(12) 发明专利申请

(10) 申请公布号 CN 102130258 A
(43) 申请公布日 2011.07.20

(21) 申请号 201010602408.8
(22) 申请日 2010.12.21
(30) 优先权数据
 10-2010-0004573 2010.01.19 KR
(71) 申请人 LG 伊诺特有限公司
 地址 韩国首尔
(72) 发明人 尹浩相 沈相均
(74) 专利代理机构 中原信达知识产权代理有限责任公司 11219
 代理人 夏凯 谢丽娜

(51) Int. Cl.
 H01L 33/32 (2010.01)
 H01L 33/12 (2010.01)
 H01L 33/20 (2010.01)
 H01L 33/42 (2010.01)
 H01L 33/48 (2010.01)
 H01L 33/62 (2010.01)

(54) 发明名称
 发光器件、发光器件封装以及照明系统

(57) 摘要
 本发明提供一种发光器件、发光器件封装以及照明系统。所述发光器件包括：第一半导体层；第一半导体层上的不平坦部分；不平坦部分上的包括多个微透镜的第一非导电层；非导电层上的第一基板层；以及发光结构层。在第一基板层上的发光结构层包括：第一导电类型半导体层、有源层、以及第二导电类型半导体层。
1. 一种发光器件，包括：
 第一半导体层；
 在所述第一半导体层上的不平坦部分；
 在所述不平坦部分上的包括多个团簇的第一非导电层；
 在所述非导电层上的第一基板层；以及
 在所述第一基板层上的发光结构层，所述发光结构层包括第一导电类型半导体层、有源层、以及第二导电类型半导体层。

2. 根据权利要求1所述的发光器件，其中，所述第一基板层包括其与氮化物半导体的晶格常数差等于或者小于大约5%的材料。

3. 根据权利要求1所述的发光器件，其中，所述不平坦部分包括III-V族化合物半导体，并且所述第一非导电层包括从MgN、SiN、以及ZnN的组中选择的至少一个。

4. 根据权利要求1所述的发光器件，其中，所述第一非导电层和所述第一基板层的周期包括从2至20个周期。

5. 根据权利要求1所述的发光器件，其中，所述第一基板层包括SiC、SiN、SiCN以及CN中的至少一个。

6. 根据权利要求1所述的发光器件，其中，所述第一基板层的第一部分被布置在所述第一非导电层上，并且第二部分接触到所述不平坦部分。

7. 根据权利要求4所述的发光器件，其中，所述第一非导电层和所述第一基板层的一个周期包括从大约1nm至大约100nm范围内的厚度。

8. 根据权利要求5所述的发光器件，其中，所述第一基板层的厚度包括从大约5Å至大约500Å。

9. 根据权利要求1所述的发光器件，其中，所述第一基板层被形成在不平坦层中。

10. 根据权利要求1所述的发光器件，包括：
 所述第一基板层和所述发光结构层之间的第二非导电层；
 在所述第二非导电层上的第二基板层；以及
 在所述第一基板层和所述第二非导电层之间的第二半导体层。

11. 根据权利要求1所述的发光器件，其中，所述非导电层是由不连续的非导电层形成的。

12. 根据权利要求1所述的发光器件，其中，所述发光结构层包括氮化物半导体，并且包括N型半导体层、在所述N型半导体层上的有源层、以及在所述有源层上的P型半导体层。

13. 根据权利要求12所述的发光器件，其中，所述第一半导体层和所述不平坦部分中的至少一个包括其掺杂浓度小于所述N型半导体层的未掺杂半导体层。

14. 根据权利要求1所述的发光器件，其中，所述第一半导体层和所述不平坦部分是未掺杂氮化物半导体。

15. 根据权利要求12所述的发光器件，其中，所述N型半导体层被布置在所述有源层和所述基板层之间，并且所述N型半导体层的位错密度小于所述第一半导体层的位错密度。
发光器件，发光器件封装以及照明系统

技术领域
[0001] 本公开涉及发光器件、发光器件封装，以及被设置有它们的照明系统。

背景技术
[0002] 在物理和化学特性方面，Ⅲ-Ⅴ族氮化物半导体已经被广泛地用作诸如发光二极管（LED）和激光二极管（LD）的发光器件的核心材料。Ⅲ-Ⅴ族氮化物半导体由具有In_xAl_yGaxN（其中0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 并且0 ≤ x+y ≤ 1）的组成式的半导体材料组成。
[0003] LED是所述半导体器件，其通过使用化合物半导体的特性将电能变成红外光或者光以/输出信号，或者其被用作光源。
[0004] 具有氮化物半导体材料的LED或LD被应用于用于获得光的发光器件。例如，LED或LD被用作诸如蜂窝电话的键区的发光部分，电子标识牌，以及照明装置的各种产品的光源。

发明内容
[0005] 实施例提供一种能够减少半导体层中的位错（dislocation）的发光器件。
[0006] 实施例提供具有用于减少基板和有源层之间的位错的结构层的发光器件。
[0007] 实施例提供发光器件、发光器件封装，以及被设置有发光器件和发光器件封装的照明系统。
[0008] 在一个实施例中，发光器件包括：第一半导体层；在第一半导体层上的不平坦部分；在不平坦部分上的包括多个团簇的第一非导电层；在非导电层上的第一基板层；以及在第一基板层上的发光结构层，所述发光结构层包括第一导电类型半导体层，有源层，以及第二导电类型半导体层。
[0009] 在另一实施例中，发光器件包括：第一半导体层；该第一半导体层包括不平坦部分；在第一半导体层的不平坦部分上的非连续的非导电层；在非导电层上的包括不平坦结构的基板层；以及在基板层上的包括多个化合物半导体层的发光结构层，其中，在基板层和氮化物半导体之间的晶格常数差等于或者小于5%。

附图说明
[0010] 图1是示出根据第一实施例的发光器件的侧截面图。
[0011] 图2至图6是示出根据第一实施例的用于制造发光器件的方法的图。
[0012] 图7是示出使用图1中所示的实施例并且具有横向电极结构的发光器件的图。
[0013] 图8是示出使用图1中所示的实施例并且具有垂直电极结构的发光器件的图。
[0014] 图9是示出具有垂直电极结构的另一发光器件的图。
[0015] 图10是示出根据第二实施例的发光器件的侧截面图。
[0016] 图11是示出根据实施例的发光器件封装的横截面图。
[0017] 图12是示出根据实施例的显示装置的图。
具体实施方式

在实施例的描述中，将理解的是，当层（或膜）区域、图案或结构被称为在基板、每层（或膜）、区域、垫或图案“上”时，它能够“直接”在基板、每层（或膜）、区域、垫、或图案上，或者也可以存在中间层。此外，将理解的是，当层被称为在每层（膜）、区域、垫或结构“下”时，它能够直接在另一层（膜）、另一区域、另一垫，或者另一图案下，或者也可以存在一个或者多个中间层。

为了图示的清楚，每个元件的尺寸可以被夸大，并且每个元件的尺寸可以与其的实际情况不同。

在下文中，将会参考附图描述实施例。

图 1 是示出根据第一实施例的发光器件的视图。

参考图 1，发光器件 100 包括：基板 101、缓冲层 103、第一导电层 105、不平坦部分 107、非导电层 112、基板层 114、第一导电类型半导体层 120、有源层 122、以及第二导电类型半导体层 124。

蓝宝石（Al₂O₃）、SiC、Si、GaAs、GaN、ZnO、Si、GaP、InP、Ge、以及 Ga₅O₉ 中的至少一个可以用于基板 101。不平坦图案可以形成在基板 101 的上表面上。通过蚀刻基板或者通过使用特殊材料可以形成不平坦图案。

缓冲层 103 被形成在基板 101 的上。缓冲层 103 可以被形成以减少基板 101 和氮化物半导体之间的晶格常数差，使用例如 II 至 VI 族化合物半导体，可以以层或者图案来形成半导体缓冲层 103。优选地，缓冲层 103 可以包括 III-V 族化合物半导体，例如，从 GaN、InN、AlN、InGaN、Al₉N₈、In₁AlₑN₈ 的组中选择的至少一个。缓冲层 103 可以利用诸如 ZnO 层的氧化物来形成，或者也可以不利用其来形成，然而，它不限于此。

第一半导体层 105 可以被形成在基板 101 或者缓冲层 103 上。可以形成第一半导体层 105，以提高半导体层的结晶性。

第一半导体层 105 包括使用 III-V 族化合物半导体的具有 In₉Al₇Ga₁₋₁₋ₓ₋₁₋x+y≤1 的组成式的半导体材料。

第一半导体层 105 可以被形成在未掺杂的半导体层或者第一导电类型半导体层中。例如，未掺杂的半导体层在没有有意地掺杂导电掺杂物的情况下是未掺杂的氮化物基半导体。与第一导电类型半导体层相比，未掺杂的半导体层具有显著低的导电性。例如，未掺杂的半导体层可以是未掺杂的 GaN 层，并且可以具有第一导电类型的特性。第一导电类型半导体层可以包括被掺杂有第一导电掺杂物的半导体层，例如，GaN、InN、AlN、InGaN、AlGaN、InAlGaN、以及 AlInN 中的至少一个。在下文中，为了便于解释，假定第一导电层 105 是未掺杂的半导体层。

不平坦部分 107 被形成在第一半导体层 105 上。不平坦部分 107 包括使用 III-V 化合物半导体的具有 In₉Al₇Ga₁₋₁₋ₓ₋₁₋ₓ₋₁₋ₓ₋₁₋ₓ₋₁₋ₓ₋₁₋ₓ₋₁₋ₓ₋₁₋ₓ₋₁₋ₓ₋₁₋x+y≤1 的组成式的半导体材料。不平坦部分 107 可以利用与第一半导体层 105 相同的材料来形成。不平坦部分 107 包括不平坦、粗糙以及纹理结构中的至少一个，并且可以包括规则的或者不规则的尺寸。
在不平坦部分 107 处，凹部和凸部被交替地排列。可以形成杆形或者其下宽度大于它的上宽度的形状的多个凹部，例如，截锥形或者多边形的多个凹部。在不平坦部分 107 的凸部处，以预定的间隔形成基本上平坦的上表面。在凹部处可以没有平坦部分。

凹部可以被不连续的相互隔开地布置在第一半导体层 105 上。
不平坦部分 107 可以利用被掺杂有第一导电掺杂物的半导体或者未掺杂的氮化物半导体来形成。
非导电层 112 被形成在不平坦部分 107 上，并且基板层 114 被形成在非导电层 112 上。
非导电层 112 是其电阻大于不平坦部分 107 或者未掺杂的半导体层的掩模层。非导电层 112 可以以不规则的团簇形式形成并且，例如，可以利用 MgN、SiN，或者 ZnN 来形成。
非导电层 112 利用不连续的团簇来形成，并且各个团簇具有随机的形状和随机的尺寸，并且可以被形成大于多个凸的直径。
基板层 114 可以被实施为导电层、绝缘层、或者非导电层，并且被形成在非导电层 112 上。在此，基板层 114 的部分 114A 可以穿过非导电层 112 的间隙而接触在不平坦部分 107 上。基板层 114 可以以不平坦的形状被分层堆放在非导电层 112 上。
在氮化物半导体可以被生长的情况下，基板层 114 是基板材料。基板层 114 可以被实施为其晶格常数与氮化物半导体几乎相似的含碳材料或者硅化物基半导体。基板层 114 可以利用不同于氮化物半导体的材料来形成，例如，利用硅碳化物 (SiC) 层来形成。在此，GaN 具有 a = 大约 3.189 Å 并且 c = 大约 5.185 Å 的晶格常数。SiC 和氮化物半导体之间的晶格常数差至少约 1，或者大约 5%。
硅碳化物 (SiC) 层的厚度可以从大约 5 Å 至大约 500 Å 的范围内变化。硅碳化物 (SiC) 层可以包括第一导电掺杂物。第一导电掺杂物是 N 型掺杂物并且可以包括 Si、Ge、Sn、Se、以及 Te。此掺杂物的掺杂浓度没有被限制。
硅碳化物层可以利用含碳材料来实现，例如，利用硅碳氮化物 (SiCN) 层或者碳氮化物 (CN) 层来实现。基板层 114 还可以利用硅氮化物族，例如，SiN 来实现。
非导电层 112 和基板层 114 可以被交替地分层堆放。非导电层 112 和基板层 114 的分层周期等于或者小于 20 个周期，其中一个周期的厚度可以从大约 1nm 至大约 100nm 的范围内变化。在非导电层 112 和基板层 114 的分层结构中，可用作半导体层的基板层 114 被布置作为最上层。
由于基板 101 和氮化物半导体层之间的晶格常数差而导致出现位错。通过缓冲层 103 和第一半导体层 105 来传输位错。
由于不平坦部分 107 的凹部被相互隔开，因此存在减少基本接触面积的效果。因此与存在于第一半导体层 105 处的位错的数目相比较，存在于不平坦部分 107 处的位错的数目可以被减少。不平坦部分 107 可以减少通过第一半导体层 105 传输的位错。因此，第一导电类型半导体层 120 具有比第一导电层 105 低的位错密度。
非导电层 112 可以再次减少通过不平坦部分 107 向上的位错。非导电层 112 可以通过使用与不平坦部分 107 的阻力差 (resistance difference) 来抑制从不平坦部分 107 传输的位错。
如果非导电层 112 和基板层 114 的分层周期是 2 或者较大，那么可以更多地抑制
位错。因此，可以以不具有裂缝的薄膜来形成基板层 114 上的半导体层的表面。

【0046】第一导电类型半导体层 120 可以被形成在非导电层 112 上。第一导电类型半导体层 120 可以包括，例如，被掺杂有第一掺杂物的具有 In_1-xAl_x,Ga_y,N(0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x+y ≤ 1) 的组成式的 III-V 族化合物半导体。

【0047】第一导电类型半导体层 120 具有大于大约 3 μm 的厚度，并且可以以单层或者多层来形成。第一导电类型半导体层 120 的掺杂浓度可以高于未掺杂的半导体层的浓度。

【0048】第一导电类型半导体层 120 包括 N 型半导体层，并且第一导电掺杂物包括诸如 Si、Ge、Sn、Se、以及 Te 的 N 型掺杂物。

【0049】有源层 122 被形成在第一导电类型半导体层 120 上。有源层 122 可以以单量子阱结构、多量子阱结构、量子线结构、或者量子点结构来形成。使用 III-V 族化合物半导体材料，可以以阱层和阻挡层的周来形成有源层 122。例如，可以以 InGaInP 阱层 /GaAs 阻挡层的周期、InGaAs 阱层 /AlAs 阻挡层的周期、以及 InGaAs 阱层 /InGaAs 阻挡层的周期来形成有源层 122；然而，对此不存在限制。阻挡层的带隙可以高于阱层的带隙。

【0050】导电包覆层可以被形成在有源层 122 上面或下面。导电包覆层可以利用 GaAs 基半导体层来形成。导电包覆层的带隙可以高于阻挡层的带隙。

【0051】第二导电类型半导体层 124 被形成在有源层 122 上。可以由被掺杂有第二导电掺杂物的 III-V 族化合物半导体，例如，GaAs、ALGaAs、InGaAs、InN、AlN、AlGaN、AlInN、AlGaAs、GaP、GaAs、GaAsP、以及 AlGaN 层中选择第二导电类型半导体层 124。在第二导电类型是 P 型半导体的情况下，第二导电掺杂物包括诸如 Mg 和 Zn 的 P 型掺杂物。第二导电类型半导体层 124 可以以单层或者多层来形成，并且它不限于此。

【0052】根据实施例，由于通过使用被布置在第一导电类型半导体层 120 下面的不平坦部分 107、非导电层 112、以及基板层 114 来抑制位错，所以可以以不具有裂缝的薄膜来形成第一导电类型半导体层 120、有源层 122、以及第二导电类型半导体层 124。无裂缝薄膜能够防止电流集中，使得能够保护器件免受静态放电 (ESD) 的影响，还提高半导体层的结晶性，使得可以提高内部量子效率和外部量子效率。

【0053】沿着基板层 114 的不平坦表面可以形成粗糙结构的第一导电类型半导体层 120 的下部分。所述粗糙结构可以提高光提取效率。

【0054】第一导电类型半导体层 120 可以利用 P 型半导体层来形成，并且第二导电类型半导体层 124 可以利用 N 型半导体层来形成。在第二导电类型半导体层 124 上，具有与第二导电类型相反的极性的 N 型半导体层可以被形成。在发光器件 100 中，第一导电类型半导体层 120、有源层 122、以及第二导电类型半导体层 124 可以被限定为发光结构层。发光结构层可以被实施为 N-P 结、P-N 结、N-P-N 结、以及 P-N-P 结中的一个。

【0055】透明电极层 (未示出)、反射电极层、以及电极中的至少一个可以被形成在发光结构层上。在第二导电类型半导体层 124 上，透明电极层可以利用包括氧化物或者金属的材料来形成。例如，使用铟锡氧化物 (ITO)、铟镓氧化物 (IZO)、铟镓锡氧化物 (IZTO)、铟铝氧化物 (IAZO)、铟镓锌氧化物 (IGZO)、铟镓锡氧化物 (IGTO)、铟镓氧化物 (AZO)、镓锌氧化物 (ATO)、镓锌氧化物 (GZO)、In_{0.5}Sn_{0.5}Ox、Ru_{0.5}Ox、Ru_{0.5}Ox/ITO、Ni、Ag、Ni/In_{0.5}Ox/Au、以及 Ni/In_{0.5}Ox/Au/ITO 中的一个或者多个，可以以单层或者多层来形成透明电极层。

【0056】在发光结构层上，可以利用由 Ag、Ni、Al、Rh、Pd、Ir、Ru、Mg、Zn、Pt、Au、以及 Hf 和
它们的选择组合成的材料来形成反射电子层。电极可以包括从 Ti, Al, In, Ta, Pd, Co, Ni, Si, Ge, Ag, 以及 Au 的组中的至少一个。电极可以包括电极焊盘，并且可以进一步包括电流扩展图案。

[0057] 发光器件 100 能够通过非导电层 112 和基板层 114 的分层结构来抑制由于与基板的晶格错配而产生的位错。发光器件 100 还能够根据氮化物半导体层的生长和光提取效率来提高半导体层的结晶性。

[0058] 图 2 至图 6 是示出用于制造根据第一实施例的发光器件的方法的图。

[0059] 参考图 2, 基板 101 被加载在生长设备上，并且多个化合物半导体层被分层堆放在基板 101 上。

[0060] 生长设备可以包括电子束蒸发器, 物理气相沉积 (PVD), 化学气相沉积 (CVD), 等离子体激光沉积 (PLD), 复式热蒸发器溅射, 金属有机化学气相沉积 (MOCVD) 等等，并且生长设备不限于所列出的设备。

[0061] 蓝宝石 (Al₂O₃), SiC, Si, GaAs, GaN, ZnO, Si, GaP, InP, Ge, 以及 Ga₂O₃ 可以被用在基板 101 上。不平坦图案可以被形成在基板 101 的表面上。通过蚀刻基板 101 可以形成不平坦图案，或者通过特定材料可以在光学提取结构中形成诸如粗糙结构的不平坦图案。

[0062] 使用 II 至 VI 族化合物半导体，可以将缓冲层 103 形成在基板 101 上，并且可以以层或者图案来形成。缓冲层 103 也可能是被形成，并且不平于是否形成缓冲层 103。

[0063] 第一半导体层 105 可以被形成在基板 101 或者缓冲层 103 上。使用 III-V 族化合物半导体或者 N 型半导体层，半导体层 105 可以利用未掺杂的半导体来形成。例如，未掺杂的半导体是氮化物半导体，并且没有被有意识地掺杂有导电掺杂物。N 型半导体可以利用被掺杂有第一导电掺杂物的半导体来形成。

[0064] 例如，在第一半导体层 105 是未掺杂的 GaN 的情况下，通过在第一生长温度（例如，从大约 500°C 至大约 900°C）提供 NH₃ 和 TMGa（或者 TEGa）来以预定的厚度将其形成。

[0065] 参考图 3, 不平坦部分 107 被形成在第一半导体层 105 上。不平坦部分 107 可以包括使用 III-V 族化合物半导体的半导体。不平坦部分 107 可以被实施为被掺杂有第一导电掺杂物的半导体层，或者未掺杂的半导体层。半导体层 105 和不平坦部分 107 可以利用未掺杂的半导体层来形成。

[0066] 可以形成例如随机的杆形、锥形或者多边形的不平坦部分 107 的凸部。

[0067] 参考图 4, 不平坦部分 107 是未掺杂的 GaN 的情况下，通过在低于第一生长温度第二生长温度（例如，从大约 200°C 至大约 600°C）提供 NH₃ 和 TMGa（或者 TEGa），来以预定的厚度将其形成。在此，第二生长温度可能比第一生长温度低，例如，其低大约 300°C 至大约 500°C。通过该低温度生长，不平坦部分 107 的凸部可以被相互隔开。在此，尽管通过实施例中的低温条件来形成不平坦部分 107，但是通过调整诸如增加生长压力或者增加 Ga 的流量的条件，可以形成其上部分是不连续的凸部。

[0068] 不平坦部分 107 的凸部的下宽度大于它的上宽度，并且从俯视图来看，凸部可以以圆形或者多边形来形成。不平坦部分 107 的凸部可以包括平坦部分。

[0069] 参考图 4, 多个非导电部分 112 被形成在不平坦部分 107 上。

[0070] 可以以具有随机的形状和尺寸的不连续结构或者团簇形状来形成非导电部分 112。非导电层 112 可以利用包括第一导电掺杂物或者第二导电掺杂物的非导体来形成。例如
如，非导电层 112 可以利用 MgN、SiN 以及 ZnN 来形成。孔 112A 被形成在非导电层 112 之间。通过孔 112A，不平坦部分 107 的一部分可以被暴露。

参考图 4 和图 5，基板层 114 可以被形成在非导电层 112 上。

基板层 114 可以利用其与氮化物半导体的晶格常数差最多大约是 1（即，大约 5% 以下）的材料来形成。在此，GaN 具有 a = 大约 3.189 Å 并且 c = 大约 5.185 Å 的晶格常数。

基板层 114 可以利用例如，陶瓷基半导体或者硅基半导体来形成。例如，基板层 114 可以利用 SiC 来形成。再如，基板层 114 可以具有导电、非导电，或者绝缘特性。由于基板层 114 被提供为薄膜的晶种层，所以与使用昂贵的 SiC 基板相比较其是经济有利的。

通过非导电层 112 可以延伸基板层 114 的部分 114A，并且将其接触在不平坦部分 107 上。

基本上从大约 500℃至大约 1000℃的范围内变化的生长温度下，可以形成非导电层 112 和基板层 114。在利用 MgN 生长非导电层 112 的情况下，通过提供包括 NH₃ 和 Mg 的掺杂物，可以将其形成到大于几个埃的厚度。在基板层 114 是 SiC 的情况下，通过蒸发器中的硅和碳的反应可以将其形成。SiH₄、Si₅H₆ 以及 DTBSi 可以被用作硅材料，并且 CBr₄ 或者 CX₄Y 可以被用作碳材料。SiC 层的厚度可以从大约 5 Å 至大约 500 Å 的范围内变化。硅碳化物层可以被掺杂有第一导电掺杂物。然而，此掺杂浓度、厚度、以及生长温度可以被改变。硅碳化物层还可以利用其它的材料来实施，例如，利用诸如硅碳氮化物 (SiCN) 或者碳氮化物 (CN) 的含碳材料来实施。

与不平坦部分 107 相比较，非导电层 112 是高度不导电的，并且可以抑制从第一导电层 105 位错上升。

非导电层 112 和基板层 114 的对可以被生长从至少 1 个周期到 20 个周期。在此，一个周期的厚度可以从大约 1nm 至大约 100nm 的范围内变化。在非导电层 112 和基板层 114 的分层结构中，其与氮化物半导体的组合强度相对较好的基板层 114 可以被布置作为最上层。

不平坦部分 107 可以减少从不平坦部分 107 下面的第一半导体层 105 上升的位错，并且非导电层 112 可以再次减少通过不平坦部分 107 上升的位错。即，不平坦部分 107 可以减少其中位错可以通过杆形而上升的面积，并且因为非导电层 112 以团簇的形状被形成在不平坦部分 107 上，所以非导电层 112 几乎可以完全地切断位错。

由于不平坦部分 107 上，具有高电阻的团簇被不连续地形成作为随机的形状来作为非导电层 112，所以可以减少由于基板 101 和氮化物半导体之间的晶格常数错配而产生的位错。随机的形状可以包括多面体形状。在此，被形成在非导电层 112 上的基板层 114 可以被接触到非导电层 112 下面的层。

在非导电层 112 和基板层 114 的对被形成为几个周期的情况下，可以进一步抑制位错。可以以无缺陷薄膜来形成基板层 114 上的半导体层表面。

半导体层可以被生长在基板层 114 上。例如，使用 III-V 族半导体，在半导体层中可以形成缓冲层，未掺杂的半导体层，以及第一导电类型半导体层中的一个。在下文中，为了便于解释，假定第一导电类型半导体层被形成在基板层 114 上。

参考图 6，第一导电类型半导体层 120 可以形成在基板 114 上。第一导电类型半导体层 120 可以包括没有第一导电掺杂物的 III-V 族化合物半导体，例如，从 GaN、InN、
ALN、InGaN、AlGaN、InAlGaN，以及AlInN 的族中选择的至少一个。在第一导电类型半导体层 120 是 N 型半导体层的情况下，第一导电掺杂物包括 Si、Ge、Sn、Se 以及 Te 作为 N 型掺杂物。

【0083】有源层 122 被形成在第一导电类型半导体层 120 上。有源层可以以单量子阱结构、多量子阱（MQW）结构、量子线结构，或者量子点结构来形成，并且可以通过使用 III-V 化合物半导体材料来形成。

【0084】导电包覆层（未示出）可以被形成在有源层的上面和/或下面。导电包覆层可以利用 GaN 基半导体层来形成。

【0085】第二导电类型半导体层 124 被形成在有源层 122 上。第二导电类型半导体层 124 可以利用被掺杂有第二导电掺杂物的 III-V 族化合物半导体来形成，例如，利用 GaN、InN、AIN、InGaN、AlGaN、InAlGaN，以及 AlInN 的化合物半导体层的一个来形成。在第二导电类型半导体层 124 是 P 型半导体的情况下，第二导电掺杂物包括 Mg、Zn、Ca、Sr，以及 Ba 作为 P 型掺杂物。

【0086】由于基板 114，半导体层 120、122、124 可以被生长为无裂缝薄膜。此无裂缝薄膜能够防止电流的集中，使得可以保护有源层 122 并且可以提高内部量子效率和外部量子效率。

【0087】第一导电类型半导体层 120 可以利用 P 型半导体层来形成，并且第二导电类型半导体层 124 可以利用 N 型半导体层来形成。N 型半导体层或者 P 型半导体层被形成在第二导电类型半导体层 124 上作为第三导电类型半导体层。第一导电类型半导体层 120，有源层 122，以及第二导电类型半导体层 124 可以被限定为发光结构层。发光结构层可以被实施为 N-P 结、P-N 结、N-P-N 结、以及 P-N-P 结中的一个。

【0088】电流扩展层和第二电极中的至少一个可以被形成在第二导电类型半导体层或者第三导电类型半导体层上。电流扩展层包括透明电极或者反射电极层。在第二导电类型半导体层 124 上，可以利用从金属氧化物和金属中选择的材料来形成透明电极层。例如，使用铟锡氧化物 (ITO)、铟锌氧化物 (IZO)、铟镓锌氧化物 (IZTO)、铟铝锌氧化物 (IAZO)、铟镓锌氧化物 (IGZO)、铟镓锌氧化物 (IGTO)、铝锌氧化物 (AZO)、镓锌氧化物 (ATO)、镓锌氧化物 (GZO)、IrOx、RuOx、RuOx/ITO、Ni、Ag、Ni/IrOx/Au、以及 Ni/IrOx/Au/ITO 中的一个或者多个，可以以单层或者多层来形成透明电极层。

【0089】第二导电类型半导体层 124 上，可以由 Ag、Ni、Al、Rh、Pd、Ir、Ru、Mg、Zn、Pt、Au、和 Hf 以及它们的选择性组合组成的材料来形成反射层。第二电极被电气地连接到第二导电类型半导体层 124 或者透明电极层，并且可以利用金属材料来形成。第二电极可以包括电极焊盘，并且可以被形成以电流扩展图案。

【0090】图 7 是示出使用图 1 中示出的实施例并且具有横向电极结构的发光器件的侧截面图。

【0091】参考图 7，在发光器件 100A 处，第一导电类型半导体层 120 的上表面被暴露，并且第一电极 131 被形成在第一导电类型半导体层 120 上。通过台面蚀刻工艺可以执行用于暴露第一导电类型半导体层 120 的工艺。

【0092】在第二导电类型半导体层 124 上，诸如透明电极层或者反射电极层的电流扩展层可以被形成在第二电极层 126 中。第二电极 133 可以被形成在第二电极层 126 上。第二
电极126可利用铟锡氧化物（ITO）、铟锌氧化物（IZO）、铟锌锡氧化物（IZTO）、铟铝氧化物（IAZO）、铟镓锌氧化物（IGZO）、铟镓锡氧化物（IGTO）、铟锌氧化物（AZO）、铟镓氧化物（ATO）、金属氧化物，或其中Al、Ag、Pd、Rh、Pt，或Ir的金属，或所选择的金属的合金来形成。

0093 第二电极133可以利用至少一个金属层来形成，例如，利用来自于Ag, Ag合金, Ni, Al, Al合金, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au，以及Hf中的一个或组合来形成。第二电极133可以包括电极焊盘，或分从电极焊盘被形成。第二电极133可以被直接地接触第二电极层或/和第二电极类型半导体层124。

0094 由于发光器件100A可以通过有源层122下面的非导电层112而改善位错，所以存在由于光的结晶性而致增加了光效率的效果，以及改善了ESD的效果。

0095 图8是示出使用图1中所示的实施例并且具有垂直的电极结构的发光器件的截面图。

0096 参考图8，多个导电层142和144可以形成在图6中所示的第二导电层124上。导电层包括被布置在第一导电类型半导体层124上的第一导电层142和第一导电层142上的第二导电层144。第一导电层142包括欧姆层或/和反射层。第一导电层142被利用包括诸如Al、Ag、Pd、Rh、Pt，以及Ir的反射构件当中的至少一个的金属或合金来形成。第二导电层144是导电支撑构件，并且可以被形成大约数十个微米的厚度。第二导电层144可以选择性地包括铜（Cu）、金（Au）、镍（Ni）、钼（Mo）、铜－镍（Cu－Ni）以及载体晶圆（例如，Si, Ge, GaAs, ZnO, SiC, SiGe, GaO3）。第一导电层142和第二导电层144提供导电极性的电力。至少一个层或图案可以形成在第一导电层142和第二导电类型半导体层120之间。用于至少一个层或图案的材料是诸如ITO的氧化物材料，并且它可以被形成在欧姆接触层或/和电流阻挡层中。

0097 可以以物理或/和化学方法来消除缓冲层103下面的图6中的基板101。激光剥离（LLO）方法可以被用作消除基板的方法。根据LLO方法，第二导电层144可以被布置在基底上，并且然后，为了消除它，将预定波长的激光照射到基板101上。

0098 通过湿法蚀刻来消除缓冲层103和第一半导体层105。通过选择性地使用干法蚀刻和抛光，可以消除缓冲层103和第一导电层105。

0099 还可以消除除了基板层114之外的第一导电类型半导体层120下面的图5的非导电层112。在此，在基板层114是SiC的情况下，它可以不被消除。第一电极131被形成在基板层114下面。因此，具有垂直的电极结构的发光器件100B得以实现。

0100 由于在发光器件100B中，通过图示的非导体的形式来形成不平坦结构的基板层114，所以可以提高光提取效率。

0101 图9是示出具有垂直的电极结构的另一发光器件的图。为了解释实施例，参考图8来描述与图8进行比较的相同的部分，并且重复的解释将被省略。

0102 参考图9，在发光器件100C中，第一电极131被布置到第一导电类型半导体层120。通过进一步移除图8的基板层，第一导电类型半导体层120被暴露以形成第一电极131。在此，第一导电类型半导体层120的下表面可以以粗糙结构来形成。通过移除基板层来形成此粗糙结构，并且不需要对导电类型半导体层120执行具体的蚀刻工艺。
一实施例相比较的相同的部分被当作相同的附图标记，并且重复的解释被省略。

[0104] 参考图 10，发光器件 100D 包括：基板 101、缓冲层 103、第一半导体层 105、平坦部分 107、第一非导电层 112、第一基板层 114、第二半导体层 115、第二非导电层 116、第二基板层 117、第一导电类型半导体层 120、有源层 122、以及第二导电类型半导体层 124。

[0105] 至少一个周期的第一非导电层 112 和第二基板层 114 被形成在平坦部分 107 上。第一非导电层 112 和第一基板层 114 称为图 1 的非导电层和基板层。

[0106] 在第一基板层 114 上，可以利用被掺杂有第一导电掺杂物的 III-V 族化合物半导体，例如，GaN、InN、AlN、InGaN、AlGaN、InAlGaN、以及 AlInN 来形成第二半导体层 115。第二半导体层 115 的上表面可以是平坦的或者非平坦的。

[0107] 第二非导电层 116 可以利用具有非导电特性的材料来形成。例如，第二非导电层 116 被利用非导体和 MgN、SiN、以及 ZnN 来形成，并且可以被不连续地形成在第二半导体层 115 上。例如，使用第一导电掺杂物或/和第二导电掺杂物，可以以非导体来形成第二非导电层 116。

[0108] 第二半导体层 115 可以被布置在第二基板层 117 和第一基板层 114 之间。第二基板层 117 被形成在第二非导电层 116 上，并且它的部分可以被接触在第二半导体层 115 上。可以在诸如导电层、非导电层、以及绝缘层的基板材料中选择第二基板层 117。第二基板层 117 可以利用 SiC 和 SiN 来形成。

[0109] 可以以至少一个周期来形成第二非导电层 116 和第二基板层 117。在第二半导体层 115 是第一导电半导体的情况下，第二非导电层 116 和第二基板层 117 可以被布置在第一导电类型半导体层 115 和 120 中。发光器件 100D 抑制从有源层 122 下方传输的信道，使得到改善层的无裂缝表面。

[0110] 根据实施例的发光器件可以被封装在树脂材料或者硅的半导体基板、绝缘基板、以及陶瓷基板上，并且它可以被用作指示装置、照明装置、显示装置等等的系统光源。

[0111] 图 11 是示出根据实施例的发光器件封装的图。

[0112] 参考图 11，发光器件封装 30 包括：主体 20、布置在主体 20 的第一导电极 31 和第二导电极 32、根据实施例的发光器件 100A，以及覆盖发光器件 100A 的成型构件 40。在此，发光器件被布置在主体 20 处，并且被电气地连接到第一导电极 31 和第二导电极 32。

[0113] 主体 20 可以形成为包括诸如硅的导电衬底、诸如 PPA 的合成树脂、陶瓷基板、绝缘基板、或者金属基板（例如，MCPB）。主体 20 包括其上部开口的诸如腔体的凹部。在凹部处，布置发光器件 100A，并且暴露第一和第二导电极 31 和 32。倾斜表面可以形成在凹部的周边上。主体 20 可以包括通孔结构，并且它不限于此。

[0114] 第一导电极 31 和第二导电极 32 被相互电气地分离并且将电力提供给发光器件 100A。第一导电极 31 和第二导电极 32 还可以通过反射从发光器件 100A 产生的光来增加光效率，并且可以用于散热从发光器件 100A 产生的热。

[0115] 发光器件 100A 可以被安装在主体 20 上，或者在第一导电极 31 或者第二导电极 32 上。

[0116] 发光器件 100A 可以通过引导而被连接到第一导电极 31 和第二导电极 32。

[0117] 成型构件 40 可以包围发光器件 100A，以保护发光器件 100A。而且，发火物质可以
被包括在成形构件 40 中，使得可以改变从发光器件 100A 发射的光的波长。透镜可以被布置在成形构件 40 上，并且透镜可以被实施为接触或没有接触成形构件 40 的形式。

[0118] 发光器件 100A 可以通过通孔而电气地连接到基板或主体的下表面。
[0119] 在发光器件封装 30 上，可以安装上述实施例的发光器件中的至少一个，并且对此不存在限制。

[0120] 尽管已经作为俯视（top view）形式来描述了发光器件封装，但是它还可以被实施为侧视（side view）方法，使得可以改变上述热射线特性、导电性，以及反射特性。如上所述通过树脂层可以封装根据俯视或者侧视方法的发光器件，并且然后，透镜可以形成或者附着在树脂层上，对此不存在限制。
[0121] 〈照明系统〉
[0122] 根据实施例的发光器件封装或者发光器件能够被应用于照明系统。照明系统包括多个发光器件或者发光器件封装的阵列的结构。
[0123] 照明系统可以包括图 12 和图 13 中所示的显示装置，图 14 中所示的照明装置，照明灯，信号灯，汽车头灯，电子显示器等等。
[0124] 图 12 是示出根据实施例的显示装置的分解透视图。
[0125] 参考图 12，根据实施例的显示装置 1000 可以包括：导光板 1041；发光模块 1031，该发光模块 1031 将光提供给导光板 1041；在导光板 1041 的下方的反射构件 1022；在导光板 1041 上的光学片 1051；在光学片 1051 上的显示面板 1061；以及底盖 1011，该底盖 1011 存储导光板 1041、发光模块 1031，以及反射构件 1022；然而，其不限于此。
[0126] 底盖 1011、反射片 1022、导光板 1041 以及光学片 1051 可以被定义为灯单元 1050。
[0127] 导光板 1041 用于漫射光，以聚集到表面光源。利用透明材料形成导光板 1041，并且导光板 1041 可以包括，例如，诸如聚甲基丙烯酸甲酯（PMMA）的丙烯基树脂，聚对苯二甲酸乙二醇酯（PET）、聚碳酸酯（PC）、环烯烃共聚合物（COC）以及聚苯二甲酸乙二醇酯（PEN）树脂中的一个。
[0128] 发光模块 1031 将光提供给导光板 1041 的至少一侧，并且最终用作显示装置的光源。
[0129] 包括至少一个发光模块 1031，并且发光模块 1031 可以直接或者间接地在导光板 1041 的一侧或处提供光。发光模块 1031 包括根据上述实施例的发光器件封装 30 和基板 1033。发光器件封装 30 可以以预定的间隔布置在基板 1033 上。
[0130] 基板 1033 可以是包括电路图案（未示出）的印刷电路板（PCB）。然而，基板 1033 不仅可以包括典型的 PCB，而且可以包括金属板（MCP）、PCB（PCB），并且其不限于此。在发光器件封装 30 被安装在底盖 1011 的侧面上或者散热板上的情况下，基板 1033 可以被清除。在此，散热板的一部分可以接触到底盖 1011 的上表面。
[0131] 多个发光器件封装 30 可以被安装在基板 1033 上，使得发光表面与导光板 1041 分离预定的距离，但是对此不存在限制。发光器件封装 30 可以将光直接地或者间接地提供给光进入部分，即导光板 1041 的一侧，并且对此不存在限制。
[0132] 反射构件 1022 可以被布置在导光板 1041 的下方。反射构件 1022 在向上方向上反射被入射到导光板 1041 的下面的光，从而可以提高灯单元 1050 的亮度。例如，可以利用例如 PET、PC 或者 PVC 树脂来形成反射构件 1022；然而，其不限于此。反射构件 1022 可
以是底盖 1011 的上表面，然而，对此不存在限制。
【0133】底盖 1011 可以存储光板 1041、发模模块 1031，以及反射构件 1022。因此，底盖 1011 可以提供有存储单元 1012，其具有其上表面被开口的盒状形状，并且对此不存在限制。底盖 1011 可以与顶盖组合，并且对此不存在限制。
【0134】可以利用金属材料或者树脂材料来形成底盖 1011，并且可以使用按压或者挤压成型工艺来制造底盖 1011。底盖 1011 还可以包括具有优秀的导热性的金属或者非金属材料，并且对此不存在限制。
【0135】例如，显示面板 1061 是 LCD 面板，并且包括透明的第一和第二基板，和第一和第二基板之间的液晶层。在显示面板 1061 的至少一侧，可以附着偏振板，然而，附着结构不限于此。显示面板 1061 通过穿过光学片 1051 的光来显示信息。显示装置 1000 可以被应用于各种蜂窝电话、笔记本计算机的监视器，膝上计算机的监视器，以及电视。
【0136】光学片 1051 被布置在显示面板 1061 和导光板 1041 之间，并且包括至少一个半透明片。光学片 1051 可以包括例如反射片、水平和垂直棱镜片、亮度增强片中的至少一个。反射片反射入射光。水平 / 垂直棱镜片将入射光集中在显示区域。亮度增强片重新使用透射的光以增强亮度。保护片可以被布置在显示面板 1061 上，并且对此不存在限制。
【0137】在此，在发光模块 1031 的光路径上，导光板 1041 和光学片 1051 可以被包括作为光学构件；然而，对此不存在限制。
【0138】图 13 是示出根据实施例的显示装置的图。
【0139】参考图 13，显示装置 1100 包括：底盖 1152、基板 1120、光学构件 1154，以及显示面板 1155。在此，上述发光器件封装 30 被排列在基板 1120 上。
【0140】基板 1120 和发光器件封装 30 可以被定义为发光模块 1060。底盖 1152、至少一个发光模块 1060，以及光学构件 1154 可以被定义为单体。
【0141】底盖 1152 可以被提供有存储单元 1153，并且对此不存在限制。
【0142】在此，光学构件 1154 可以包括透镜、导光板、反射片、水平和垂直棱镜片，以及亮度增强片中的至少一个。可以利用 PC 材料或者基甲丙烯酸甲酯 (PMMA) 材料形成导光板，并且可以消除该导光板。反射片反射入射光。水平 / 垂直棱镜片将入射光集中在显示区域。亮度增强片重新使用透射的光以增强亮度。
【0143】光学构件 1154 被布置在发光模块 1060 上。光学构件 1154 将从发光模块 1060 发射的光转换为表面光源，或者执行反射或收集光。
【0144】图 14 是示出根据实施例的照明装置的透视图。
【0145】参考图 14，照明装置 1500 包括：壳体 1510、发光模块 1530，该发光模块 1530 被安装到壳体 1510 以及连接端子 1520。该连接端子 1520 被安装到壳体 1510，并且被提供有来自于外部电源的电力。
【0146】优选地，利用具有优秀的散热特性的材料形成壳体 1510。例如，可以利用金属材料或者树脂材料形成壳体 1510。
【0147】发光模块 1530 可以包括基板 1532，和被安装在基板 1532 上的根据实施例的发光器件封装 30。多个发光器件封装 30 可以以矩阵的形式排列或者以预定的间隔相互分离地排列。
【0148】基板 1532 可以是印有电路图案的绝缘体。例如，基板 1532 可以包括 PCB、金属核
PCB、柔性 PCB、陶瓷 PCB、以及 FR-4 基板。

【0149】基板 1532 还可以利用有效地反射光的材料形成，或者它的表面可以被涂覆有效地反射光的颜色，例如，白色或者银色。

【0150】至少一个发光器件封装 30 可以被安装在基板 1532 上。每个发光器件封装 30 可以包括至少一个发光二极管 (LED) 芯片。LED 芯片可以包括诸如红、绿、蓝或者白色的可见光的发光二极管，或者发射紫外线 (UV) 的 UV 发光二极管。

【0151】各种发光器件封装 30 的组合可以被布置在发光模块 1530 中以获得颜色色调和亮度。例如，为了确保高显色指数 (CRI)，可以组合并且布置白色发光二极管、红色发光二极管，以及绿色发光二极管。

【0152】连接端子 1520 可以被电气地连接到发光模块 1530 以提供电源。连接端子 1520 以插座的方法螺纹连接到外部电源，然而，对此不存在限制。例如，可以将连接端子 1520 形成为引脚的形状以将其插入到外部电源，或者可以通过引导将其连接到外部电源。

【0153】上述实施例的特征不限于所述实施例，而是可以被选择性地应用于其它的实施例。在实施例的技术范围内，通过选择性组合其它的修改和应用也是可能的。

【0154】用于制造根据实施例的发光器件的方法包括：使用化合物半导体在基板上形成第一半导体层；在第一半导体层上形成包括氮化物半导体的不平坦部分；在不平坦部分上形成不连续的非导电层；在非导电层上形成基板层；以及在基板层上形成多个化合物半导体层。

【0155】根据实施例，能够改善来自于有源层下方的位错，并且能够改善半导体的结晶性，并且能够改善发光效率。还能够改善发光器件和发光器件封装的可靠性。

【0156】虽然已经参照本发明的多个示例性实施例描述了实施例，但是应该理解，本领域的技术人员可以设计出将落入本发明原理的精神和范围内的多个其它修改和实施例。更加具体地，在本说明书、附图和所附权利要求的范围内的主题的组合装置的组成部件和/或布置中，各种变化和修改都是可能的。除了组成部件和/或布置中的变化和修改之外，对于本领域的技术人员来说，替代使用也将是显而易见的。