WO 2005/017708 A2 |0 |00 00 0 00 O O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

24 February 2005 (24.02.2005)

PCT

AT OO AR

(10) International Publication Number

WO 2005/017708 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2004/026429

(22) International Filing Date: 13 August 2004 (13.08.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/640,513 14 August 2003 (14.08.2003) US

(71) Applicant (for all designated States except US): WASH-
INGTON UNIVERSITY [US/US]; Campus Box 1045, 1
Brookings Drive, St. Louis, MO 63130 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DHARMA-
PURIKAR, Sarang [US/US]; Campus Box 1045, 1
Brookings Drive, St. Louis, MO 63130 (US). KRISH-
NAMURTHY, Praveen [US/US]; Campus Box 1045, 1
Brookings Drive, St. Louis, MO 63130 (US). SPROULL,
Todd [US/US]; Campus Box 1045, 1 Brookings Drive, St.
Louis, MO 63130 (US). LOCKWOOD, John [US/US]J;
Campus Box 1045, 1 Brookings Drive, St. Louis, MO
63130 (US).

(74) Agent: PEREZ, Enrique; Sonnenschein Nath & Rosen-
thal LLP, P.O. Box 061080, Wacker Drive Station, Chicago,
IL 60606-1080 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR DETECTING PREDEFINED SIGNATURES IN PACKET PAYLOAD USING

(57) Abstract: The present invention

/\, 110

relates to a method and apparatus
based on the Bloom filters for detecting
predefined signatures (a string of bytes)
in a network packet payload. A Bloom
filter is a data structure for representing

BLOOM FILTERS
Analyzer
(Isolates false positives)
suspicious sub-strings

a set of strings in order to support
membership queries. Hardware Bloom
filters isolate all packets that potentially
contain predefined signatures. Another

Hardware Bloom Filters

" p\g [:I D [I I:I D"H\qoo

independent process eliminates false
positives produced by the Bloom filters.
The system is implemented on a FPGA
platform, resulting in a set of 10,000
strings being scanned in the network
data at the line speed of 2.4 Gbps.

101

/

Network Traffic

10

15

20

WO 2005/017708 PCT/US2004/026429

METHOD AND APPARATUS FOR DETECTING PREDEFINED

SIGNATURES IN PACKET PAYLOAD USING BLOOM FILTERS

The present invention relates to a method and apparatus of detecting

predefined signatures in a network packet payload using Bloom filters.

BACKGROUND OF THE INVENTION

There is a class of packet processing applications which need to inspect
packets on the link deeper than protocol headers and to analyze its payload. For
instance, network security applications require that the packets containing certain
malicious strings (i.e., internet worms, computer viruses) be dropped. Further, |
filtering of SPAM and detection of unauthorized transfer of copyrighted material is
necessary. See for example, U.S. Patent Publication No. 20030110229 to Kulig et al.,
which generally describes a system which scans content.

Content-based billing techniques analyze media files and bill the receiver
based on the material transferred over the network. Content forwarding applications
look at the HTTP headers and direct the requests to predetermined servers for load
balancing.

Most payload applications have a common requirement 'for string matching -
see U.S. Patent No. 6,377,942 to Hinsley et al. and U.S. Patent No. 6,169,969 to
Cohen. Some randomized string matching techniques use Bloom filters (see B.
Bloom, in “Space/time trade-offs in hash coding with allowable errors”, ACM,
13(7):422-426, May 1970). One such technique has been implemented using a unique

platform called Splash 2 (Pryor, D., Thistle, M., & Shirazi, N., "Text Searching On

10

15

20

WO 2005/017708 PCT/US2004/026429

2
Splash 2 ", Proceedings of the IEEE Workshop on PRGAs for Custom Computing

Machines, Los Alamitos, CA, IEEE Computer Soc. Press, 1993, pp. 172-177.).

A file can be characterized by the presence of a string of bytes (a string is
synonymous with a signature herein), and its transmission across a link can be
monitored by looking out for the presence of this string on the network. Since the
location of such strings in the packet payload is not deterministic, such applications
need the ability to detect strings of different lengths starting at arbitrary locations in
the packet payload.

Such packet inspection applications, when deployed at router ports, must be
able to operate at wire speeds. With the network speeds doubling every year, it is
becoming increasingly difficult for software-based packet monitors to keep up with
the line rates. This has underscored the needs for specialized hardware-based

solutions which are portable and operate at wire speeds.

SUMMARY OF THE INVENTION

The present invention relates to a method and apparatus of detecting
predefined signatures in a network packet payload using Bloom filters.

In one embodiment consistent with the present invention, the method of
monitoring signatures in a network packet payload includes monitoring a data stream
on the network for a signature of a predetermined length; testing the network
signature for membership in one of a plurality of Bloom filters; and testing for a false
positive on the membership in the one of the Bloom filters.

Further, in one embodiment consistent with the present invention, each of the

Bloom filters contains a predefined signature of a predetermined length.

10

15

20

WO 2005/017708 PCT/US2004/026429

3

Still further, in one embodiment consistent with the present invention, the
membership includes a correspondence between the network signature and the
predefined signatures.

In yet another embodiment consistent with the present invention, a set of
multiple mini-Bloom filters are allocated to each Bloom filter, and the predefined
signatures are uniformly distributed into the set of mini-Bloom ﬁlters.

In another embodiment consistent with the present invention, a method of
monitoring signatures in a network packet payload includes storing a predefined
signature of a predetermined length in one of a plurality of Bloom filters; monitoring
a data stream on the network for a signature which corresponds to the predefined
signature; and determining, using an analyzer, whether the network signature one of
corresponds to the predefined signature and is a false positive.

In yet another embodiment consistent with the present invention, the apparatus
for monitoring signatures in a network packet payload, includes means for monitoring
a data stream on the network for a signature of a predetermined length; means for
testing the network signature for membership in one of a plurality of Bloom filters;
and means for testing for a false positive on the membership in the one of the Bloom
filters.

In yet another embodiment consistent with the present invention, the apparatus
for monitoring signatures in a network packet payload includes means for storing a
predefined signature of a predetermined length in one of a plurality of Bloom filters;
means for monitoring a data stream on the network for a signature which corresponds

to the predefined signature; and means for determining, using an analyzer, whether

10

15

20

WO 2005/017708 PCT/US2004/026429

4

the network signature one of corresponds to the predefined signature and is a false
positive.

In yet another embodiment consistent with the present invention, an apparatus
for monitoring signatures in a packet payload over a network, includes an FPGA
having a plurality of embedded block memories used to construct a plurality of Bloom
filters, the FPGA being disposed on a platform; a switch which multicasts data from
the network to a router; wherein traffic from the network to the router is processed in
the FPGA; and a monitor which checks all packets for signatures marked as a possible
match by predefined signatures stored in the Bloom filters.

Further, in yet another embodiment consistent with the present invention, the
FPGA includes embedded memories, wherein the embedded memories are embedded
RAMs in a VLSI chip.

Thus has thus been outlined, some features consistent with the present
invention in order that the detailed description thereof that follows may be better
understood, and in order that the present contribution to the art may be better
appreciated. There are, of course, additional features consistent with the present
invention that will be described below and which will form the subject matter of the
claims appended hereto.

In this respect, before explaining at least one embodiment consiétent with the
present invention in detail, it is to be understood that the invention is not limited in its
application to the details of construction and to the arrangements of the components
set forth in the following description or illustrated in the drawings. Methods and
apparatuses consistent with the present invention are capable of other embodiments

and of being practiced and carried out in various ways. Also, it is to be understood

10

15

20

WO 2005/017708 PCT/US2004/026429

5

that the phraseology and terminology employed herein, as well as the abstract
included below, are for the purpose of description and should not be regarded as
limiting.

As such, those skilled in the art will appreciate that the conception upon which
this disclosure is based may readily be utilized as a basis for the designing of other
structures, methods and systems for carrying out the several purposes of the present
invention. It is important, therefore, that the claims be regarded as including such
equivalent constructions insofar as they do not depart from the spirit and scope of the

methods and apparatuses consistent with the present invention.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a schematic diagram of a plurality of hardware Bloom filters
scanning all network traffic on a multi-gigabit network for predefined signatures,
according to one embodiment consistent with the present invention.

FIG. 2 is a schematic diagram of a window of streaming data containing
strings of length L, = 3 t0 Ly = W, where each string is examined by a Bloom filter,
according to one embodiment consistent with the present invention.

FIG. 3 is a schematic diagram of multiple parallel engines of Bloom filters to
obtain better throughput, according to one embodiment consistent with the present
invention.

FIG. 4 is a graph showing the throughput of the present system as a function
of the available on-chip memory, according to one embodiment consistent with the

present invention.

10

15

20

WO 2005/017708 PCT/US2004/026429

6

FIG. 5A is a schematic diagram of a Bloom filter with a single memory vector
which allows 35 random lookups at a time, according to one embodiment consistent
with the present invention.

FIG. 5B is a schematic diagram of a Bloom filter implemented using multiple
smaller memories with smaller lookup capacity to realize the desired lookup capacity,
according to one embodiment consistent with the present invention.

FIG. 6A is a schematic diagram showing the allocation of a plurality of mini-
Bloom filters according to one embodiment consistent with the present invention.

FIG. 6B is a schematic diagram showing the querying of different sub-strings
in a streaming data window across sets of mini-Bloom filters, according to one
embodiment consistent with the present invention.

FIG. 7 is a schematic diagram showing the hardware implementation of one
embodiment consistent with the present invention.

FIG. 8 is a graph showing the false positive probability as a function of the
number of signatures stored into one Bloom filter engine, according to one

embodiment consistent with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a hardware-based technique using Bloom
filters for detecting predefined signatures (a string of bytes) in a network packet
payload without degrading throughput.

A Bloom filter (see B. Bloom, in “Space/time trade-offs in hash coding with
allowable errors”, ACM, 13(7):422-426, May 1970) is a data structure that stores a set

of signatures compactly for computing multiple hash functions on each member of the

10

15

20

WO 2005/017708 PCT/US2004/026429

7
set. With this randomized technique, a database of strings is queried for the

membership of a particular string. Given a string X, the Bloom filter computes & hash
functions on the string, producing & hash values ranging each from 1 to m. The
Bloom filter then sets & bits in an m-bit long vector at the addresses corresponding to
the & hash values. The same procedure is repeated for all the members of the set, and
is called “programming” the filter.

The query process is similar to programming, where a string whose
membership is to be verified is input to the filter. The Bloom filter generates k hash
values using the same hash functions it used to program the filter. The bits in the m-
bit long vector at the locations corresponding to the k hash values are looked up. If at
least one of these k bits is found not set, then the string is declared to be a non-
member of the set. If all the bits are found to be set, then the string is said to belong
to the set with a certain probability.

This uncertainty in the membership comes from the fact that those £ bits in the
m-bit vector can bet set by any of the » members. Thus, finding a bit set does not
necessarily imply that it was set by the particular string being queried. However,
finding a bit not set certainly implies that the string does not belong to the set, since if
it did then all the % bits would definitely have been set when the Bloom filter was
programmed with that string.

This explains the presence of false positives in this scheme, and the absence of

any false negatives. The false positive rate f, is expressed as

Fa-hy

10

15

20

WO 2005/017708 PCT/US2004/026429

8

where # is the number of strings programmed into the Bloom filter. The value
of f can be reduced by choosing appropriate values of m and & for a given size of the
member set, 7.

It is clear that the value of m needs to be quite large compared to the size of
the string set, i.e., n. Also, for a given ratio of m/n, the false probability can be
reduced by increasing the number of hash functions £. In the optimal case, when false

positive probability is minimized with respect to , the following relation is achieved:

E={" 2
(2)m2 o

This corresponds to a false positive probability ratio of:

1 k
i) o

The ratio m/n can be interpreted as the average number of bits consumed by a
single member of the set. It should be noted that this space requirement is
independent of the actual size of the member. In the optimal case, the false positive
probability decreased exponentially with a linear increase in the ratio m/n. Secondly,
this also implies that the number of hash functions %, and hence the number of random
lookups in the bit vector required to query one membership is proportional to m/n.

One property of Bloom filters is that it is not possible to delete a member
stored into the filter. Deleting a particular entry requires that the corresponding &
hashed bits in the bit vector be set to zero. This could disturb other members
programmed into the filter which hash to any of these bits.

To overcome this drawback, a Counting Bloom filter maintains a vector of

counters corresponding to each bit in the bit-vector. Whenever a member is added to

10

15

20

WO 2005/017708 PCT/US2004/026429

9

or deleted from the filter, the counters corresponding to the & hash values are
incremented or decremented, respectively. When a counter changes from zero to one,
the corresponding bit in the bit-vector is set. When a counter changes from one to
zero, the corresponding bit in the bit-vector is cleared.

The counters are changed only during addition and deletion of strings in the
Bloom filter. For applications like network intrusion detection, these updates are
relatively less frequent than the actual query process itself. Hence, counters can be
maintained in software and the bit corresponding to each counter is maintained in
hardware. Thus, by avoiding counter implementation in hardware, memory resources
can be saved.

An important property of Bloom filters is that the computation time involved
in performing the query is independent of the size of the set of strings in the database,
provided the memory used by the data structure scales linearly with the number of
strings stored in it. Further, the amount of storage required by the Bloom filter for
each string is independent of its length. Still further, the computation, which requires
generation of hash values, can be performed in special purpose hardware.

In one embodiment consistent with the present invention, a predefined set of
signatures are grouped according to their length (in bytes) and stored in a set of
parallel Bloom filters in hardware. Each of these Bloom filters 100 (see FIG. 1)
contains the signatures of a particular length. The Bloom ﬁlteré 1-n (100) are used to
monitor multigigabit network traffic 101 and operate on strings of corresponding
length from the network data (see FIG. 1). Each string is tested for its membership in
the Bloom filters 100. If a string is found to be a member of any Bloom filter 100,

then it is declared as a possible matching signature. Such strings are probed into an

10

15

20

WO 2005/017708 PCT/US2004/026429

10

analyzer 110, for example, which determines if a string is indeed a member of the set
or a false positive. The analyzer 110 is a deterministic string matching algorithm
which verifies if the input string is a member of a given set or not. When a string of
interest is found, an appropriate action (drop, forward, and log, for example) can be
taken on the packet.

In one embodiment consistent with the present invention, the Bloom filter
engine reads as input a data stream that arrives at the rate of one byte per clock cycle.
The length of the signatures range from Ly, t0 Lyqy, and the Bloom filter engine
monitors a window of L, bytes as shown in FIG. 2.

When this window is full, it contains L,y = Ly, different sub-strings which are
potential signatures. Membership of each of these sub-strings is verified using the
corresponding Bloom filter 200. Each of the hardware Bloom filters 200 in the
present invention gives one query result per clock cycle. In this way, memberships of
all the Lyqy - Ly strings can be verified in a single clock cycle. If none of the sub-
strings shows a match, the data stream can be advanced by one byte. By monitoring a
window in this way, eventually all the possible strings of length from L,,;, bytes (i.e.,
3 bytes) to Lyq bytes (i.e., W) in every packet are scanned.

In the case of multiple sub-strings matching within a single window, the
longest sub-string among them is considered as the string of interest. This policy is
called the Longest Sub-string First (LSF). Thus, in the case of multiple matches at the
same time in the array of Bloom filters 200, the analyzer 110 (see FIG. 1) is probed
with the longest sub-string down to the shortest sub-string. The search stops as soon
as a sub-string is first confirmed by the analyzer 110. After the search is over, the

window is advanced by one byte and the same procedure is repeated.

10

15

20

WO 2005/017708 PCT/US2004/026429

11

Thus, in the present invention, the Bloom filters 200 accelerate string
matching by isolating most of the strings from the network data and processing just
those strings to the analyzer which have a very high probability of matching. A string
of interest never goes unnoticed since the Bloom filter never gives false negatives.
Thus, an expression that gives the statistical throughput of the system can be derived.

Within a window, it is possible that multiple Bloom filters show matches
corresponding to their sub-strings. For a search that ends at the /" Bloom filter, let B;
denote the number of Bloom filters which filter for lengths higher than /. The
probability that exactly 7 filters associated with string lengths greater than / will

generate false positives is given by:
B\ .. y
B=[;}fﬁ—fﬁ 4)

where fis the false positive probability of each Bloom filter, B is the total
number of Bloom filters in the system, and F is the clock frequency (in Hz) at which
the system operates.

For each value of 7, jadditional probes into the analyzer would be required.
Hence, the expected number of additional probes in the analyzer that are required can
be expressed as:

& . B[i By —i
E =34, 11'0-7) 5)
i=1
which is the mean for a binomial distribution with B; elements

and a probability of success f. Hence,

E, =B f (6)

10

15

20

WO 2005/017708 PCT/US2004/026429

12

The equation above shows that the expected number of additional probes into
the analyzer, when the search ends at /™ Bloom filter, is equal to the number of Bloom
filters for the longer string lengths times the false positive probability (which is the
same for all the filters). In the worst case, B;= B, hence the value of E;is upper
bounded at Bf. This upper bound on the expected number of additional probes in the
analyzer is used for further calculations. Since each of these probes requires time 7,
which is the time (in seconds) required to check the presence of a string using the
analyzer), in the worst case, the expected additional time spent in probes can be

expressed as:

T.= Bft seconds @)

Since the search ends at Bloom filter /, if it shows a match then it means a true
match has been found, otherwise it means there are no Bloom filters for string lengths
less than / that show a match in the given window. In the earlier case, again, time 7
will be spent to probe the analyzer for the confirmation of true match. In the latter
case, time equal to the clock period, (1/F), will be spent. If the frequency of

occurrence of a true string in the data stream is denoted by p, then, on an average, the

time spent during the end of the search within a window is:

1
T,.. =pt+(-p) 7 seconds ®)

Thus, on an average, a total of T,y +7T ., is spent in examining a window, after
which the window is advanced by a byte. Hence the throughput of the system, R, can

be expressed as:

R =—1—bytes/s
Tadd +T,

end

10

15

20

WO 2005/017708 PCT/US2004/026429

13

= 1 bytes/s (9)

Bfr+pr+(l—p)?

The system as shown in the FIG. 2 processes one byte for every clock cycle.
If the set of Bloom filters is grouped in a single scanner engine 300 for example as
shown in FIG. 3, then multiple such engines 300 can be instantiated to monitor the
data stream starting with an offset of a byte. Thus, if three such engines 300 are used,
for example, then the byte stream can be advanced by three bytes at a time, as shown
in FIG. 3.

If each of the parallel engines 300 is coupled with an independent analyzer
circuit, then the throughput is simply GR. Alternatively, if they share the same
analyzer 110 (see FIG. 1) then the throughput expressed in equation (9) needs to be
recalculated since there is more contention for accessing the analyzer 110. In this

case, the throughput, becomes:

R; = G bytes/s
GT,, +T.

end

= G 1 bytes/s (10)

GBf1+pr+(l-—p)-F—

with the assumption that only one of the G engines finds a true match in a
given window.

Equation (10) can be simplified by considering realistic values of different
parameters. The analyzer is assumed to require a constant time; T, to check the input
string in the database. Such an analyzer can be easily designed as a hash table, for

example. A set of strings can be inserted into a hash table with collisions resolved by

10

15

20

WO 2005/017708 PCT/US2004/026429

14
chaining the colliding strings together in a linked list. Such a hash table has an

average of constant search time. This hash table can be stored in an off-chip
commodity SRAM or SDRAM. Although the average search time in such a hash
table can be made independent of the number of strings by using an ample memory,
the string retrieval time from the memory depends on the length of the string. For a
sub-string of length 32 bytes, for example, that is probed into the hash table
maintained in an SRAM with a data bus width of 4 bytes, 8 clock cycles are‘required
to retrieve the string and compare it against the input. With L, set to 32, even with
an assumption of one collision and accounting for memory access latencies, a hash
probe should require no more than 20 clock cycles, for example. Hence, © = 20/F,
i.e., 20 times the system clock period, is used.

Since the frequency of occurrence of the strings being looked for in the
streaming data is typically very low, small values of p can be assumed. The values, p
=0.001 (i.e., on an average for every thousand characters scanned, one string of
interest is found) is assumed for this example. Considering the values, B = 24 (hence,
signatures of 24 distinct lengths can be scanned), F'= 100 MHz (which is typically the
speed at which FPGAs and commodity SRAMs and SDRAM s operate), and G = 4
(i.e., 4 Bloom filter engines are used in parallel), and substituting these values in
equation (10) we obtain the following expression throughout:

~ 3.2
*1920% £ +1.019

Gigabits/s (11)

Since the false positive probability of all the Bloom filters of an engine is

engineered to be the same, say f, using equation (3):

10

15

20

WO 2005/017708 PCT/US2004/026429

15

Vie[l..B] (12

fi=f= Gj('V)mz

This implies that:

mo_my__my_Yam Moy
-
non ng >'n N

=11

Therefore,
oR

where f; is a false positive probability of the i Bloom filter within an engine;

(14)

m; is the memory allocated to Bloom filter J; n; is the number of strings stored in
Bloom filter; M is the total amount of on-chip memory available for Bloom filters of
all G engines. Hence, each engine is allocated M/G amount of memory, which is

shared by B Bloom filters in it. N is the total number of strings being stored in the .

B
Bloom filters of an engine. Thus, N = Z n,

i=1

After substituting the value of fin expression (11) and plotting the value of the
throughput R for a total of N = 10,000 strings, the graph shown in FIG. 4 is obtained.

FIG. 4 shows the throughput of the system as a function of the available on-
chip memory. Two different values of p, the probability of true occurrences of
strings, are considered. The system is tuned for a total of N = 10,000 strings of B =24
distinct lengths. The maximum string probability time in the analyzer is, for example,
20 times the clock period of the system with the clock frequency F being 100 MHz.

Thus, as FIG. 4 shows, the effect of false positives is dominant for small vales

of memory, which results in a lower throughput. However, as the amount of memory

WO 2005/017708 PCT/US2004/026429

16

increases, the throughput increases rapidly and saturates to over 3 Gbps. Thus, with
merely 1 Megabit of on-chip memory, 10,000 strings can be scanned at the line rate of
0C-48 (i.e., 2.4 Gbps). Moreover, the number of strings can be increased with a
proportional increase in the memory.

5 Accordingly, for a fixed number of strings in a Bloom filter, the number of
bits allocated to a member in a Bloom filter also decides the number of hash functions
needed for that Bloom filter. For example, if 50 bits per member on an average (i.e.,
m/n=50) are allocated, then the number of hash functions need to be k=~ 50x 0.7 =
35 and the false positive probability is (1/2)** =~ 3 x 10,

10 Although this scheme uses a considerable number of hash functions,
implementing these in hardware is relatively inexpensive. A class of universal hash
functions called H3 have been found to be suitable for hardware implementation. It
should be recalled that hash functions are generated for each filter. Hence, the total
number of distinct hash functions needed is £ x B for one engine. The following is the

15 description of how this hash matrix is calculated.

For any i byte represented as:
byte, = (b} ,b},bs ..., b3)
first the /” hash function #; on it is calculated as follows:
W =d., b ®d,-b®d, b}®..d b 15)
20 where dl,-j is a predetermined random number in the range [1...m], °.”is the
logical AND operator and @ is the logical XOR operator. Then the I" hash function
over all the i bytes is calculated as:

H =H' ®h Vie[l..W],Vie[l..k] (16)

10

15

20

WO 2005/017708 PCT/US2004/026429

17
with H, = 1. Tt can be observed that the hash functions are calculated

cumulatively and hence the results calculated over the first i bytes can be used for
calculating the hash function over the first i + 1 bytes. This property of the hash
functions results in a regular and less resource consuming hash function matrix.

Each hash function corresponds to one random lookup in the m-bit long
memory array. Thus, for 35 hash functions, the Bloom filter memory should be able
to support 35 random lookups every clock cycle. FIG. 5A illustrates a Bloom filter
with single memory vector 500 which allows 35 random lookups at a time. Memories
with such density and lookup capacity are realized by making use of the embedded
Random Access Memories (RAMs) in the VLSI chip.

With today’s state-of-the-art VLSI technology, it is easy to fabricate memories
that hold a few million bits. For embedded memories limited in their lookup capacity,
a desired lookup capacity can be realized by employing multiple memories 501 with
smaller lookup capacity (see FIG. 5B). For instance, state of the art memory cores
may include five read-write ports. Hence, using this memory core, five random
memory locations can be read in a single clock cycle. In order to perform 35
concurrent memory operations, seven parallel memory cores, each with 1/7™ the
required array size, are needed (see FIG. 5B). Since the basic Bloom filter allows any
hash function to map to any bit in the vector, it is possible that for some member,
more than 5 hash functions map to the same memory segment, thereby exceeding the
lookup capacity of this memory core. This problem can be solved by restricting the
range of each hash function to a given memory. Thus, memory contention can be

prevented.

10

15

20

WO 2005/017708 PCT/US2004/026429

18
In general, if 7 is the maximum lookup capacity of a RAM as limited by the

technology then &/h such memories, each of size ”/(k / h) can be combined to realize

the desired capacity of m bits and & hash functions. Only / hash functions are allowed

to map to a single memory. The false positive probability can be expressed as:

&I B

F=1-1-— z(l—e{%]J (17)

m
klh

Comparing equation (17) with equation (1), it can be seen that restricting the
number of hash functions mapping to a particular memory has negligible effect on’ the
false positive probability.

From the above, it has been so far assumed that the distribution of the strings
of different lengths is fixed for a given system. However, an ASIC design optimized
for a particular string length distribution will have sub-optimal performance if the
distribution varies drastically. Inflexibility in allocating resources for different Bloom
filters can lead to poor system performance.

Hence, the ability to support a string database of a certain size, irrespective of
the string length distribution is a desirable feature of the present system. Instead of
using the on-chip memory to build distribution-dependent memories of customized
size, a number of small fixed-size Bloom filters (mini-Bloom filters) can be
implemented.

Instead of allocating a fixed amount of memory to each of the Bloom filters, in
one embodiment consistent with the present invention, multiple mini-Bloom filters are

allocated to each Bloom filter. In other words, on-chip resources to individual Bloom

10

15

20

WO 2005/017708 PCT/US2004/026429

19

filters are allocated in units of mini-Bloom filters instead of bits. Thus, if strings of
length 7 are twice as many compared to the strings of length j, then a string set of
length 7 is allocated twice the number of mini-Bloom filters compared to the string set
of length j. While building the database, strings of a particular length are uniformly
distributed into the set of mini-Bloom filters allocated to it, but each string is stored in
only one mini-Bloom filter. This uniform random distribution of strings within a set
of mini-Bloom filters can be achieved by calculating a primary hash over the string.
The string is stored in the mini-Bloom filter pointed to by this primary hash value,
within the set, as illustrated in FIG. 6A, where a string of length 2 is programmed in
“set 2” mini-Bloom filter 4.

In the query process in one embodiment consistent with the present invention,
the streaming data window is broadcast to all sets of mini-Bloom filters. However,
the same primary hash function is calculated on the sub-strings to find out which one
of the mini-Bloom filters within the corresponding set should be probed with the
given sub-string. This mechanism ensures that each sub-string to be looked up is used
to probe only one mini-Bloom filter within a set dedicated for a particular string
length (see FIG. 6B, where 1 mini-Bloom filter per set is probed).

Each string is hashed or probed into only one of the mini-Bloom filters of any
set. Thus, the aggregate false positive probability of a particular set is the same as the
false positive probability of an individual mini-Bloom filter. The false positive
probability of the new system remains unchanged if the average memory bits per
string in the mini-Bloom filter is the same as the average memory bits per string in the

original scheme.

10

15

20

WO 2005/017708 PCT/US2004/026429

20

The importance of this scheme is that the allocation of the mini-Bloom filters
for different string lengths can be changed unlike in the case of hardwired memory.
The tables which indicate the string length set and its corresponding mini-Bloom
filters can be maintained on-chip with reasonable hardware resources. The resource
distribution among different sets can be reconfigured by updating these tables. This
flexibility makes the present invention independent of string length distribution.

In one embodiment, the present invention is implemented in a Field
Programmable Gate Array (FPGA), for example, a Xilinx XCV2000E, on the Field
Programmable Port Extender (FPX) platform. In this example, single size signatures
(hence B = 1) of 32 bytes were used to detect the transfer of media files over the
network.

In this example, the XCV2000E FPGA has 160 embedded block memories,
each of which can be configured as single bit wide, 4096 bit long array that can
perform two read operations using dual ports in a single clock cycle. The memory
was used to construct a Bloom filter, with m = 4096 and £ =2. Using equations (2)
and (3), it can be seen that this block RAM can support » = (m/2) x In2 ~ 1434
signatures with a false positive probability 1/2%=0.25. By employing 5 such block
RAMs in this example, a mini-Bloom filter with string capacity 1434 and false
positive probability of /= 1/21% can be constructed. Using 35 block RAMs, 7 such
mini-Bloom filters can be constructing giving an aggregate capacity of 1434 x 7=
10038 strings. These mini-Bloom filters constitute one engine. Four parallel engines,
for example, can be instantiated (which together consume 35 x 4 = 140 block RAMs)

to push 4 bytes in a single clock cycle (hence, G =4). Substituting these values in

10

15

20

WO 2005/017708 PCT/US2004/026429

21
equation (10), it can be seen that the throughput of over 2.46 Gbps, which

corresponds to a line rate of OC-48, can be achieved.

In one example of a system consistent with one embodiment of the present
invention, an FPGA 600 with a single Bloom filter engine is implemented as shown in
FIG. 7. The single Bloom filter engine consumed 35 block RAMSs and only 14% of
the available logic resources on the FPGA 600. The system operated at 81 MHz.
Traffic from the Internet 601 passes through WUGS-20 602, a gigabit switch, where
the data is multicast to an FPX 600 and to a router 603. The router 603 contains a
Fast Ethernet blade to which the workstations 604 connect. Data from the
workstations 604 pass to the router 603 then to the Internet 601 through the WUGS-
20 602. Traffic coming from the Internet 601 to the router 602 is processed in the
FPX 600. The analyzer was replaced by a computer program process in a standalone
workstation 605, for example, that checks all packets marked as a possible match by
the Bloom filters in the FPX 600.

In this example, experiments were performed to observe the practical
performance of Bloom filters in terms of the false positive rate. The Bloom filters
were programmed with a different number of strings and the false positives were
measured. FIG. 8 shows the result of the false positive probability as a function of the
nﬁmber of signatures stored in one Bloom filter engine. FIG. 8 shows that the
experimental results are consistent with the theoretical predictions. Note that in the
present experiments, the system did not produce any false positives for strings less
than 1400 (with approximately 200 strings in each mini-Bloom filter) and hence a dip

can be seen in the curve.

10

15

20

WO 2005/017708 PCT/US2004/026429

22
To determine throughput for this particular prototype configuration, traffic

was sent to the WUGS-20 switch 602 at a fixed rate and then recycled in the switch
602 to generate traffic at speeds above 1Gbps. Using a single match engine, the
circuit scanned data at the rates up to 600 Mbps. In contrast, the Bloom filter-based
system is able to a handle a larger database with reasonable resources, and supports
fast updates to the database. The latter is an important feature in network intrusion
detection system which require immediate action to certain attacks like an Internet-
worm outbreak.

Thus, the present invention detects for the presence of predefined strings in a
packet payload at wire speeds. The present invention is based on the hardware
implementation of Bloom filters. Constant time computation of the algorithm along
with the scalability of Bloom filters makes it an attractive choice for applications such
as network intrusion detection which require real time processing. An FPGA-based
implementation in a Xilinx Virtex 2000E FPGA on an FPX platform, for example,
could support 10,000 strings, and further generations of ASICS or FPGAs could
check for millions of strings. Multiple Bloom filter engines in parallel can handle line
speeds of 2.4 Gbps (OC-48) with the exemplary FPX infrastructure.

It should be emphasized that the above-described embodiments of the
invention are merely possible examples of implementations set forth for a clear
understanding of the principles of the invention. Variations and modifications may be
made to the above-described embodiments of the invention without departing from
the spirit and principles of the invention. All such modifications and variations are
intended to be included herein within the scope of the invention and protected by the

following claims.

10

15

20

WO 2005/017708 PCT/US2004/026429

23

What is claimed is:

L. A method of monitoring signatures in a network packet payload
comprising:

monitoring a data stream on the network for a signature of a predetermined
length;

testing said network signature for membership in one of a plurality of Bloom
filters; and

testing for a false positive on said membership.

2. The method according to claim 1, wherein each of said Bloom filters

contains at least one predefined signature of a predetermined length.

3. The method according to claim 2, wherein said membership includes a

correspondence between said network signature and said predefined signatures.

4, The method according to claim 2, wherein said plurality of Bloom
filters comprises an engine, and said predefined signatures are grouped according to

length and stored in at least one said engine.

5. The method according to claim 3, wherein said testing step comprises:
using an analyzer to determine whether said network signature is a false

positive.

10

15

20

WO 2005/017708 PCT/US2004/026429

24

6. The method according to claim 5, wherein when said network
signature matches said predefined signature, an appropriate action is taken on said

network signature.

7. The method according to claim 6, wherein said appropriate action

includes dropping the packet, forwarding the packet, and logging the packet.

8. The method according to claim 4, wherein said data stream on the

network arrives at a rate of one byte per clock cycle for one said engine.

9. The method according to claim 3, wherein when a plurality of network
signatures are monitored in a window of a predetermined number of bytes of a
predetermined length each to achieve a number of network sub-signatures, said

network sub-signatures are verified for membership in said Bloom filters.

10. The method according to claim 8, wherein each of said Bloom filters is

tested for membership once per clock cycle.

11. The method according to claim 8, wherein said membership is verified

in a single clock cycle.

12. The method according to claim 11, wherein after membership is tested

in said Bloom filters, said network data stream advances by one byte.

10

15

20

WO 2005/017708 PCT/US2004/026429

25

13. The method according to claim 1, wherein each network signature of

every predetermined length in every packet is monitored by said Bloom filters.

14. The method according to claim 9, wherein when multiple sub-
signatures match within said predetermined length, the longest sub-signature among
said multiple sub-signatures is considered first in order down to the shortest sub-
signature until verification of membership of one of said sub-signatures in one of said

Bloom filters is obtained by said analyzer.

15. The method according to claim 1, wherein no false negatives are

obtained.

16. The method according to claim 1, wherein said data stream on the

network arrives as TCP/IP data.

17. The method according to claim 4, wherein a plurality of analyzers are

provided.

18. The method according to claim 4, wherein each said engine advances

said network data stream by a corresponding number.

19. The method according to claim 1, wherein each of said Bloom filters

utilizes an embedded memory.

10

15

20

WO 2005/017708 PCT/US2004/026429

26

20. The method according to claim 19, wherein a retrieval time from said
memory of said predefined signature depends on said predetermined length of said

network signature.

21. The method according to claim 19, wherein multiple memories are
used to create each of said Bloom filters, and a number of hash functions mapping to

a particular memory of each of said Bloom filters is restricted.

22. The method according to claim 19, wherein a number of network
signatures which are monitored can be increased with a proportional increase in

memory.

23. The method according to claim 4, wherein said analyzer is a hash table

of signatures.

24. The method according to claim 23, wherein a set of network signatures
is inserted into said hash table with collisions resolved by chaining colliding network

signatures together in a linked list.

25. The method according to claim 23, wherein said hash table is one of an

off-chip commodity SRAM and SDRAM.

10

15

20

WO 2005/017708 PCT/US2004/026429

27

26. The method according to claim 23, wherein said Bloom filters are
counting Bloom filters which maintain a vector of counters corresponding to each bit

in a bit vector.

27. The method according to claim 26, wherein said counters are
maintained in software and a bit corresponding to each of said counters is maintained

in hardware.

28. The method according to claim 24, wherein a number of bits allocated
to a membership of said network signature in each of said Bloom filters decides a

number of hash functions needed for each of said Bloom filters.

29. The method according to claim 28, wherein each of said hash functions
corresponds to one random lookup in an m-bit long memory array of each of said

Bloom filters.

30. The method according to claim 19, wherein said embedded memory is

an embedded RAM in a VLSI chip.

31. The method according to claim 4, wherein each said engine can

increase throughput by a multiple of a number of said engines.

32, The method according to claim 31, wherein said throughput is greater

than 2.4 Gbps.

WO 2005/017708 PCT/US2004/026429

28

33. The method according to claim 19, wherein said Bloom filters are

implemented in an FPGA.
5 34. A method of monitoring signatures in a network packet payload
comprising:

storing a predefined signature of a predetermined length in one of a plurality
of Bloom filters;
monitoring a data stream on the network for a signature which corresponds to
10 said predefined signature; and
determining, using an analyzer, whether said network signature one of

corresponds to said predefined signature and is a false positive.

35. An apparatus for monitoring signatures in a network packet payload,
15 comprising:
means for monitoring a data stream on the network for a signature of a
predetermined length;
means for testing said network signature for membership in one of a plurality
of Bloom filters; and

20 means for testing for a false positive on said membership.

36. An apparatus for monitoring signatures in a network packet payload

comprising:

WO 2005/017708 PCT/US2004/026429
29
means for storing a predefined signature of a predetermined length in one of a
plurality of Bloom filters;
means for monitoring a data stream on the network for a signature which
corresponds to said predefined signature; and
5 means for determining, using an analyzer, whether said network signature one

of corresponds to said predefined signature and is a false positive.

37. Anapparatus for monitoring signatures in a packet payload over a
network, comprising:
10 an FPGA having a plurality of embedded block memories used to construct a
plurality of Bloom filters, said FPGA being disposed on a platform;
a switch which multicasts data in a data stream from the network to a router;
wherein traffic from the network to said router is processed in said FPGA; and
a monitor which checks all packets for signatures marked as a possible match

15 by predefined signatures stored in said Bloom filters.

38. The apparatus of claim 37, wherein said FPGA includes embedded

memories.

20 39. The apparatus according to claim 38, wherein said embedded

memories are embedded RAMs in a VLSI chip.

WO 2005/017708 PCT/US2004/026429
30
40. The apparatus according to claim 39, wherein said Bloom filters are in
disposed in parallel, and each set of Bloom filters comprises an engine which can

increase throughput by a multiple of a number of each said set.

5 41. The apparatus according to claim 40, wherein said throughput is

greater than 2.4 Gbps.

42. The apparatus according to claim 37, wherein said monitor is an
analyzer.
10
43. The apparatus according to claim 42, wherein said analyzer is a hash

table of signatures.

44. The apparatus according to claim 37, wherein said monitor is a

15 computer.

45. The apparatus according to claim 37, wherein said Bloom filters are
counting Bloom filters which maintain a vector of counters corresponding to each bit
in a bit vector.

20

46. The apparatus according to claim 45, wherein said counters are

maintained in software and a bit corresponding to each of said counters is maintained

in hardware.

10

15

20

WO 2005/017708 PCT/US2004/026429
31
47. The apparatus according to claim 37, wherein each of said Bloom

filters is tested for membership once per clock cycle.

48. The apparatus according to claim 37, wherein said membership is

verified in a single clock cycle.

49. The apparatus according to claim 43, wherein said hash table is one of

an off-chip commodity SRAM and SDRAM.

50. The method according to claim 4, wherein a set of multiple mini-

Bloom filters are allocated to each Bloom filter.

51. The method according to claim 50, further comprising:
uniformly distributing said predefined signatures into said set of said mini-

Bloom filters.

52. The method according to claim 51, wherein each of said predefined

signatures is stored in only one of said mini-Bloom filters.

53. The method according to claim 52, wherein said uniform distribution is

achieved by calculating a primary hash over each of said predefined signatures.

54. The method according to claim 53, wherein said primary hash is

calculated on network sub-strings from said data stream to determine which of said

10

15

20

WO 2005/017708 PCT/US2004/026429

32

mini-Bloom filters within said set should be probed for membership of said network

sub-string.

55. The method according to claim 54, wherein each of said network sub-
strings to be looked up is used to probe only one of said mini-Bloom filters within

said set dedicated for a particular string length.

56. The apparatus according to claim 37, wherein a set of multiple mini-

Bloom filters are allocated to each of said Bloom filters.

57. The apparatus according to claim 56, wherein said predefined

signatures are uniformed distributed into said set of said mini-Bloom filters.

58. The apparatus according to claim 57, wherein each of said predefined

signatures is stored in only one of said mini-Bloom filters.

59. The apparatus according to claim 58, wherein said uniform distribution

is achieved by calculating a primary hash over each of said predefined signatures.

60. The apparatus according to claim 59, wherein said primary hash is
calculated on network sub-strings from said data stream to determine which of said
mini-Bloom filters within said set should be probed for membership of said network

sub-string.

WO 2005/017708 PCT/US2004/026429

33
61. The apparatus according to claim 60, wherein each of said network

sub-strings to be looked up is used to probe only one of said mini-Bloom filters within

said set dedicated for a particular string length.

WO 2005/017708 PCT/US2004/026429

115

FIG. 1

Analyzer
(Isolates false positives)

/\, 110

suspicious sub-stringsI

Hardware Bloom Filters

@ NIOO0000-G e

101

/

Network Traffic

FIG. 2

-«—— Stireaming data window ——»
Entering |L max L min =3 Leaving
Byt B
yie \{N- 109876543*21 ye
El—-»iIIII_IIIIIIIIIIII-—>|:]
3bytestring L |
4 byte string | i
5 byte string | |
I W byte string |
v v v
B =
= — — £
= © = =2
— LL. LL. L L
200 | | ® = = =
T T T T
Membership query results from Bloom filters

PCT/US2004/026429

WO 2005/017708

215

FIG. 3

Leaving bytes

e

Streaming data window

/\,300
_ 200

N

Y

Y

Entering bytes

—|
R
e 3
—|
C £
{}
=al e
L =
— | 2
|5
\v
()
=

200

FIG. 4

(puooss Jad syqebie) ui) weysAs syj jo indybnoay |

o

1.4

1.2

0.8

0.6

0.4

0.2

0

On-chip memory available for Bloom filters (in Megabits)

0.001

p.‘:

WO 2005/017708 PCT/US2004/026429

3/5
- 50000 bits >
, single configuous memory \ |
500
H1 H2 H3H4 H5 HE H7 H33 H34 H35
501
- 50000 bits -
= 50000/7 bits ==t
memory 2 memory3 |- — - —-
N/
H1--H5 H2 - -H10 H11--H15 H31 --H35
601 |
602
Fiber
/—-)\ 11
603 A
604
) 604
G-Link /)B []
Yam—
FPX
nefwork
Lty O] -
600 [GLINK e
‘ Monitor Software

605

WO 2005/017708 PCT/US2004/026429

4/5
Tri state Bus mini Bloom filters

l\l’l\/ ——— 1 Set 1

L’ 12 B
~ B 13 T
£ > =] 14 | Set2
| g
&) l\l/ :l 5 .
g) '\l/ 16
}E__' L/ — 7 Set 3
3 —> ——8

' ———1100 | SetN

— Primary Hashing

FIG. 6B

Tri state Bus mini Bloom filters

>
NV ——
l// :
> —
\\ —
7 14
> —
> —
) =17 | Set3
> ——8

N/

Set 2

Streaming data window
7?'
I

= ——— 100 | SetN

N

Y

Primary Hashing

WO 2005/017708 PCT/US2004/026429

5/5

0.01

/
0.001

1e-04 /

1e-05 /

16-06 Pl

Q. 1e-07 ‘4/

1e-08 / /

1e-09 //

1e-10 ,/

1e-11 /
1e-12 /
1613 ,/ :

700 1400 2800 4200 7000 14000 21000
Number of signatures programmed in single Bloom filter

robability

False positive

Theoretical false positive probability ——
Experimental false positive probability ——

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

