FIG 1

(51) International Patent Classification:
G07F 15/00 (2006.01) B60L 11/18 (2006.01)

(21) International Application Number:
PCT/US2009/065229

(22) International Filing Date:
20 November 2009 (20.11.2009)

(25) Filing Language:
English

(30) Priority Data:

(71) Applicant (for all designated States except US): GENERAL ELECTRIC COMPANY [US/US]; 1 River Road, Schenectady, NY 12345 (US).

(72) Inventor: and
(75) Inventor/Applicant (for US only): LITTRELL, Nathan, Bowman [US/US]; 1914 Cutter Lane, Gardnerville, NV 89410 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(i))
— as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(ii))

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR ROAMING BILLING FOR ELECTRIC VEHICLES

(57) Abstract: A vehicle charging station for use with a system for transmitting charging power to an electric vehicle is configured to receive a unique identifier from the electric vehicle and determine a preferred electrical charging power provider based on the identifier. Vehicle charging stations are further configured to determine an account associated with the preferred provider and with the identifier, deliver a quantity of electrical charging power to the electric vehicle, and meter the quantity of electrical charging power delivered to the electric vehicle.
SYSTEM AND METHOD FOR ROAMING BILLING FOR ELECTRIC VEHICLES

BACKGROUND OF THE INVENTION

The subject matter disclosed herein relates to the charging of a mobile electric load and more specifically to systems and methods for use in billing a customer for charging an electric vehicle at locations within and without the customer’s local electric vehicle area.

As electric vehicles and hybrid electric vehicles gain popularity, an associated need to accurately manage delivery of electrical charging power to them has increased. Moreover, a need to recognize revenue due to the electric vehicle supplier is created by the increased use of such vehicles.

At least some known transaction systems facilitate identifying a vehicle during a transaction using wireless communication methods such as RFID and remote transmitters. For example, at least some of such systems read a prepaid RFID card earned within a vehicle to collect expressway tolls while the vehicle moves within a predetermined range of speed through a toll booth. The vehicle is identified based on the RFID card and a toll amount is automatically deducted from an existing account.

Moreover, at least some known communications systems enable the distribution of data, such as operating data, between a vehicle on-board computer and transponders located either within the vehicle or remote from the vehicle. For example, transponders within the vehicle may communicate vehicular operating conditions to the on-board computer. Transponders remote to the vehicle may communicate toll booth information, vehicle information, parking costs, and road conditions to the on-board computer. Furthermore, at least some known transaction systems enable transaction information to be communicated between a vehicle-mounted interface and a remote transaction unit. For example, transaction information may be communicated between the vehicle-mounted interface system and
a bank teller unit used to withdraw and/or deposit funds to an account. Moreover, transaction information may be communicated between the vehicle-mounted interface system and a drive-through point-of-sale system used to purchase goods and/or services.

[0001] In addition, at least some known electricity delivery systems provide electric metering at a customer's premises. For example, some delivery systems use an encoded magnetic strip applied to a card to transfer purchase information between a utility billing office and a utility metering and control device located at the customer's premises. A credit meter stored within the control device deducts a value associated with a quantity of electricity consumed at the customer's premises. Some of such systems also enable the use of an emergency card that includes a similar encoded magnetic strip when the customer's account with the purchased quantity is exhausted. However, generally such systems do not meter electrical charging power delivered to a specific electric load, and are thus not compatible for use with electric vehicles.

[0002] Furthermore, at least some known systems enable roaming capabilities for use of mobile communications systems. More specifically, a communication device, such as a mobile phone, is configured for a network operated by a specific operator, and when the mobile phone is used outside of that network the outside provider bills the specific operator for its customer's usage and the specific operator would then bill its customer for the roaming usage, usually including an additional fee for the benefit of roaming. Such systems are intended for roaming of a mobile phone for communications purposes.

[0003] None of the above-described communication and/or transaction systems enable an electric vehicle charging station to obtain a unique identifier of an electric vehicle for use in a transaction that includes delivering electrical charging power to the electric vehicle even when the electric vehicle is outside of the area operated by its preferred provider. Accordingly, systems and methods that facilitate identifying an electric vehicle, and its preferred provider, prior
to delivering electrical charging power and or ieeogming revenue from the delnerv of electrical charging power to elct evehicles is desirable

BRHf DFSCRIPtiON OF IHF IN FIOK

0004 1 This Brief Desct ion is pren ided to introduce a selection of concepts m a simplified foim that are further described beknx in the Detailed Description. This Brief Description is not intended to sdnufs kev features or essential features of the claimed subject matter, nor is it intended to he used as an aid in determining the scope of the claimed subject matter.

0005] In one aspect, a \elude charging station for use with a stem for transmitting chatmg posxer to an electric vehicle is configured to communica txe coupling to the electnc xhicle, electrical K couple to the electric Xhicle via a connected receive a umq identifier from the electnc xhicle, and determine a pieferred electrical charging power provider based on the identifier Vehicle charging station is further configured to determine an account associated with the preferred provider and xuth the identifier, deli\r a quant of electncal charging posxer to the electnc xhicle via the connector, and meter the quant\ly of electrical charging power deln ered to the electric xhicle.

1006] In another aspect, a vehicle charging system for use in chaiging an electric vehicle includes a vehicle charging station configured to communicatixex, couple to the electnc xhicle, electncalh, couple to the electnc xhicle via a connector receive a unique identifier from the electnc xhicle, deliver a quantix of electncal charging posxer to the electnc \xhicle via the connector, and meter the quantux of electrical charging power delivered to the electnc xhicle. The xstem further includes a scnr xystera coupled to the \xhicle charging station. Wherein the server xystera is configured to determine a preferred electucal charging posxer provider based on the identifier, determine an account associated with the identifier, and determine a transaction amount based on the quant\> of electrical charging posxer delivered to the electric xhicle by the xhicle charging station.
In a further aspect, a method for charging an electric vehicle includes communication coupling the vehicle charging station to the electric vehicle, receiving a unique identifier from the electric vehicle, and determining a preferred electrical charging power provider for the electric vehicle based on the identifier. The method further includes determining an account associated with the preferred provider and the identifier, delivering a quantity of electrical charging power to the electric vehicle at the vehicle charging station.

Figure 1 is a simplified block diagram of an exemplary electric vehicle delivery system for use with a roaming electric vehicle. Figure 2 is an expanded block diagram of an exemplary embodiment of a system architecture of the system shown in Figure 1. and Figure 3 is a flowchart illustrating an exemplary method for use in delivering electrical charging power to a roaming electric vehicle using the system shown in Figures 1 and 2.

In some embodiments, the term "electric vehicle" refers generally to an electric vehicle that includes one or more electric motors that are used for propulsion, such as an all-electric vehicle that uses an electric engine, and/or a plug-in hybrid-electric vehicle that uses a gasoline powered engine in combination with batteries charged by an external power source or an engine and generator, to propel the vehicle.
In addition, the terra “electric vehicle’’ includes any suitable vehicle known to those skilled in the art and guided by the teachings herein provided that is capable of performing the functions described herein.

[0013] A controller, computing device, or computer, such as described herein, includes at least one or more processors or processing units and a system memory. The controller typically also includes at least some form of computer readable media. By way of example and not limitation, computer readable media may include computer storage media and communication media. Computer storage media may also include volatile and nonvolatile, removable and non-
removable media implemented in any method or technology that enables storage of information, such as computer readable instructions, data structures, program modules, or other data. Communication media typically embody computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism and include any information delivery media. Those skilled in the art should be familiar with the modulated data signal, which has one or more of its characteristics set or changed in such a manner as to encode information in the signal. Combinations of any of the above are also included within the scope of computer readable media.

Although described in connection with an exemplary energy delivery system environment, embodiments of the invention are operational with numerous other general purpose or special purpose computing system environments or configurations. The energy delivery system environment is not intended to suggest any limitation as to the scope of use or functionality of any aspect of the invention. Moreover, the energy delivery system environment should not be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplars’ operating environment. Examples of well known systems, environments, and/or configurations that may be suitable for use with aspects of the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, mobile telephones.
network PCs, minicomputers, mainframe computers, distributed computing environments that include an or the abovementioned systems or devices, and the like.

[0015] Embodiments of the invention may be described in the general context of computer-executable instructions, such as program modules, executed by one or more controllers, computers, or other devices. Aspects of the invention may be implemented with an number and organization of components or modules. For example, aspects of the invention are not limited to the specific computer-executable instructions or the specific components of modules illustrated in the figures and described herein. Alternative embodiments of the invention may include different computer-executable instructions or components having more or less functionality than illustrated and described herein.

[0016] The order of execution or performance of the operations in the embodiments of the invention illustrated and described herein is not essential. Unless otherwise specified, the operations are performed in any order unless otherwise specified, and embodiments of the invention may include additional or fewer operations than those disclosed herein. For example, it is contemplated that executing or performing a panic unit operation before, in the examples with other operations after another operation is within the scope of aspects of the invention.

[0017] In some embodiments, a processor includes an expandable system including systems and microcontrollers, reduced instruction set circuits (RISC) application specific integrated circuits (ASIC), programmable logic circuits (PLC), and other encoders, or processor capable of executing the functions described herein. The above examples are exemplary, and thus are not intended to limit in any way the definition and meaning of the term processor.

[0018] In some embodiments, a database includes a collection of data including hierarchical databases, relational databases, object-relational databases, object-oriented databases, and other structured collection of records or data that is stored in a computer system. The above examples are exemplary, and thus are not intended to limit in any way the definition and/or
meaning of the term database. Examples of databases include, but are not limited to only including, Oracle* Database, MySQL, IBM® DB2, Microsoft® SQL Server, Sybase*, and PostgreSQL. However, any database may be used that enables the systems and methods described herein (Oracle is a registered trademark of Oracle Corporation, Redwood Shores, California; IBM is a registered trademark of International Business Machines Corporation, Armonk, New York; Microsoft is a registered trademark of Microsoft Corporation, Redmond, Washington; and Sybase is a registered trademark of Sybase, Dublin, California.)

[0019] Technical effects of the methods, systems, and vehicle charging station herein include at least one of communicatively coupling a vehicle charging station to the electric vehicle, electrically coupling the vehicle charging station to the electric vehicle via a connector, receiving a unique identifier from the electric vehicle, determining a preferred electrical charging power provider, determining an account associated with the preferred provider and the identifier, determining whether to approve or deny service to the electric vehicle, delivering a quantity of electrical charging power to the electric vehicle via the connector, metering the quantity of electrical charging power delivered, determining a transaction amount based on the quantity of delivered electrical charging power, and deducting the transaction amount from the account.

[0020] Figure 1 is a simplified block diagram of an exemplary electricity delivery system 100 for use with a roaming electric vehicle 102. In the exemplary embodiment, system 100 includes a server system 104, a vehicle charging station 106 that is coupled to server system 104, and a vehicle charging station 107 used when electric vehicle 102 is roaming outside of its preferred service area. As shown in Figure 1, server system 104 may be coupled to a plurality of vehicle charging stations 106 and 107. In one embodiment, vehicle charging station 106 is coupled to a network 108 that enables vehicle charging station 106 to access server system 104 over network 108. In one embodiment, network 108 includes a private network such as a wide area network. In another embodiment, network 108 includes a public network, such as the Internet. Vehicle charging stations 106 and 108 may be
connected to network 108 through many interfaces such as a local area network (LAN), a wide area network (WAN), dial-in connections, cable modems, wireless modems, and/or special high-speed Integrated Services Digital Network (ISDN) lines. A database server 110 includes a database 112 that contains information on a variety of matters, such as account information related to electric vehicle power distribution. In the exemplary embodiment, centralized database 112 is stored in server system 104 and is accessed via at least one vehicle charging station 106. In an alternative embodiment, database 112 is stored remotely from server system 104 and may be non-centralized. Moreover, in the exemplary embodiment, each of a plurality of vehicle charging stations 106 and 107 is capable of providing electrical charging power to at least one electric vehicle 102 via at least one connector 113. Each electric vehicle 102 stores the electrical charging power and uses the stored power for propulsion, rather than, or in addition to, more conventional energy sources such as gasoline.

As described in more detail below, in the exemplary embodiment, vehicle charging stations 106 and 107 are configured to communicatively couple to the electric vehicle and electrically couple to the electric vehicle via connector 113 for delivery of electrical charging power. Each electric vehicle 102 includes a unique identifier that is received by one of vehicle charging stations 106 and 107 and used by one of vehicle charging stations 106 and 107 and/or server system 104 to identify electric vehicle 102, a preferred electrical charging power provider 114 for electric vehicle 102, and/or an account associated with electric vehicle 102. For example, in one embodiment, database 112 may include transactional and/or accounting data related to prepayment information associated with a quantity of electrical charging power that has been paid for in advance for later distribution to electric vehicle 102. Moreover, database 112 may include historical electrical charging power distribution data, such as transaction dates, and/or a quantity of electrical charging power delivered to electric vehicle 102 for each transaction. Further, database 112 may include historical payment information, such as prepayment dates and/or prepayment amounts.
[0022] In the exemplar- embodiment, database 112 includes data related to one or more of preferred electrical charging power provider 114 and at least one roaming third-party electrical charging power provider 116. More specifically, in the exemplary embodiment, when at least one electric vehicle 102 roams outside of an area serviced by preferred provider 114, vehicle charging station K0? coupled to roaming third-party provider 116 transmits the unique identifier to roaming third-party provider 116 to determine preferred provider 114. Roaming third-party provider 116 then transmits the unique identifier to server system 104 at preferred provider 114 to determine an account associated with preferred provider 114 and the unique identifier using a database search. Vehicle charging station 107 determines a present balance of the account and denies access to electrical charging power if the present balance of the account is less than a predetermined balance. Further, vehicle charging station 107 may provide service to electric vehicle 102 by delivering a quantity of electrical charging power to electric vehicle 102. Vehicle charging station 107 also meters a quantity of electrical charging power delivered to electric vehicle 102 and transmits the metered quantity to roaming third-party provider 116 to determine a transaction amount based on a rate for electrical charging power from roaming third-party provider 116. In the exemplary embodiment, vehicle charging station 107 coupled to roaming third-party provider 116 then transmits the transaction amount to server system 104 at preferred provider 114, and server system 104 deducts the transaction amount from the account and transfers the transaction amount from preferred provider 114 to roaming third-party provider 116. As used herein, the term “balance” includes any amount of money available in an account for use in paying for electrical charging power, such as an amount of cash on deposit in an account and an amount of credit available on an account, including a credit card and line of credit.

[0023] The embodiments illustrated and described herein as well as embodiments not specifically described herein, but within the scope of aspects of the invention, constitute exemplary means for identifying an electric vehicle requesting service from at least one of preferred provider 114 and/or roaming third-party provider 116. For example, when electric vehicle 102 is within the service area for
preferred provider 114. Vehicle charging station 106 determines an account and present balance via server system 104, and the transaction amount is based upon a rate for electrical charging power from preferred provider 114. Alternatively, when electric vehicle 102 is outside the service area for preferred provider 114 and the service area for roaming third-party provider 116, the account and present balance are determined via roaming third-party provider 116 to enable vehicle charging station 107 to provide service to electric vehicle 102 and substitute a metered transaction amount to preferred provider 114 for payment and/or billing to user/customer. For example, server system 104, vehicle charging station 106, vehicle charging station 107, and/or any other similar computer device that is programmed with computer-executable instructions as illustrated in Figure 1, provides exemplary means for identifying an electric vehicle 102 and an associated account based on the unique identifier and the preferred provider 114.

[0024] Figure 2 is an expanded block diagram of an exemplary system architecture 200 of system 100 (shown in Figure 1). Components in system architecture 200 that are identical to components of system 100 are identified in Figure 2 using the same reference numerals used in Figure 1. In the exemplary embodiment, system 200 includes server system 104, vehicle charging station 106, and vehicle charging station 107. Server system 104 also includes database server 110, an application server 202, a web server 204, a directory server 206, and a mail server 208. A disk storage unit 210 is coupled to database server 110 and to directory server 206. Disk storage unit 210 may include, but is not limited to only including, a Network Attached Storage (NAS) device and/or a Storage Area Network (SAN) device. In one embodiment, database 112 is stored in database server 110. In the exemplary embodiment, database 112 is coupled to database server 110 and disk storage 210. Servers 110, 202, 204, 206, and 208 are coupled in a local area network (LAN) 212. Moreover, a system administrator workstation 214, a user workstation 21.6. and a supervisor workstation 218 may be coupled to LAN 212 to enable communication with server system 104.
Alternatively, workstations 214, 216, and 218 may be coupled to LAN 212 using a link to an Internet 219, or alternatively, may be coupled through network 210 that may include a private network. In one embodiment, an owner or user of electric vehicle 102 may access server system 104 via web server 204 to access, for example, the user’s account and/or a payment service that enables the user to pay for electrical charging power that has been delivered to electric vehicle 102 via the connector 113 or will be delivered to electric vehicle 102. Moreover, in one embodiment, mail server 208 may be configured to send a message, such as an email message, to the user when the user’s account balance falls below a predetermined balance. Alternatively, a user may setup a periodic reminder, wherein mail server 208 transmits a message to the user at a configurable periodic rate or when the account balance reaches a predetermined balance as a reminder to prepay for electrical charging power to be delivered later to electric vehicle 102. Vehicle charging stations 106 includes a network module 220 used to communicate with server system 104, aid vehicle charging station 107 includes network module 220 used to communicate with roaming third-parts’ provider 116. The systems and processes, are not limited to being practiced using a WAN type communication method or Internet 219.

To facilitate communication between electric vehicle 102 and one of vehicle charging stations 106 and 107, electric vehicle 102 includes a unique vehicle identifier 222. In the exemplars’ embodiment, identifier 222 is a number generated by server system 104 upon creation of the user’s account. In one embodiment, unique vehicle identifier 222 includes a manufacturer provided vehicle identification number (VIN) of electric vehicle 102. In other embodiments, identifier 222 can be one or more of an electrical charging power supplier account number, a pre-paid stored value account number, a credit account number, or any suitable identifying number of a type known to those skilled in the art and guided by the teachings herein provided that is capable of being used as described herein. In one embodiment, unique vehicle identifier 222 is accessible only upon authorization by the user of electric vehicle 102, as to restrict unauthorized access to unique vehicle identifier 222. In another embodiment, a new unique vehicle identifier 222 is
generated after completion of one or more transactions for the delivery of electrical charging power, and identifier 222 is stored in electric vehicle 102 and server system 104 for a subsequent transaction. Electric vehicle 102 also includes a vehicle communications module 224 for use in communicatively coupling electric vehicle 102 to one of vehicle charging stations 106 and 107 via station communication module 225.

[0027] In the exemplary embodiment, identifier 222 is linked in database 112 to an account associated with electric vehicle 102. An account balance is maintained within database 112 including prepayments made to the account by the account owner. Alternatively, identifier 222 may be linked to an account associated with a person, such that an account balance may be allocated among one or more electric vehicles 102. Further, in the exemplary embodiment, vehicle charging stations 106 and 107 each include a station meter 226 that tracks a quantity of electrical charging power delivered to electric vehicle 102. Moreover, in the exemplary embodiment, electric vehicle 102 includes a vehicle meter 228 that tracks a quantity of electrical charging power received by electric vehicle 102.

[0028] During use, when a customer desires to charge electric vehicle 102, electric vehicle 102 is communicatively coupled to one of vehicle charging stations 106 and 107 via vehicle communication module 224 and station communication module 225. More specifically, in one embodiment, if electric vehicle 102 is in an area serviced by preferred provider 114, then vehicle charging station 106 transmits identifier 222 to server system 104, and server system 104 determines an account and account balance associated with identifier 222. In another embodiment, if electric vehicle 102 is roaming in an area that is not serviced by preferred provider 114, then vehicle charging station 106 transmits identifier 222 to roaming third-party provider 116 that provide service to an area in which vehicle charging station is located. Roaming third-party provider 116 determines preferred provider 114 for electric vehicle 102 and transmits identifier 222 to server system 104 operated by preferred provider 114. Server system 104 determines an account and account balance associated with identifier 222.
Moreover, in one embodiment, to determine whether electric vehicle 102 is in an area serviced by preferred provider 114, electric car 102 may transmit a location of electric vehicle 102 to one of vehicle charging stations 106 and 107. In such an embodiment, electric vehicle 102 may obtain the location via one of a Global Positioning Satellite (GPS) receiver (not shown), a wireless mobile communications provider device (not shown), from vehicle charging stations HxS and 107, via inference through a known location of vehicle charging stations 106 and 107, or from any means known to those skilled in the art that is capable of performing the functions described herein. Moreover, in such an embodiment, server system 104 may use the location information to determine a different rate per unit of electrical charging power for service to electric vehicle 102. Further, in such an embodiment, server system 104 may also use the location information to determine an availability of electrical charging power to one of vehicle charging stations 106 and 107. and based on such a determination, electric vehicle 102 may be denied service, or service may be delayed for a period of time, as to avoid, for example, peak charging times, a per unit cost higher than desired by the user or the owner of electric vehicle, or an electricity shortage.

In another embodiment, server system 104 also communicates via vehicle charging stations 106 and 107, and/or roaming third-party provider HxH to request the delay of service to avoid, for example, peak charging times, a per unit cost higher than desired by the user or the owner of electric vehicle 102, and/or an electricity shortage. Further, in one embodiment, one of vehicle charging stations 106 and 107 is coupled to at least one visual display (not shown), that is attached to at least one of electric vehicle 102 and vehicle charging stations 106 and 107 to output to at least one display at least one of a quantity of electrical charging power delivered, a monetary value of the quantity of electrical charging power delivered, and a quantity of electrical charging power remaining to be delivered.

In the exemplary embodiment, if the account balance meets a predetermined balance, one of vehicle charging stations 106 and 107 is instructed to enable service to electric vehicle 102. Moreover, if the account balance does not meet
the predetermined balance, service to electric vehicle 102 is denied and a message is
displayed to the user/customer stating the reason for the denial. Further, server
system 104 may issue a temporary credit to the account balance to meet the
predetermined balance. In one embodiment, one of vehicle charging stations 106 and
107 meters electrical charging power delivers to electric vehicle 102 using a different
rate per unit of electrical charging power, such as a higher rate, when a temporary
credit is issued. In another embodiment, server system 104 may instruct one of
vehicle charging stations 106 and 107 to deny service to electric vehicle 102 when the
account associated with identifier 222 has been put into a hold state. In such an
embodiment, a “hold” state may be placed on the account based on, for example, a
delinquent payment by the customer and/or a report of electric vehicle 102 being
stolen

[0032] In the exemplary embodiment, when service to electric
vehicle 102 is enabled, one of vehicle charging stations 106 and 107 delivers a
quantity of electrical charging power to electric vehicle 102. During delivery, one of
vehicle charging stations 106 and 107, via station meter 226, and electric vehicle 102,
via vehicle meter 228, each meter the quantity of electrical charging power delivered.
If electric vehicle 102 is within the area serviced by preferred provider 114, then
vehicle charging station 106 transmits the measured quantity to server system 104 to
determine a transactional amount and server system 104 deducts the transactional
amount from the account. Alternatively, when electric vehicle 102 is roaming,
vehicle charging station 107 transmits the measured quantity to roaming third-party
provider 116 to determine a transactional amount. Roaming third-party provider 116
transmits the transaction amount to server system 104 at preferred provider 114 and
server system 104 deducts the transaction amount from the account. Server system
104 then transfers the transaction amount from preferred provider 114 to roaming
third-party provider 116. If the final transaction amount is greater than the account
balance, server system 104 may issue a temporary credit using a different rate, such as
a higher rate, as described above, and may charge a fee for issuing the temporary
credit. In addition, in one embodiment, upon the conclusion of the delivery of the
electrical charging power, station meter 226 and vehicle meter 228 compare the quantity of electrical charging power delivered and/or the final transaction amount. If the comparison results in a match, then vehicle meter 228 generates a receipt, in one embodiment, the receipt is stored in vehicle meter 228. In another embodiment, the receipt is also transmitted to one of vehicle charging stations 106 and 107 for storage in server system 104 or by roaming third-party provider 116. This comparison facilitates enabling accuracy of the metered quantity of electrical charging power delivered and/or ensuring that the correct transaction amount is billed to the account and/or deducted from the account balance. Moreover, the comparison facilitates ensuring that, if there are multiple electric vehicles 102 receiving electrical charging power from one of vehicle charging stations 106 and 107, the correct account is billed.

[0033] Figure 3 is a flowchart 300 illustrating an exemplars’ method for use in delivering electrical charging power to electric vehicle 102 (shown in Figures 1 and 2), using the system shown in Figures 1 and 2. In the exemplary embodiment, vehicle charging stations 106 and 107 (shown in Figures 1 and 2) are communicatively coupled 302 to electric vehicle 102, and vehicle charging stations 106 and 107 are electrically coupled 304 to electric vehicle via connector 113 (shown in Figures 1 and 2). Further, in the exemplary embodiment, server system 104 (shown in Figures 1 and 2) receives 306 unique vehicle identifier 222 (shown in Figure 2) from electric vehicle 102. In the exemplars’ embodiment, electric vehicle 102 and, more specifically, identifier 222, are associated with preferred provider 114 (shown in Figures 1 and 2) and a customer account. Server system 104 and/or roaming third-party provider 116 (shown in Figures 1 and 2) determines 308 a preferred electrical charging power provider 114. If electric vehicle 102 is not in an area serviced by preferred provider 114, then roaming third-party provider 116 transmits identifier to server system 104 at preferred provider 114. Server system 104 then determines 310 an account associated with preferred provider 114 and identifier 222. More specifically, server system 104 determines the user account associated with identifier 222 within database 108 (shown in Figures 1 and 2). In the exemplary
embodiment, server system 104 then determines a current balance of the customer account.

[0034] In the exemplary embodiment, server system 104 determines whether to approve or to deny service to electric vehicle 102 and, if electric vehicle 102 is located within the area serviced by preferred provider 154, server system 104 transmits the determination to vehicle charging station 106. If electric vehicle 102 is located within the area serviced by roaming third-party provider 116, then server system 104 transmits the determination to roaming third-party provider 116. Roaming third-party provider 116 then transmits the determination to vehicle charging station 107. In the exemplary embodiment, if the current balance is less than a predetermined balance, the customer is denied service at one of vehicle charging stations 106 and 107. Further, in the exemplary embodiment, the customer may be prompted to insert a credit card or cash into a payment acceptance device (not shown) coupled to one of vehicle charging stations 106 and 107. In one embodiment, service may be denied by server system 104 if a stolen car report associated with electric vehicle 102 exists. In the exemplary embodiment, the current account balance may be increased by the account holder remotely using, for example, user workstation 216 (shown in Figure 2). For example, in one embodiment, the customer may login to server system 104 via user workstation 216 in order to access a payment program that enables the customer to designate a payment amount to be applied to the account balance. In such an embodiment, the customer also designates a payment source including, but not limited to, a credit card, a debit card, and/or a banking account. The payment amount, in such an embodiment, is then credited to the account balance.

[0035] In the exemplary embodiment, a quantity of electrical charging power is delivered electric vehicle 102 via one of vehicle charging stations 106 and 107, and the quantity of electrical charging power delivered is metered. A transaction amount is determined based on an actual quantity of electrical charging power delivered to electric vehicle 102. More specifically, station meter 226 (shown in Figure 2) meters the quantity of electrical charging power delivered. In one embodiment, vehicle charging station 106 determines a transaction
amount based on the quantity of electrical charging power delivered and transmits the transaction amount to server system 104. In another embodiment, vehicle charging station 107 determines 318 the transaction amount based on the quantity of electrical charging power delivered 314 and transmits the transaction amount to roaming third-party provider 116, which then transmits to server system 104. In one embodiment, vehicle charging station 106 transmits to server system 104 the quantity of electrical charging power delivered to electric vehicle U)2, and server system RM determines the transaction amount based on the quantity of electrical charging power delivered. In another embodiment, vehicle charging station 107 transmits to roaming third-party provider 116, which then transmits to server system 104, the quantity of electrical charging power delivered to electric vehicle 102, and server system 104 determines the transaction amount based on the quantity of electrical charging power delivered.

[0036J] In the exemplary embodiment, the transaction amount is then compared to the current balance in the customer account. If the transaction amount is less than the current balance, the transaction amount is deducted 320 from the current balance and the new balance is then stored in database 112. In one embodiment, the new balance is transmitted by server system 104 to vehicle charging station 106 and displayed to the user/customer via at least one visual display (not shown). In another embodiment, the new balance is transmitted to roaming third-party provider 116 which then transmits the new balance to vehicle charging station 107 which displays the new balance to the user/customer via at least one visual display (not shown). In an alternative embodiment, the new balance is also transmitted to electric vehicle 102 and is displayed to the user or the customer via vehicle meter 228 (shown in Figure 2). If the current balance is less than the transaction amount, the customer account may be credited with the difference between the transaction amount and the current balance, and the customer may be billed for the difference at a later time. In such an embodiment, the billing rate may be changed for any electrical charging power distributed on credit. Alternatively, the customer may be prompted to submit payment to one of vehicle charging stations 106 and 107 by, for example, the customer being prompted to insert a credit card into the payment acceptance device.
(not shown) coupled to one of vehicle charging stations 106 and 107. In the exemplary embodiment, a confirmation of the receipt of the delivered electrical charging power is generated by vehicle meter 228. The receipt may be used by the customer to verify a quantity of electrical charging power delivered and/or a cost per unit of electrical charging power. The receipt may be generated by electric vehicle 102 and stored in electric vehicle 102 and database 112. Alternatively, the receipt may be generated by server system 104, stored in database 112, and transmitted to electric vehicle 102 via one of vehicle charging stations 106 and 107. In addition, in one embodiment, an adjusted current balance may be displayed to the customer via at least one visual display coupled to at least one of electric vehicle 102 and vehicle charging stations 106 and 107 to reflect a deduction of the transaction amount from the account.

[0037] Described in detail herein are exemplary embodiments of methods, systems, and computers that facilitate delivering electrical charging power to vehicles, such as electric vehicles. More specifically, the embodiments described herein facilitate identifying an electric vehicle at a vehicle charging station using a unique identifier embedded within the electric vehicle and determining whether the electric vehicle has roamed into a non-preferred service area. Identifying an electric vehicle and determining whether it has roamed facilitates automatic deduction of a transaction amount from an account. Such an automatic deduction facilitates time savings for a customer and greater ease in collecting revenue for an electric distribution utility.

[0038] The methods and systems described herein are not limited to the specific embodiments described herein. For example, components of each system and/or steps of each method may be used and/or practiced independently and separately from other components and/or steps described herein. In addition, each component and/or step may also be used and/or practiced with other assembly packages and methods.
While the J menu has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
WHAT IS CLAIMED IS:

1. A vehicle charging station for use with a system for transmitting charging power to an electric vehicle, said vehicle charging station configured to:
 - communicatively couple to the electric vehicle;
 - electrically couple to the electric vehicle via a connector;
 - receive a unique identifier from the electric vehicle;
 - determine a preferred electrical charging power provider based on the identifier;
 - determine an account associated with the preferred provider and with the identifier;
 - deliver a quantity of electrical charging power to the electric vehicle via the connector; and
 - meter the quantity of electrical charging power delivered to the electric vehicle.

2. A vehicle charging station in accordance with Claim 1, wherein said vehicle charging station is further configured to transmit the identifier to a server to determine the preferred provider and the account associated with the identifier.

3. A vehicle charging station in accordance with Claim 2, wherein said vehicle charging station is further configured to:
 - determine a present balance of the account based on the identifier; and
 - deny access to electrical charging power if the present balance of the account is less than a predetermined balance.

4. A vehicle charging station in accordance with Claim 1, wherein said vehicle charging station is further configured to transmit, to the preferred provider, the
quantity of electrical charging power delivered to the electric vehicle to determine a transaction amount.

5. A vehicle charging station in accordance with Claim 4, wherein said vehicle charging station is further configured to deduct the transaction amount from the account.

6. A vehicle charging station in accordance with Claim 4, wherein said vehicle charging station is further configured to compare the metered quantity of electrical charging power delivered with a metered value determined by the electric vehicle.

7. A vehicle charging station in accordance with Claim 1, wherein said vehicle charging station is coupled to at least one visual display, said vehicle charging station is further configured to output to the at least one display at least one of a quantity of electrical charging power delivered, a monetary value of the quantity of electrical charging power delivered, and a quantity of electrical charging power remaining to be delivered.

8. A vehicle charging system for use in charging an electric vehicle, said system comprising:

 a vehicle charging station configured to

 communicatively couple to the electric vehicle;

 electrically couple to the electric vehicle via a connector,

 receive a unique identifier from the electric vehicle;

 deliver a quantity of electrical charging power to the electric vehicle via the connector;

 meter the quantity of electrical charging power delivered to the electric vehicle; and
a server system coupled to said vehicle charging station, said server system configured to:

determine a preferred electrical charging power provider based on the identifier;

determine an account associated with the preferred provider and with the identifier; and

determine a transaction amount based on the quantity of electrical charging power delivered to the electric vehicle by said vehicle charging station.

9. A system in accordance with Claim 8, wherein said vehicle charging station is configured to transmit the identifier to said server system to determine the preferred provider and the account associated with the identifier.

10. A system in accordance with Claim 9, wherein said server system comprises a database and a computer coupled to said database, said computer is configured to:

access said database;

search for the identifier in said database;

determine the preferred provider based on the search results; and

determine the account based on the search results.

11. A system in accordance with Claim 8, wherein said vehicle charging station comprises a meter configured to determine a quantity of electrical charging power delivered to the electric vehicle.

12. A system in accordance with Claim 11, wherein said meter is further configured to transmit the quantity of electrical charging power delivered to said server system, and said server system is configured to forward the quantity to the
preferred provider if the provider of said sensor system is different than the preferred provider.

13 A system in accordance with Claim 12, wherein said sensor system is configured to determine the transaction amount based on the quantity of electrical charging power delivered.

14 A sensor system in accordance with Claim 8, wherein said sensor system is configured to deduct the transaction amount from the account.

15 A method for charging an electric vehicle, said method comprising:

- communicating coupling a vehicle charging station to the electric vehicle;
- electrically coupling the electric charging station to the electric vehicle via a connector,
- receiving a unique identifier from the electric vehicle,
- determining a preferred electrical charging power provider for the electric vehicle based on the identifier,
- determining an account associated with the preferred provider and the identifier,
- determining a transaction amount based on the quantity of electrical charging power delivered to the electric vehicle at the vehicle charging station.

Method in accordance with Claim 15, wherein determining an account comprises
accessing a database:

searching for the identifier in the database;

determining the preferred provider based on the search results; and

determining the account based on the search results.

17. A method in accordance with Claim 16, wherein determining the preferred provider and the account further comprises transmitting the identifier from the vehicle charging station to a server coupled to the database and the server transmitting the identifier to the preferred provider if the provider of the server is different than the preferred provider.

18. A method in accordance with Claim 15, wherein determining the account further comprises:

determining a present balance of the account based on the identifier:

and

denying access to electrical charging power if the present balance of the account is less than a predetermined balance.

19. A method in accordance with Claim 15, wherein determining a transaction amount comprises metering, by at least one of the vehicle charging station and the electric vehicle, the quantity of electrical charging power delivered by the vehicle charging station to the electric vehicle.

20. A method in accordance with Claim 15, further comprising deducting the transaction amount from the account.
Communicatively Couple Vehicle Charging Station to Electric Vehicle

Electrically Couple Vehicle Charging Station Electrical Vehicle via a Connector

Receive a Unique Vehicle Identifier

Determine a Preferred Electrical Charging Power Provider

Determine an Account Associated with the Preferred Provider and with Identifier

Determine a Current Balance of the Account

Determine Whether to Approve or Deny Service to Electric Vehicle

Deliver Electrical Charging Power to Vehicle

Meter the Quantity of Power Transferred

Determine a Transaction Amount

Deduct the Transaction Amount From the Account
A. CLASSIFICATION OF SUBJECT MATTER

INV. G07F15/00 B60L11/18

According to International Patent Classification (IPC) or to both national classification and IPC:

B60L11/18

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

G07F **B60L**

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched:

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C

- Special categories of cited documents
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on novelty claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 February 2010</td>
<td>25/02/2010</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

<table>
<thead>
<tr>
<th>Authorized officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diepstraten, Marc</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
</tr>
<tr>
<td>---------------------------------------</td>
</tr>
<tr>
<td>US 2004104814 A1</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>GB 2438979 A</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>