Title: PTC THERMISTOR CHIP AND METHOD FOR MANUFACTURING THE SAME

Abstract
A PTC thermistor chip which enables easy visual inspection of a soldered portion when it is mounted on a printed board and also enables flow soldering. The chip comprises a first main electrode (12a) and a first sub-electrode (12b) both provided on a first surface of a cuboidal conductive polymer (11) a positive temperature coefficient, and a second main electrode (12c) and a second sub-electrode (12d) both provided on a second surface facing the first surface, with the first main electrode (12a) and the second sub-electrode (12d) and with the first sub-electrode (12b) and the second main electrode (12c) being electrically connected by first and second side electrodes (13a, 13b), respectively.
（57）要約

本発明は、プリント基板に実装した場合のはんだ付け部の外観検査が容易に行え、かつフローはんだ付けが可能であるチップ形PTCサーミスタを提供することを目的とするもので、この目的を達成するために、直方体の形状よりなるPTC特性を有する導電性ポリマー(11)の第1面に第1の主電極(12a)と、第1の副電極(12b)を設け、かつ前記導電性ポリマー(11)の前記第1面に対向する第2面に第2の主電極(12c)と、第2の副電極(12d)を設け、前記第1の主電極(12a)と前記第2の副電極(12d)間、および前記第1の副電極(12b)と前記第2の主電極(12c)間をそれぞれ第1、第2の側面電極(13a, 13b)により電気的に接続したものである。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード（参考情報）
1

明細書

チップ形P T Cサーミスタおよびその製造方法

5 技術分野

本発明は、正の温度係数(Positive Temperature Coefficient、以下「P T C」と記す)特性を有する導電性ポリマを用いたチップ形P T Cサーミスタおよびその製造方法に関するものである。

10 背景技術

P T Cサーミスタは過電流保護素子として使用でき、電気回路に過電流が流れると、P T C特性を有する導電性ポリマが自己発熱し、導電性ポリマが熱膨張して高抵抗に変化し、電流を安全な微小領域まで減衰させるものである。

以下、従来のチップ形P T Cサーミスタについて説明する。

従来のチップ形P T Cサーミスタとしては、特表平9-503097号公報に示されているように、P T C特性を示す抵抗材料から成り、第1面、第2面を有し、第1面と第2面との間を通る開口を規定するP T C抵抗素子と、前記開口の内部に位置し、P T C素子の第1面と第2面との間を通り、上記P T C素子に固定される横方向の導電部材と、上記P T C素子の第1面に固定され、上記横方向の導電部材へ物理的かつ電気的に接続される第1層状導電部材とを有するチップ形P T Cサーミスタが開示されている。第14図(a)は従来のチップ形P T C
サーミスタを示す断面図であり、第14図(b)は同上面図である。第14図(a)(b)において、61はPTC特性を有する導電性ポリマーよりなる抵抗体であり、62a、62b、62c、62dは金属箔よりなる電極であり、63a、63bはスルーホールによる開口部であり、64a、64bはスルーホールによる開口部63a、63bの内部に形成され、電極62aと62dおよび電極62bと62cを電気的に接続するめっきによる導電部材である。

次に、従来のチップ形PTCサーミスタの製造方法について説明する。第15図(a)～(d)および第16図(a)～(c)は従来のチップ形PTCサーミスタの製造方法を示す工程図である。

まずポリエチレンと導電性粒子であるカーボンを配合し、第15図(a)に示すようにシート71を成形する。次に第15図(b)に示すように2枚の金属箔72で前記シート71を挟み、加熱加圧成形により一体化した第15図(c)に示すシート73を形成した。次に前記一体化したシート73に電子線照射を行った後、第15図(d)に示すように規則的なパターンでスルーホール74を形成し、第16図(a)に示すように前記スルーホール74の内部と金属箔72にめっき膜75を形成した。次に第16図(b)に示すように金属箔のエッチングをフォトリソ工程により行い、エッチング溝76を形成した。次に第16図(b)に示すような縦方向の切断ライン77と横方向の切断ライン78に沿って個片状に切断し、第16図(c)に示すように従来のチップ形PTCサーミスタ79を製造していた。

しかしながら、上記チップ形PTCサーミスタによれば、第
14図(a)に示すように実装時にプリント基板と接続されるべき2つの電極62a、62bあるいは62c、62dが素子の1面にのみ位置しているため、プリント基板にリフローはんだ付けにより実装したときに、はんだフィレットが素子の上部から観察した場合に素子に隠れて見えないため、はんだ付け部の外観検査が困難であり、また素子の側面に電極がないため、リフローはんだ付けができないという課題を有していた。
また、従来の製造方法においては、シートの位置決めや、切断のアライメントのばらつきによりスルーホール形成位置に対する切断ラインの位置ずれが起こり、スルーホール内部の導電体と、上下の電極との接合部の面積が変動する。第17図(a)はスルーホールと切断ラインの位置ずれが無い場合であり、第17図(b)はスルーホールの位置に対して、縦方向の切断ラインの位置ずれが起こった場合を示している。第17図(a)(b)において、81はスルーホール、82は切断ライン、83は電極、84はエッチング溝を示す。例えば、第17図(b)に示すようにスルーホール81の一部を切断するように位置ずれが起こった場合には、第17図(c)に示すように切断ラインを挟んだ2個のスルーホールのうち一方のスルーホール内部の導電体と上下の電極との接合部85の面積は位置ずれしない場合よりも少なくなることが分かる。導電体と上下の電極との接合部の面積が少なくなった場合、導電性ポリマーの膨張収縮の繰り返しにより導電体と上下の電極との接合部にかかる応力で導電体と上下の電極との接合部にクラックが入るという課題を有していた。
本発明は、上記従来の課題を解決するもので、実装時のはん
4

・ だ付け部の外観検査が容易に行え、かつフローはんだ付けが可能であり、しかも導電性ポリマーの膨張収縮による応力に対し、導電体と電極との接続部の強度のばらつきが少ないチップ形 PTC サーミスタおよびその製造方法を提供することを目的とするものである。

発明の開示

上記課題を解決するために本発明のチップ形 PTC サーミスタは、直方体の形状よりなる PTC 特性を有する導電性ポリマーと、前記導電性ポリマーの第 1 面に位置する第 1 の主電極と、前記第 1 の主電極と同じ面に位置し、かつ前記第 1 の主電極と独立した第 1 の副電極と、前記導電性ポリマーの前記第 1 面に対向する第 2 面に位置する第 2 の主電極と、前記第 2 の主電極と同じ面に位置し、かつ前記第 2 の主電極と独立した第 2 の副電極と、少なくとも前記導電性ポリマーの一方の側面全面に設けられ、かつ前記第 1 の主電極と前記第 2 の副電極とを電気的に接続する第 1 の側面電極と、少なくとも前記導電性ポリマーの一方の側面に対向する他方の側面全面に設けられ、かつ前記第 1 の副電極と前記第 2 の主電極とを電気的に接続する第 2 の側面電極とを備えたものである。

また、本発明のチップ形 PTC サーミスタの製造方法は、PTC 特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟み、加熱加圧成形により一体化してシートを形成する工程と、前記一体化したシートに開口部を設ける工程と、前記開口部を設けたシートの上下面に保護コートを形成する工程
と、前記保護コートを形成しかつ前記開口部を設けたシートに
側面電極を形成する工程と、前記側面電極を形成しかつ前記開
口部を設けたシートを個片状に切断する工程を備えたものであ
る。

上記したチップ形 PTC サーミスタによれば、少なくとも導
電性ポリマーの 2 つの側面全面に側面電極が設けられているた
め、プリント基板に実装した場合のはんだフィレットを側面に
形成することが可能、その結果、実装時にははんだ付け部の外観
検査が容易に行え、かつフローはんだ付けが可能であるという

効果を有するものである。

また上記したチップ形 PTC サーミスタの製造方法によれ
ば、PTC 特性を有する導電性ポリマーとパターン形成した金属
箔を加熱加圧成形により一体化したシートに開口部を設けた
後、めっき等により側面電極を形成する際に、開口部を形成す
る工程の加工精度の問題で、開口部の形成位置が金属箔のパ
ターンに対して多少ずれてても、開口部の端面は直線的な形状で
あるため、開口部の端面の形状にばらつきが発生することはな
く、したがって、その開口部の端面にめっき等で側面電極を形
成することにより、その結果として側面電極と第 1、第 2 の主
電極との接合面積は一定となるため、導電性ポリマーの膨張収縮
による応力に対し、側面電極と第 1、第 2 の主電極との接合部
の強度のばらつきが少なくなるという効果を有するものであ
る。

図面の簡単な説明
第1図(a)は本発明の第1の実施例におけるチップ形P'T'Cサーミスタの斜視図、第1図(b)は第1図(a)におけるA-A線断面図、第1図(c)は同チップ形P'T'Cサーミスタをプリント基板に実装した場合の断面図、第2図(a)～(c)は本発明の第1の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第3図(a)～(c)は本発明の第1の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第4図(a)(b)は短冊状および楕形状加工の例を示す斜視図、第5図は本発明の第2の実施例におけるチップ形P'T'Cサーミスタの断面図、第6図(a)～(c)は本発明の第2の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第7図は本発明の第2の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第8図は本発明の第3の実施例におけるチップ形P'T'Cサーミスタの断面図、第9図(a)～(d)は本発明の第3の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第10図(a)(b)は本発明の第3の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第11図は本発明の第4の実施例におけるチップ形P'T'Cサーミスタの断面図、第12図(a)～(c)は本発明の第4の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第13図(a)～(c)は本発明の第4の実施例におけるチップ形P'T'Cサーミスタの製造方法を示す工程図、第14図(a)は従来のチップ形P'T'Cサーミスタの断面図、第14図(b)は同チップ形P'T'Cサーミスタの上面図、第15図(a)～(d)は従来のチップ形P'T'Cサーミスタの製造方法を示す工程図、第16図(a)～(c)は従来のチップ形P'T'Cサーミスタの製造方法を示す工程図、
7

・を示す工程図、第17図(a)～(c)は従来のチップ形P T Cサーミスタにおけるスルーホールの形成位置と切断ラインの位置関係を示す図である。

5 発明を実施するための最良の形態
（第1の実施例）

以下、本発明の第1の実施例におけるチップ形P T Cサーミスタについて図面を参照しながら説明する。

第1図(a)は本発明の第1の実施例におけるP T Cサーミスタの斜視図、第1図(b)は第1図(a)のA-A線断面図である。

第1図(a)(b)において、11は結晶性ポリマーである高密度ポリエチレンと導電性粒子であるカーボンプラックの混合物からなり、かつ直方体の形状をなすP T C特性を有する導電性ポリマーである。12aは前記導電性ポリマー11の第1面に位置する第1の主電極であり、12bは前記第1の主電極12aと同じ面に位置し、かつ前記第1の主電極12aと独立した第1の副電極であり、12cは前記導電性ポリマー11の第1面に対向する第2面に位置する第2の主電極であり、12dは前記第2の主電極12cと同一面に位置し、かつ前記第2の主電極12cと独立した第2の副電極であり、それぞれ電解銅箔からなる。13aは前記導電性ポリマー11の一方の側面全面に設けられ、かつ前記第1の主電極12aと前記第2の副電極12dとを電気的に接続するニッケルめっきによる第1の側面電極であり、13bは前記第1の側面電極13aに対向する前記導電性ポリマー11の他方の側面全面に設けられ、かつ前記第2の主電極
12cと前記第1の副電極12bとを電気的に接続するニッケルめっきによる第2の側面電極である。14a、14bは第1、第2のエポキシ混合アクリル系樹脂よりなる保護コート層である。

ここで、副電極は側面電極を例えばめっきで形成する際に、導電性ポリマーとめっきの密着性が低いため、導電性ポリマーの側面から側面電極が剥がれることがないように、導電性ポリマーの上下面に形成した主電極と、副電極をめっきの支持体とし、導電性ポリマーとめっきによる側面電極の密着性を確保するという作用を持つものである。

以上のように構成されたP TCサーミスタについて、本発明の第1の実施例におけるチップ形P TCサーミスタの製造方法について図面を参照しながら説明する。

第2図(a)〜(c)および第3図(a)〜(e)は本発明の第1の実施例におけるチップ形P TCサーミスタの製造方法を示す図である。

まず、結晶化度70〜90％の高密度ポリエチレン49重量％と、フェノール樹脂で製造した平均径58nm、比表面積38m²/gのカーボンプラック50重量％と、酸化防止剤1重量％とを約150℃に加熱した2本の熱ロールにより約20分間混合し、そして前記混合物を2本の熱ロールからシート状で取り出し、第2図(a)に示す厚みが約0.3mmの導電性ポリマーシート21を作製する。

次に、電解銅箔に金型プレスにより摺形状にパターン形成を行い、第2図(b)に示す電極22を作製した。
後工程で個片状に分割したときに主電極と副電極を独立させるためのギャップを形成する溝であり、２７は個片状に分割するときに、電解銅箔を切断する部分を減らし、分割時の電解銅箔のバリを無くすためと、電解銅箔を切断することにより側面への電解銅箔の断面が露出し、電解銅箔が酸化したり、実装時にはんだによるショートが起こるのを防ぐための溝である。次に、第２図(c)、第3図(a)に示すように、導電性ポリマーシート２１の上下に電極２２を重ね、温度１７５℃、真空度約２０Torr、面圧力約５０㎏／㎠で約１分間の真空熱プレスにより加熱加圧成形し、一体化したシート２３を得た。その後、電子線照射装置内で電子線を約４０Mrad照射し、高密度ポリエチレンの架橋を行った。
次に、第3図(b)に示すように、細長い一定間隔の開口部（貫通溝）２４を金型プレスにより打ち抜くか、あるいはダイシンガマシンなどにより切断し、所望のチップ形ＰＴＣサーミスタの長手方向の幅を残して開口部を形成した。なお、開口部を設ける工程は第4図(a)(b)に示すような短冊状あるいは楕形状に加工する工程でも良い。
次に、第3図(c)に示すように、開口部２４を形成したシート２３の上下に開口部２４の周辺を除いて、アクリル系あるいはエポキシ混合アクリル系のＵＶ硬化樹脂をスクリーン印刷し、ＵＶ硬化炉での硬化を行って保護コート２５を形成した。
次に、第3図(d)に示すようにシート２３の保護コート２５が形成されていない部分と開口部２４の内壁に、ニッケルワット浴中にて約３０分間、電流密度約４A／dm²でニッケルめっき
10

・膜28を10〜20μmの厚みで形成した。

次に、シート23を金型プレスやダイシングマシンなどによく個片に分割し、第3図(e)のチップ形PTCサーミスタ29を作製した。以上により本発明のチップ形PTCサーミスタを製造した。なお、パターン形成していない金属箔と導電性ポリマーシートを加熱加圧成形して一体化し、その後、フォトリソ工程によりエッチングで金属箔にパターン形成を行っても同様のチップ形PTCサーミスタを製造することが可能である。

以下、本発明の第1の実施例の構成についてさらに詳細な説明を行う。

チップ形の電子部品において、プリント基板にリフローはんだ付けで実装した場合、クリームはんだの印刷むら等により、電極と接続不良を起こしたり、あるいははんだ量が少ない場合も、熱サイクルに対するはんだの信頼性が低下するため、一般的にははんだ付け部の外観検査が必要となっている。

本発明のチップ形PTCサーミスタによれば、プリント基板に実装した場合に、はんだフィレットが素子の側面に形成できるため、はんだフィレットが素子の外側にあり、はんだ付け部の外観検査が容易にできる。第1図(c)は本発明のチップ形PTCサーミ斯塔をプリント基板に実装した場合の断面図である。

15a、15bははんだフィレットであり、16a、16bはプリント基板のランドである。第1図(c)の矢印のようにはんだフィレットの観察が上部から容易にできることはわかる。またリフローはんだ付けも可能であることを確認した。

なお、側面電極を形成しているめっき膜と導電性ポリマの密
・着性は低いが、本発明の第１の実施例では導電性ポリマーの側面から側面電極が剥がれることがないように、導電性ポリマーの上下面に形成した主電極と、副電極をめっきの支持体として、導電性ポリマーとめっきによる側面電極の密着性を確保し、側面電極の剥がれを防ぐ構造となっている。

また、従来の製造方法では、スルーホール形成位置に対する切断ラインの位置ずれが起こり、スルーホール内部の導電体と、上下の電極との接合部の面積が少なくなる場合がある。しかし、本発明の第１の実施例の製造方法によれば、ＰＴＣ特性を有する導電性ポリマーと金属箔を加熱加圧成形により一体化したシートに開口部を設け、その後めっき膜を形成することにより、めっき膜と上下の電極との接合面積は一定となる。これにより、めっき膜と上下の電極との接合部の強度が小さくなることはないため、導電性ポリマーの膨張収縮による応力で接合部にクラックが入ることはない。また、個片状に切断するのは横方向のみで良く、縦方向の切断をする必要はない。

また、従来の製造方法においては、例えばドリル加工によりスルーホールを形成して、スルーホール内にめっきを形成するが、少なくとも１シートから切り出した個片状の素子数以上のスルーホールを形成する必要があり、時間がかかる。またドリル加工による摩擦熱で導電性ポリマーが溶融し、スルーホール内壁が荒れ、めっきが均一に付かない。かかるに、本発明の第１の実施例の製造方法によれば、短冊状に金型プレスやダイシングマシンなどで加工し、開放部を一括で形成するため生産性に優れている。また、導電性ポリマーは溶融しないため、開放した
部分の表面は比較的滑らかであり、めっきが均一に形成できる。また、スルーホール内はめっき液の循環が良くないため、スルーホール内のめっき液中の金属イオン濃度が不安定となるため、厚みの均一なめっき膜を形成しにくい。めっき厚が均一でない場合、導電性ポリマーに過電流が流れて、動作することを繰り返した場合の導電性ポリマーの膨張収縮によりめっき膜に応力が発生した場合、応力集中によりめっき膜が破断する可能性がある。しかも本発明の第1の実施例の製造方法によれば、めっきの形成される部分は開放されているため、めっき液の循環が良く、金属イオン濃度が安定するため厚みの均一なめっき膜が形成できる。また、従来の製造方法によれば、スルーホール内にめっき液中の異物が入り込んだり、スルーホールを例えばドリル加工で形成した場合におけるパリ等の発生によりスルーホール内に異物が付着し、めっきが形成できない部分が発生する場合がある。本発明の第1の実施例の製造方法によれば、側面電極の形成される部分は開放されているため、めっき液中の異物が入り込むことはない。また側面電極は開放されているため、外観検査が容易にできる。なお、めっき時の電流は導電性ポリマーが動作する電流に比較して十分低く、導電性ポリマーが動作することはない。

また、本発明の第1の実施例の製造方法によれば、開口部を形成したシートにめっきにより側面電極を形成した後、個片に分割しているため、2つの側面電極以外の2つの側面にめっきが形成されることはない。例えば個片に分割後、パレルめっきした場合は素子側面が導電性であるために4つの側面にめっき
が形成され、第1の主電極と第2の主電極がショートしてしまうという問題がある。

（第2の実施例）

以下、本発明の第2の実施例におけるチップ形PTCサーミスタについて図面を参照しながら説明する。第5図は本発明の第2の実施例におけるチップ形PTCサーミスタの断面図である。

第5図において、41は結晶性ポリマである高密度ポリエチレンと導電性粒子であるカーボンブラックの混合物からなり、かつ直方体の形状をなすPTC特性を有する導電性ポリマである。42aは前記導電性ポリマ41の第1面に位置する第1の主電極であり、42bは前記第1の主電極42aと同じ面に位置し、かつ前記第1の主電極42aと独立した第1の副電極であり、42cは前記導電性ポリマ41の第1面に対向する第2面に位置する第2の主電極であり、42dは前記第2の主電極42cと同じ面に位置し、かつ前記第2の主電極42cと独立した第2の副電極であり、それぞれ電解鋼箔からなる。43aは前記導電性ポリマ41の一方の側面全面に設けられ、かつ前記第1の主電極42aと前記第2の主電極42cを電気的に接続するニッケルめっきによる第1の側面電極であり、43bは前記第1の側面電極43aに対向する前記導電性ポリマ41の他方の側面全面に設けられ、かつ前記第1の副電極42bと前記第2の副電極42dとを電気的に接続するニッケルめっきによる第2の側面電極である。44a, 44bは第1、第2のエポキシ混合アクリル系樹脂よりなる保護コート層である。
45aは前記導電性ポリマー41の内部に位置して前記第1の主電極42aと前記第2の主電極42cに平行に設けられ、かつ前記第2の側面電極43bと電気的に接続された内層主電極であり、45bは前記内層主電極45aと同じ面に位置し、かつこの内層主電極45aと独立し、前記第1の側面電極43aに電気的に接続された内層副電極である。

以上のように構成されたチップ形P TCサーミスタについて、本発明の第2の実施例におけるチップ形P TCサーミスタの製造方法について図面を参照しながら説明する。

第6図(a)～(c)および第7図は本発明の第2の実施例におけるチップ形P TCサーミスタの製造方法示す工程図である。前記した本発明の第1の実施例と同様に第6図(a)に示す導電性ポリマーシート51を作製し、電解銅箔に金型プレスでパターンニングを行い、第6図(b)に示す電極52を作製する。内層の電解銅箔は後の工程で積層体を加熱加圧成形するときに導電性ポリマーが広まる力で銅箔の破れが起こらないように、少なくとも35μm、特に70μm以上の厚みをもつことが望ましい。次に第5図(c)に示すように導電性ポリマーシート51と電極52を交互に重ね、加熱加圧成形して一体化した第7図に示すシート53を作製する。なお、第6図(c)の3枚の電極52は同形状にすることことができ、1種類の金型で打ち抜きができるため、低コスト化が可能である。以下本発明の第1の実施例と同様に製造を行い、本発明の第2の実施例におけるチップ形P TCサーミスタを作製した。なお、最外層をパターン形成していない金属箔として、それ以外の金属箔を金型プレスによりパターン形成し、これら
の金属箔と導電性ポリマーシートを加熱加圧成形して一体化し、その後、フォトリソ工程によりエッチングで最外層の金属箔にパターン形成を行い、そして積層体を形成した後、第1の実施例と同様に製造を行っても同様のチップ形PТСサーミスタを製造することが可能である。

上記した本発明の第2の実施例によれば、導電性ポリマーと金属箔を交互に積層することにより、外形寸法を大きくすることなく、対向電極の面積を増やすことができ、すなわち抵抗値を下げることが可能となり、その結果、小型で大電流を流すことができるチップ形PТСサーミスタを提供できる。例えば、外形が3.2mm×4.5mmで導電性ポリマーが1層の場合は第1、第2の主電極間の電極のオーバーラップ量（対向電極面積）は9mm²で、抵抗値は約150mΩであったものが、2層で対向電極面積は18mm²で、抵抗値は約80mΩとなり低抵抗化が実現できた。またさらに低抵抗化するための実施例を説明する。

（第3の実施例）

第8図は本発明の第3の実施例におけるチップ形PТCサーミスタの断面図である。

第8図において、1は結晶性ポリマーである高密度ポリエチレンと導電性粒子であるカーボンブラックの混合物からなり、かつ直方体の形状をなすPТC特性を有する導電性ポリマーである。2aは前記導電性ポリマー1の第1面に位置する第1の主電極であり、2bは前記第1の主電極2aと同じ面に位置し、かつ前記第1の主電極2aと独立した第1の副電極であり、2cは前記導電性ポリマー1の第1面に対向する第2面に位置する第
2 の主電極であり、2 d は前記第 2 の主電極 2 c と同じ面に位置し、かつ前記第 2 の主電極 2 c と独立した第 2 の副電極であり、それぞれ電解銅箔からなる。3 a は前記導電性ポリマー 1 の一方の側面全面に設けられ、かつ前記第 1 の主電極 2 a と前記第 2 の副電極 2 d を電気的に接続するニッケルめっきによる第 1 の側面電極であり、3 b は前記第 1 の側面電極 3 a に対向する前記導電性ポリマー 1 の他方の側面全面に設けられ、かつ前記第 1 の副電極 2 b と前記第 2 の主電極 2 c とを電気的に接続するニッケルめっきによる第 2 の側面電極である。4 a, 4 b は第 1、第 2 のエポキシ混合アクリル系樹脂よりなる保護コート層である。5 a は前記導電性ポリマー 1 の内部に位置して前記第 1 の主電極 2 a と前記第 2 の主電極 2 c に平行に設けられ、かつ前記第 2 の側面電極 3 b と電気的に接続された第 1 の内層主電極であり、5 b は前記第 1 の内層主電極 5 a と同じ面に位置し、かつこの第 1 の内層主電極 5 a と独立し、前記第 1 の側面電極 3 a に電気的に接続された第 1 の内層副電極であり、5 c は前記導電性ポリマー 1 の内部に位置して前記第 1 の主電極 2 a と前記第 2 の主電極 2 c に平行に設けられ、かつ前記第 1 の側面電極 3 a と電気的に接続された第 2 の内層主電極であり、5 d は前記第 2 の内層主電極 5 c と同じ面に位置し、かつ前記第 2 の内層主電極 5 c と独立し、前記第 2 の側面電極 3 b に電気的に接続された第 2 の内層副電極である。この場合、例えば、外形が 3.2 mm x 4.5 mm で導電性ポリマー 1 が 3 層の場合は、第 1 の主電極 2 a と第 1 の内層主電極 5 a 間、第 1 の内層主電極 5 a と第 2 の内層主電極 5 c 間、第 2 の内層主電極
5 c と第 2 の主電極 2 c 間の抵抗が 3 つ並列に接続されているために実質の対向電極面積は 27 mm² となり、抵抗値は約 50 mΩ でさらに低抵抗化が実現できた。

続いて、本発明の第 3 の実施例におけるチップ形 P T C サーミスタの製造方法について図面を参照しながら説明する。

第 9 図 (a)～(d) および第 1 0 図 (a) (b) は導電性ポリマの積層数が 3 の場合の製造方法を示す工程図である。上記した本発明の第 1 の実施例と同様に第 9 図 (a) に示す導電性ポリマシート 3 1 を作製し、電解銅箔に金型プレスでパターンニングを行い、第 9 図 (b) に示す電極 3 2 を作製する。内層の電解銅箔は 2 層のときと同様に後の加熱加圧成形工程において、導電性ポリマが広がる力で銅箔の破れが起こらないように、少なくとも 35 μm、特に 70 μm 以上の厚みをもつことが望ましい。次に第 9 図 (c) (d) に示すように 2 枚の電極 3 2 を導電性ポリマシート 3 1 を挟み、加熱加圧成形して一体化した第 9 図 (d) に示す第 1 のシート 3 3 を作製する。次に、第 1 0 図 (a) に示すように第 1 のシート 3 3 の両側から、2 枚の導電性ポリマシート 3 1 と、2 枚の電極 3 2 を電極 3 2 が最外層にくるように交互に積層し、加熱加圧成形して一体化した第 1 0 図 (b) に示す第 2 のシート 3 4 を作製する。以下本発明の第 1 の実施例と同様に製造を行い、導電性ポリマの積層数が 3 であるチップ形 P T C サーミスタを作製した。この第 3 の実施例において 2 回に分けて加熱加圧成形をするのは、同時に加熱加圧成形した場合、内部の導電性ポリマシートに熱が伝わりにくいことから、外側の導電性ポリマシートと内部の導電性ポリマシートの温度差によりポリマシートの
厚みが不均一に成形されることを防ぐものである。この場合も最外層をパターン形成していない金属箔とし、それ以外の金属箔を金型プレスでパターン形成し、これらの金属箔と導電性ポリマシートとを加熱加圧成形して一体化し、その後、フォトリソ工程によりエッチングで最外層の金属箔にパターン形成を行い、シートを形成した後、第1の実施例と同様に製造を行っても同様のチップ形P TCサーミスタを製造することが可能である。また、第2のシートの両側から導電性ポリマシートとその外側にパターン形成した電極を配置し、加熱加圧成形することを繰り返せば、導電性ポリマの積層数が5以上の奇数であるチップ形P TCサーミスタを製造することが可能である。この場合も、最外層をパターン形成していない金属箔とすれば、後工程で、エッチングによりパターン形成することが可能である。

（第4の実施例）

第11図は本発明の第4の実施例におけるチップ形P TCサーミスタの断面図である。

この第11図において、91は結晶性ポリマである高密度ポリエチレンと導電性粒子であるカーボンブラックの混合物からなり、かつ直方体の形状をなすP TC特性を有する導電性ポリマである。92aは前記導電性ポリマ91の第1面に位置する第1の主電極であり、92bは前記第1の主電極92aと同じ面に位置し、かつ前記第1の主電極92aと独立した第1の副電極であり、92cは前記導電性ポリマ91の第1面に対向する第2面に位置する第2の主電極であり、92dは前記第2の
主電極92cと同じ面に位置し、かつ前記第2の主電極92cと独立した第2の副電極であり、それぞれ電解銅箔からなる。93aは前記導電性ポリマ91の一方の側面全面に設けられ、かつ前記第1の主電極92aと前記第2の主電極92cとを電気的に接続するニッケルめっきによる第1の側面電極であり、93bは前記第1の側面電極93aに対向する前記導電性ポリマ91の他方の側面全面に設けられ、かつ前記第1の副電極92bと前記第2の副電極92dとを電気的に接続するニッケルめっきによる第2の側面電極である。94a、94bは第1と第2のエポキシ混合アクリル系樹脂よりなる保護コート層である。95aは前記導電性ポリマ91の内部に位置して前記第1の主電極92aと前記第2の主電極92cに平行に設けられ、かつ前記第2の側面電極93bと電気的に接続された第1の内層主電極であり、95bは前記第1の内層主電極95aと同じ面に位置し、かつ前記第1の内層主電極95aと独立し、前記第1の側面電極93aに電気的に接続された第1の内層副電極であり、95cは前記導電性ポリマ91の内部に位置して前記第1の主電極92aと前記第2の主電極92cに平行に設けられ、かつ前記第1の側面電極93aと電気的に接続された第2の内層主電極であり、95dは前記第2の内層主電極95cと同じ面に位置し、かつ前記第2の内層主電極95cと独立し、前記第2の側面電極93bに電気的に接続された第2の内層副電極であり、95eは前記導電性ポリマ91の内部に位置して前記第1の主電極92aと前記第2の主電極92cに平行に設けられ、かつ前記第2の側面電極93bと電気的に接続さ
れた第3の内層主電極であり、95fは前記第3の内層主電極
95eと同じ面に位置し、かつ前記第3の内層主電極95eと
独立し、前記第1の側面電極93aに電気的に接続された第3
の内層副電極である。

5 続いて、本発明の第4の実施例におけるチップ形P T Cサー
ミスタの製造方法について図面を参照しながら説明する。

第12図(a)～(c)および第13図(a)～(c)は導電性ポリマーの積層
数が4の場合の製造方法を示す工程図である。上記した本発明
の第1の実施例と同様に第12図(a)に示す導電性ポリマーシート
10 101を作製し、電解銅箔に金型プレスでパターンニングを行
い、第12図(b)に示す電極102を作製する。内層の電解銅箔
は2層のときと同様に他の工程で積層体を加熱加圧成形すると
きに導電性ポリマーが広がる力で銅箔の破れが起こらないよう
に、少なくとも35μm、特に70μm以上の厚みをもつことが望
ましい。次に第12図(c)に示すように3枚の電極102と2枚
の導電性ポリマーシート101を電極102が最外層にくるよう
に交互に重ね、加熱加圧成形して一体化した第13図(a)に示す
第1のシート103を作製する。次に、第13図(b)に示すよう
に第1のシート103の両側から、2枚の導電性ポリマーシート
15 101と、2枚の電極102が最外層にくるように交互に積層
し、加熱加圧成形して、一体化した第13図(c)に示す第2の
シート104を作製する。以下本発明の第1の実施例と同様に
製造を行い、導電性ポリマーの積層数が4であるチップ形P T C
サーミスタを作製した。この場合も最外層をパターン形成して
いない金属箔とし、それ以外の金属箔を金型プレスでパターン
20
形成し、これらの金属箔と導電性ポリマシートとを加熱加圧成形して一体化し、その後、フォトリソ工程によりエッチングで最外層の金属箔にパターン形成を行い、その後、第1の実施例と同様に製造を行っても同様のチップ形P T Cサーミスタを製造することが可能である。さらに積層数を増やすには、前述した第2のシートの両側から、導電性ポリマシートと電極を配置し、加熱加圧成形して一体化する工程を繰り返せば、導電性ポリマの積層数が6以上の偶数であるチップ形P T Cサーミスタを製造することが可能である。この場合も、最外層をパターン形成していない金属箔とすれば、後工程で、エッチングによりパターン形成することが可能である。

以上のようにして導電性ポリマの積層数を増やすことができると、導電性ポリマに電流が流れて、動作することを繰り返した場合の導電性ポリマの膨張収縮による応力は積層数が増えるほど積算されて増加し、側面電極と主電極1、2との接続信頼性が課題となる。しかしながら、本発明の実施例によれば側面全面に側面電極が形成されているため、応力が分散し、これにより積層しても接続の信頼性を十分確保できる構造となっており、なお、内層副電極は側面電極付近の導電性ポリマシートの厚みが増すことに伴う膨張量の増加を防止することができるため、側面電極への導電性ポリマシートの膨張収縮による応力を抑制することができ、信頼性向上に有用である。

また本発明において側面電極をニッケルにすることは、鋼や鋼合金などと比較して前述の信頼性を向上させるのにより効果的である。本発明の第1の実施例に記載した方法で側面電極を
ニッケルめっきにより形成したサンプルを作製し、比較例として側面電極を銅めっきにより形成したサンプルを、以下の条件で作製した。第1の実施例で作製した短冊状に加工したシートの側面に硫酸銅めっき浴中で、約60分間、電流密度1.5A/dm²の条件で厚み20μmの銅めっきを形成し、個片に分割してサンプルを作製した。ここで、側面電極の熟サイクルに対する強度の信頼性を確認するために、以下の試験を行った。試験は前述した側面電極をニッケルめっきにより形成したサンプルと、銅めっきにより形成したサンプルの、それぞれ30個ずつプリント基板に実装し、12Vの直流電源に接続し、40Aの過電流を流して導電性ポリマを動作（トリップ）させ、そのまま1分間通電し、5分間通電を中止するのを1サイクルとし、それぞれ100, 200, 1000サイクル後に10個ずつ抜き取り、その後、それぞれのサンプルを側面電極に対して垂直に研磨していき、断面を観察して、側面電極のクラックの有無を確認した。試験の結果、側面電極をニッケルめっきにより形成したサンプルは1000サイクルでクラックは発生しなかった。比較例として側面電極を銅めっきにより形成したサンプルでは100サイクル以内で10/10すべてに側面電極と上部電極の接続部分のコーナーにクラックが発生した。

上記した本発明の第1の実施例のチップ形P TCサーミスタにおいては、直方体の形状よりなるP TC特性を有する導電性ポリマ11と、前記導電性ポリマ11の第1面に位置する第1の主電極12aと、前記第1の主電極12aと同じ面に位置し、かつ前記第1の主電極12aと独立した第1の副電極12b
と、前記導電性ポリマ１１の前記第１面に対向する第２面に位置する第２の主電極１２ｃと、前記第２の主電極１２ｃと同じ面に位置し、かつ前記第２の主電極１２ｃと独立した第２の副電極１２ｄと、少なくとも前記導電性ポリマ１１の一方の側面全面に設けられ、かつ前記第１の主電極１２ａと前記第２の副電極１２ｄを電気的に接続する第１の側面電極１３ａと、少なくとも前記導電性ポリマ１１の一方の側面に対向する他方の側面全面に設けられ、かつ前記第１の副電極１２ｂと前記第２の主電極１２ｃとを電気的に接続する第２の側面電極１３ｂとを備えているもので、この構成によれば、少なくとも導電性ポリマ１１の２つの側面全面に側面電極１３ａ、１３ｂが設けられているため、プリント基板に実装した場合はんだフィレットを側面に形成することができ、その結果、実装時のはんだ付け部の外観検査が容易に行え、かつフローはんだ付けが可能であるという作用効果を有するものである。

また本発明の第２の実施例および第４の実施例のチップ形ＰＴＣサーミスタにおいては、直方体の形状よりなるＰＴＣ特性を有する導電性ポリマ４１、９１と、前記導電性ポリマ４１、９１の第１面に位置する第１の主電極４２ａ、４２ｂと、前記第１の主電極４２ａ、４２ｂと同じ面に位置し、かつ前記第１の主電極４２ａ、４２ｂと独立した第１の副電極４２ｃ、４２ｂと、前記導電性ポリマ４１、９１の前記第１面に対向する第２面に位置する第２の主電極４２ｃ、４２ｂと、前記第２の主電極４２ｃ、４２ｂと同じ面に位置し、かつ前記第２の主電極４２ｃ、４２ｂと独立した第２の副電極４２ｄ、４２ｂと、少
なくとも前記導電性ポリマー41, 91の方の側面全面に設けられ、かつ前記第1の主電極42a, 92aと前記第2の主電極42c, 92cとを、電気的に接続する第1の側面電極43a, 93aと、少なくとも前記導電性ポリマー41, 91の方の側面に対向する他方の側面全面に設けられ、かつ前記第1の副電極42b, 92bと前記第2の副電極42d, 92dとを電気的に接続する第2の側面電極43b, 93bと、前記導電性ポリマー41, 91の内部に位置して前記第1の主電極42a, 92aおよび第2の主電極42c, 92cに平行に設けられた奇数の内層主電極45a, 95a, 95c, 95eと、この内層主電極45a, 95a, 95c, 95eと同じ面に位置し、かつこの内層主電極45a, 95a, 95c, 95eと独立した奇数の内層副電極45b, 95b, 95d, 95fとを備え、前記第1の主電極42a, 92aに直接対向する前記内層主電極45a, 95a, 95eは前記第2の側面電極43b, 93bに電気的に接続され、かつ前記第1の主電極42a, 92aに直接対向する前記内層主電極45a, 95aと同じ面に位置する前記内層副電極45b, 95bは前記第1の側面電極43a, 93aに電気的に接続され、さらに隣り合う前記内層主電極95c, 95eおよび内層副電極95d, 95fは前記第1の側面電極93aと前記第2の側面電極93bに交互に電気的に接続されるようにしているので、この構成によれば、例えば内層主電極が1つのときは、素子の全体の抵抗値は、第1の主電極と内層主電極間の導電性ポリマーの抵抗と、第2の主電極と内層主電極間の導電性ポリマーの抵抗を並列接続し
た抵抗値となり、その結果、素子の抵抗値を主電極の面積を大きくすることなく下げることができるため、素子の外形を大きくすることなく素子の低抵抗化が図れるという作用効果を有するものである。

そしてまた本発明の第3の実施例のチップ形PTCサーミスタにおいては、直方体の形状よりなるPTC特性を有する導電性ポリマ1と、前記導電性ポリマ1の第1面に位置する第1の主電極2aと、前記第1の主電極2aと同じ面に位置し、かつ前記第1の主電極2aと独立した第1の副電極2bと、前記導電性ポリマ1の前記第1面に対向する第2面に位置する第2の主電極2cと、前記第2の主電極2cと同じ面に位置し、かつ前記第2の主電極2cと独立した第2の副電極2dと、少なくとも前記導電性ポリマ1の一方の側面全面に設けられ、かつ前記第1の主電極2aと前記第2の副電極2dを電気的に接続する第1の側面電極3aと、少なくとも前記導電性ポリマ1の一方の側面に対向する他方の側面全面に設けられ、かつ前記第1の副電極2bと前記第2の主電極2cを電気的に接続する第2の側面電極3bと、前記導電性ポリマ1の内部に位置して、前記第1の主電極2aおよび第2の主電極2cに平行に設けられた偶数の内層主電極5a, 5cと、この内層主電極5a, 5cと同じ面に位置し、かつこの内層主電極5a, 5cと独立した偶数の内層副電極5b, 5dとを備え、前記第1の主電極2aに直接対向する前記内層主電極5aは前記第2の側面電極3bに電気的に接続され、かつ前記第1の主電極2aに直接対向する前記内層主電極5aと同じ面に位置する前記内層副電極
5 bは前記第1の側面電極3 aに電気的に接続され、さらに隣り合う前記内層主電極5 cおよび内層副電極5 dは前記第1の側面電極3 aと前記第2の側面電極3 bに交互に電気的に接続されるようにしているため、例えば内層主電極が2つのとき

は、要素の全体の抵抗値は、第1の主電極と第1の内層主電極間の導電性ポリマーの抵抗と、第2の主電極と第2の内層主電極間の導電性ポリマーの抵抗と、第1の内層主電極と第2の内層主電極間の導電性ポリマーの抵抗とを並列接続した抵抗値となり、その結果、要素の抵抗値を主電極の面積を大きくすることなく下げることができるため、要素の外形を大きくすることなく要素の低抵抗化が図れるという作用効果を有するものである。

さらに本発明の第1〜第4の各実施例においては、側面電極をニッケルまたはその合金で構成しているもので、この構成に

よれば、導電性ポリマーの膨張収縮により主電極と側面電極の接続部のコーナーチ部に応力が繰り返し集中して発生することに対

して、繰り返し応力に比較的強いニッケル、またはその合金を用いて側面電極を形成しているため、第1、第2の主電極と側面電極の接続信頼性を向上させることができるという作用効果を有するものである。

また本発明の第1の実施例のチップ形PTCサーミスタの製造方法においては、PTC特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟み、加熱加圧成形により一体化してシート2 3を形成する工程と、前記一体化したシート2 3

に開口部（貫通溝）2 4を設ける工程と、前記開口部2 4を設けたシート2 3の上下面に保護コート2 5を形成する工程と、
前記保護コード25を形成かつ前記開口部24を設けたシート23に側面電極13a, 13bを形成する工程と、前記側面電極13a, 13bを形成かつ前記開口部24を設けたシート23を個片状に切断する工程を備えているもので、この製造方法によれば、P TC特性を有する導電性ポリマとパターン形成した金属箔を加熱加圧成形により一体化したシート23に開口部24を設けた後、めっき等により側面電極13a, 13bを形成する際に、開口部24を形成する工程の加工精度の問題で、開口部24の形成位置が金属箔のパターンに対して多少ずれてても、開口部24の端面は直線的な形状であるため、開口部24の端面の形状にばらつきが発生することなく、したがって、その開口部24の端面にめっき等で側面電極13a, 13bを形成すれば、側面電極13a, 13bと第1の主電極12aおよび第2の主電極12cとの接触面積は一定となるため、導電性ポリマの膨張収縮による応力に対し、側面電極13a, 13bと第1の主電極12aおよび第2の主電極12cとの接合部の強度のばらつきが少なくなるという作用効果を有するのである。

そしてまた本発明の第1の実施例のチップ形P TCサーミスタの製造方法においては、他の例として、P TC特性を有する導電性ポリマの上下面を金属箔で挟み、加熱加圧成形により一体化してシート23を形成する工程と、前記一体化したシート23の上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化したシート23に開口部（貫通溝）24を設ける工程と、前記開口部24を設けたシート23の上下面に保
・ 護コート25を形成する工程と、前記保護コートを形成しつつ
前記開口部24を設けたシート23に側面電極13a, 13b
を形成する工程と、前記側面電極13a, 13bを形成しつつ
前記開口部24を設けたシート23を個片状に切断する工程を
備えているもので、この製造方法によれば、P TC特性を有す
る導電性ポリマと金属箔を加熱圧成形により一体化したシート
23に開口部24を設けた後、めっき等により側面電極13a,
13bを形成する際に、開口部24を形成する工程の加工精度
の問題で、開口部24の形成位置が多少ずれても、開口部24
の端面は直線的な形状であるため、開口部24の端面の形状に
ばらつきが発生することはなく、その開口部24の端面にめっ
き等で側面電極13a, 13bを形成すれば、側面電極13a,
13bと第1の主電極12aおよび第2の主電極12cとの接
合面積は一定となるため、導電性ポリマの膨張収縮による応力
に対し、側面電極13a, 13bと第1の主電極12aおよび
第2の主電極12cとの接合部の強度のばらつきが少なくなる
という作用効果を有するものである。またパターン形成は加熱
圧成形した後にエッチングで行うため、導電性ポリマの上下
面に位置する上下の金属箔のパターン形成の位置精度が良くな
り、これにより、素子の抵抗値に関係する第1の主電極12a
および第2の主電極12cがオーバーラップする面積のばらつ
きが少なくなるため、抵抗値のばらつきが少なくなるという作
用効果を有するものである。
さらに本発明の第2の実施例のチップ形P TCサーキスタの
製造方法においては、パターン形成した金属箔の上下面をP TC
特性を有する導電性ポリマーを挟み、さらにその上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化してシート53を形成する工程と、前記一体化したシート53に開口部を設ける工程と、前記開口部を設けたシート53の上下面に保護コートを形成する工程と、前記保護コートを形成しかつ前記開口部を設けたシート53に側面電極43a、43bを形成する工程と、前記側面電極43a、43bを形成しきた前記開口部を設けたシート53を個片状に切断する工程を備えているもので、この製造方法によれば、2枚の導電性ポリマーと3枚のパターン形成した金属箔を交互に積層し、加熱加圧成形により同時に一体化するため、導電性ポリマーとパターン形成した金属箔の積層体が一回の加熱加圧成形で形成することができるという作業効果を有するものである。

さらに本発明の第2の実施例のチップ形PTCサーミスタの製造方法においては、他の例として、パターン形成した金属箔の上下面をPTC特性を有する導電性ポリマーで挟み、さらにその上下面を金属箔で挟んで積層し、加熱加圧成形により一体化してシート53を形成する工程と、前記一体化したシート53の上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化したシート53に開口部を設ける工程と、前記開口部を設けたシート53の上下面に保護コートを形成する工程と、前記保護コートを形成しその前記開口部を設けたシート53に側面電極43a、43bを形成する工程と、前記側面電極43a、43bを形成しその前記開口部を設けたシート53を個片状に切断する工程を備えているもので、この製造方
法によれば、2枚の導電性ポリマと、1枚のパターン形成した金属箔と、最外層に配置される2枚の金属箔を交互に積層し、加熱加圧成形により同時に一体化し、最外層に配置される2枚の金属箔は、パターン形成を加熱加圧成形した後にエッティングで行うようにしているため、上下の金属箔のパターン形成の位置精度が良くなり、これにより、素子の抵抗値に関係する第1の主電極42a、第2の主電極42cおよび内層主電極45aがオーバーラップする面積のばらつきが少なくなるため、抵抗値のばらつきが少なくなるという作用効果を有するものである。

また本発明の第3の実施例のチップ形PTCサーミスタの製造方法においては、PTC特性を有する導電性ポリマの上下面をパターン形成した金属箔で挟み、加熱加圧成形により一体化して第1のシート33を形成する工程と、前記一体化した第1のシート33の上下面にPTC特性を有する導電性ポリマを配置するとともに、このPTC特性を有する導電性ポリマの上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化する工程を一回、または二回以上繰り返して積層し、第2のシート34を形成する工程と、前記一体化した第2のシート34に開口部を設ける工程と、前記開口部を設けた第2のシート34の上下面に保護コートを形成する工程と、前記保護コートを形成しかつ前記開口部を設けた第2のシート34に側面電極3a、3bを形成する工程と、前記側面電極3a、3bを形成しかつ前記開口部を設けた第2のシート34を個片区状に切断する工程を備えているもので、この製造方法によれ
ば、まず1枚の導電性ポリマーと2枚のパターン形成した金属箔を加熱圧成形により一体化し、その外側に2枚以上の偶数の導電性ポリマーと2枚以上の偶数のパターン形成した金属箔を交互に配置して加熱圧成形により一体化する工程を繰り返して
3枚以上の奇数の導電性ポリマーをパターン形成した金属箔と交互に積層して一体化することを特徴としているため、導電性ポリマーとパターン形成した金属箔の積層体を形成するために中心から外側に向かって段階的に加熱圧成形して積層していくことにより、積層体の中心付近の導電性ポリマーの厚みと外側の導電性ポリマーの厚みのばらつきを少なくするという作用効果を有するものである。

そしてまた本発明の第3の実施例のチップ形P T Cサーミスタの製造方法においては、他の例として、P T C特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟み、加熱圧成形により一体化して第1のシート33を形成する工程と、前記一体化した第1のシート33の上下面にP T C特性を有する導電性ポリマーを配置するとともに、このP T C特性を有する導電性ポリマーの上下面を金属箔で挟んで積層し、加熱圧成形により一体化して第2のシート34を形成する工程と、前記一体化した第2のシート34の上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第2のシート34に開口部を設ける工程と、前記開口部を設けた第2のシート34の上下面に保護コートを形成する工程と、前記保護コートを形成した後前記開口部を設けた第2のシート34に側面電極3a, 3bを形成する工程と、前記側面電極3a, 3bを形
成しかつ前記開口部を設けた第2のシート34を個片状に切断する工程を備えているもので、この製造方法によれば、まず1枚の導電性ポリマーと2枚のパターン形成した金属箔を加熱加圧成形により一体化し、さらにその外側に2枚の導電性ポリマーと
最外層のパターン形成していない2枚の金属箔を配置して一体化し、最外層の2枚の金属箔は、パターン形成を加熱加圧成形した後にエッティングで行うようにしているため、上下の金属箔のパターン形成の位置精度が良くなり、これにより、素子の抵抗値に関係する第1の主電極2a、第2の主電極2cおよび内
層主電極5aがオーバーラップする面積のばらつきが少なくなるため、抵抗値のばらつきが少なくなるという作用効果を有するものである。

さらに本発明の第3の実施例のチップ形P TCサーミスタの製造方法においては、さらに他の例として、P TC特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟み、加熱加圧成形により一体化して第1のシート33を形成する工程と、前記一体化した第1のシート33の上下面にP TC特性を有する導電性ポリマーを配置するとともに、このP TC特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟んで
積層し、加熱加圧成形により一体化する工程を一回、または二回以上繰り返して積層し、第2のシート34を形成する工程と、前記一体化した第2のシート34の上下面にP TC特性を有する導電性ポリマーを配置するとともに、このP TC特性を有する導電性ポリマーの上下面を金属箔で挟んで積層し、加熱加圧
成形により一体化して第3のシートを形成する工程と、前記一
体化した第3のシートの上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第3のシートに開口部を設ける工程と、前記開口部を設けた第3のシートの上下面に保護コートを形成する工程と、前記保護コートを形成しかつ

前記開口部を設けた第3のシートに側面電極3a、3bを形成する工程と、前記側面電極3a、3bを形成しかつ前記開口部を設けた第3のシートを個片状に切断する工程を備えているもので、この製造方法によれば、まず1枚の導電性ポリマーと2枚のパターン形成した金属箔を加熱加圧成形により一体化し、その外側に2枚以上の偶数の導電性ポリマーと2枚以上の偶数のパターン形成した金属箔を交互に配置して加熱加圧成形により一体化する工程を繰り返し、さらに最外層はパターン形成していない金属箔を配置し、5枚以上の奇数の導電性ポリマーとパターン形成した金属箔と最外層のパターン形成していない金属箔を交互に積層して一体化するとともに、最外層の2枚の金属箔は、パターン形成を加熱加圧成形した後にエッチングで行うようにしているため、上下の金属箔のパターン形成の位置精度が良くなり、これにより、素子の抵抗値に関係する第1の主電極2a、第2の主電極2cおよび内層主電極5aがオーバーラップする面積のばらつきが少なくなったため、抵抗値のばらつきが少なくなるという作用効果を有するものである。

さらに実験で明らかにしたチップ型PTCサーキスタの製造方法においては、パターン形成した金属箔の上下面をPTC特性を有する導電性ポリマーで挟み、さらにその上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により
一体化して第１のシート１０３を形成する工程と、前記一体化した第１のシート１０３の上下面にＰＴＣ特性を有する導電性ポリマーを配置するとともに、このＰＴＣ特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化する工程を一回、または二回以上繰り返して積層し、第二のシート１０４を形成する工程と、前記一体化した第二のシート１０４に開口部を設ける工程と、前記開口部を設けた第二のシート１０４の上下面に保護コートを形成する工程と、前記保護コートを形成しかつ前記開口部を設けた第二のシート１０４側面に電極９３ａ、９３ｂを形成する工程と、前記側面電極９３ａ、９３ｂを形成しかつ前記開口部を設けた第二のシート１０４を個片状に切断する工程を備えているもので、この製造方法によれば、まず２枚の導電性ポリマーと３枚のパターン形成した金属箔を加熱加圧成形により一体化して、その外側に２枚以上の偶数の導電性ポリマーと２枚以上の偶数のパターン形成した金属箔を交互に配置して加熱加圧成形により一体化する工程を繰り返して、４枚以上の偶数の導電性ポリマーとパターン形成した金属箔を交互に積層して一体化することを特徴としているため、導電性ポリマーとパターン形成した金属箔の積層体を形成するのに中心から外側に向かって段階的に加熱加圧成形して積層していくことにより、積層体の中心付近の導電性ポリマーの厚みと外側の導電性ポリマーの厚みのばらつきを少なくできるという作用効果を有するものである。

また本発明の第４の実施例のチップ形ＰＴＣサーミスタの製造方法において、他の例として、パターン形成した金属箔の
・上下面をＰＴＣ特性を有する導電性ポリマで挟み、さらにその上下面をパターン形成した金属箔で挟んで積層し、加熱加圧形成により一体化して第1のシート103を形成する工程と、前記一体化した第1のシート103の上下面にＰＴＣ特性を有する導電性ポリマを配置するとともに、このＰＴＣ特性を有する導電性ポリマの上下面を金属箔で挟んで積層し、加熱加圧形成により一体化して第2のシート104を形成する工程と、前記一体化した第2のシート104の上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第2のシート104に開口部を設ける工程と、前記開口部を設けた第2のシート104の上下面に保護コートを形成する工程と、前記保護コートを形成かつ前記開口部を設けた第2のシート104に側面電極93a, 93bを形成する工程と、前記側面電極93a, 93bを形成かつ前記開口部を設けた第2のシート104を個片状に切断する工程を備えているので、この製造方法によれば、まず2枚の導電性ポリマと3枚のパターン形成した金属箔を加熱加圧形成により一体化し、さらにその外側に2枚の導電性ポリマと最外層のパターン形成していない2枚の金属箔を配置して一体化し、最外層の2枚の金属箔は、パターン形成を加熱加圧形成した後にエッチングで行うようにしてあるため、上下の金属箔のパターン形成の位置精度が良くなり、これにより、素子の抵抗値に関係する第1の主電極92a、第2の主電極92cおよび内層主電極95a, 95c, 95eがオーバーラップする面積のばらつきが少なくなるため、抵抗値のばらつきが少なくなるという作用効果を有するものである。
そしてまた本発明の第4の実施例のチップ形P\^\text{T}\^\text{C}サーミスタの製造方法においては、さらに他の例として、パターン形成した金属箔の上下面をP\^\text{T}\^\text{C}特性を有する導電性ポリマーで挟み、さらにその上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化して第1のシート103を形成する工程と、前記一体化した第1のシート103の上下面にP\^\text{T}\^\text{C}特性を有する導電性ポリマーを配置するとともに、このP\^\text{T}\^\text{C}特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形にて一体化する工程を一回、または二回以上繰り返して積層し、第2のシート104を形成する工程と、前記一体化した第2のシート104の上下面にP\^\text{T}\^\text{C}特性を有する導電性ポリマーを配置するとともに、このP\^\text{T}\^\text{C}特性を有する導電性ポリマーの上下面を金属箔で挟んで積層し、加熱加圧成形により一体化して第3のシートを形成する工程と、前記一体化した第3のシートの上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第3のシートに開口部を設ける工程と、前記開口部を設けた第3のシートの上下面に保護コートを形成する工程と、前記保護コートを形成しかつ前記開口部を設けた第3のシートに側面電極93a, 93bを形成する工程と、前記側面電極93a, 93bを形成しかつ前記開口部を設けた第3のシートを個片状に切断する工程を備えているもので、この製造方法によれば、まず2枚の導電性ポリマーと3枚のパターン形成した金属箔を加熱加圧成形により一体化し、その外側に2枚以上の偶数の導電性ポリマーと2枚以上の偶数のパターン形成した金属箔を交互に配置し
で加熱加圧成形して一体化する工程を繰り返し、さらに最外層
はパターン形成していない金属箔を配置し、6枚以上の偶数の
導電性ポリマーとパターン形成した金属箔と最外層のパターン形
成していない金属箔を交互に積層して一体化し、最外層の金属
箔は、パターン形成を加熱加圧成形した後にエッチングで行う
ようにしているため、上下の金属箔のパターン形成の位置精度
が良くなり、これにより、素子の抵抗値に関係する第1の主電極
92a、第2の主電極92cおよび内層主電極95a、95c、95eがオーバーラップする面積のばらつきが少なくななるた
め、抵抗値のばらつきが少なくなるという作用効果を有するも
のである。

さらに本発明の第1の実施例のチップ形P T Cサーミスタの
製造方法においては、開口部（貫通溝）24を設ける工程を、
短冊状あるいは楕形状に加工する工程としているため、短冊状
あるいは楕形状に加工する工程の加工精度の問題で、短冊状あ
あるいは楕形状に加工した端面の形成位置が金属箔のパターンに
に対して多少ずれても、短冊状あるいは楕形状に加工した端面は
直線的な形状であり、したがって、端面の形状にばらつきが発
生することはなくなるため、その端面にめっき等で側面電極
13a、13bを形成すれば、側面電極13a、13bと第1
の主電極12aおよび第2の主電極12cとの接合面積は一定
となり、これにより、導電性ポリマーの膨張収縮による応力に対
し、側面電極13a、13bと第1の主電極12aおよび第2
の主電極12cとの接合部の強度のばらつきが少なくなるとい
う作用効果を有するものである。
さらに本発明の第１の実施例のチップ形ＰＴＣサーミスタの製造方法においては、パターン形成後の金属箔の開口部（貫通溝）２４の形状を楕形状としているため、楕形の刃に相当する部分の開口部を、後工程の個片分割時の分割ラインに沿って切断することにより、楕形状の開口部のない金属箔を切断するようにしたものに比べて、金属箔を切断する部分が減り、これにより、分割時の金属箔のバリの発生量を低減することができ、さらに素子側面への金属箔の断面の露出を少なくすることができるため、金属箔の露出面が酸化したり、実装時にはんだによるショートが起こるのを少なくすることができるという作用効果を有するものである。

産業上の利用可能性
以上のようくは製のチップ形ＰＴＣサーミスタは、直方体の形状よりなるＰＴＣ特性を有する導電性ポリマーと、前記導電性ポリマーの第１面に位置する第１の主電極と、前記第１の主電極と同じ面に位置し、かつ前記第１の主電極と独立した第１の副電極と、前記導電性ポリマーの前記第１面に対向する第２面に位置する第２の主電極と、前記第２の主電極と同じ面に位置し、かつ前記第２の主電極と独立した第２の副電極と、少なくとも前記導電性ポリマーの一方の側面全面に設けられ、かつ前記第１の主電極と前記第２の副電極とを電気的に接続する第１の側面電極と、少なくとも前記導電性ポリマーの一方の側面に対向する他方の側面全面に設けられ、かつ前記第１の副電極と前記第２の主電極とを電気的に接続する第２の側面電極とを備えた
ものであり、この構成によれば、少なくとも導電性ポリマの２つの側面全面に側面電極が設けられているため、プリント基板に実装した場合のはんだフィレットを側面に形成することがで
き、その結果、実装時のはんだ付け部の外観検査が容易に行
え、かつフローはんだ付けが可能であるというすぐれた効果を
有するものである。
請求の範囲

1. 直方体の形状よりなるＰＴＣ特性を有する導電性ポリマーと、前記導電性ポリマーの第１面に位置する第１の主電極と、前記第１の主電極と同じ面に位置し、かつ前記第１の主電極と独立した第１の副電極と、前記導電性ポリマーの前記第１面に対向する第２面に位置する第２の主電極と、前記第２の主電極と同じ面に位置し、かつ前記第２の主電極と独立した第２の副電極と、少なくとも前記導電性ポリマーの一方の側面全面に設けられ、かつ前記第１の主電極と前記第２の副電極とを電気的に接続する第１の側面電極と、少なくとも前記導電性ポリマーの一方の側面に対向する他方の側面全面に設けられ、かつ前記第１の副電極と前記第２の主電極とを電気的に接続する第２の側面電極とを備えたチップ形ＰＴＣサーミスタ。

2. 直方体の形状よりなるＰＴＣ特性を有する導電性ポリマーと、前記導電性ポリマーの第１面に位置する第１の主電極と、前記第１の主電極と同じ面に位置し、かつ前記第１の主電極と独立した第１の副電極と、前記導電性ポリマーの前記第１面に対向する第２面に位置する第２の主電極と、前記第２の主電極と同じ面に位置し、かつ前記第２の主電極と独立した第２の副電極と、少なくとも前記導電性ポリマーの一方の側面全面に設けられ、かつ前記第１の主電極と前記第２の主電極とを電気的に接続する第１の側面電極と、少なくとも前記導電性ポリマーの一方の側面に対向する他方
の側面全面に設けられ、かつ前記第1の副電極と前記第2の副電極とを電気的に接続する第2の側面電極と、前記導電性ポリマーの内部に位置して前記第1、第2の主電極に平行に設けられた奇数の内層主電極と、前記内層主電極と同じ面に位置し、かつこの内層主電極と独立した奇数の内層副電極を備え、前記第1の主電極に直接対向する前記内層主電極は前記第2の側面電極に電気的に接続され、かつ前記第1の主電極に直接対向する前記内層主電極と同じ面に位置する前記内層副電極は前記第1の側面電極に電気的に接続され、さらに隣り合う前記内層主電極および内層副電極は前記第1の側面電極と前記第2の側面電極に交互に電気的に接続されることを特徴とするチップ形ＰＴＣサーミスタ。

3. 直方体の形状よりなるＰＴＣ特性を有する導電性ポリマーと、前記導電性ポリマーの第1面に位置する第1の主電極と、前記第1の主電極と同じ面に位置し、かつ前記第1の主電極と独立した第1の副電極と、前記導電性ポリマーの前記第1面に対向する第2面に位置する第2の主電極と、前記第2の主電極と同じ面に位置し、かつ前記第2の主電極と独立した第2の副電極と、少なくとも前記導電性ポリマーの一方の側面全面に設けられ、かつ前記第1の主電極と前記第2の副電極とを電気的に接続する第1の側面電極と、少なくとも前記導電性ポリマーの一方の側面に対向する他方の側面全面に設けられ、かつ前記第1の副電極と前記第2の主電極とを電気的に接続する第2の側面電極と、前記導
電性ポリマの内部に位置して前記第1、第2の主電極に平行に設けられた偶数の内層主電極と、前記内層主電極と同じ面に位置し、かつこの内層主電極と独立した偶数の内層副電極とを備え、前記第1の主電極に直接対向する前記内層主電極は前記第2の側面電極に電気的に接続され、かつ前記第1の主電極に直接対向する前記内層主電極と同じ面に位置する前記内層副電極は前記第1の側面電極に電気的に接続され、さらに隣り合う前記内層主電極および内層副電極は前記第1の側面電極と前記第2の側面電極に交互に電気的に接続されることを特徴とするチップ形P T Cサーミスタ。

4. 請求の範囲第1項、第2項または第3項において、側面電極をニッケルまたはその合金で構成したチップ形P T Cサーミスタ。

5. P T C特性を有する導電性ポリマの上下面をパターン形成した金属箔で挟み、加熱加圧成形により一体化してシートを形成する工程と、前記一体化したシートに開口部を設ける工程と、前記開口部を設けたシートの上下面に保護コートを形成する工程と、前記保護コートを形成かつ前記開口部を設けたシートに側面電極を形成する工程と、前記側面電極を形成かつ前記開口部を設けたシートを個片状に切断する工程を備えたチップ形P T Cサーミスタの製造方法。

6. P T C特性を有する導電性ポリマの上下面を金属箔で挟み、加熱加圧成形により一体化してシートを形成する工程
と、前記一体化したシートの上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化したシート開口部を設ける工程と、前記開口部を設けたシートの上下面に保護コートを形成する工程と、前記保護コートを形成しつつ前記開口部を設けたシートに側面電極を形成する工程と、前記側面電極を形成しつつ前記開口部を設けたシートを個片状に切断する工程を備えたチップ形P T Cサーミスタの製造方法。

7. パターン形成した金属箔の上下面をP T C特性を有する導電性ポリマーで挟み、さらにその上下面をパターン形成した金属箔で挟んで積層し、加熱圧成形により一体化してシートを形成する工程と、前記一体化したシート開口部を設ける工程と、前記開口部を設けたシートの上下面に保護コートを形成する工程と、前記保護コートを形成しつつ前記開口部を設けたシートに側面電極を形成する工程と、前記側面電極を形成しつつ前記開口部を設けたシートを個片状に切断する工程を備えたチップ形P T Cサーミスタの製造方法。

8. パターン形成した金属箔の上下面をP T C特性を有する導電性ポリマーで挟み、さらにその上下面を金属箔で挟んで積層し、加熱圧成形により一体化してシートを形成する工程と、前記一体化したシートの上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化したシート開口部を設ける工程と、前記開口部を設けたシートの上下面に保護コートを形成する工程と、前記保護コートを形成
成しかつ前記開口部を設けたシートに側面電極を形成する工程と、前記側面電極を形成しかつ前記開口部を設けたシートを個片状に切断する工程を備えたチップ形ＰＴＣサーミスタの製造方法。

5 9. ＰＴＣ特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化して第１のシートを形成する工程と、前記一体化した第１のシートの上下面にＰＴＣ特性を有する導電性ポリマーを配置するとともに、このＰＴＣ特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化する工程を一回、または二回以上繰り返して積層し、第２のシートを形成する工程と、前記一体化した第２のシートに開口部を設ける工程と、前記開口部を設けた第2のシートの上下面に保護コートを形成する工程と、前記保護コートを形成しかつ前記開口部を設けた第２のシートに側面電極を形成する工程と、前記側面電極を形成しかつ前記開口部を設けた第２のシートを個片状に切断する工程を備えたチップ形ＰＴＣサーミスタの製造方法。

10. ＰＴＣ特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟み、加熱加圧成形により一体化して第１のシートを形成する工程と、前記一体化した第１のシートの上下面にＰＴＣ特性を有する導電性ポリマーを配置するとともに、このＰＴＣ特性を有する導電性ポリマーの上下面を金属箔で挟んで積層し、加熱加圧成形により一体化して第２のシートを形成する工程と、前記一体化した第２のシート
45

の上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第２のシートに開口部を設ける工程と、前記開口部を設けた第２のシートの上下面に保護コートを形成する工程と、前記保護コートを形成かつ前記開口部を設けた第２のシートに側面電極を形成する工程と、前記側面電極を形成かつ前記開口部を設けた第２のシートを個片状に切断する工程を備えたチップ形ＰＴＣサーミスタの製造方法。

11. ＰＴＣ特性を有する導電性ポリマの上下面をパターン形成した金属箔で挟み、加熱加圧成形により一体化して第１のシートを形成する工程と、前記一体化した第１のシートの上下面にＰＴＣ特性を有する導電性ポリマを配置するとともに、このＰＴＣ特性を有する導電性ポリマの上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化する工程を一回、または二回以上繰り返して積層し、第２のシートを形成する工程と、前記一体化した第２のシートの上下面にＰＴＣ特性を有する導電性ポリマを配置するとともに、このＰＴＣ特性を有する導電性ポリマの上下面を金属箔で挟んで積層し、加熱加圧成形により一体化して第３のシートを形成する工程と、前記一体化した第３のシートの上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第３のシートに開口部を設ける工程と、前記開口部を設けた第３のシートの上下面に保護コートを形成する工程と、前記保護コートを形成かつ前記開口部を設けた第３のシートに側面電極を形成す
の工程と、前記側面電極を形成かつ前記開口部を設けた第3のシートを個片状に切断する工程を備えたチップ形PТСサーミスタの製造方法。

12. パターン形成した金属箔の上下面をPTC特性を有する導電性ポリマーで挾み、さらにその上下面をパターン形成した金属箔で挾んで積層し、加熱加圧成形により一体化して第1のシートを形成する工程と、前記一体化した第1のシートの上下面にPTC特性を有する導電性ポリマーを配置するとともに、このPTC特性を有する導電性ポリマーの上上面をパターン形成した金属箔で挾んで積層し、加熱加圧成形により一体化する工程を一回、または二回以上繰り返して積層し、第2のシートを形成する工程と、前記一体化した第2のシートに開口部を設ける工程と、前記開口部を設けた第2のシートの上下面に保護コートを形成する工程と、前記保護コートを形成かつ前記開口部を設けた第2のシートに側面電極を形成する工程と、前記側面電極を形成かつ前記開口部を設けた第2のシートを個片状に切断する工程を備えたチップ形PTCサーミスタの製造方法。

13. パターン形成した金属箔の上下面をPTC特性を有する導電性ポリマーで挾み、さらにその上下面をパターン形成した金属箔で挾んで積層し、加熱加圧成形により一体化して第1のシートを形成する工程と、前記一体化した第1のシートの上下面にPTC特性を有する導電性ポリマーを配置するとともに、このPTC特性を有する導電性ポリマーの上下面を金属箔で挾んで積層し、加熱加圧成形により一体化して
第2のシートを形成する工程と、前記一体化した第2のシートの上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第2のシートに開口部を設ける工程と、前記開口部を設けた第2のシートの上下面に保護コートを形成する工程と、前記保護コートを形成かつ前記開口部を設けた第2のシートに側面電極を形成する工程と、前記側面電極を形成かつ前記開口部を設けた第2のシートを個片状に切断する工程を備えたチップ形PTCサーミスタの製造方法。

14. パターン形成した金属箔の上下面をPTC特性を有する導電性ポリマーで挟み、さらにその上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化して第1のシートを形成する工程と、前記一体化した第1のシートの上下面にPTC特性を有する導電性ポリマーを配置するとともに、このPTC特性を有する導電性ポリマーの上下面をパターン形成した金属箔で挟んで積層し、加熱加圧成形により一体化する工程を一回、または二回以上繰り返して積層し、第2のシートを形成する工程と、前記一体化した第2のシートの上下面にPTC特性を有する導電性ポリマーを配置するとともに、このPTC特性を有する導電性ポリマーの上下面を金属箔で挟んで積層し、加熱加圧成形により一体化して第3のシートを形成する工程と、前記一体化した第3のシートの上下面の金属箔をエッチングしてパターン形成を行う工程と、前記一体化した第3のシートに開口部を設ける工程と、前記開口部を設けた第3のシートの上
下面に保護コートを形成する工程と、前記保護コートを形成しかつ前記開口部を設けた第3のシートに側面電極を形成する工程と、前記側面電極を形成しかつ前記開口部を設けた第3のシートを個片状に切断する工程を備えたチップ形P T Cサーミスタの製造方法。

15. 請求の範囲第5項〜第14項のいずれかにおいて、開口部を設ける工程は、短冊状あるいは棒形状に加工する工程であるチップ形P T Cサーミスタの製造方法。

16. 請求の範囲第5項〜第14項のいずれかにおいて、バターーン形成後の金属箔の開口部の形状を棒形状としたチップ形P T Cサーミスタの製造方法。
Fig. 1

(a)

(b)

(c)
Fig. 2

(a) 21

(b) 26 27 22

(c) 22

21 22
Fig. 12

(a) 101

(b) 102

(c) 101, 102
Fig. 14

(a) 64b 62b 62a 61
63b 62c 63a 64a 62d

(b) 63b 64a 63a 64b
Fig. 15

(a)  

(b)  

(c)  

(d)
Fig. 17

(a)

(b)

(c)

83  82  83

81  84

83

83  83

81

84

85
図面の参照符号の一覧表

1 ……導電性ポリマ
2 a ……第1の主電極
2 b ……第1の副電極
5 2 c ……第2の主電極
2 d ……第2の副電極
3 a ……第1の側面電極
3 b ……第2の側面電極
4 a, 4 b ……保護コート層
10 5 a ……第1の内層主電極
5 b ……第1の内層副電極
5 c ……第2の内層主電極
5 d ……第2の内層副電極
11 ……導電性ポリマ
15 12 a ……第1の主電極
12 b ……第1の副電極
12 c ……第2の主電極
12 d ……第2の副電極
13 a ……第1の側面電極
20 13 b ……第2の側面電極
14 a, 14 b ……保護コート層
21 ……導電性ポリマシート
22 ……電極
23 ……シート
25 24 ……開口部（貫通溝）
17/19

25 ……保護コート
26 ……溝
27 ……溝
31 ……導電性ポリマシート

5 32 ……電極
33 ……第1のシート
34 ……第2のシート
41 ……導電性ポリマー
42a ……第1の主電極

10 42b ……第1の副電極
42c ……第2の主電極
42d ……第2の副電極
43a ……第1の側面電極
43b ……第2の側面電極

15 44a, 44b ……保護コート層
45a ……内層主電極
45b ……内層副電極
51 ……導電性ポリマシート

52 ……電極

20 53 ……シート
61 ……抗体
62a, 62b, 62c, 62d ……電極
63a, 63b ……開口部
64a, 64b ……導電部材

25 71 ……シート
72 ……金属箔
73 ……シート
74 ……スルー孔
75 ……めっき膜
5 76 ……エッティング溝
77 ……縦方向の切断ライン
78 ……横方向の切断ライン
79 ……チップ形P T Cサーミスタ
81 ……スルーホール
10 82 ……切断ライン
83 ……電極
84 ……エッティング溝
85 ……接合部
91 ……導電性ポリマ
15 92 a ……第1の主電極
92 b ……第1の副電極
92 c ……第2の主電極
92 d ……第2の副電極
93 a ……第1の側面電極
20 93 b ……第2の側面電極
94 a , 94 b ……保護コート層
95 a ……第1の内層主電極
95 b ……第1の内層副電極
95 c ……第2の内層主電極
25 95 d ……第2の内層副電極
95e ……第3の内層主電極
95f ……第3の内層副電極
101 ……導電性ポリマーシート
102 ……電極
5  103 ……第1のシート
104 ……第2のシート
INTERNATIONAL SEARCH REPORT
International application No. PCT/JP98/01969

A. CLASSIFICATION OF SUBJECT MATTER
Int.Cl* H01C7/02
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
Int.Cl* H01C7/02-7/22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1926-1996
Jitsuyo Shinan Toroku Koho 1996-1998
Kokai Jitsuyo Shinan Koho 1971-1998
Toroku Jitsuyo Shinan Koho 1994-1998

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO, 94/01876, A1 (RAYCHEM CORP.), January 20, 1994 (20. 01. 94) &amp; EP, 649562, A1 &amp; DE, 69317288, E</td>
<td>1, 5-8, 15, 16</td>
</tr>
<tr>
<td>A</td>
<td>&amp; JP, 7-509347, A</td>
<td>2-4, 9-14</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 61-111502, A (Matsushita Electric Industrial Co., Ltd.), May 29, 1986 (29. 05. 86) (Family: none)</td>
<td>1, 5-8, 15, 16</td>
</tr>
<tr>
<td>Y</td>
<td>JP, 5-47446, Y2 (NEC Corp.), December 14, 1993 (14. 12. 93) (Family: none)</td>
<td>1, 5-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15, 16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
  "A" document defining the general state of the art which is not considered to be of particular relevance
  "D" earlier document but published or after the international filing date document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  "O" document referring to an oral disclosure, use, exhibition or other means
  "P" document published prior to the international filing date but later than the priority date claimed
  "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
  "&" document member of the same patent family

Date of the actual completion of the international search
July 24, 1998 (24. 07. 98)

Date of mailing of the international search report
August 4, 1998 (04. 08. 98)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.
Telephone No.

Form PCT/ISA/210 (second sheet) (July 1992)
国際調査報告

A. 発明の属する分野の分類（国際特許分類（IPC））

Int. Cl* HO1C 7/02

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int. Cl* HO1C 7/02 - 7/22

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1926-1996年
日本国公開実用新案公報 1971-1998年
日本国特許出願公報 1996-1998年
日本国登録実用新案公報 1994-1998年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献の</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する</th>
<th>請求の範囲の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>カテゴリー＊</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP, 61-111502, A(松下電器産業株式会社) 29.5月. 1986 (29.05.86) (ファミリーなし)</td>
<td>2-4, 9-14</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP, 5-474446, Y2 (日本電気株式会社) 14.12月. 1993 (14.12.93) (ファミリーなし)</td>
<td>1, 5-8, 15,16</td>
<td></td>
</tr>
</tbody>
</table>

C 構の続きにも文献が挙げられている。

パテントファミリーに関する別紙を参照。

＊ 引用文献のカテゴリ

「A」特に関連のある文献ではなく、一般的な技術水準を示すもの「E」先行文献ではあるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願の理由とは関係ない、発明の原理又は理解の理解のために引用するもの

「U」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性が認められるもの

「X」特に関連のある文献であって、当該文献と他の1以上の文献との、当該者にとっては明瞭である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日 24.07.98
国際調査報告の発送日 04.08.98

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）
郵便番号100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
科名 一夫
電話番号 03-3581-1101 内線 3520

様式PCT／ISA／210（第2ページ）（1992年7月）