OpPIC (12) (19) (CA) Demande-Application

OFFICE DE LA PROPRIETE

CIPO

CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA ProrERTY OFFICE

@21 (A 2,240,529

22) 1998/06/15
43) 1998/12/19
(72) TUCKER, Andrew G., US
(72) TALLURI, Madhusudhan, US
(72) MURPHY, Declan, US
(72) KHALIDI, Yousef A., US
(71) SUN MICROSYSTEMS, INC., US
1) Int.C1.° GOGF 9/44, GOG6F 13/14, HO4L 29/06
(30) 1997/06/19 (08/879,150) US
4 SYSTEME ET METHODE DE SOLLICITATION D’OBJETS
ELOIGNES
3H A SYSTEM AND METHOD FOR REMOTE OBJECT
INVOCATION
100
120 Handler 0
1‘|2'greads 12 106 Threads i
121 =7 112 g/
° User Domain User Domaing T
1“IZ’rOWeads ?‘?:gltr o 126 A28 114 ;’zls'eads 12:12312;1‘? bj4 ng'“og 128
2.0 12{ we s 7 o i il
\On;j P’sssr N User Domaing Procs
125 0+ P
Fd Table Door Table Ha”dlelrji::njo):i::z o Kemel Xdoor Handler _ Door Fd Table
e T B T e | e S
- d; ./ Jobla hoded 12 e 43 node id fd
P EE e es 'fdz"' 120,
/ o Threads
fd Threads . 16
@ 'f%"e' Domain Kernel Domain 0
NODE 1 NODE n
1022 — ___%] . 1026~
104 —

(57) La présente invention porte sur un systéme et une
méthode servant a solliciter des objets éloignés. Le
systtme de l'invention est un systéme informatique
orienté objets qui comprend un certain nombre de noeuds
de calcul indépendants interconnectés par une liaison de
communication. Ces noeuds représentent des ordinateurs
clients et/ou serveurs qui n’ont pas de mémoire
commune. Chaque noeud comprend un certain nombre
de domaines ayant des espaces d’adresses distincts.
Chaque domaine contient un ou plusieurs fils
d’exécution qui sollicitent un ou plusieurs objets. La
méthode associée a un objet donné peut se trouver dans

I*I Industrie Canada Industry Canada

(57) The present invention pertains to a system and
method for performing remote object invocation. A
object-oriented computing system includes a number of
independent computing nodes that are interconnected via
a communications link. The nodes represent client
and/or server computers that do not share memory. Each
node includes a number of domains having separate
address spaces. Each domain includes one or more
threads of execution that invoke one or more objects. The
object’s method can reside in the same domain as the
requesting thread, in a different domain within the same
node, or in a different domain in another node. A file

OPIC

OFFICE DE LA PROPRIETE

CIPO

CANADIAN INTELLECTUAL

INTELLECTUELLE DU CANADA ProrERTY OFFICE

le méme domaine que le fil de demande, dans un
domaine différent a I'intérieur d’un méme noeud, ou
dans un domaine différent dans un autre noeud. Un
descripteur de fichier est utilis¢ pour représenter les
objets dont les méthodes associées se trouvent dans un
domaine différent de celui du fil de demande. Un
descripteur de fichier est un noyau protégé qui autorise
un fil a solliciter un objet. Un fil ne peut avoir acces
qu’aux objets pour lesquels il a recu un descripteur de
fichier associé. Un courtier en demandes d’objets prend
en charge les demandes de sollicitation d’objets dans le
cas des objets qui résident dans des domaines différents.
Ce courtier offre un mécanisme qui traduit le descripteur
de fichier utilisé pour un renvoi, en rapport avec un objet
se trouvant dans un domaine donné, au descripteur de
fichier utilisé pour solliciter I’objet se trouvant dans le
domaine qui contient la méthode associée a cet objet
donné.

I*I Industrie Canada Industry Canada

1) (A1) 2,240,529
22) 1998/06/15
43) 1998/12/19

descriptor is used to represent those objects whose
methods reside in a different domain than the requesting
thread. A file descriptor is a protected kernel entity that
enables a thread to invoke an object. A thread can only
access those objects for which it has received an
associated file descriptor. An Object Request Broker
(ORB) services the object invocation requests for those
objects residing in different domains. The ORB provides
a mechanism that translates the file descriptor used to
reference an object in one domain into the file descriptor
used to invoke the object in the domain having the
object’s method.

10

15

CA 02240529 1998-06-15

ABSTRACT OF THE DISCLOSURE

The present invention pertains to a system and method for performing remote object
invocation. A object-oriented computing system includes a number of independent
computing nodes that are interconnected via a communications link. The nodes
represent client and/or server computers that do not share memory. Each node
includes a number of domains having separate address spaces. Each domain
includes one or more threads of execution that invoke one or more objects. The
object’s method can reside in the same domain as the requesting thread, in a
different domain within the same node, orin a different domain in another node. A
file descriptor is used to represent those objects whose methods reside in a different
domain than the requesting thread. A file descriptor is a protected kernel entity that
enables a thread to invoke an object. A thread can only access those objects for
which it has received an associated file descriptor. An Object Request Broker (ORB)
services the object invocation requests for those objects residing in different domains.
The ORB provides a mechanism that translates the file descriptor used to reference
an object in one domain into the file descriptor used to invoke the object in the

domain having the object’s method.

CA 02240529 1998-06-15

FE & FA-64000/GSW/CTH
SUN P1943

10

15

20

25

A SYSTEM AND METHOD FOR REMOTE OBJECT INVOCATION

The present invention relates generally to distributed object operating systems and
particularly for a transparent and secure mechanism for invoking objects residing in

remote nodes.

BACKGROUND OF THE INVENTION

In a typical client/server computer network, the user of a client computer requests the
execution of an object. In particular, the user requests the execution of a method
associated with the object. Frequently, the object is not stored locally on the client
computer. Thus, a remote procedure call (RPC) must be made to a server computer
on which the object resides. The RPC specifies the object and its associated method.
The server computer identifies the method to be executed, executes that method, and
passes the results and/or exceptions generated back to the client computer. A
standard distributed mechanism for handling remote procedure calls is often referred
to as an Object Request Broker (ORB). The mechanism is distributed in the sense
that the software associated with an ORB is on both the client computer and the

server computer.

For the purpose of this document, the term “invoke an object” is defined to mean

invoking a method associated with the object.

The ORB enables a user to access objects residing in different address spaces.
When a user is permitted access to the ORB, it can invoke any object residing within
the distributed system. A user denied access to the ORB is restricted from accessing
any object outside the user’'s address space. Thus, in order to permit remote object
invocations, a user is given unrestricted access to all remote objects. Currently, there
is no effective mechanism to restrict a user’s access via the ORB to select objects
residing outside the user's address space. Such unrestricted access can have

potentially disastrous ramifications.

10

15

20

25

30

CA 02240529 1998-06-15

-0.
SUMMARY OF THE INVENTION

In summary, an embodiment of the present invention is a distributed object-oriented
computer system having a secure mechanism to control access to objects. The

mechanism is secure since it utilizes a kernel-protected file descriptor as the handle
for the object’s invocation. An application can only access those objects for which it

has acquired a corresponding file descriptor.

The distributed system includes independent computing nodes that are
interconnected via a communications link. The nodes represent client and/or server
computers that do not share memory. Each server node is associated with a number
of objects whose methods are resident in the node. A file descriptor is used to invoke

an object. It is a protected kernel state that cannot be forged by a user application.

A server node controls access to its objects. A server node enables a client node
access to one of its objects by exporting to the client node a reference to the object.
The exported object reference enables a client node to invoke the object. The client
node creates its own file descriptor to reference the exported object. The server node
invokes the object using its own file descriptor which differs from the client node’s file

descriptor for the object.

The object reference is a mechanism that establishes the ORB infrastructure needed
to support a subsequent object invocation. This ORB infrastructure includes an xdoor
and a gateway handler. The xdoor is a protected kernel state that has a global
identifier that uniquely identifies the object within the distributed system. The gateway
handler is responsible for mapping the global identifier associated with an object into

a respective file descriptor.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will be more readily apparent from the

following detailed description and appended claims when taken in conjunction with
the drawings, in which:

10

15

20

25

30

CA 02240529 1998-06-15

-3-

Fig. 1 is a block diagram of a computer system incorporating an embodiment of the

present invention.

Fig. 2 is a schematic representation of the procedures and data structures used to

implement a remote object invocation.

Figs. 3A - 3B are schematic representations of the procedural flow used to implement

a remote object invocation.

Figs. 4A - 4E are flow charts illustrating the steps used to implement a user-level

remote object invocation.

Figs. 5A - 5D are flow charts illustrating the steps used to implement a kernel-level

remote object invocation.
DESCRIPTION OF THE PREFERRED EMBODIMENT
Overview

Referring to Fig. 1, there is shown a distributed computer system 100 including a
plurality of computing nodes 102. Each computing node 102 represents an
independent client/server computer that is interconnected via a communications link
104. Each node can be considered a client and/or a server computer. A client
computer is associated with a node that invokes an object. A server computer is
associated with a node that stores the object’s methods. In certain cases, as will be
shown below, the client and server computer will be the same node. In other cases,

the client and server computers are distinct nodes.

The communications link 104 generically refers to any type of wire or wireless link
between computers, such as but not limited to a local area network, a wide area
network, or a combination of networks. The client/server computers use the

communications link 104 to communicate with each other.

Each node 102 has one or more domains 106,108, 110, 112, 114, 116. A domain is

10

15

20

25

30

CA 02240529 1998-06-15

-4 -

defined to be a process with its own address space. A domain can have multiple
threads 120 of execution (usually called threads) that can execute user or kernel
application procedures. A kernel domain 110, 116 refers to the operating system
and a user domain 106, 108, 112, 114 refers to a process other than the operating
system. The user domains 106, 108, 112, 114 typically execute one or more user
application procedures. Each domain 106,108, 110, 112, 114, 116 has one or more

objects associated with it.

In a preferred embodiment , the operating system or kernel is the Solaris MC
operating system, which is a product of Sun Microsystems, Inc. Background
information on the Solaris MC operating system can be found in “Solaris MC: A Multi-
Computer OS,” Technical Report SMLI TR-95-48, November 1995, Sun

Microsystems, which is hereby incorporated by reference.

The Solaris MC operating system is a UNIX based operating system. As such, in
describing the present technology, UNIX terminology and concepts are frequently
used. However, this is for illustration purposes and is not to be construed as limiting

the invention to this particular operating system design.

Each thread can request the execution of an object (i.e., object’s method). The
location of the object is transparent to the thread. The object can reside in one of
several locations. It can reside within the same domain as the requesting thread, ina
different domain as the requesting thread but within the same node as the requesting
thread, or in the domain of a remote node. For example, user domain 106 depicts a
thread 121 with access to object 124 that resides within its domain. User domain 108
shows two threads 123 that reference object 124. Threads 123 reside in a different
domain 106 from object 124 but are located in the same node 102a. Threads 123
reference object 124 through file descriptor fd, which is mapped into file descriptor fd,

associated with the object in domain 106.

In addition, thread 125 references an object 138 that resides in a domain 114 in
remote node 102b. Object 138 is represented in the referencing domain 108 as file
descriptor fd, which is mapped into a system-wide identifier consisting of a global

xdoor identifier 140 and node identifier 142. The system-wide identifier is transmitted

10

15

20

25

30

CA 02240529 1998-06-15

-5-

in a remote object invocation request to the appropriate remote node 102b. The
remote node 102b translates the system-wide object identifier to the appropriate local

identifier and executes the method associated with the requested object 138.

Furthermore, thread 125 can reference an object 135 within the kernel domain 110.
Object 135 is represented in referencing domain 110 as file descriptor fd, which is
then mapped into the appropriate handler procedure 134 that is used to invoke the
object 135.

A kernel domain 110, 116 has multiple threads 120 that can execute kernel
applications. Each kernel domain 110, 116 can have one or more kermnel objects
associated with it. A kernel object can be invoked by a thread within its domain or by

a thread in a domain in another node.

The execution of an object method for an object that is within the domain of the

requesting application is treated as a local procedure call. The local procedure call is
typically a function or subroutine call that transfers control from the application to the
object’s method with a return of control to the application. The arguments associated

with the object are passed along in the local procedure call.

The execution of an object method for an object that resides in a remote domain is
treated as a remote procedure call. The remote procedure call is handled by the
ORB. Thus, the ORB is used to invoke the methods of objects residing in different
domains as the requesting application. The remote objects can be situated in the

same node or in a different node as the requesting application.

A door is a kernel state entity that describes an object’s method and data. It exists
only for intra-node remote user objects (i.e., an intra-node remote user object is an
used object that resides in a different domain within the same node as the requesting
domain). A door is represented by a file descriptor (fd). Each user domain 106, 108,
112, 114 has a user xdoor table 126 that stores the file descriptors of those objects
accessible by threads associated with the domain. A user domain references a
remote object through a file descriptor, located in the domain’s user xdoor table 126,

which is mapped into the actual door. The doors do not reside in the address space

10

15

20

25

30

CA 02240529 1998-06-15

-6-

of the user accessible domains, rather in the kernel domain.

The use of a file descriptor 154 to represent a door provides a secure mechanism to
control the objects that a user can invoke. A file descriptor 154 is a protected kernel
state and as such cannot be forged by a user. The possession of a file descriptor 154
indicates that an application has permissible access to an object. The domain that
generates the object becomes a server for the object and its door. The server exports
object references to those applications that it wishes to have access to the object. In
this manner, there is a secure mechanism to selectively control the applications that

can access the objects within the distributed system 100.

An object can have a number of file descriptors 154 associated with it. These file
descriptors 154 can reside in the same domain as the object or in different domains
having permitted access to the object. Each client domain that references a remote
object has one or more file descriptors representing the object. For example, object
124 is referenced by file descriptor fd, in domain 106, and by file descriptor fd, in
domain 108. Object 138 is associated with file descriptor fd, in user domain 114 in
node 102b and is associated with file descriptor fd, in user domain 108 in node 102a.
In essence, the file descriptor is a local identifier for the object within a particular

domain.

Objects that are accessible by remote nodes have an xdoor 170 (see Fig. 2) identified
by a global xdoor identifier 140 that is used to uniquely identify the object within a
particular node. In addition, each node is uniquely represented by a node identifier
142 that uniquely identifies the node within the distributed system 100. The global
xdoor identifier 140 is coupled with the node identifier 142 to produce an identifier that
uniquely identifies the object within the distributed system 100.

An application refers to an object utilizing a local xdoor identifier or file descriptor. In
order to execute a remote object invocation, the ORB needs to reference the object
using the server’s file descriptor for that object. Thus, the ORB maps the client’s
object reference (i.e., local xdoor identifier) into the server’s local xdoor identifier.

This mapping is performed utilizing a number of procedures and data structures that

reside in both the user and kernel domains.

10

15

20

25

30

CA 02240529 1998-06-15

-7 -

The ORB utilizes several mechanisms to perform this mapping. The ORB includes
the following procedures: handler procedures, xdoor procedures, and gateway
handler procedures. The xdoor procedures reside in both the user and kernel
domains. A brief description of these mechanisms is provided below with reference to
Figure 2. A more detailed explanation is provided below with reference to Figures 3 -
6.

An object is referenced by a handler procedure 122. The handler procedure 122
controls the basic mechanism of object invocation and argument passing. The
handler 122 controls how an object invocation is implemented, how object references
are transmitted between address spaces, how object references are released, and
similar object runtime operations. For local object invocations, the handler procedure

122 executes a local procedure call to the object’s method 150.

For remote user object invocations, an object is represented in its domain by a user-
level xdoor 152. A user-level xdoor 152 consists of a local xdoor identifier 153, a
pointer to an appropriate handler 156, a door identifier 158, and other information. In
an embodiment of the present invention, the local xdoor identifier 156 is a file
descriptor. The door identifier 158 corresponds to a door representing the object and

it is stored in the kernel-level door table 132.

A kernel-level xdoor 170 is a kernel state entity that is used to represent an object
throughout the distributed system. The kernel-level xdoor 170 includes a global xdoor
identifier 140, a node identifier 142, handler pointers 144 including a server handler
pointer 141 and a client handler pointer 143, a door identifier 146, and a local xdoor
identifier 147. The global xdoor identifier 140 is used to uniquely identify the object
within the node and the combination of the global xdoor identifier 140 and the node
identifier 142 is used to uniquely identify an object within the distributed system 100.
The door identifier 146 is used to identify the corresponding door 162.

A kernel object is represented in the kernel domain by a kernel-level xdoor 170. A
kernel object’s xdoor 170 contains an additional field that includes a local xdoor

identifier 147 representing the kernel object in the kermel domain. Typically, the local

xdoor identifier 147 is a file descriptor 154.

10

15

20

25

30

CA 02240529 1998-06-15

-8 -

A kernel-level file descriptor table 130 is used to store each file descriptor 154 existing
within a node 102. The file descriptor table 130 is partitioned into segments 155.
Each segment represents the file descriptors 154 associated with a particular domain.
Each file descriptor entry 154 references a door stored in a kernel-level door table
132. A door 162 includes a door identifier 164, a process location pointer 166, and
other information. The process location pointer 166 reflects an entry point to a
procedure in the server's address space that is used to perform the invocation. In the
case of an intra-node remote user object invocation, the process location pointer 166
is used to access the server's xdoor procedures 128. For the case of an inter-node
remote object invocation or a remote kernel object invocation, the process location
pointer 166 is used to access a gateway handler 168 associated with the object. The
gateway handler 168 is used to facilitate the transport of the remote object invocation
request to the corresponding node. The gateway handler 168 translates object

invocations utilizing file descriptors 154 to a respective system-wide identifier.

The foregoing overview has described the computing environment and infrastructure
that is used to support a remote object invocation. Attention now turmns to a more
detailed description of the steps used by a user application and a kernel application in

invoking an object.

User-Level Remote Object Invocation

The operations of the apparatus of Figs. 1 and 2 are more fully appreciated with
reference to Figs. 2 - 4. In an embodiment of the present invention, client/user and
kernel application procedures can utilize the ORB to request remote object
invocations. The steps used by the user and kernel application procedures to
perform a remote object invocation differ slightly and as such will be discussed
separately. The discussion will first describe the steps used by the user application

procedures followed by the steps used by the kernel application procedures.

The ORB of the present invention is based on a call/return model. In such a model, a
remote object invocation request is generated to execute or call a specified object’s

method and to return the results and/or exceptions to the invoking thread.

10

156

20

25

30

CA 02240529 1998-06-15

-9-

A client user application 200 references an object by generating a procedure call
requesting the execution of a specified method of the object (step 400). The
procedure call is typically accompanied by a number of arguments that can include,
but are not limited to, data, procedures, or other object references. A client stub
procedure 202 receives the procedure call by the client user application 200. The
client stub procedure 202 appears to the user as the actual method that it intends to
invoke. The client stub procedure 202 formats the object’s arguments into a
predefined format (step 402). For example, the format can consist of one data
structure that describes the type of each argument and another data structure that
contains the arguments. The client stub procedure 202 then transfers the object

reference and its formatted arguments to a client handler procedure 122 (step 402).

A client handler procedure 122 is associated with an object and used to marshal the
object’s arguments into one or more buffers 160 (step 404). The client handler
procedure 122 also transfers control to a client user xdoor procedure 128 passing to it
the local xdoor identifier 153 associated with the object and the location of the buffer
in the buffer pool containing the object’s arguments (step 404). The local xdoor
identifier 153 is stored in a user xdoor table 126 located in the application’s address
space. In an embodiment of the present invention, the local xdoor identifier 153 is a

file descriptor.

The client user xdoor procedure 128 maps the local xdoor identifier 153 associated
with the object reference and associated with the object’s arguments into their
respective file descriptors (step 406). The client user xdoor procedure 128 then
suspends execution of the thread and calls a procedure that will invoke the object
(step 406).

The client user xdoor procedure 128 utilizes the door associated with the invoked
object to determine the appropriate procedure that will invoke the object. The door
associated with each object is stored in kernel-level door table 132 (sometimes
referred to in Unix nomenclature as a “vnode table”). Each door 162 stored in the
door table 132 contains an associated door identifier 164 that uniquely identifies the
door 162, a process location 166, and additional information. The process location

166 represents an entry point into the server domain procedure that is responsible for

10

15

20

25

30

CA 02240529 1998-06-15

-10-

invoking the object. Typically, the process location 166 is the location of either a
server user xdoor procedure 128 residing in a server domain or a kemel-level
gateway handler 168. The process location 166 represents the server user xdoor
procedure 128 for intra-node remote object invocations. The process location 166
represents the kemel-level gateway handler 168 for inter-node remote object

invocations.

For the situation where the object resides in a different user domain within the same
node (local user domain), the client user xdoor procedure 128 calls a specified kernel-
level procedure (i.e., door_call) that sends an invocation message to a server xdoor
procedure 128 specified by the process location 166 indicated by the object’s door
162. The invocation message includes the door identifier 164 of the requested object,
the argument buffer, as well as other information. The server xdoor procedure 128
utilizes the door identifier 164 to locate within the server user xdoor table 126, the
server's file descriptor, or local xdoor identifier, of the requested object (step 408).
The server xdoor procedure 128 then proceeds to invoke the object as will be

described in more detail below.

To invoke a kernel object in the same node or an object in a remote node (remote
node or local kernel domain), the client user xdoor procedure 128 calls a specified
kernel-level procedure (i.e., door_call) that transfers control to a gateway handler 168

specified by the process location 166.

The gateway handler 168 associated with the object transiates all file descriptors to
their respective global xdoor identifiers 140. In addition, the global xdoor identifiers
140 are mapped into system-wide identifiers by coupling to the global xdoor identifier
140 its respective node identifier 142. The format of the data in the buffers is
translated into a format suitable for the kernel-level xdoor procedure 174. The
gateway handler 168 then callé the client kernel xdoor procedure 174 with the object’s
arguments (step 409). The client kernel xdoor procedure 174 then transfers control to
the appropriate kernel server handler 169 (step 410).

For a remote node object invocation, the client kernel xdoor procedure 174 allocates

a reply buffer, converts the arguments into a logical message representing a remote

10

15

20

25

30

CA 02240529 1998-06-15

-11 -

object invocation request, assigns a remote procedure identifier representing the
logical message, and transfers the message to the transport procedure 176 (step
412).

The transport procedure 176 sends the message to the appropriate server node (step
414). The transport procedure 176 can utilize any of the well-known “transport layer”
communication protocols such as but not limited to, transmission control protocol
(TCP), user datagram protocol (UPD), or the like.

When the remote object invocation request arrives at the destination node, the
transport procedure 176 at the destination node receives the message and extracts
the system-wide identifier. It determines whether or not the xdoor 170 corresponding
to the system-wide identifier exists in the node by searching the kernel-level xdoor
table 136 for a corresponding entry. If such an entry exists, the transport procedure
176 transfers the message to the server kernel-level user xdoor procedure 174 (step
416). If such an entry does not exist, the server kernel-level user xdoor procedure

147 generates an xdoor which will be described below.

The server kernel-level user xdoor procedure 174 decodes the message, transforms
its data into an appropriate format, and determines the server handler associated with
the enclosed xdoor 170. The global xdoor identifier 140 transmitted in the message is
mapped via the kernel xdoor table 136 to the appropriate server handler which

continues the invocation (step 418).

A kernel object 206 will have a server handler pointer 141 that indicates an
associated kernel server handler 169. A user object will have a server handler pointer

141 that indicates an associated gateway handler 168.

The server gateway handler 168 maps the global xdoor identifiers associated with all
object references in the message into the corresponding server file descriptors and
performs a kemnel-level procedure (i.e., door_upcall) that transfers control to the

server user xdoor procedure 128 (step 420).

The gateway handler 168 maps a global xdoor identifier 140 into a corresponding

10

156

20

25

30

CA 02240529 1998-06-15

-12-

server-side file descriptor 154 by utilizing the appropriate door identifier 146 located in
the xdoor 170. The door identifier 146 is mapped via the appropriate door 162 stored
in the door table 132 into the corresponding file descriptor via the file descriptor table
130. The process location 166 of the associated door 162 contains the location of the
server user xdoor procedure 128 (step 420). The server user xdoor procedure 128
utilizes the file descriptor 154 as the local xdoor identifier to determine and call the

appropriate server handler procedure 122 (step 421).

The server handler procedure 122 unmarshals the object's arguments into a generic
format and calls the server skeleton procedures 212 (step 422). The server skeleton
212 converts the arguments from the generic format into a format suitable for the
object and invokes the object’s method (step 424).

Once the object’s method is executed, the return parameters are marshaled if no
exception was produced. Otherwise, the exception itself is marshaled. At this point,
the marshaled reply is ready (step 426). The server skeleton 212 converts the reply
into a generic format and calls the associated server handler procedure 122 (step
428). The server handler 122 marshals the reply data into buffers 160 and calls the
appropriate server xdoor procedure passing the local xdoor identifier 153 (step 430).
For kernel objects, the server kernel xdoor procedure 174 is called. For user objects,

the server user xdoor procedure 128 is called.

The server user xdoor procedure 128 maps the local xdoor identifier 153 into a
corresponding file descriptor and makes the appropriate remote procedure call (step
432).

For the situation where the requested object resides in the same node butin a
different user domain (local user domain), the server user xdoor procedure 128 maps
the local xdoor identifiers into their respective file descriptors and calls a specified
kernel-level procedure (i.e., door_call) that sends a reply message to the client user
xdoor procedure 128 (step 432). The client user xdoor procedure 128 maps the file
descriptors in the reply message to the client-side file descriptors and transfers
control to the appropriate client handler (step 434). The client handier proceeds to

process the reply message as will be described in more detail below.

10

15

20

25

30

CA 02240529 1998-06-15

-13-

For a remote node object invocation, the server user xdoor procedure 128 maps the
local xdoor identifiers 153 into their respective file descriptors 154 and calls the
associated gateway handler 168 (step 432). The gateway handler 168 translates all
file descriptors in the reply message to their respective global xdoor identifiers and
manipulates the reply data into a form recognizable by the server kernel xdoor
procedure 174 (step 436). The gateway handler 168 transfers control to the server

kernel xdoor procedure 174 (step 436).

The server kernel xdoor procedure 174 stores the reply data in a reply buffer 178,
formats a logical message with the reply data and assigns it a RPC identifier, and

transfers the message to the transport procedure 176 (step 438).

The server transport procedure 176 transmits the message to the client transport
procedure 176 of the appropriate node (step 440). The client transport procedure 176
receives the message and after determining that it was delivered to the correct node,
calls the client kernel xdoor procedure 174 (step 442). The client kernel xdoor
procedure 174 then passes the reply message to the appropriate handler (step 444).
The appropriate handler is determined by utilizing the global xdoor identifier in the
message to find the associated xdoor 170. The xdoor’s client handler pointer 143

indicates the appropriate handler. In this instance, it is a client gateway handler 168.

The client gateway handler 168 converts the global xdoor identifier to its respective
file descriptor 154 and calls the associated client user xdoor procedure 128 (step
446). The client user xdoor 128 maps the file descriptors into their respective client
local xdoor identifiers and calls the associated client handler 122 (step 448). The
client handler 122 unmarshals the arguments in the reply message into a generic
format and calls the client stub procedure 202 (step 450). The client stub procedure
202 formats the arguments into a suitable format for the client application (step 452)

and the client application resumes (step 454).

Kernel-Level Remote Object Invocation

A kernel application can access a kernel object whose methods are in the same

kernel domain or in a different kernel domain in a remote node. In addition, a kernel

10

156

20

25

30

CA 02240529 1998-06-15

-14 -

application can access a user object whose methods are in a different domain within
the same node or in a different node. The remote object invocation initiated from a
kernel application encompasses some of the same steps that were used by a user-

initiated remote object invocation.

Referring to Figs. 3A and 3B, the invocation of a kernel object within the same domain
as a kernel application is treated as a local procedure call. The object invocation
request is generated to execute the specified object's method and to return the

results and/or exceptions to the invoking thread.

Figs. 5A - 5D illustrate the steps used to perform a remote object invocation that is
initiated by a kernel application. A kernel application 204 references an object by
generating a procedure call requesting the execution of a specified method of the
object (step 500). The procedure call is typically accompanied by a number of
arguments that can include, but are not limited to, data, procedures, or other object
references. A kernel client stub procedure 208 receives the procedure call by the
kernel application 204. The kernel client stub procedure 208 appears to the user as
the actual method that it intends to invoke. The kernel client stub procedure 208
formats the object’s arguments into a predefined format (step 502). The kernel client
stub procedure 208 then transfers the object reference and its formatted arguments to

a client handler procedure 169 (step 502).

A kernel-level client handler procedure 169 is associated with each kernel object 206
and used to marshal the object’s arguments into one or more buffers 178 (step 504).
The client handler procedure 169 also transfers control to a client xdoor procedure
174 passing to it the local xdoor identifier 147 associated with the object and the
location of the buffer in the buffer pool 178 containing the object’s arguments (step
504).

If the requested object is within the same node (local object), the kernel client xdoor
procedure 174 uses the local xdoor identifier 147 to determine and call the
appropriate gateway handler 168 associated with the requested object. The kernel
client xdoor procedure 174 determines the appropriate gateway handler 168 by

utilizing the server handler pointer 141 (step 506).

10

156

20

25

30

CA 02240529 1998-06-15

-15 -

The gateway handler 168 maps the local xdoor identifiers of the requested object and
its associated arguments into their associated file descriptors. The gateway handler
168 utilizes the requested object’s file descriptor 154 to obtain the corresponding
door. The process location 166 in the door indicates the entry point into the server
domain for invoking the object. This is the server user xdoor procedure 128. The
gateway handler 168 transfers control to the server user xdoor procedure 128 passing
to it the door identifier of the requested object as well as other data (step 513). The
server user xdoor procedure 128 determines and calls the appropriate server handler
122 (step 514). The server handler continues the object invocation as will be

discussed below.

If the requested object is located in a remote node (remote object), the client kernel
xdoor procedure 174 maps the object’s arguments into their respective global xdoor
identifiers, allocates a buffer 178 to act as the reply buffer, formulates a logical
message including the object’s arguments, the system-wide identifier as well as other
information, assigns the message a RPC identifier, and transfers the message to the
transport procedure 176 (step 508). The transport procedure 176 sends the message

to the appropriate server node (step 509).

When the remote object invocation request arrives at the destination node, the
transport procedure 176 at the destination node receives the message and extracts
the system-wide identifier of the remote object. It determines whether or not the
xdoor 170 corresponding to the system-wide identifier exists in the node by searching
the kernel-level xdoor table 136 for a corresponding entry. If such an entry exists, the
transport procedure 176 transfers the message to the server kernel xdoor procedure
174 (step 510).

The server kemnel xdoor procedure 174 determines the appropriate server handler
169 to call based on the global xdoor identifier 140 associated with the remote object
invocation request and transfers control to this procedure along with the passed
arguments (step 512). The server handler pointer 141 in the xdoor corresponding to
the global xdoor identifier 140 indicates the appropriate server handler 169 (step 512).

For a user object, the server handler is a gateway handler 168.

10

156

20

25

30

CA 02240529 1998-06-15

-16 -

The gateway handler 168 maps the global xdoor identifiers 140 into their respective
file descriptors 154. The gateway handler 168 maps the requested object’s file
descriptor 154 into its associated door 162 and uses the door’s process location
pointer 166 to call the entry point into the server user domain (step 513). This entry
point is the server user xdoor procedure 128. The server used xdoor procedure 128

then transfers control to the associated server handler 122 (step 514).

The server handler 169 unmarshals the arguments into a generic format and calls the
server skeleton procedure 210 (step 515). The server skeleton procedure 210
converts the object’s data from the generic format into a format suitable for the

object’s method which is invoked (step 516).

Once the object’s method is executed, the return parameters are marshaled if no
exception was produced. Otherwise, the exception itself is marshaled. At this point,
the marshaled reply is ready (step 518). The server skeleton 210 converts the reply
into a generic format and calls the associated server handler procedure 169 (step
519). The server handler 169 marshals the reply data into buffers 178 and calls the
associated server xdoor procedure 174 passing the local xdoor identifier 147 (step
520).

Where the invoked object is a kernel object, control is passed to the server kernel

xdoor procedure 174 which is described in more detail below.

Where the invoked object is associated with a user domain (user object), the server
user xdoor procedure 128 maps the local xdoor identifiers into their respective file
descriptors 154. The server user xdoor procedure 128 then calls the associated
gateway handler 168 (step 521). The gateway handler 168 translates the file
descriptors 154 into their respective global xdoor identifiers 140 as well as format the
passed data into a form known by the server kemnel xdoor procedure 174 (step 522).

Processing control is then passed to the server kernel xdoor procedure 174.

The server kernel xdoor procedure 174 stores the reply in a reply buffer 178, formats
the reply into a logical message and assigns a RPC identifier, and transfers the

logical message to the server transport procedure 176 (step 523).

10

15

20

25

30

CA 02240529 1998-06-15

-17 -

The server transport procedure 176 transmits the message to the remote node (step
524). The client transport procedure 176 receives the message and calls the
appropriate client kernel xdoor procedure 174 (step 526). The client kernel xdoor
procedure 174 translates the global xdoor identifiers in the received message to their
corresponding local xdoor identifiers 147 and then passes the reply message to the
appropriate client handler 169 (step 528). The client handler 169 unmarshals the
arguments in the reply message into a generic format and calls the kernel client stub
procedure 208 (step 530). The kemnel client stub procedure 208 formats the
arguments into a suitable format for the kernel application 204 (step 532) and the

kernel application resumes (step 534).

The foregoing description focused on the manner in which object invocations are
performed utilizing the inter-process communications facility and ORB of the
underlying computing environment. An advantage of the remote object invocation
technology of the present invention is that the same modules and steps can be used
in both the client and server side of a remote object invocation. This minimizes the
need for additional interfaces to accommodate different processing modules in each

side of a remote object invocation.

Attention now turns to the manner in which this infrastructure is generated in order to

support object invocations as described above.

Exportation of Object References

An application can only access an object that it has been granted access to. An
application having access to an object exports a reference to that object to other
applications. This can occur when the object is passed as an argument in a remote
object invocation. When an object reference is exported, the ORB generates the
appropriate mechanisms that will support a subsequent remote object invocation for

the object by the domain receiving the reference.

The first time that an user object reference is passed to another domain, the client
user xdoor procedure 128 generates a door 162 and a file descriptor 154 for the

object reference. The door 162 is stored in the door table 132. The door’s process

10

16

20

25

30

CA 02240529 1998-06-15

-18 -

location 166 is set to the appropriate server-side user xdoor procedure 128.

The first time that an user object reference is passed to a remote node, the server-
side ORB generates an xdoor 170 for the object reference as well as a gateway
handler 168. The xdoor 170 contains a global xdoor identifier 140, a node identifier

142, a pointer 144 to the gateway handler 168, and a door identifier 146.

When a node receives an object reference that is not in its kernel xdoor table 136, the
client kerel xdoor procedure 174 generates an xdoor 170 for the object reference
and a handler 168. For an user object, the handler is a gateway handler and for a
kernel object, the handler is a client kernel handler. The xdoor 170 includes the
global xdoor identifier 140 and the node identifier 142 that is received in the remote
object invocation. The gateway handler 168 associated with the requested object is
used to generate a door 162 for the object reference and a file descriptor 154. The
process location of the door 162 points to the associated gateway handler 168.
Applications in the node utilize the file descriptor 154 as its handle for invocations on

this object.
By exporting object references in this manner, there is control over the applications
that can access an object. This provides a secure environment in which the threat of

disastrous results due to unauthorized access is minimized.

Alternate Embodiments

While the present invention has been described with reference to a few specific
embodiments, the description is illustrative of the invention and is not to be construed
as limiting the invention. Various modifications may occur to those skilled in the art
without departing from the true spirit and scope of the invention as defined by the

appended claims.

The present invention is not limited to the computer system described in reference to
Fig. 1. It may be practiced without the specific details and may be implemented in
various configurations, or makes or models of distributed computing systems, tightly-

coupled processors or in various configurations of loosely-coupled microprocessor

10

CA 02240529 1998-06-15

-19-

systems.

Further, the method and system described hereinabove is amenable for execution on
various types of executable mediums other than a memory device such as a random
access memory. Other types of executable mediums can be used, such as but not
limited to, a computer readable storage medium which can be any memory device,

compact disc, or floppy disk.

In addition, the present invention has been described with reference to a file
descriptor as the mechanism used to invoke an object. The present invention is not
limited to the use of a file descriptor. Other types of protected entities can be
employed to protect an object handle from unwanted access by a user or kernel

application.

10

15

20

25

30

CA 02240529 1998-06-15

-20-
WHAT IS CLAIMED IS:

1. A client/server computer apparatus, comprising:
a communications link;
one or more client computers connected to said communications link; and
one or more server computers connected to said communications link, each
said server computer comprising:

a plurality of objects, each said object having an associated server-side
protected entity used to invoke an object; and

an object exportation mechanism having a capability to export a
reference to an object to select ones of said client computers;

wherein each said client computer comprises:

a plurality of client-side protected entities, each said client-side
protected entity used to invoke an object resident in one of said server computers;
and

a remote object reference mechanism having a capability to generate a
client-side protected entity for each object reference that is exported to a client

computer.

2. The apparatus of claim 1,

wherein each said protected entity represents a kernel-level file descriptor.

3. The apparatus of claim 1,
said object exportation mechanism comprising:
an xdoor mechanism having a capability to generate a global identifier
uniquely identifying each exported object reference; and
a gateway handler having a capability to map a server-side protected
entity associated with an exported object reference into a corresponding global

identifier.

4. The apparatus of claim 1,
said remote object reference mechanism comprising:

an xdoor mechanism having a capability to generate a gateway handler
associated with a received exported object reference; and

10

15

20

25

30

CA 02240529 1998-06-15

-1 -

a gateway handler having a capability to generate a client-side protected

entity for said received exported object reference.

5. The apparatus of claim 4,

said client computer including an object invocation request mechanism having
a capability to invoke an object resident in one of said server computers;

wherein said object invocation request mechanism utilizes said gateway
handler to map a client-side protected entity representing a requested object into a
corresponding global identifier and utilizes said xdoor mechanism to formulate an

object invocation request including the global identifier.

6. The apparatus of claim 3,

said server computer including an object invocation mechanism having a
capability to service an object invocation request;

wherein said object invocation mechanism utilizes said xdoor mechanism to
transfer said received object invocation request to a gateway handler associated with
a requested object and utilizes said gateway handler to map a received global
identifier into a corresponding server-side protected entity that is used to invoke the

requested object.

7. The apparatus of claim 6,

said server computer including a server-side reply mechanism having a
capability to formulate a reply in response to an object invocation request;

wherein said server-side reply mechanism utilizes said gateway handler to map
server-side protected entities included in said reply into corresponding global xdoor
identifiers and utilizes said xdoor mechanism to format said reply for transmission to

an associated client computer.

8. The apparatus of claim 5,

said client computer including a client-side reply mechanism having a capability
to handle a received reply in response to an object invocation request;

wherein said client-side reply mechanism utilizes said xdoor mechanism to
determine a gateway handler associated with the received reply and utilizes said

gateway handler to map global identifiers in the received reply to corresponding client-

10

15

20

2b

30

CA 02240529 1998-06-15

-22.

side protected entities in order to process the received reply.

9. A computer-implemented method for performing a remote object invocation for
use in a computing system including a plurality of client and server nodes, said
method comprising the steps of:

providing in each said server node a plurality of objects, each said object
associated with a server-side protected entity used to invoke an object;

exporting a reference to an object to one or more of said client nodes, each
said object reference including a global identifier that uniquely identifies the exported
object within said system;

associating in each client node that receives an exported object reference a
client-side protected entity that is used to invoke the exported object resident in the
server node;

generating in a client node a remote object invocation request to invoke an
object having an associated client-side protected entity, said remote object invocation
request including a global identifier corresponding to a requested object; and

transmitting said remote object invocation request to an intended server node.

10. The method of claim 9,

receiving in a server node a remote object invocation request to invoke a
specific object;

mapping each global identifier in the remote object invocation request into a
corresponding server-side protected entity; and

utilizing the server-side protected entity to invoke the specific object.

11. The method of claim 10,

formulating in a server node a reply to said remote object invocation request,
said reply including the server-side protected entity identifying the invoked specific
object;

mapping the server-side protected entity into a corresponding global identifier;
and

transmitting the reply including the invoked specific object’s global identifier to
an intended client node.

CA 02240529 1998-06-15

-23.

12. The method of claim 11,
receiving in a client node the reply;
translating a global identifier included in the reply into an associated client-side

protected entity; and
5 utilizing the client-side protected entity to process the reply.

13. The method of claim 9,
wherein the server-side protected entity and the client-side protected entity is a
file descriptor.
10

smart & Biggar
Oiiawa, Canada
patent Agents

02240529 1998-06-15

CA

I 7TdNOA

~— ¥0i
= — _— ez0l
~ qcol lﬁ 0 o
U 3AdON } 3AON
urewoq [auid Gel
0 euioq [BtSA urewoq |oueM @ !
o @
¥ <0zt
speaJyl 701l =
* & ® v& D%
~0Cl .« o o Slqo
B T e - o], 0
Pj pLapou[) | S11 7] p! muocAw ¥iqo F
vp) |43 ¥lgo e JoopX |eqo|b oZ‘\l ov\tﬁoux [eqoI0 vel » Lqo [¢* fE
oer | 281 elaeLyer eiqeL GeleweL O 9El I8l gqe) ZEL OEl
ej Jooq sjge
o|qel pd j00Q Jojpueq JOOpX |aua) 100pY [9WdM joipuey (P19€L Jo0d 8IqeL P4
_ oo culewoq Jasn _|||_
$20.d : turewoq Jasn || Mso0ug Yp) (¢ “N’W/{mwv
o set 1| soopx [+ S0,
Jesn ¥py L0 L1 sos [[A0]] fNAN_‘ 0
8217 92l m_eﬂ@\ elqe ¢} speaiyl g 9¢t m_nmp@ _M_Q,M.: speaiy]
JoopX JasM) JajpueH ~o0Zl Joopy Jasn P YA
Curewo(JasN Lulewoq Jasn
0
0 — s20.d ™
0
o 901 185N [o)qe 1 speaiy)
@»\ Py AA) mbm,ml:._.r 8cl~ Joopy Jesn @ m_n,mHNN_ <oz
Joajpuey och 174" JsjpueH
R~

00l

CA

02240529 1998-06-15

User Xdoor Table Handler Table
126 ~ 124~ 122
198 _o local xdoor id <4 Handler Code 1 -~ Object
156 Reference
handler ptr \ Handler Code 2 | €«
158 - door id
152/ [yser xdoor 150 ~
Handler Code Method
e \ Table
128~
user xdoor User Xdoor |e—
Buffer Pool 1/60 Procedures
USER
: . KERNEL
File Descriptor Table Door Table
130 ~ 154 132
fd <
155 fd1 |, | Doorq
2 Dooro
fdn - 164
Kernel Xdoor Table Doorp, [*|door identifier —-m/ss
140 _ 136~ 162 process location E=—
14> T19lobal xdoor id
node id ¢ oo Kernel
144 handler pt Object
141 [handler pirs Handler Table jec
143 server 134 — (/\5eference
146]] client '\ Handler Code 4
147 || door identifier Handler Code 2 160 ~
~+— local xdoor id
.. Method
170_/’— ..o e 0 0 168 Table
Gateway Handler ‘1'%5 I
I Handler Coden
174~ 176 178~ Buffer Pool
Kernel Xdoor Transport
Procedures Procedures

FIGURE 2

CA 02240529 1998-06-15

1
200 :
Client User Application -~ | 214 — Object
$ 202 | 3
Client Stubs | | 942_ Server Skeletons
e 122 : t
Client Handler ! 122 A Server Handler
|
¢ 128 | e
Client Xdoor 1+~ ! 128 Server Xdoor
|
|

User Domainj Wser Domain, USER
piuietieieiee bk NG T S~
KERNEL
Door Table) KERNEL
168 174 — 176 —
Gateway |«—»Client Xdoor |«—| Transport
204 — 208 \T N
Kernel Kernel Client Client
Application Stubs Handler
169
206 ~ I 210 — N\
Kernel Kernel Server Server
. —>
Objects Skels € 7| Handler [
NODE 1

FIGURE 3A T

-

CA

02240529 1998-06-15

200

Client User Application

$

202

Client Stubs

v

—122

Client Handler

i

128

Client Xdoor

User Domaing

Door Table

214

Object

212~ %

Server Skeletons

122, 3

Server Handler

128 — %

Server Xdoor

176 174 — 168 —
|| Transport Server Xdoor Gateway
204 ~N ZOS\T T 4_]
Kernel Kernel Client|,_ | Client
Application — Stubs Handler
I 169
206~ 210~
Kernel Kernel Server Server
. ld—> 4P
Objects Skels Handler [
NODE 2
.
FIGURE 3B

KERNEL

CA 02240529 1998-06-15

Client user application
references an object

!

Client stub procedure

- formats the object’'s arguments
into a generic format and

- calls the associated client

handler
v

Client handler

- marshals the object’s args into
buffers and

- calls the associated user xdoor
procedure with the local xdoor id

¥

400
_—

402

404

Client user xdoor procedure

- maps local xdoor id into a file
descriptor

- suspends client application

- makes appropriate RPC

406
,—

local node

remote node

!

N 409—

Server user xdoor procedure
- maps the client file
descriptor into server file
descriptor

- transfers control to server
handler

Gateway handler

- translates object’s file descriptor to
global xdoor id

- manipulates the data into form
known by kernel xdoor procedure

- translates door references being
passed to global xdoor ids

- calls client kernel xdoor procedure

kernel domain

l remote node

410 —

Client kernel xdoor

server handler

-transfers control to appropriate

®

FIGURE 4A

CA 02240529 1998-06-15

412

Client kernel xdoor procedure

- allocates a buffer pool from transport
to act as reply buffer

- converts object args into a logical
message and assigns RPC id

- transfers the message to the

transport
l 414

Client transport procedure transmits
the message to remote node

v 416

Server transport procedure

-receives the message & determines
if transmitted to the correct node

- calls appropriate xdoor procedure

! 418

Server kernel xdoor procedure
-calls appropriate gateway handler

kernel object | l user object
Y l 420
/-
@ Server gateway handler
-converts global xdoor ids into file
descriptors
-calls server user xdoor proc
! —421

Server user xdoor proc
-determines appropriate server handier

®

FIGURE 4B

CA 02240529 1998-06-15

i ~ 422
Server handler

-unmarshals the args into a generic format
-calls the server skeleton procedures

kernel

l 424
Server skeleton
-converts args from generic format to
format specific for object
-invokes the object

l 426
Object method is executed and a reply
generated
l —428

Server skeleton
-converts reply into a generic format
-calls associated server handier

l Ve 430
Server handler

-marshals the reply data into buffers
-calls associated server user xdoor

procedure with local xdoor id

* » user

object l
Server user xdoor procedure

-maps the local xdoor id into a file

object

descriptor
-makes appropriate RPC

FIGURE 4C

CA 02240529 1998-06-15

local remote
node 436
o | noce
Client user xdoor proc Gateway handler
-maps server file descriptors -translates file descriptors to global
into client file descriptor xdoor ids

-transfers control to client

-manipulates data into form known by
server kernel xdoor proc

handler

(e)—

l 438

Server kernel xdoor procedure
-stores reply in reply buffer

formats a logical message and
assigns a RPC id

-transfers message to transport proc

l 440

Server transport procedure transmits

the message to the remote node

l 442

Client transport procedure
-receives the message and
-determines and calls appropriate
client kernel xdoor procedure

=

Client kernel xdoor procedure
-calls appropriate handler code

FIGURE 4D

©

-~

CA 02240529 1998-06-15

; 446

| Client gateway procedure
-converts global xdoor id to
file descriptors

-calls client user xdoor proc

| 448

Client User Xdoor

-maps file descriptor to local
xdoor ids

-calls client handler

l /450
Client handler

@_, -unmarshals arguments into a
generic format

-calls client stub procedures

l 452

Client stub
-formats args into format suitable
for application

l —454

Client application resumes

I

Return

FIGURE 4E

CA 02240529 1998-06-15

500
Kernel application
references a kernel object
| 502

Kernel client stub procedure

- formats the object’s arguments into
a generic format and

- calls the associated client handler

v i

504

Client handler

- marshals the object’s args into buffers
- calls the associated client xdoor
procedure with the local xdoor id

local object l remote object
506. ~ v l 508
Client Kernel Xdoor Client kernel xdoor procedure
-calls gateway handler - maps args & object into global xdoor
ids
- allocates a buffer pool from transport
@ to act as reply buffer
- converts object args into a logical
message and assigns RPC id
- transfers the message to the
transport
| 509

the message to remote node

Client transport procedure transmits

;

FIGURE SA

CA 02240529 1998-06-15

9

510

Server transport procedure
-receives the message & determines
if transmitted to the correct node
-calls xdoor procedure

! 512
Server kernel xdoor procedure
-calls appropriate client handler
user object v kernel object 515
v 51

513~ [

Gateway handler

_maps local xdoor ids —| -unmarshals the args into a

into file descriptors

Server handler

generic format

514 Il

-calls the server skeleton proc

:

516

Server user xdoor proc
-maps client file descriptors
into server file descriptors
-calls server handler

I

Server skeleton

-converts data from generic
format to format specific for
object

-invokes object

! 518

Object method is
executed and a reply
generated

! 519

Server skeleton
-converts reply into a
generic format

-calls associated server
handler

®

FIGURE SB

CA 02240529 1998-06-15

? 520

Server handler

-marshals the reply data into buffers
-calls associated server xdoor proc

user object

l kernel object

y

Vs 521

Server user xdoor proc
-maps local xdoor id into

file descriptor

-calls gateway handler

!

/ 522

xdoor proc

Gateway handler
-translats file descriptors
into global xdoor ids
-formats data into form
known by server kernel

1 523

Server kernel xdoor procedure
-stores reply in reply buffer

assigns RPC id

formats a logical message and

-transfers message to transport

!

/524

Server transport procedure transmits
the message to the remote node

l

! 526

Client transport procedure
-receives the message and
-calls appropriate client kernel
xdoor procedure

l /528

Client kernel xdoor procedure
-calls appropriate handler code

®

FIGURE 5C

CA 02240529 1998-06-15

©

I 530

Client handler

-unmarshals arguments into a
generic format

-calls kernel client stub procedure

l 532

Kernel client stub
-formats args into format suitable
for application

| 534
Kernel application resumes

l

Return

FIGURE 5D

o~

120 Handler
120, ppJable
Threads 2 128 Threads |
106
121 -7 112 o
0 1 0
User Domaint User Domaing
120 Handler User Xdoor 120 Handler User Xdoor
Threads 190Table @ 128 114 Threads |[1ppTable bjg YTable 126 128
23 o} > User 108 fd4 User
\\O/O*l Xdoor | | | 138 Xdoor
1260”7 Procs User Domaing Procs
- — 4
~__[" User Domainz vee
Fd Table gl)ggr Table| Handler karnel Xdoor Kemel Xdoor TH;"d|$£4T E;’O;az F%Bable
a able
130~ TPEa (able Table 135~ 140/ | 110 4ot 136 e 13
fdg %o ylgiobal xdoor [, 116 . global xdoor obi4 Tia
s VAERT hode i 1142 6 | 42inodeid 5
[0 15 e <+ > e w e
fd A 120~
fd3 re fdo . Threads| [* " °
Threads . big
@ Kerne! Domain) o
135 Kernel Domain
NODE 1 NODE n
1022 — ___% 1 - 1020~

104 —

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - CLAIMS
	Page 24 - CLAIMS
	Page 25 - CLAIMS
	Page 26 - CLAIMS
	Page 27 - DRAWINGS
	Page 28 - DRAWINGS
	Page 29 - DRAWINGS
	Page 30 - DRAWINGS
	Page 31 - DRAWINGS
	Page 32 - DRAWINGS
	Page 33 - DRAWINGS
	Page 34 - DRAWINGS
	Page 35 - DRAWINGS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - DRAWINGS
	Page 39 - DRAWINGS
	Page 40 - REPRESENTATIVE_DRAWING

