, and each of which has
a respective profile set on the machine Such that the machine
looks "personal to them when they are logged in using their
respective profile.
0009 Advantageously each user of a machine is further
associated with a user identity. Consequently a Software
object may be deliverable to a machine, irrespective of its
user, to a user irrespective of the machine they are using,
which may be the case where a user has access to several
computers; or a to a specific user-machine combination.
0010. The software object may comprise one or indeed
several encryption/decryption keys which may be used to
access specific items of information. The object may also
include or be comprised of messages for the control of
licences and permissions. The object might also comprise
device settings, Software updates or more generally any
binary object, irrespective of its function, to which access is
controlled such that only suitably authorised parties (human
or machine) can access its contents. Advantageously the com
puter executes the security enforcement program Such as
“DESlock--' available from Data Encryption Systems Lim
ited which can enforcefull disk encryption, removable media
encryption, email encryption, file or folder encryption,
encrypted mountable Volumes and secure file deletion.
0011 Distribution of instructions or policies to suitably
enabled security systems, such as the DESlock-- client may
need to be provided on a periodic basis. The present invention
provides a mechanism for disseminating instructions to one
or more DESlock+ clients via a distributed and non-secure
communications medium, Such as the internet, by virtue of
ensuring that a companies enterprise server managing the
encryption keys and other specific items of information does
not have to accept incoming messages on an open data port,
and similarly a remote or client machine does not have to open
an incoming port. In each case both the client and server
initiate communication with the distribution entity, which can
be regarded as being a proxy of the first entity, i.e. it acts as a
proxy with respect to the companies enterprise server, thereby
meaning that only one machine has to have open ports for
inbound communication and that the information stored on
that machine is encrypted Such that if it becomes compro
mised by hacking or malicious Software, the information

US 2012/013 1327 A1

contained therein is not exposed because it is encrypted and
there is no natural route back to the private keys used by either
the enterprise server or the client machines to decrypt the
encrypted information.

BRIEF DESCRIPTION OF THE DRAWINGS

0012. The present invention will now be described, by way
of non-limiting example only, by reference to the accompa
nying Figures, in which:
0013 FIG. 1 schematically illustrates a scenario in which
an enterprise may wish to share confidential information with
another enterprise and/or home-workers or other remote indi
viduals;
0014 FIG. 2 schematically illustrates the data flow paths
between an enterprise server, one or more clients, and a dis
tribution server constituting an embodiment of the present
invention;
0015 FIG.3 is a flow chart illustrating enrolment of a new
user,
0016 FIG. 4 shows the messages of FIG. 3 in greater
detail;
0017 FIG.5 illustrates how a message can be sent from an
enterprise server to a client, and similarly a message can be
returned from the client to the server;
0018 FIG. 6 shows the file configuration within the dis
tribution server in greater detail; and
0019 FIGS. 7a to 7h illustrate how status updates are
handled Such that a graceful recovery can occur even from
complete failure of the distribution server; and
0020 FIG. 8 illustrates how workstation settings can be
updated.

DESCRIPTION OF PREFERRED
EMBODIMENTS OF THE INVENTION

0021 FIG. 1 shows an arrangement in which an enterprise,
generally designated 2 comprises an enterprise server 4 and
several workstations 6, 8, and 10 within a secure network
delimited by the boundary 12. As shown, the workstations are
secured behind the server 4, but this is not a requirement of the
invention, and the workstations may use a communication
path that bypasses the server, as shown by chain line 5.
0022. Users using the workstations 6, 8 or 10 may wish to
share files with other users such as users engaged within a
second enterprise, generally designated 20 that use worksta
tions 22, 24 and 26. The workstations may have their com
munications controlled via an enterprise server 28, as shown,
or may have direct communications to the transmission
medium (such as the internet), as designated by chain line 29.
Files may also need to be exchanged with a home-worker,
designated 30, or laptop users 32 and 34. The communication
can occur via a non-specific and distributed communication
channel, such as the internet 40.
0023 The documents could, for example, be sent by email
in an encrypted form. In order to decrypt the contents of the
email an appropriate decryption key needs to be applied.
However the keys themselves need to be distributed securely
and key management requires that keys can be revoked or
changed in the event of security breaches or changes in per
Sonnel.

0024. As noted before, most security threats are deemed to
occur when a computer or a server has an inbound port.
However most IT managers are quite happy when the com
puter itself initiates the communication to a further device.

May 24, 2012

The applicants realised that problems of key distribution
could be managed by providing a distribution server, gener
ally designated 50 in FIG. 1 which serves a proxy for the
enterprise server 4 when it comes to key management.
0025 FIG. 2 shows schematically the communications
between the enterprise server 4 and a further machine, such as
the laptop 32 although it could apply to any of the other
machines. The arrows indicate the direction of communica
tion set up. Thus, enterprise server 4 contacts the enterprise
proxy distribution server 50 via the internet 40. The server 4
initiates the communication on an outbound port and server
50 accepts the communication on an inbound port. Distribu
tion server 50 does not initiate communication with the enter
prise server 4. Similarly the computer 32 initiates communi
cation with the distribution server 50 via the internet 40 using
its outbound port. The distribution server 50 does not attempt
to initiate communication with the computer 32. Thus in this
distribution scheme the only machine that is required to
accept inbound communications, or incoming calls if you
like, is the machine 50. However once a call has been estab
lished information flow is then bidirectional along that com
munications route.
0026 FIG. 3 schematically illustrates a process for regis
tering a new user Such that encryption keys can be securely
exchanged with them and managed. For the purposes of the
description it is assumed that the user machine, generally
designated 70 is running security management Software Such
as the DESlock-- client available from Data Encryption Sys
tems Limited. A user machine 70 could be brought into a
secure environment in order to have its software updated.
However it is possible to enrol a remote user as will now be
described. The process starts at step 100 where a decision is
made to add a user. The process then continues to step 102
where a licence is issued in respect of the user and, as part of
this a unique user identity 104 is created and assigned to the
user. From then the process proceeds to step 106 where a key
file is associated with the licence, the key file containing the
user's public key in a user table, the key file having been
encrypted with a one-time use pass-code.
0027. Once step 106 has stored the public key and
encrypted it using the one-time pass code control passes to
step 108 where the file is posted to the enterprise proxy
distribution server 50. This involves creating the outgoing
message which will be described in greater detail with respect
to FIG. 4, and sending the message at step 112 by opening an
outbound communications port to the proxy 50.
0028 Considering the proxy server, it receives the mes
sage at step 114 and adds it to a message database whilst also
flagging it as an outgoing message at step 116. It then sends an
acknowledgement back to the enterprise server at step 118.
From here the enterprise server now has confirmation that the
enrolment message has been sent and flags it as sent at step
120, it then proceeds to update its records at step 122 and send
an email to the user 124 which email includes a useractivation
code 126.

0029 Looking at the client side, the user receives his acti
vation code at step 130 and enters it into his security client, for
example the DESlock-- client software. The software now
knows that a message is waiting for it and opens a communi
cation channel to the enterprise proxy server 50 and provides
the user identity and an index value to query the proxy server
to look for a message for that user ID and having the same
index. The user ID correctly identifies the user, whereas the
index can be used to indicate how many times that message

US 2012/013 1327 A1

has been sent. The enterprise proxy server looks in its lookup
table to find any messages having the correct user identity and
index at step 140 and finding the message sends it back to the
client machine 70 at step 142. Returning to the client, the
client machine verifies a message checksum at step 144 in
order to ensure that the message has not been tampered with
and then proceeds to step 146 where it uses the one-time
pass-code that it has been sent, i.e. the activation code, to
decrypt the message and the key file. There control is passed
to step 148 where the user is asked to enrol by creating a
password and from there a “please wait” message is provided
to the user at step 150 whilst program control passes to step
152 where the client software creates a new message includ
ing a workstation identity (which has been generated by the
DESlock-- client), a workstation public key and so on. From
here control passes to step 154 whereas the message includ
ing the workstation identity and key values are encrypted
using the enterprise server's public key. Control then passes to
step 156 where the message is given a message identity value,
a checksum and possibly and end user identity “EUID” which
is a further identifier. The message is then sent at step 158 to
the enterprise proxy server. The proxy server 50 adds the
incoming message to its message database at step 160, flags it
as an incoming message at step 162 and acknowledges receipt
of it at step 164. The client machine, upon receipt of the
handshake confirming that the workstation identity and work
station key have been encrypted and posted to the enterprise
proxy server 50 acknowledges that the logon is complete at
step 166, displays a welcome message to the user and marks
the message ID process as complete.
0030 Every now and again the enterprise server 4 raises a
periodic query of the proxy server 50 to see whether any
messages are destined for it, as identified by step 180. The
proxy server 50 uses the enterprise server accountanda group
code to see if any messages are waiting for it at step 182, and
if there are it sends the messages to the enterprise server at
step 184. The enterprise server 4 logs receipt of the message
at step 186, acknowledges it at step 188, and updates its
records at step 190. The acknowledgement issued at step 188
is used by the enterprise proxy server 50 to delete completed
progress messages at step 192.
0031 FIG. 4 repeats some of the details shown in FIG. 3
but instead of showing the process steps executed in the
enterprise server proxy 50, it shows the message format.
Thus, the message sent at step 112 includes a key file which
has been encrypted using the user activation code, a user
identity and an index, a message identity, a checksum, and a
flag that is set to show that it is outgoing. This information is
used by the client machine at step 144. Similarly, the message
sent at step 158 contains a workstation identity, workstation
key and workStation status which is encrypted using the enter
prise server public key. It also contains an end user identity
and index, a message identity, a checksum and a flag set to
show that the message should be incoming for the enterprise
SeVe.

0032 FIG. 5 schematically illustrates the process for
modifying keys in the key file. The process starts at step 200
where a user is selected and a key amendment is made in step
202. A key amendment (which is an example of a software
object) may include issuing a new key, or sending instructions
to revoke authorities in respect of an already issuedkey. Once
the amendments have been made, the key file is issued at Step
204. From here control passes to step 206 where the amended
key file is encrypted using the user's public key. Control is

May 24, 2012

then passed to step 208 which initiates the process for posting
the key file to the enterprise server proxy 50. The key file has
a user identity added to it, a message identity and a checksum
at step 210 and is then sent to the proxy at step 212. The proxy,
upon receiving the message adds the message to its database
at step 214, marks the message as outgoing, i.e. outgoing from
the enterprise server at step 216 and acknowledges receipt of
the message at Step 218. The enterprise server 4 upon receipt
of the acknowledgement marks the message as sent at step
220 and updates its records at step 222.
0033 Meanwhile the user machine running the client soft
ware periodically tries to synchronise with the enterprise
server in order to update its securities policies and other keys.
This process is started at step 250.
0034 Step 250 initiates a synchronise request with the
enterprise server proxy 50 by sending the end user identity
and asking the proxy whether it has any messages for it. The
enterprise server proxy 50 uses the end user identity at step
252 to examine the message database to see if any messages
are pending for that user, and if they are it sends the message
at step 254. Returning to the client 70, the client checks the
message checksum at step 256 in order to verify that the
message is being received without corruption. Assuming that
this check is passed, progress then proceeds to step 258 where
the message is decrypted using the user's private key and then
key file updates are written to the key file in the user's
machine at step 260. Following completion of the updates the
client 70 creates a status message to confirm what updates
have been applied or what keys have been revoked at step 262.
This message is then encrypted with the enterprise servers
public key at step 264. From then the enterprise servers iden
tity is added to the encrypted message, as is a message iden
tity and a checksum at step 266. From here the sending
process is initiated at step 270 which causes the client 70 to
open a communications channel to the enterprise server
proxy 50 to send the message such that the server can add it to
its message database at step 280 mark it as “incoming for the
enterprise server 4 at step 282 and acknowledge receipt of the
message at step 284. Returning to the client, once it has
received acknowledgement of the message from step 284 it
updates its records to show that the key file has been updated
and marks the message as complete at steps 286, 288 and 290,
respectively.
0035. As before with respect to FIG. 3, the enterprise
server at step 180 periodically queries the enterprise server
proxy 50 to check if there are any messages awaiting for it.
The proxy 50 looks up any messages for the enterprise server
using an account group code, and if any are pending it sends
the messages to the server as hereinbefore described with
respect to steps 182, 184 and 186. Following receipt of the
messages the enterprise server updates its records at step 190
and the enterprise server proxy deletes completed messages
from the message table.
0036 FIG. 6 repeats the process steps that were shown in
FIG. 5, but now shows the message content in place of the
method steps for the enterprise server proxy 50. Thus as
before the message from the server comprises a key file which
has been encrypted using the user's public key, as well as a
user identity, a message identity, a checksum and a flag indi
cating that the message is outgoing from the enterprise server.
Similarly messages sent by the client Such as the status mes
sages are encrypted using the enterprise server's public key,
but also include a userID corresponding to that of the enter

US 2012/013 1327 A1

prise server, a message ID, a checksum and a flag indicating
that the message is incoming for the enterprise server.
0037 FIGS. 7a to 7h show data tables within the enter
prise server, the enterprise server proxy and the client
machine at the various stages. Starting with FIG. 7a the
enterprise server maintains a message table, which in this
case shows ten messages merely as a convenient example,
which indicate whether a message has been sent and the
message status, i.e. whether the instructions sent on that mes
sage have been completed as indicated by "complete'.
whether the message has been sent but no action has been
taken as a result of it, as indicated by “pending and other
status messages, such as message 5 which has requested that
full disc encryption be set “on” the client machine, where the
response indicates that a full disc encryption has been started.
This compares to message 6 or message 7 which indicates that
a full disc encryption process is 25% complete or 75% com
plete as appropriate. Each message where something has been
done, either completed, started or a progress update has been
performed has a date and time stamp. As shown in FIG.7b,
the enterprise server proxy maintains a cut down message
table in that messages which are complete have been deleted.
Thus only pending or in progress messages are shown in the
server proxy table FIG. 7b.
0038 FIG. 7c shows a message table within the client
where only messages 5 and 9 were intended for the client
machine. Message 5 and message 9 both relate to tasks which
have either been started or not yet started.
0039 Suppose now that the enterprise server proxy suffers
a catastrophic failure which results in all its data being wiped.
0040. The enterprise server 4 can query the enterprise
server proxy to check its health, and can be informed from the
proxy 50 that its data table has been wiped. At this point no
information is in reality lost because the enterprise server 4
includes its own data table as shown in FIG. 7c which it can
inspect to identify all processes which it expects to be pend
ing. From then the enterprise server can, as shown in FIG.7f.
resend all pending or incomplete messages, instruction
updates and key updates back to the enterprise proxy server
50 such that it rebuilds its data table at FIG.7g. Here the client
machine can then synchronise with the enterprise server
proxy, and post its own table updates at FIG.7h. Thus the data
is recovered and no updates are lost.
0041 As noted hereinbefore, a workstation may be used
by several individuals and it may therefore be desirable to
apply workstation specific key changes which are not related
to any particular individual. This is possible because, during
the enrolment procedure, the workstation had a unique iden
tity associated with it which is independent of the end user
identity.
0042. Thus, as shown in FIG. 8, if it is desired to amend
workstation settings a process is started in which, at step 300,
the workStation is selected and the workstation settings which
it is desired to push to the workstation are amended at step
302. From here the workstation update is issued at step 304
and is encrypted using the workstation public key at step 306
prior to being posted to the proxy at step 308. The process of
posting the message to the proxy includes adding the work
station identity, a message ID and a checksum at step 310 and
then opening the communication channel to the proxy at Step
312 in order to send the message.
0043. As described with respect to earlier messages, the
enterprise server proxy 50 adds the message to its database at
step 320, flags it as outgoing at step 322 and acknowledges the

May 24, 2012

message at step 324. Following receipt of the acknowledge
ment the enterprise server flags the message as sent at Step
326 and updates its records at step 328.
0044 Looking at the user workstation, it initiates a Syn
chronisation process at step 350. During this process the
workstation sends the workstationID and asks were there any
messages pending for it. The enterprise server proxy uses the
workstation ID to query its message table to see if any mes
sages are pending at Step 352. If a message is pending then it
sends the message at Step 354. As noted before, the message
had a checksum appended to it, so that client can check the
checksum at Step 356 to make Sure that the message is cor
rectly formed. Control then moves to step 358 where the
message is decrypted using the workstation private key and
the instructions contained therein are enacted by the security
client in order to update the workstation settings at step 360.
Following update of the settings a status message is created at
step 362, encrypted with the enterprise server public key at
step 364, has its workstation ID appended to it, a messageID,
an enterprise server identity added at step 366 and sent at step
368. From here the message is added to the enterprise server
proxy message database at Step 370 and flagged as “incom
ing for the enterprise server at step 372 prior to being
acknowledged at step 374. Upon receipt of the acknowledge
ment of the client machine completes the user login process at
step 376 and marks the message as completed in its own data
table at step 378.
0045 Finally, as described hereinbefore with respect to
FIG. 3 the enterprise server runs a periodic query of the
enterprise server proxy to see if any messages have beenacted
upon and status updates received.
0046. It is thus possible to provide a method for distribut
ing security instructions, and encryption keys without need
ing to open inbound communication ports on either an enter
prise server or a client machine.
0047 Although the invention has been described with
respect to distributing decryption keys, it can also be applied
to other software objects of high value, such as licences which
may be for limited use, limited number of times or limited
duration. This technique can be used to distribute any soft
ware object of which licences, documents, decryption keys,
executables, patches, and applications represent a non-ex
haustive list of examples.

1. A method of distributing software objects from a first
entity to at least one second entity, the method comprising:

using a distribution entity to accept a Software object from
the first entity, the software object including an identifier
for a specific second entity, and wherein the at least one
second entity is operable to contact the distribution
entity and to enquire ifa Software object has been depos
ited for it, and if a software object has been deposited, to
accept it from the distribution entity.

2. A method as claimed in claim 1, in which the software
object is encrypted, or has an encrypted portion.

3. A method as claimed in claim 2, in which the software
object was encrypted using the public key of a public key
private key pair associated with the specific second entity.

4. A method as claimed in claim 1, in which the first entity
is a computing device or data processor operable to connect to
a communication medium, and the first entity initiates the
communications with the distribution entity.

5. A method as claimed in claim 4, in which the first entity
does not have an open port for receiving communications
sessions initiated by the distribution entity.

US 2012/013 1327 A1

6. A method as claimed in claim 1, in which the distribution
entity performs a handshake with the first and at least one
second entity, and keeps a log of transactions.

7. A method as claimed in claim 1, in which the at least one
second entity is a computing device or data processor oper
able to connect to a communication medium, and the at least
one second entity initiates communications with the distribu
tion entity.

8. A method as claimed in claim 7, in which the second
entity does not have an open port for receiving communica
tion sessions initiated by the distribution entity.

9. A method as claimed in claim 7, in which the first entity
can inspect or receive data from the log of transactions.

10. A method as claimed in claim 1, in which the software
object comprises one of:

an encryption key:
a decryption key
an instruction to use an encryption or decryption key
an instruction to replace an encryption or decryption key
an instruction to revoke a decryption key
at least one policy instruction for execution by a security

system;
a licence;

May 24, 2012

an executable;
a software update;
a data file.
11. A method as claimed in claim 1, in which each of the at

least one second entity is a computing device or data proces
Sor with a machine identity.

12. A method as claimed in claim 11, in which the or each
user of a specific one of the second entities is associated with
a user identity.

13. A method as claimed in claim 11, in which the software
objects are destined for a specific user and computing device
combination, or for a specific computing device independent
of its user.

14. A method as claimed in claim 1, in which each message
includes a checksum.

15. A method as claimed in claim 1, in which each message
includes a direction flag.

16. Server software for performing the server part of the
method of claim 1.

17. Client software for performing the client part of the
method defined in claim 1.

c c c c c

