US 20120131327A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0131327 A1l
Tomlinson 43) Pub. Date: May 24, 2012

(54) METHOD OF AND APPARATUS FOR Publication Classification
DISTRIBUTING SOFTWARE OBJECTS (51) Int.Cl

. . . HO4L 9/00 (2006.01)
(75) Inventor: Dav1.d Robin Tomlinson, GO6F 9/44 (2006.01)
Wellington (GB) (52) USa €L oo, 713/150; 717/177
(73) Assignee: DATA ENCRYPTION SYSTEMs ~ (7) ABSTRACT
LIMITED, Taunton (GB) A method of distributing software objects from a first entity to
at least one second entity, the method comprising: using a
(21) Appl. No.: 13/297,547 distribution entity to accept a software object from the first
entity, the software object including an identifier for a specific
(22) Filed: Novw. 16, 2011 second entity, and wherein the at least one second entity is
operable to contact the distribution entity and to enquire if a
(30) Foreign Application Priority Data software object has been deposited for it, and if a software
object has been deposited, to accept it from the distribution
Nov. 19,2010 (GB) .o GB 1019618.6 entity.
[T Il
4 126 50 - 3 .
Enterprise Server Entorprise Server Proxy 4 DESlock + Client :
: 100 Tookup Nessages (" Query Procy with En
- i3 e User 0 Bindex_J™1_ Achaton Coce
i 104 140
i ! ; 130
: [}Issue bloence]‘[Creates EUID]/ Send Message Verify Checksum 144
/ lsseKegie Stor; lLJJsSeerrsP%gg‘ceKey 142 1453 14&3
i 0y Decrypt Message &
| 102 106 Egrclgy% Kee\s% gos(‘ﬁneg WpKe s 9 HCreate User Password
- l-110 Create M : " 0
[Post to Proxy]—[Mggggtgee%ut ao;‘%gad]/ smtﬂ?av?s Des;ggeac” Please Wai
08 s 152 150
Add M [
o o L
16~ e
.
[Records updated H Flag as Sent } Acknowledge 160 PO 156
Add Message to
: 118 Database 158
. i | -162
124
Acknowledge [Log%n}%ectgss]—["Weloome"]
164
Mark MSG 1D Compiete
Periodic Query of Proxy L&?ﬁ“%&&“@gﬁgt
186 184~ :
L{ Log Status Se’\rAlgs\ggorgslng
[Regords updated H Acknowled } r?r%'&tiscﬁgsps‘ggee%
- \\ \\ Y . /
190 188 192

Patent Application Publication = May 24, 2012 Sheet 1 of 14 US 2012/0131327 A1

20

WIS //22
30
b2 OV
WIS //26
drr 29
28 A
40
32
2
S

12 34
WS //10
s e
wsH ®

5\\: //4 I5O

FIG. 1

Patent Application Publication = May 24, 2012 Sheet 2 of 14 US 2012/0131327 A1

FIG. 2

Patent Application Publication = May 24, 2012 Sheet 3 of 14 US 2012/0131327 A1
__ Activation
; r_JXXXXX - XXXXX - XXXXX -
B [N 126
E Enterprise Server Enterprise
[miser 100
5 i 104
\ . -

5 Issue Licence H Creates EUID]/
A I -
L (- Store User Public Ke
: L/ Issue Keyfil in Users Table y]
‘ |) y
(102 106 EncryFt Keyfile using
5 One time passcode
; Create Outgaing]// 110
: [Post o Proxy H Message & Payload
! = 114
: 108) ([Add I\T fo)
: - essage to
: Send Deiobats
: 116~ 1
122 120 12 \[Flag as Outgoing)
! b b I
5 [Records updated H Flag as Sent } { Acknowledge
: | S
: ! 118
: [Email User]
\W
124
180 182
H h’
| Periodic Query of Proxyl { Lﬁs?ﬁé%%c?ué%gggt
184~ | .
186 D N SendIncoming)
\[Log Status In | Messages g)
[
[Records updated Acknowledge] Jl PDrgIgégSCﬁrgspslgtgeeds
. \\ \\ o . Y
190 188 192

FIG.

3

Patent Application Publication = May 24, 2012 Sheet 4 of 14 US 2012/0131327 A1

Code
XXCXX = XOOXX - XXX !
78 i
Server Proxy V90 [DESlock + Client)
Lookup Messages for | [Query Proxy with Enter |
[UseprID&In%ex N 4 UserryID& ndex H Activation Code }
140 -
[Send I\/Iessage } 1 Verify Checksum }1 144 130
ﬂ
142 146 148
[Decrypt Gl}\/lelﬁasage &]—[Create Uselr Passwortﬂ
Create Message: ’
[Status SID Koy Etc]_[P'easeHWa”]
152 150
[Encrypt usin
L ESPBllJ%ICKegv]\154
[Add EUID Messag e]1
160 L ID&Checksum 156
[Add Messa eto L i
L Databasge L Send }L 158
- L -162
Flag as Incomlng]/ 166
) N
\ Acknowledge } { Log%mpﬁfctgss]—["Welcome']
S |
164 (a0 conpee

FIG. 3 (continued)

Patent Application Publication = May 24, 2012 Sheet S of 14 US 2012/0131327 A1
__ Activation
; XX00K - XXXXX - XXXXX -
L Enterprise Server]

i M

E 4 ' { A’

5 Issue Licence]> Creates EUID

: . ' \. J

L - [Store User Public Key)

Pl | IssueKeyfle]‘L in Users Table y,

‘ L]

: [Encrypt Keyfile using |

5 | Oney{i)me g;sscodng

1 y ([R

. - — Enterprise
: Create Qutgoin

5 [Postto Proxy]’L Message & aylo%d) _ .
! Send ~ (___KeyFle)

| Encrypted using Activation Code |

\.

[Records updated H Flag as Sent

A

e/

Y

[Email User]

[Periodic Query of Proxy

[Log Status

~

\.

[Records updated H Acknowledge

y,

@
7] ><
- > |23
S| Sl =
=| ||
| S| T e
=| 8|
= [7- 3 [y]
HEEIE
8 = |m

.

Each message is part of a pair: one
outgoing and one incoming.

For a simple process such as
authentication or a key-update, the status
will only be returned once, the ES wil
treat the "completed" status as final and
after updating it's record, signal the Proxy
to delete both parts of the message.

FIG. 4

Patent Application Publication = May 24, 2012 Sheet 6 of 14 US 2012/0131327 A1

Code } __
YO0 = XOKXX = XXXXX '

DESlock + Clignt
[Query Proxy with Enter 1
L Usery ID & Index H Activation Gode }

> Checksum]

[Decrypt Message &]—[Crea te User Password]

Keyle |
Server Proxy | Create Message: .. o
. R e g

glols|
SEEE
o|g|2(5 "
S(=le|le ncrypt using

S ubhc Key)

(Y

D ecksum)

~

[&
[Ad D Message |
(
L

((Status, WSID, Key Etc) [
| Encrypted using ES Pub Key | ‘

Send

J

may report Status on each Enterprise Sync, Login process
overwriting the previous incoming status
message.

The ES will read and record the FDE status
atit's latest value according to the Proxy, not
calling for a delete until FDE Status is
"Completed.

C Ak
For a complex process like FDE, the client I_.[Complete H "Welcome" }

Mark MSG ID Complete]

FIG. 4 (continued)

Patent Application Publication = May 24, 2012 Sheet 7 of 14 US 2012/0131327 A1

4
{ H)
Enterprise

. 206
f , Encrypt Keyfle update) 1~
| IssueKeyfie Husinngseryg’ublig Key]/

|

2
Post to Proxy 08 210
Rdd User D, Message) A~
ID & Checksum
214
/
| | Add Message to
Send Daiobans
216~
222 220 212 Flag as Outgoing
= H
[Records updated H Flag as Sent }~ l Acknowledge
218
180 182
Periadic Query of Proxy q Ll?s?ﬁur)GESUAcggggt

184~

186“' Log Status == l Sel\r}l(lslrslgogrgsing

[Records updated].[Acknowledge (Delete Completed

(_Process Messages
. \ W . v

190 192
FIG. 5

S

Patent Application Publication

May 24, 2012 Sheet 8§ of 14

US 2012/0131327 Al

-

Server Proxy

f50

70
=

DESlock + Client

[LookipEUD |
| N

252

(.
i Enterprise Sync]\ 250

[Send Message }

L‘
254

280
—
[AddMessageto |

{ Run Checksum]\ 256

[Decrypt using User)
. Pale &y Jlomg
|
[Update Keyfilein)
[Memory & Write to Disk)\
|

260

[Create Message:)
L StalusFfe.” JL 262

Encrypt using
L ES Put|)|IC Kev 11 264
[Add EUID, Message)

L Datalbase J

Flag as Incoming]/
|
1

~

N

,-282

Acknowledge J

L\
284

{ ID&Chlecksum L o66
\ Send No70
286 288
(CH let "Vt ?eyf’le has
_ omplete our Keyf
L Update H heen updated"]

I
[Mark VSGID Complete]

H
290

FIG. 5(continued)

Patent Application Publication

May 24, 2012 Sheet 9 of 14

[Records updated H Flag as Sent]*J

Periodic Query of Proxy

Log Status

| Encrypted using User Pub Key |

US 2012/0131327 Al
f Enterprise Server)
Select User
Amend Keyfile
Encrypt Keyfile update
| IssueKeyfle usmr(}]lpUseryg’ubllcp Kev]
Post to Proxy Enterprise
Add User 1D, Message F
10 & Checksum - N
'
Send | » (KeyFe)

Incoming flag set
Checksum
Message ID
User ID

tll

.

[Records updated H Acknowledge]

w

FIG. 6

Patent Application Publication

May 24, 2012 Sheet 10 of 14

US 2012/0131327 Al

Server Proxy)

DESlock + Client

Enterprise Sync

Run Checksum

it

)
Decrypt uswkg User
rvate Ke

H

Update Keyfile in

UserID
Checksum

Memory & Wite to Disk

%‘

Create Message:

| SawsEc.

Message ID
Outgoing flag set

Status Etc

C) I

Encrypt usin
ES I%%Iic Keg

Add User 1D, Message
D & Checksum

H

| Encrypted using ES Pub Key |

Ack

—

Send

[

Complete "Your Keyfile has
Update

been updated"

H

]

Mark MSG ID Complete

FIG. 6 (continued)

Patent Application Publication = May 24, 2012 Sheet 11 of 14 US 2012/0131327 A1

(Enterprise Server) (Enterprise

(Message 1 | Status: Complete | Date, Time
Message2 | Status: Complete | Date, Time
Message 3 | Status: Pending - [Message 3 | Status:

(Message4 | Status: Pending - Message 4 Status:

(Message | Status: FDE Started | Date, Tme) |/ 7a 7bA Message 5 Status:

(Message6]| Status: FDE 25% | Date, Time Message 6 Status:

(Message7 | Status: FDE 75% [Date, Time Message 7 Status:

(Message 8] Status: FDE Complete [Date, Time

(Message9 | Status: Pending - (Message9 | Status:

(Message 10 | Status:Pending | -] ((Message 10] Status:

[Fnterprise Server] [Fnterprise

(Message1 | Status: Complete | Date, Time

(Message2 | Status: Complete | Date, Time

(Message3 | Status; Pending -

(Message4 | Status: Pending -

(Message 5 | Status: FDE Started | Date, Tme) | 7d 7en] Server failure
Messageb | Status: FDE25%] Date, Time All data lost
Message 7 | Status: FDE 75%] Date, Time
Message 8] Status: FDE Complete] Date, Time
Message 9 | Status: Pending -

Message 10 | Status: Pending
7f 79~
(Enterprise Server [Enterprise

(Message1 | Status: Complete] Date, Time Refresh

(Message2 | Status: Complete | Date, Time

(Message3 | Status: Pending - Message 3 Status:

(Message4 | Status; Pending - Message 4 Status:

(Message | Status: FDE Started | Date, Time Message 5 Status:

(Message6 | Status: FDE25% | Date, Time ~(Message6 | Status:

(Message 7 | Status:FDE 75%] Date, Time [Message 7 | Status:

(Message 8] Status: FDE Complete] Date, Time

(Message9 | Status: Pending - Message 9 Status:

(‘Message 10 | Status; Pending - Message 10 [Status:

FIG. 7

Patent Application Publication = May 24, 2012 Sheet 12 of 14 US 2012/0131327 A1

Server Proxy) (DESlock + Client)
Pending e

Pending -

FDE Started] Date, Time ((Message 5 | Status: FDE Started] Date, Time)

FDE25%] Date, Time
FDE75%] Date, Time

Pending | -] (Message9 [Status:Pendng | -)
Pending -

v \. w

~, Alloriginal messages are stored on the Enterprise Server
Server Proxy in the event of a failure and total or partial data loss the Enterprise Server
can detect and refresh its records on the Proxy.

Prior to this being possible. We will have to refresh the Customer ES/Group Coded
Accounts on the Proxy. Once done, the Enterprise Servers can repopulate their tables.

If the Client has started a process, or completed it but this hasn't registered

on the Proxy, no Acknowledgement will have been received. On the next Enterprise
Sync, the Clignt will "Pull down" two messages which have already been processed.
(In the case of FDE this is normal) on reading the Message [D, rather than process

the Message, the result is re-sent to the Proxy, repopulating the Status field with the
correct or updated information.

All Status info is passed, including GUID from Authorisations Etc. Nothing is lost.

Server Proxy) (DESlock + Client

Enterprise
Sync

Pending

Pending -

FDE50%] Date, Time J« {Message5 | Status: FDE50% | Date, Time)
FDE 25% Date, Time 7h

FDE 75%), Date, Time \

Completed - - { Message 9 | Status: Complete | Date, Time)

Pending

W \. S

FIG. 7 (continued)

Patent Application Publication = May 24, 2012 Sheet 13 of 14 US 2012/0131327 A1
[Enterprise Server) Enterprise
Select Workstation]fBOO
) i
r 302
A dS ti
| Amend Settings]f304 -
e -
lssue Update Eug%ptu date]/
[] /308
Post to Proxy 310
- AJWS D, Message]//
ID & Checksum
320
‘ 1 [Add l\\/? o)
essage to
[Send] L Datalbas%)
iy 322~ ¢ -
312 :
328 326 \ Flag as Qutgoing)
= -) | .
[Records updated H Flag as Sent] Acknowledge)
\1
324
[Periodic Query of Powy - Lfﬁﬁg%fguﬁ%gﬁg

.

~

[Log Status -
[

w \.

.

~

|
Send Incoming
Messages

v

[Records updated H Acknowledge

™| Process Messages |

[Delete Completed |

FIG.

8

Patent Application Publication = May 24, 2012 Sheet 14 of 14

US 2012/0131327 Al

Server Proxy DESlock + Client
ﬁ_ookupWorksta |onI R ' Enterprise Sync]\350
) 352 -
[Send Message] > Run Checksum]‘L 356
354
'Decrypt using WS Key
: |]£358
Update Workstation
— |\;| 360
reate Message:
| Status Etcg]1362
[Encrypt usin
| ES Pslljrl))hc Ke(“\]/]\364
(Add WS ID Message]\
3@ q ID&Checksum 366
[AddMessageto | f
| Databas% I | Send }“368
- | -372
Flag aslncoming]/
|
[1 [Complete
| Acknowledge | " Logn p?ooess }L376
I

H
374

Vark MG 1D Corlete
{ i]\378

FIG. 8 (continued)

US 2012/0131327 Al

METHOD OF AND APPARATUS FOR
DISTRIBUTING SOFTWARE OBJECTS

FIELD OF THE INVENTION

[0001] The present invention relates to a method of and
apparatus for delivering software objects.

BACKGROUND OF THE INVENTION

[0002] Within sensitive computing environments it is often
necessary to control the access of individuals to sensitive
documents or to computer systems. If strict role based hier-
archies can be observed then such access may be defined by
access control lists. However if organisations are more
dynamic in their internal structure or individuals may be
involved with privileged information for some projects but
should not be involved at all for other projects then the use of
encryption to control access to documents may be preferred.
Encryption is particularly useful where documents may need
to be shared with individuals who are outside a particular
group within an organisation or do not belong to that organi-
sation at all.

[0003] The use of encryption allows encrypted documents
to be sent to a remote user and stored locally on their com-
puting device. However from time to time it may be necessary
to revoke an individual’s rights to decrypt encrypted docu-
ments. Decryption keys may need to be revoked at the end of
a project when people who had worked on it no longer need
access to the documents, when a change of staffing occurs
such as when an employee leaves an organisation, or when
security is compromised in other ways for example by the
theft of a computer from an authorised user.

[0004] The term “computing device” should be construed
broadly, and covers not only conventional computers, but also
devices where convergence with other consumer devices has
taken place, such as telephones (smart phones), media players
and other hardware. Furthermore, a user need not be a person
but may be a device or a process (such as a software applica-
tion). Thus computing devices may include controllers,
vehicles having computing systems within them, and so on.

SUMMARY OF THE INVENTION

[0005] According to a first aspect of the present invention
there is provided a method of distributing software objects
from a first entity to at least one second entity, the method
comprising:

using a distribution entity to accept a software object from the
first entity, the software object including an identifier for a
specific second entity, and wherein the at least one second
entity is operable to contact the distribution entity and to
enquire if a software object has been deposited for it, and if a
software object has been deposited, to accept it from the
distribution entity.

[0006] Itis thuspossible to provide a method of distributing
software objects in which all communications between the
first entity and the distribution entity are initiated by the first
entity. Similarly all communications between the second
entity and the distribution entity are initiated by the second
entity. This is particularly important within a computing envi-
ronment because the machines initiating communication
have control over where the communication is going and
hence the security risk in opening an outbound port is gener-
ally considered to be low. If, however, a machine is required
to have an inbound port such that it can accept communica-

May 24, 2012

tion then this is often considered to be a high risk and in
general I'T managers or security consultants are very loath to
open such inbound ports in their computing systems. In the
present invention all “inbound” ports reside with the distri-
bution entity which can be placed outside a secure computing
environment because its functionality is very simple and the
data it contains amounts to an identifier together with an
encrypted software object. Advantageously the encryption is
chosen to be quite strong such that if the distribution entity is
compromised and its secrets are stolen by a malicious party
then in real terms no information is divulged because it is all
encrypted.

[0007] Preferably the identifier is a non-distinctive binary
or alpha-numeric code such that if a third party managed to
obtain copies of the identifier they would in general be none
the wiser as to the actual identity of the or each second entity
that the associated data object was destined for.

[0008] The or each second entity is a computing device.
The or each computing device is associated with a computing
device identity specific to that particular hardware platform
irrespective of whoever is using the hardware platform. This
is particularly relevant where, for example, a computer may
be shared by two or more individuals, and each of which has
a respective profile set on the machine such that the machine
looks “personal” to them when they are logged in using their
respective profile.

[0009] Advantageously each user of a machine is further
associated with a user identity. Consequently a software
object may be deliverable to a machine, irrespective of its
user; to a user irrespective of the machine they are using,
which may be the case where a user has access to several
computers; or a to a specific user-machine combination.
[0010] The software object may comprise one or indeed
several encryption/decryption keys which may be used to
access specific items of information. The object may also
include or be comprised of messages for the control of
licences and permissions. The object might also comprise
device settings, software updates or more generally any
binary object, irrespective of its function, to which access is
controlled such that only suitably authorised parties (human
ormachine) canaccess its contents. Advantageously the com-
puter executes the security enforcement program such as
“DESlock+” available from Data Encryption Systems Lim-
ited which can enforce full disk encryption, removable media
encryption, email encryption, file or folder encryption,
encrypted mountable volumes and secure file deletion.
[0011] Distribution of instructions or policies to suitably
enabled security systems, such as the DESlock+ client may
need to be provided on a periodic basis. The present invention
provides a mechanism for disseminating instructions to one
or more DESlock+ clients via a distributed and non-secure
communications medium, such as the internet, by virtue of
ensuring that a companies enterprise server managing the
encryption keys and other specific items of information does
not have to accept incoming messages on an open data port,
and similarly a remote or client machine does not have to open
an incoming port. In each case both the client and server
initiate communication with the distribution entity, which can
be regarded as being a proxy of the first entity, i.e. it acts as a
proxy with respect to the companies enterprise server, thereby
meaning that only one machine has to have open ports for
inbound communication and that the information stored on
that machine is encrypted such that if it becomes compro-
mised by hacking or malicious software, the information

US 2012/0131327 Al

contained therein is not exposed because it is encrypted and
there is no natural route back to the private keys used by either
the enterprise server or the client machines to decrypt the
encrypted information.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The present invention will now be described, by way
of non-limiting example only, by reference to the accompa-
nying Figures, in which:

[0013] FIG. 1 schematically illustrates a scenario in which
an enterprise may wish to share confidential information with
another enterprise and/or home-workers or other remote indi-
viduals;

[0014] FIG. 2 schematically illustrates the data flow paths
between an enterprise server, one or more clients, and a dis-
tribution server constituting an embodiment of the present
invention;

[0015] FIG. 3 is a flow chart illustrating enrolment of a new
user;

[0016] FIG. 4 shows the messages of FIG. 3 in greater
detail,

[0017] FIG.5 illustrates how a message can be sent from an

enterprise server to a client, and similarly a message can be
returned from the client to the server;

[0018] FIG. 6 shows the file configuration within the dis-
tribution server in greater detail; and

[0019] FIGS. 7a to 7h illustrate how status updates are
handled such that a graceful recovery can occur even from
complete failure of the distribution server; and

[0020] FIG. 8 illustrates how workstation settings can be
updated.
DESCRIPTION OF PREFERRED
EMBODIMENTS OF THE INVENTION
[0021] FIG.1shows anarrangement in which an enterprise,

generally designated 2 comprises an enterprise server 4 and
several workstations 6, 8, and 10 within a secure network
delimited by the boundary 12. As shown, the workstations are
secured behind the server 4, but this is not a requirement of the
invention, and the workstations may use a communication
path that bypasses the server, as shown by chain line 5.
[0022] Users using the workstations 6, 8 or 10 may wish to
share files with other users such as users engaged within a
second enterprise, generally designated 20 that use worksta-
tions 22, 24 and 26. The workstations may have their com-
munications controlled via an enterprise server 28, as shown,
or may have direct communications to the transmission
medium (such as the internet), as designated by chain line 29.
Files may also need to be exchanged with a home-worker,
designated 30, or laptop users 32 and 34. The communication
can occur via a non-specific and distributed communication
channel, such as the internet 40.

[0023] The documents could, for example, be sent by email
in an encrypted form. In order to decrypt the contents of the
email an appropriate decryption key needs to be applied.
However the keys themselves need to be distributed securely
and key management requires that keys can be revoked or
changed in the event of security breaches or changes in per-
sonnel.

[0024] Asnoted before, most security threats are deemed to
occur when a computer or a server has an inbound port.
However most I'T managers are quite happy when the com-
puter itself initiates the communication to a further device.

May 24, 2012

The applicants realised that problems of key distribution
could be managed by providing a distribution server, gener-
ally designated 50 in FIG. 1 which serves a proxy for the
enterprise server 4 when it comes to key management.
[0025] FIG. 2 shows schematically the communications
between the enterprise server 4 and a further machine, such as
the laptop 32 although it could apply to any of the other
machines. The arrows indicate the direction of communica-
tion set up. Thus, enterprise server 4 contacts the enterprise
proxy distribution server 50 via the internet 40. The server 4
initiates the communication on an outbound port and server
50 accepts the communication on an inbound port. Distribu-
tion server 50 does not initiate communication with the enter-
prise server 4. Similarly the computer 32 initiates communi-
cation with the distribution server 50 via the internet 40 using
its outbound port. The distribution server 50 does not attempt
to initiate communication with the computer 32. Thus in this
distribution scheme the only machine that is required to
accept inbound communications, or incoming calls if you
like, is the machine 50. However once a call has been estab-
lished information flow is then bidirectional along that com-
munications route.

[0026] FIG. 3 schematically illustrates a process for regis-
tering a new user such that encryption keys can be securely
exchanged with them and managed. For the purposes of the
description it is assumed that the user machine, generally
designated 70 is running security management software such
as the DESlock+ client available from Data Encryption Sys-
tems Limited. A user machine 70 could be brought into a
secure environment in order to have its software updated.
However it is possible to enrol a remote user as will now be
described. The process starts at step 100 where a decision is
made to add a user. The process then continues to step 102
where a licence is issued in respect of the user and, as part of
this a unique user identity 104 is created and assigned to the
user. From then the process proceeds to step 106 where a key
file is associated with the licence, the key file containing the
user’s public key in a user table, the key file having been
encrypted with a one-time use pass-code.

[0027] Once step 106 has stored the public key and
encrypted it using the one-time pass code control passes to
step 108 where the file is posted to the enterprise proxy
distribution server 50. This involves creating the outgoing
message which will be described in greater detail with respect
to FIG. 4, and sending the message at step 112 by opening an
outbound communications port to the proxy 50.

[0028] Considering the proxy server, it receives the mes-
sage at step 114 and adds it to a message database whilst also
flagging it as an outgoing message at step 116. It then sends an
acknowledgement back to the enterprise server at step 118.
From here the enterprise server now has confirmation that the
enrolment message has been sent and flags it as sent at step
120, it then proceeds to update its records at step 122 and send
an email to the user 124 which email includes auser activation
code 126.

[0029] Looking at the client side, the user receives his acti-
vation code at step 130 and enters it into his security client, for
example the DESlock+ client software. The software now
knows that a message is waiting for it and opens a communi-
cation channel to the enterprise proxy server 50 and provides
the user identity and an index value to query the proxy server
to look for a message for that user ID and having the same
index. The user ID correctly identifies the user, whereas the
index can be used to indicate how many times that message

US 2012/0131327 Al

has been sent. The enterprise proxy server looks in its lookup
table to find any messages having the correct user identity and
index at step 140 and finding the message sends it back to the
client machine 70 at step 142. Returning to the client, the
client machine verifies a message checksum at step 144 in
order to ensure that the message has not been tampered with
and then proceeds to step 146 where it uses the one-time
pass-code that it has been sent, i.e. the activation code, to
decrypt the message and the key file. There control is passed
to step 148 where the user is asked to enrol by creating a
password and from there a “please wait” message is provided
to the user at step 150 whilst program control passes to step
152 where the client software creates a new message includ-
ing a workstation identity (which has been generated by the
DESlock+ client), a workstation public key and so on. From
here control passes to step 154 whereas the message includ-
ing the workstation identity and key values are encrypted
using the enterprise server’s public key. Control then passes to
step 156 where the message is given a message identity value,
achecksum and possibly and end user identity “EUID” which
is a further identifier. The message is then sent at step 158 to
the enterprise proxy server. The proxy server 50 adds the
incoming message to its message database at step 160, flags it
as an incoming message at step 162 and acknowledges receipt
of it at step 164. The client machine, upon receipt of the
handshake confirming that the workstation identity and work-
station key have been encrypted and posted to the enterprise
proxy server 50 acknowledges that the logon is complete at
step 166, displays a welcome message to the user and marks
the message 1D process as complete.

[0030] Every now and again the enterprise server 4 raises a
periodic query of the proxy server 50 to see whether any
messages are destined for it, as identified by step 180. The
proxy server 50 uses the enterprise server accountand a group
code to see if any messages are waiting for it at step 182, and
if there are it sends the messages to the enterprise server at
step 184. The enterprise server 4 logs receipt of the message
at step 186, acknowledges it at step 188, and updates its
records at step 190. The acknowledgement issued at step 188
is used by the enterprise proxy server 50 to delete completed
progress messages at step 192.

[0031] FIG. 4 repeats some of the details shown in FIG. 3
but instead of showing the process steps executed in the
enterprise server proxy 50, it shows the message format.
Thus, the message sent at step 112 includes a key file which
has been encrypted using the user activation code, a user
identity and an index, a message identity, a checksum, and a
flag that is set to show that it is outgoing. This information is
used by the client machine at step 144. Similarly, the message
sent at step 158 contains a workstation identity, workstation
key and workstation status which is encrypted using the enter-
prise server public key. It also contains an end user identity
and index, a message identity, a checksum and a flag set to
show that the message should be incoming for the enterprise
server.

[0032] FIG. 5 schematically illustrates the process for
modifying keys in the key file. The process starts at step 200
where a user is selected and a key amendment is made in step
202. A key amendment (which is an example of a software
object) may include issuing a new key, or sending instructions
to revoke authorities in respect of an already issued key. Once
the amendments have been made, the key file is issued at step
204. From here control passes to step 206 where the amended
key file is encrypted using the user’s public key. Control is

May 24, 2012

then passed to step 208 which initiates the process for posting
the key file to the enterprise server proxy 50. The key file has
auser identity added to it, a message identity and a checksum
atstep 210 and is then sent to the proxy at step 212. The proxy,
upon receiving the message adds the message to its database
at step 214, marks the message as outgoing, i.e. outgoing from
the enterprise server at step 216 and acknowledges receipt of
the message at step 218. The enterprise server 4 upon receipt
of the acknowledgement marks the message as sent at step
220 and updates its records at step 222.

[0033] Meanwhile the user machine running the client soft-
ware periodically tries to synchronise with the enterprise
server in order to update its securities policies and other keys.
This process is started at step 250.

[0034] Step 250 initiates a synchronise request with the
enterprise server proxy 50 by sending the end user identity
and asking the proxy whether it has any messages for it. The
enterprise server proxy 50 uses the end user identity at step
252 to examine the message database to see if any messages
are pending for that user, and if they are it sends the message
at step 254. Returning to the client 70, the client checks the
message checksum at step 256 in order to verify that the
message is being received without corruption. Assuming that
this check is passed, progress then proceeds to step 258 where
the message is decrypted using the user’s private key and then
key file updates are written to the key file in the user’s
machine at step 260. Following completion of the updates the
client 70 creates a status message to confirm what updates
have been applied or what keys have been revoked at step 262.
This message is then encrypted with the enterprise servers
public key at step 264. From then the enterprise servers iden-
tity is added to the encrypted message, as is a message iden-
tity and a checksum at step 266. From here the sending
process is initiated at step 270 which causes the client 70 to
open a communications channel to the enterprise server
proxy 50 to send the message such that the server can add it to
its message database at step 280 mark it as “incoming” for the
enterprise server 4 at step 282 and acknowledge receipt of the
message at step 284. Returning to the client, once it has
received acknowledgement of the message from step 284 it
updates its records to show that the key file has been updated
and marks the message as complete at steps 286, 288 and 290,
respectively.

[0035] As before with respect to FIG. 3, the enterprise
server at step 180 periodically queries the enterprise server
proxy 50 to check if there are any messages awaiting for it.
The proxy 50 looks up any messages for the enterprise server
using an account group code, and if any are pending it sends
the messages to the server as hereinbefore described with
respect to steps 182, 184 and 186. Following receipt of the
messages the enterprise server updates its records at step 190
and the enterprise server proxy deletes completed messages
from the message table.

[0036] FIG. 6 repeats the process steps that were shown in
FIG. 5, but now shows the message content in place of the
method steps for the enterprise server proxy 50. Thus as
before the message from the server comprises a key file which
has been encrypted using the user’s public key, as well as a
user identity, a message identity, a checksum and a flag indi-
cating that the message is outgoing from the enterprise server.
Similarly messages sent by the client such as the status mes-
sages are encrypted using the enterprise server’s public key,
but also include a user ID corresponding to that of the enter-

US 2012/0131327 Al

prise server, a message 1D, a checksum and a flag indicating
that the message is incoming for the enterprise server.
[0037] FIGS. 7a to 7k show data tables within the enter-
prise server, the enterprise server proxy and the client
machine at the various stages. Starting with FIG. 7a the
enterprise server maintains a message table, which in this
case shows ten messages merely as a convenient example,
which indicate whether a message has been sent and the
message status, i.e. whether the instructions sent on that mes-
sage have been completed as indicated by “complete”,
whether the message has been sent but no action has been
taken as a result of it, as indicated by “pending” and other
status messages, such as message 5 which has requested that
full disc encryption be set “on” the client machine, where the
response indicates that a full disc encryption has been started.
This compares to message 6 or message 7 which indicates that
a full disc encryption process is 25% complete or 75% com-
plete as appropriate. Each message where something has been
done, either completed, started or a progress update has been
performed has a date and time stamp. As shown in FIG. 75,
the enterprise server proxy maintains a cut down message
table in that messages which are complete have been deleted.
Thus only pending or in progress messages are shown in the
server proxy table FIG. 75.

[0038] FIG. 7¢ shows a message table within the client
where only messages 5 and 9 were intended for the client
machine. Message 5 and message 9 both relate to tasks which
have either been started or not yet started.

[0039] Suppose now that the enterprise server proxy suffers
a catastrophic failure which results in all its data being wiped.
[0040] The enterprise server 4 can query the enterprise
server proxy to check its health, and can be informed from the
proxy 50 that its data table has been wiped. At this point no
information is in reality lost because the enterprise server 4
includes its own data table as shown in FIG. 7¢ which it can
inspect to identify all processes which it expects to be pend-
ing. From then the enterprise server can, as shown in FIG. 7,
resend all pending or incomplete messages, instruction
updates and key updates back to the enterprise proxy server
50 such that it rebuilds its data table at FIG. 7g. Here the client
machine can then synchronise with the enterprise server
proxy, and post its own table updates at FIG. 7/. Thus the data
is recovered and no updates are lost.

[0041] As noted hereinbefore, a workstation may be used
by several individuals and it may therefore be desirable to
apply workstation specific key changes which are not related
to any particular individual. This is possible because, during
the enrolment procedure, the workstation had a unique iden-
tity associated with it which is independent of the end user
identity.

[0042] Thus, as shown in FIG. 8, if it is desired to amend
workstation settings a process is started in which, at step 300,
the workstation is selected and the workstation settings which
it is desired to push to the workstation are amended at step
302. From here the workstation update is issued at step 304
and is encrypted using the workstation public key at step 306
prior to being posted to the proxy at step 308. The process of
posting the message to the proxy includes adding the work-
station identity, a message ID and a checksum at step 310 and
then opening the communication channel to the proxy at step
312 in order to send the message.

[0043] As described with respect to earlier messages, the
enterprise server proxy 50 adds the message to its database at
step 320, flags it as outgoing at step 322 and acknowledges the

May 24, 2012

message at step 324. Following receipt of the acknowledge-
ment the enterprise server flags the message as sent at step
326 and updates its records at step 328.

[0044] Looking at the user workstation, it initiates a syn-
chronisation process at step 350. During this process the
workstation sends the workstation ID and asks were there any
messages pending for it. The enterprise server proxy uses the
workstation ID to query its message table to see if any mes-
sages are pending at step 352. If a message is pending then it
sends the message at step 354. As noted before, the message
had a checksum appended to it, so that client can check the
checksum at step 356 to make sure that the message is cor-
rectly formed. Control then moves to step 358 where the
message is decrypted using the workstation private key and
the instructions contained therein are enacted by the security
client in order to update the workstation settings at step 360.
Following update of the settings a status message is created at
step 362, encrypted with the enterprise server public key at
step 364, has its workstation ID appended to it, a message ID,
an enterprise server identity added at step 366 and sent at step
368. From here the message is added to the enterprise server
proxy message database at step 370 and flagged as “incom-
ing” for the enterprise server at step 372 prior to being
acknowledged at step 374. Upon receipt of the acknowledge-
ment of the client machine completes the user login process at
step 376 and marks the message as completed in its own data
table at step 378.

[0045] Finally, as described hereinbefore with respect to
FIG. 3 the enterprise server runs a periodic query of the
enterprise server proxy to see if any messages have been acted
upon and status updates received.

[0046] It is thus possible to provide a method for distribut-
ing security instructions, and encryption keys without need-
ing to open inbound communication ports on either an enter-
prise server or a client machine.

[0047] Although the invention has been described with
respect to distributing decryption keys, it can also be applied
to other software objects ofhigh value, such as licences which
may be for limited use, limited number of times or limited
duration. This technique can be used to distribute any soft-
ware object of which licences, documents, decryption keys,
executables, patches, and applications represent a non-ex-
haustive list of examples.

1. A method of distributing software objects from a first
entity to at least one second entity, the method comprising:

using a distribution entity to accept a software object from

the first entity, the software object including an identifier
for a specific second entity, and wherein the at least one
second entity is operable to contact the distribution
entity and to enquire if a software object has been depos-
ited for it, and if a software object has been deposited, to
accept it from the distribution entity.

2. A method as claimed in claim 1, in which the software
object is encrypted, or has an encrypted portion.

3. A method as claimed in claim 2, in which the software
object was encrypted using the public key of a public key-
private key pair associated with the specific second entity.

4. A method as claimed in claim 1, in which the first entity
is acomputing device or data processor operable to connect to
a communication medium, and the first entity initiates the
communications with the distribution entity.

5. A method as claimed in claim 4, in which the first entity
does not have an open port for receiving communications
sessions initiated by the distribution entity.

US 2012/0131327 Al

6. A method as claimed in claim 1, in which the distribution
entity performs a handshake with the first and at least one
second entity, and keeps a log of transactions.

7. A method as claimed in claim 1, in which the at least one
second entity is a computing device or data processor oper-
able to connect to a communication medium, and the at least
one second entity initiates communications with the distribu-
tion entity.

8. A method as claimed in claim 7, in which the second
entity does not have an open port for receiving communica-
tion sessions initiated by the distribution entity.

9. A method as claimed in claim 7, in which the first entity
can inspect or receive data from the log of transactions.

10. A method as claimed in claim 1, in which the software
object comprises one of:

an encryption key;

a decryption key

an instruction to use an encryption or decryption key

an instruction to replace an encryption or decryption key

an instruction to revoke a decryption key

at least one policy instruction for execution by a security

system,

a licence;

May 24, 2012

an executable;

a software update;

a data file.

11. A method as claimed in claim 1, in which each of the at
least one second entity is a computing device or data proces-
sor with a machine identity.

12. A method as claimed in claim 11, in which the or each
user of a specific one of the second entities is associated with
a user identity.

13. A method as claimed in claim 11, in which the software
objects are destined for a specific user and computing device
combination, or for a specific computing device independent
of'its user.

14. A method as claimed in claim 1, in which each message
includes a checksum.

15. Amethod as claimed in claim 1, in which each message
includes a direction flag.

16. Server software for performing the server part of the
method of claim 1.

17. Client software for performing the client part of the
method defined in claim 1.

sk sk sk sk sk

